切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15295阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 s(r4m/  
    x~](d8*=  
    ,vAcri 97  
    b Rr3:"=sE  
    然后添加了默认公差分析,基本没变 `^|l+TJG  
    1*.*\4xo  
    xtK\-[n  
    6MLjU1  
    然后运行分析的结果如下: NPDMv |4  
    +zEyCx=8H  
    Analysis of Tolerances )jh~jU?c@  
    3PlIn0+LX  
    File : E:\光学设计资料\zemax练习\f500.ZMX R*2F)e\|  
    Title: xqQK-?k  
    Date : TUE JUN 21 2011 Z*=$n_ G  
    oN`khS]_v0  
    Units are Millimeters. ;d FJqo82  
    All changes are computed using linear differences. I+31:#d  
    "]OROJGa  
    Paraxial Focus compensation only. '%YE#1*gH  
    L~RFI&b  
    WARNING: Solves should be removed prior to tolerancing. <~S]jtL.j:  
    hE<Sm*HU  
    Mnemonics: E()%IC/R  
    TFRN: Tolerance on curvature in fringes. mA@!t>=oMq  
    TTHI: Tolerance on thickness. KLG29G  
    TSDX: Tolerance on surface decentering in x. \[]?9Z=n  
    TSDY: Tolerance on surface decentering in y. /rky  
    TSTX: Tolerance on surface tilt in x (degrees). U+C ^"[B  
    TSTY: Tolerance on surface tilt in y (degrees). ) $0>L5d:  
    TIRR: Tolerance on irregularity (fringes). Ul}<@d9: B  
    TIND: Tolerance on Nd index of refraction. lS#^v#uS  
    TEDX: Tolerance on element decentering in x. Ey=}bBx  
    TEDY: Tolerance on element decentering in y. 5>ktr)]  
    TETX: Tolerance on element tilt in x (degrees). B{p74 >  
    TETY: Tolerance on element tilt in y (degrees). dGz4`1(>  
    B#cN'1c  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. @4]{ZUV  
    d24_,o\_  
    WARNING: Boundary constraints on compensators will be ignored. #on ,;QN  
    A(n#k&W1fZ  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm N Hn #c3o  
    Mode                : Sensitivities ]2 $T 6  
    Sampling            : 2 L27WDm^)  
    Nominal Criterion   : 0.54403234 $?dQ^]<,  
    Test Wavelength     : 0.6328 /Gn0|]KI  
    zx*D)i5-  
    i"pOYZW1  
    Fields: XY Symmetric Angle in degrees Hsd76z#8  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY o8v,17 8  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ~>P(nI  
    j; R20xf0  
    Sensitivity Analysis: wNn=JzP  
    f1;@a>X  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 9X +dp  
    Type                      Value      Criterion        Change          Value      Criterion        Change B*w]yL(  
    Fringe tolerance on surface 1 X8-x$07)  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 X$6QQnyR  
    Change in Focus                :      -0.000000                            0.000000 (E,Ibz2G:e  
    Fringe tolerance on surface 2 s`0IyQXVU  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 $R NHRA.  
    Change in Focus                :       0.000000                            0.000000 \ 9iiS(e  
    Fringe tolerance on surface 3 *N }$~N  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 =\oL'>q  
    Change in Focus                :      -0.000000                            0.000000 .wyuB;:  
    Thickness tolerance on surface 1 ~sPXkLqK  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 P}qpy\/(4  
    Change in Focus                :       0.000000                            0.000000 x 4sIZe+  
    Thickness tolerance on surface 2 D$*o}*mb  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 6:6A" A  
    Change in Focus                :       0.000000                           -0.000000 < (B|g&A  
    Decenter X tolerance on surfaces 1 through 3 o*ucw3s>  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 M ?AX:0  
    Change in Focus                :       0.000000                            0.000000 e+D]9wM8  
    Decenter Y tolerance on surfaces 1 through 3 xR|^{y9n  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 e-[PuJ  
    Change in Focus                :       0.000000                            0.000000 k7;i^$@c  
    Tilt X tolerance on surfaces 1 through 3 (degrees) \=]`X2Ld  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 }p?67y/  
    Change in Focus                :       0.000000                            0.000000 I|qhj*_C  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) oveK;\7/m  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 SbzJeaZv  
    Change in Focus                :       0.000000                            0.000000 5Pxx)F9]  
    Decenter X tolerance on surface 1 EWgJ"WTF  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 wf &Jd:)4t  
    Change in Focus                :       0.000000                            0.000000 ~fb#/%SV  
    Decenter Y tolerance on surface 1 EtaKo}!A}  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 eU,F YJt9  
    Change in Focus                :       0.000000                            0.000000 4d}=g]P  
    Tilt X tolerance on surface (degrees) 1 yT5OFD|T  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 NO@`*:.^Y  
    Change in Focus                :       0.000000                            0.000000 R5%CK_  
    Tilt Y tolerance on surface (degrees) 1 sR[!6[AA  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 a]xGzv5  
