我现在在初学zemax的
公差分析,找了一个双胶合
透镜 s(r4m/ x~](d8*=
,vAcri
97 bRr3:"=sE 然后添加了默认公差分析,基本没变
`^|l+TJG 1*.*\4xo
xtK\-[n 6MLjU1 然后运行分析的结果如下:
NPDMv
|4 +zEyCx=8H Analysis of Tolerances
)jh~jU? c@ 3PlIn0+LX File : E:\光学设计资料\zemax练习\f500.ZMX
R*2F)e\| Title:
xqQK-?k Date : TUE JUN 21 2011
Z*=$n_
G oN`khS]_v0 Units are Millimeters.
;d
FJqo82 All changes are computed using linear differences.
I+31:#d " ]OROJGa Paraxial Focus compensation only.
'%YE#1*gH L~RFI&b
WARNING: Solves should be removed prior to tolerancing.
<~S]jtL.j: hE<Sm*HU Mnemonics:
E()%IC/R TFRN: Tolerance on curvature in fringes.
mA@!t>=oMq TTHI: Tolerance on thickness.
KLG29G TSDX: Tolerance on surface decentering in x.
\[]?9Z=n TSDY: Tolerance on surface decentering in y.
/rky TSTX: Tolerance on surface tilt in x (degrees).
U+C^"[B TSTY: Tolerance on surface tilt in y (degrees).
) $0>L5d: TIRR: Tolerance on irregularity (fringes).
Ul}<@d9: B TIND: Tolerance on Nd index of refraction.
lS#^v#uS TEDX: Tolerance on element decentering in x.
Ey=}bBx TEDY: Tolerance on element decentering in y.
5>ktr)] TETX: Tolerance on element tilt in x (degrees).
B{p74
> TETY: Tolerance on element tilt in y (degrees).
dGz4`1(> B#cN'1c WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
@4]{ZUV d24_,o\_ WARNING: Boundary constraints on compensators will be ignored.
#on ,;QN A(n#k&W1fZ Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
N
Hn#c3o Mode : Sensitivities
]2
$T 6 Sampling : 2
L27WD m^) Nominal Criterion : 0.54403234
$?dQ^]<, Test Wavelength : 0.6328
/Gn0|]KI zx*D)i5- i"pOYZW1 Fields: XY Symmetric Angle in degrees
Hsd76z#8 # X-Field Y-Field Weight VDX VDY VCX VCY
o8v,178 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
~>P(nI j;
R20xf 0 Sensitivity Analysis:
wNn=JzP f1;@a>X
|----------------- Minimum ----------------| |----------------- Maximum ----------------|
9X
+dp Type Value Criterion Change Value Criterion Change
B*w]yL( Fringe tolerance on surface 1
X8-x$07) TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
X$6QQnyR Change in Focus :
-0.000000 0.000000
(E,Ibz2G:e Fringe tolerance on surface 2
s`0IyQXVU TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
$RNHRA. Change in Focus : 0.000000 0.000000
\ 9iiS(e Fringe tolerance on surface 3
*N}$~N TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
=\oL'>q Change in Focus : -0.000000 0.000000
.wyuB;: Thickness tolerance on surface 1
~sPXkLqK
TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
P}qpy\/(4 Change in Focus : 0.000000 0.000000
x 4sIZe+ Thickness tolerance on surface 2
D$*o}*mb TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
6:6A"A Change in Focus : 0.000000 -0.000000
<(B|g&A Decenter X tolerance on surfaces 1 through 3
o*ucw3s> TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
M ?AX:0 Change in Focus : 0.000000 0.000000
e+D]9wM8 Decenter Y tolerance on surfaces 1 through 3
xR|^{y9n TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
e-[PuJ Change in Focus : 0.000000 0.000000
k7;i^$@c Tilt X tolerance on surfaces 1 through 3 (degrees)
\=]`X2Ld TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
}p?67y/ Change in Focus : 0.000000 0.000000
I|qhj*_C Tilt Y tolerance on surfaces 1 through 3 (degrees)
oveK;\7/m TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
SbzJeaZv Change in Focus : 0.000000 0.000000
5Pxx)F9] Decenter X tolerance on surface 1
EWgJ"WTF TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
wf &Jd:)4t Change in Focus : 0.000000 0.000000
~fb#/%SV Decenter Y tolerance on surface 1
EtaKo}!A} TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
eU,FYJt9 Change in Focus : 0.000000 0.000000
4d}=g]P Tilt X tolerance on surface (degrees) 1
yT5OFD|T TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
NO@`*:.^Y Change in Focus : 0.000000 0.000000
R5%CK_ Tilt Y tolerance on surface (degrees) 1
sR[!6[AA TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
a]xGzv5 Change in Focus : 0.000000 0.000000
`b] wyP Decenter X tolerance on surface 2
VZ=:`) TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
K~I?i/P=z Change in Focus : 0.000000 0.000000
VJT /9O)Z| Decenter Y tolerance on surface 2
>]xW{71F@ TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
rpDBKo Change in Focus : 0.000000 0.000000
o 9/,@Ri\5 Tilt X tolerance on surface (degrees) 2
('U TjV TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
TI/RJF b Change in Focus : 0.000000 0.000000
bt_c$TN Tilt Y tolerance on surface (degrees) 2
