我现在在初学zemax的
公差分析,找了一个双胶合
透镜 hB P]^~( 9^v|~f
`USR]T_` ?7^(' 然后添加了默认公差分析,基本没变
F8_pwJUpf- $d,30hK
^w8H=UkP!+ :Q+rEjw+ 然后运行分析的结果如下:
`q7I;w+g v{Zh!mk* L Analysis of Tolerances
nLto=tNUO ]hF[f|V File : E:\光学设计资料\zemax练习\f500.ZMX
JP!$uK{u Title:
#q==GT7 Date : TUE JUN 21 2011
F=iz\O!6 {(D$Xb Units are Millimeters.
Tud[VS?99 All changes are computed using linear differences.
m`nv4 i#o lCWk)m8 Paraxial Focus compensation only.
YOGwQ (mt,:hX WARNING: Solves should be removed prior to tolerancing.
iP|h] ;a+@ nHD4J;l Mnemonics:
Z=825[p TFRN: Tolerance on curvature in fringes.
e`k
2g^ TTHI: Tolerance on thickness.
hP3I_I[qF} TSDX: Tolerance on surface decentering in x.
zhHQJcQ. TSDY: Tolerance on surface decentering in y.
)P:TVe9` TSTX: Tolerance on surface tilt in x (degrees).
e_k1pox]l TSTY: Tolerance on surface tilt in y (degrees).
B
wtD!de$ TIRR: Tolerance on irregularity (fringes).
T>vH ZZiO TIND: Tolerance on Nd index of refraction.
}k \a~<'X TEDX: Tolerance on element decentering in x.
)w;XicT TEDY: Tolerance on element decentering in y.
N=tyaS(YJ TETX: Tolerance on element tilt in x (degrees).
|5e/ .T$ TETY: Tolerance on element tilt in y (degrees).
^YenS6`F W $?1" F. WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
f*W<N06EZ 9Hlu%R WARNING: Boundary constraints on compensators will be ignored.
^Bm9yR B`"-~4YAf Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
j,EE`g& Mode : Sensitivities
[g&Q_+,j Sampling : 2
:V}8a!3h Nominal Criterion : 0.54403234
sw{EV0&>m Test Wavelength : 0.6328
c!{.BgGN >9<h?F%S \&@Tq-o Fields: XY Symmetric Angle in degrees
[rqq*_eB # X-Field Y-Field Weight VDX VDY VCX VCY
(zk'i13#6 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
9e=F jY87NHg Sensitivity Analysis:
*bmk(%g kl3#&>e |----------------- Minimum ----------------| |----------------- Maximum ----------------|
Yfxc$ub Type Value Criterion Change Value Criterion Change
@iC!Q>D Fringe tolerance on surface 1
Z0b1E TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
',m,wp` Change in Focus :
-0.000000 0.000000
VI" ,E} Fringe tolerance on surface 2
+Nc|cj TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
YCw^u Change in Focus : 0.000000 0.000000
;X|;/@@ Fringe tolerance on surface 3
h-lMrI)U?h TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
2ZIf@C{P. Change in Focus : -0.000000 0.000000
?kE2S6j5 Thickness tolerance on surface 1
cl:*Q{(Cjk TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
uW Q` Change in Focus : 0.000000 0.000000
}-:
d*YtK Thickness tolerance on surface 2
P*I\FV TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
N4)&K[ Change in Focus : 0.000000 -0.000000
~z32%k Decenter X tolerance on surfaces 1 through 3
2[j|:Ng7 TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
/YUf('b Change in Focus : 0.000000 0.000000
.7~Kfm@2 Decenter Y tolerance on surfaces 1 through 3
0 I;>du TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
-7m;rD4J Change in Focus : 0.000000 0.000000
-}4 H'%Z(i Tilt X tolerance on surfaces 1 through 3 (degrees)
]y-r
I TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