    Change in Focus                :       0.000000                            0.000000 `b]wyP  
    Decenter X tolerance on surface 2 VZ =:`)  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 K~I?i/P=z  
    Change in Focus                :       0.000000                            0.000000 VJT /9O)Z|  
    Decenter Y tolerance on surface 2 >]xW{71F@  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 rpDBKo  
    Change in Focus                :       0.000000                            0.000000 o 9/,@Ri\5  
    Tilt X tolerance on surface (degrees) 2 ('UTjV  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 TI/RJF b  
    Change in Focus                :       0.000000                            0.000000 bt_c$TN  
    Tilt Y tolerance on surface (degrees) 2 l|E4 7@#  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 }+G5i_a  
    Change in Focus                :       0.000000                            0.000000 9==4T$nM[  
    Decenter X tolerance on surface 3 l U4 I*  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 nqo1+OR  
    Change in Focus                :       0.000000                            0.000000 $I>]61l%  
    Decenter Y tolerance on surface 3 `O%nDry  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 cL ~WDW/  
    Change in Focus                :       0.000000                            0.000000 v}a {nU'  
    Tilt X tolerance on surface (degrees) 3 0B!(i.w  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 & rD8ng+$  
    Change in Focus                :       0.000000                            0.000000 YG8V\4 SQ  
    Tilt Y tolerance on surface (degrees) 3 )h&@}#A09  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 9_iwikD  
    Change in Focus                :       0.000000                            0.000000 VjNr<~|d  
    Irregularity of surface 1 in fringes X[1D$1Dvw  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 zrG  
    Change in Focus                :       0.000000                            0.000000 G.~ Q2O#T  
    Irregularity of surface 2 in fringes (=;'>*L(  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 %.r \P@7/Q  
    Change in Focus                :       0.000000                            0.000000 2,`X@N`\  
    Irregularity of surface 3 in fringes u)I\R\N  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 f!R7v|j P  
    Change in Focus                :       0.000000                            0.000000 O6)Po  
    Index tolerance on surface 1 +6P[TqR  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 #k|f>D4  
    Change in Focus                :       0.000000                            0.000000 [+pa,^  
    Index tolerance on surface 2 &]RE 5!  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 * jWh4F,  
    Change in Focus                :       0.000000                           -0.000000 e98QT9  
    UH}lKc=t  
    Worst offenders: <N$Hb2b  
    Type                      Value      Criterion        Change 0F%8d@Y2  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 )UF'y{K}  
    TSTY   2             0.20000000     0.35349910    -0.19053324 zPqJeYK  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 fW+ "Kuw  
    TSTX   2             0.20000000     0.35349910    -0.19053324 yq k8)\p  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ,52 IR[I<T  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ~mXzQ be p  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 G dNhEv  
    TSTX   1             0.20000000     0.42678383    -0.11724851 dVj2x-R)  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 T1.U (::  
    TSTY   3             0.20000000     0.42861670    -0.11541563 3~Fag1Hp  
    #&?ER]|3  
    Estimated Performance Changes based upon Root-Sum-Square method: qve'Gm)  
    Nominal MTF                 :     0.54403234 .24z+|j  
    Estimated change            :    -0.36299231 d 94k  
    Estimated MTF               :     0.18104003 dhLR#m30T  
    uGb+ *tD  
    Compensator Statistics: nb=mY&q}~  
    Change in back focus: }EkL[H!  
    Minimum            :        -0.000000 'G>XI;g  
    Maximum            :         0.000000 =Q<7[  
    Mean               :        -0.000000 .\ fpjQW  
    Standard Deviation :         0.000000 Y * rujn{  
    i]? Eq?k  
    Monte Carlo Analysis: >| ,`E  
    Number of trials: 20 U\:Y*Ai  
    7:pc%Ksq  
    Initial Statistics: Normal Distribution }BI6dZ~2A  
    {m~)~/z?  
      Trial       Criterion        Change R@jMFh;  
          1     0.42804416    -0.11598818 'q$Y m0nL  
    Change in Focus                :      -0.400171 ?Ce=h+l  
          2     0.54384387    -0.00018847 jIe /X]  
    Change in Focus                :       1.018470 Q\kWQOB_  
          3     0.44510003    -0.09893230 gs3(B/";c  
    Change in Focus                :      -0.601922 ZwLr>?0$ p  
          4     0.18154684    -0.36248550 )G^k$j  
    Change in Focus                :       0.920681 }aE'  
          5     0.28665820    -0.25737414 8CUtY9.  