N|1J@"H Change in Focus : 0.000000 0.000000
L?Wl#wP\;* Tilt Y tolerance on surfaces 1 through 3 (degrees)
P,I3E?! j TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
5jx{O${u Change in Focus : 0.000000 0.000000
gJvc<]W8! Decenter X tolerance on surface 1
Axj<e!{D TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
z_A%>E4 Change in Focus : 0.000000 0.000000
zx#d_SVi Decenter Y tolerance on surface 1
m='+->O*'l TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
cf0em! Change in Focus : 0.000000 0.000000
Z# 7HuAF{] Tilt X tolerance on surface (degrees) 1
7F}I.,<W TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
7@+0E2' Change in Focus : 0.000000 0.000000
?em )om Tilt Y tolerance on surface (degrees) 1
bgYM TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
[m}x Change in Focus : 0.000000 0.000000
,!sAr;Rk` Decenter X tolerance on surface 2
2S!=2u+7 TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
;#rtV; Change in Focus : 0.000000 0.000000
mI0|lp 1$ Decenter Y tolerance on surface 2
{) Y
&Vr5 TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
{nj\dU Change in Focus : 0.000000 0.000000
Y*w<~m Tilt X tolerance on surface (degrees) 2
6JK;]Ah TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
aL#b8dCy' Change in Focus : 0.000000 0.000000
Fo~C,@/Qt Tilt Y tolerance on surface (degrees) 2
p)TH^87 TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
:4(7W[r6 Change in Focus : 0.000000 0.000000
rp(`V@x3 Decenter X tolerance on surface 3
Ge(r6"%7 TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
.JQR5R |Q Change in Focus : 0.000000 0.000000
MzJ5_} Decenter Y tolerance on surface 3
2uiiTg> TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
}"q1B Change in Focus : 0.000000 0.000000
#H7(d T Tilt X tolerance on surface (degrees) 3
nM
R_ ?g TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
]Ms~;MXlx5 Change in Focus : 0.000000 0.000000
dQ;rO$co Tilt Y tolerance on surface (degrees) 3
ap;*qiNFQ TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
|$bZO`^ Change in Focus : 0.000000 0.000000
Nm\I_wjX Irregularity of surface 1 in fringes
K;[V`)d' TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
E.6^~'/ Change in Focus : 0.000000 0.000000
,:=E+sS
Irregularity of surface 2 in fringes
(">!vz TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
y}#bCRy~.A Change in Focus : 0.000000 0.000000
Z~$& h Irregularity of surface 3 in fringes
9W'#4 TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
wond>m
3 Change in Focus : 0.000000 0.000000
hr]NW>; Index tolerance on surface 1
mnu7Y([2> TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
&?zJ|7rh@| Change in Focus : 0.000000 0.000000
.HGEddcC Index tolerance on surface 2
W&+UF'F2 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
yDy3;*lE Change in Focus : 0.000000 -0.000000
~^Vt)/}Q EkXns%][L Worst offenders:
yVh]hL#4+w Type Value Criterion Change
W dIr3 TSTY 2 -0.20000000 0.35349910 -0.19053324
PPE:@!u< TSTY 2 0.20000000 0.35349910 -0.19053324
M=0I 3o}J TSTX 2 -0.20000000 0.35349910 -0.19053324