    Change in Focus                :       1.253875 cYg J}(>}  
          6     0.21263372    -0.33139862 qna!j|90Lp  
    Change in Focus                :      -0.903878 ]goJ- &  
          7     0.40051424    -0.14351809 (:OMt2{r  
    Change in Focus                :      -1.354815 R3_OCM_*  
          8     0.48754161    -0.05649072 p@f #fs  
    Change in Focus                :       0.215922 o [V8h @K)  
          9     0.40357468    -0.14045766 P8By~f32_  
    Change in Focus                :       0.281783 4sQm"XgE  
         10     0.26315315    -0.28087919 9M27;"gK  
    Change in Focus                :      -1.048393 1mJUl x  
         11     0.26120585    -0.28282649 ^`id/  
    Change in Focus                :       1.017611 k6ry"W3  
         12     0.24033815    -0.30369419 *izCXfW7  
    Change in Focus                :      -0.109292 TBPu&+3  
         13     0.37164046    -0.17239188 mJ<`/p?:  
    Change in Focus                :      -0.692430 Ly8=SIZ   
         14     0.48597489    -0.05805744 }M%3  
    Change in Focus                :      -0.662040 !`?i>k?Q E  
         15     0.21462327    -0.32940907 iu8Q &Us0P  
    Change in Focus                :       1.611296 Mi|13[p{  
         16     0.43378226    -0.11025008 Bc }o3oc  
    Change in Focus                :      -0.640081 (BPp2^  
         17     0.39321881    -0.15081353 ;a1DIUm'  
    Change in Focus                :       0.914906 <dP \vLH_  
         18     0.20692530    -0.33710703 (["kbPma  
    Change in Focus                :       0.801607 +&VY6(Zj+*  
         19     0.51374068    -0.03029165 ux1(>  
    Change in Focus                :       0.947293 {Dl@/fz  
         20     0.38013374    -0.16389860 mm +V*L{x  
    Change in Focus                :       0.667010 _|12BVq  
    j3-o}6  
    Number of traceable Monte Carlo files generated: 20 JYw?  
    : pUu_  
    Nominal     0.54403234 &v((tZ  
    Best        0.54384387    Trial     2 uoE+:,P  
    Worst       0.18154684    Trial     4 k-n`R)p:  
    Mean        0.35770970 >v@3]a i  
    Std Dev     0.11156454 jnOnV1I"  
    CUH u=  
    m85ZcyW1T  
    Compensator Statistics: q>BJ:_I i  
    Change in back focus: ZKEoU!  
    Minimum            :        -1.354815 V;SV0~&  
    Maximum            :         1.611296 *Oy* \cX2[  
    Mean               :         0.161872 ";7N$hWE  
    Standard Deviation :         0.869664 8Snv, Lb`^  
    ^$'z#ZN1  
    90% >       0.20977951               ck0%H#BYY  
    80% >       0.22748071               D`^wj FF  
    50% >       0.38667627               QnS^ G{  
    20% >       0.46553746               d'MZ%.#  
    10% >       0.50064115                yW'{Z]09  
    vv,<#4d  
    End of Run. ,yNuz@^ P  
    CtN\-E-  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 KPz0;2}  
    {~O4*2zg;K  
    ;5X~"#%U_  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 meV Z_f/  
    HN367j2e  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 _y6iR&&x  
    80% >       0.22748071                 Z>g&%3j  
    50% >       0.38667627                 Xa>'DO2  
    20% >       0.46553746                 HTiLA%%6  
    10% >       0.50064115 j<!dpt  
    + @fEw  
    最后这个数值是MTF值呢,还是MTF的公差? *^; MWI  
    RrBG=V  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   i^:#*Q-co  
    M1/(Xla3  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : elKp?YN  
    90% >       0.20977951                 c"CR_  
    80% >       0.22748071                 *b{Hj'HaH  
    50% >       0.38667627                 p[|V7K'Z  
    20% >       0.46553746                 vP'!&}  
    10% >       0.50064115 &q-P O  
    ....... D=D.s)ns*  
    :ba4E[@  
    79 _8Oh  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   1"<{_&d1  
    Mode                : Sensitivities nC$ c.K'  
    Sampling            : 2 gm:Y@6W  
    Nominal Criterion   : 0.54403234 #QOb[9(Tu(  
    Test Wavelength     : 0.6328 h^WMv *2  
    VJr~h "[  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ja{x}n*5  
    `J{{E,y @  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试