{#Gr=iv~N TSTX 2 0.20000000 0.35349910 -0.19053324
3R4-MK TSTY 1 -0.20000000 0.42678383 -0.11724851
;=UrIA@y;= TSTY 1 0.20000000 0.42678383 -0.11724851
of{wZU\J+9 TSTX 1 -0.20000000 0.42678383 -0.11724851
eJ7A.O TSTX 1 0.20000000 0.42678383 -0.11724851
ih1SN,/ TSTY 3 -0.20000000 0.42861670 -0.11541563
B;7L: TSTY 3 0.20000000 0.42861670 -0.11541563
EZBk;*=B =>ph\ Estimated Performance Changes based upon Root-Sum-Square method:
O a-ZeCq Nominal MTF : 0.54403234
!>t|vgW Estimated change : -0.36299231
z,DEBRT+ Estimated MTF : 0.18104003
/H!I90 K6|*-Wo. Compensator Statistics: 9LCV"xgX Change in back focus: 5F
<zW-; Minimum : -0.000000 eJJvEvZ, Maximum : 0.000000 "p$`CUtI Mean : -0.000000 Pf@8C{I Standard Deviation : 0.000000 Cww$ A %} Z8nNZ<k Monte Carlo Analysis:
2}509X(* Number of trials: 20
s(wbsRVP8 \7("bB= Initial Statistics: Normal Distribution
,v)@&1Wh: 4-cnkv\~ Trial Criterion Change
!:e}d+F 1 0.42804416 -0.11598818
-?'u"*#1, Change in Focus : -0.400171
f4X?\e GT 2 0.54384387 -0.00018847
YSv\T '3 Change in Focus : 1.018470
Hyq|%\A 3 0.44510003 -0.09893230
#l:qht Change in Focus : -0.601922
Q1s`d?P/` 4 0.18154684 -0.36248550
SV8rZWJ Change in Focus : 0.920681
mC J/gWDY 5 0.28665820 -0.25737414
ZJ+q<n_4} Change in Focus : 1.253875
D!)'c(b 6 0.21263372 -0.33139862
a.c2ScXG Change in Focus : -0.903878
xN2{Vi{ad 7 0.40051424 -0.14351809
_=4Dh/Dv Change in Focus : -1.354815
e&]XiV' 8 0.48754161 -0.05649072
bO^%#<7 Change in Focus : 0.215922
#7gOtP#{ 9 0.40357468 -0.14045766
~u}[VP Change in Focus : 0.281783
rj<%_d'Z` 10 0.26315315 -0.28087919
^qV*W1|0 Change in Focus : -1.048393
~Bj-n6 QDE 11 0.26120585 -0.28282649
;:"~utL7 Change in Focus : 1.017611
mn
8A%6W 12 0.24033815 -0.30369419
OL=IUg" Change in Focus : -0.109292
fN t 13 0.37164046 -0.17239188
Ig5J_Z^]b Change in Focus : -0.692430
#lV&U 14 0.48597489 -0.05805744
(Dc dR:/= Change in Focus : -0.662040
WY<ip< 15 0.21462327 -0.32940907
h2uO+qEsu Change in Focus : 1.611296
ng<|lsZd 16 0.43378226 -0.11025008
nQ/(*d Change in Focus : -0.640081
q(a6@6f"kD 17 0.39321881 -0.15081353
;k!Ej-( Change in Focus : 0.914906
b4,yLVi<T 18 0.20692530 -0.33710703
7xWX:2l*? Change in Focus : 0.801607
NIV&)`w 19 0.51374068 -0.03029165
#pOW2 Uj8\ Change in Focus : 0.947293
-,zNFC:6g 20 0.38013374 -0.16389860
J,P7k$t2vv Change in Focus : 0.667010
t{x&|%u 9)H~I/9Y Number of traceable Monte Carlo files generated: 20
Kd^
._ U/{cYX Nominal 0.54403234
iCz,|;w% Best 0.54384387 Trial 2
|@V<}2zCZ Worst 0.18154684 Trial 4
o.y4&bC14; Mean 0.35770970
&z%7Nu Std Dev 0.11156454
Q,)G_lO 2BRY2EF [.3M>,)+- Compensator Statistics:
L;grH5K5 Change in back focus:
#gi&pR'$ Minimum : -1.354815
RHE< QG Maximum : 1.611296
VI37 Mean : 0.161872
w[]7{D]; Standard Deviation : 0.869664
tPFV6n
i O:k@'& 90% > 0.20977951 Nu|?s- 80% > 0.22748071 qRB&R$ 50% > 0.38667627 qj=12; 20% > 0.46553746 IvH0sS`F 10% > 0.50064115 IsnC_"f >&BgF*mm End of Run.
O+z-6:` x!LUhX ' 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
[R& P.E7w'
3}Uae#oy .XYSO 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
c69B[Vjb gp(w6:w 不吝赐教