l|E4 7@# TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
}+G5i_a Change in Focus : 0.000000 0.000000
9==4T$nM[ Decenter X tolerance on surface 3
l U4 I* TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
nqo1+OR Change in Focus : 0.000000 0.000000
$I>]61l% Decenter Y tolerance on surface 3
`O%nDry TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
cL~WDW/ Change in Focus : 0.000000 0.000000
v}a{nU' Tilt X tolerance on surface (degrees) 3
0B!(i.w TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
&rD8ng+$ Change in Focus : 0.000000 0.000000
YG8V\4
SQ Tilt Y tolerance on surface (degrees) 3
)h&@}#A09 TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
9_iwikD Change in Focus : 0.000000 0.000000
VjNr<~ |d Irregularity of surface 1 in fringes
X[1D$1Dvw TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
z rG Change in Focus : 0.000000 0.000000
G.~Q2O#T Irregularity of surface 2 in fringes
(=;'>*L( TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
%.r\P@7/Q Change in Focus : 0.000000 0.000000
2,`X@N`\ Irregularity of surface 3 in fringes
u)I\R\N TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
f!R7v|jP Change in Focus : 0.000000 0.000000
O6)Po Index tolerance on surface 1
+6P[TqR TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
#k|f>D4 Change in Focus : 0.000000 0.000000
[+pa,^ Index tolerance on surface 2
&]RE 5! TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
*jWh4F, Change in Focus : 0.000000 -0.000000
e98QT9 UH}lKc=t Worst offenders:
<N$ Hb2b Type Value Criterion Change
0F%8d@Y2 TSTY 2 -0.20000000 0.35349910 -0.19053324
)UF'y{K} TSTY 2 0.20000000 0.35349910 -0.19053324
zPqJeYK TSTX 2 -0.20000000 0.35349910 -0.19053324
fW+"Kuw TSTX 2 0.20000000 0.35349910 -0.19053324
yq k8)\p TSTY 1 -0.20000000 0.42678383 -0.11724851
,52 IR[I<T TSTY 1 0.20000000 0.42678383 -0.11724851
~mXzQbe
p TSTX 1 -0.20000000 0.42678383 -0.11724851
GdNhEv TSTX 1 0.20000000 0.42678383 -0.11724851
dVj2x-R) TSTY 3 -0.20000000 0.42861670 -0.11541563
T1.U (:: TSTY 3 0.20000000 0.42861670 -0.11541563
3~Fag1Hp #&?ER]|3 Estimated Performance Changes based upon Root-Sum-Square method:
qve'Gm) Nominal MTF : 0.54403234
.24z+|j Estimated change : -0.36299231
d94k Estimated MTF : 0.18104003
dhLR#m30T uGb+ *tD Compensator Statistics: nb=mY&q}~ Change in back focus: }EkL[H! Minimum : -0.000000 'G>XI;g Maximum : 0.000000 =Q<7[ Mean : -0.000000 .\ fpjQW Standard Deviation : 0.000000 Y* rujn{ i]?
Eq?k Monte Carlo Analysis:
>| ,`E
Number of trials: 20
U\:Y*Ai 7:pc%Ksq Initial Statistics: Normal Distribution
}BI6dZ~2A { m~)~/z? Trial Criterion Change
R@jMFh; 1 0.42804416 -0.11598818
'q$ Ym0nL Change in Focus : -0.400171
?Ce=h+l 2 0.54384387 -0.00018847
jIe
/X] Change in Focus : 1.018470
Q\kWQOB_ 3 0.44510003 -0.09893230
gs3(B/";c Change in Focus : -0.601922
ZwLr>?0$
p 4 0.18154684 -0.36248550
)G^k$j Change in Focus : 0.920681
}aE' 5 0.28665820 -0.25737414
8CUtY9. Change in Focus : 1.253875
c YgJ}(>} 6 0.21263372 -0.33139862
qna!j|90Lp Change in Focus : -0.903878
]goJ- & 7 0.40051424 -0.14351809
(:OMt2{r Change in Focus : -1.354815
R3_OCM_* 8 0.48754161 -0.05649072
p@f
#fs Change in Focus : 0.215922
o
[V8h@K) 9 0.40357468 -0.14045766
P8By~f32_ Change in Focus : 0.281783
4sQm"XgE 10 0.26315315 -0.28087919
9M27;"gK Change in Focus : -1.048393
1 mJUlx 11 0.26120585 -0.28282649
^`id/ Change in Focus : 1.017611
k6ry"W3 12 0.24033815 -0.30369419
*izCXfW7 Change in Focus : -0.109292
TBPu&+3 13 0.37164046 -0.17239188
mJ<`/p?: Change in Focus : -0.692430
Ly8=SIZ 14 0.48597489 -0.05805744
}M% 3 Change in Focus : -0.662040
!`?i>k?Q E 15 0.21462327 -0.32940907
iu8Q &Us0P Change in Focus : 1.611296
Mi|13[p{ 16 0.43378226 -0.11025008
Bc }o3oc Change in Focus : -0.640081
(BP p2^ 17 0.39321881 -0.15081353
;a1DIUm' Change in Focus : 0.914906
<dP\vLH_ 18 0.20692530 -0.33710703
(["kbPma Change in Focus : 0.801607
+&VY6(Zj+* 19 0.51374068 -0.03029165
ux1(> Change in Focus : 0.947293
{Dl@/fz 20 0.38013374 -0.16389860
mm+V*L{x Change in Focus : 0.667010
_|12BVq j3-o}6 Number of traceable Monte Carlo files generated: 20
JYw? :
pUu_ Nominal 0.54403234
&v((tZ Best 0.54384387 Trial 2
uoE+:,P Worst 0.18154684 Trial 4
k-n`R)p: Mean 0.35770970
>v@3]a
i Std Dev 0.11156454
jnOnV1I" CUH u= m85ZcyW1T Compensator Statistics:
q>BJ:_I
i Change in back focus:
ZKEoU! Minimum : -1.354815
V;SV0~& Maximum : 1.611296
*Oy*
\cX2[ Mean : 0.161872
";7N$hWE Standard Deviation : 0.869664
8Snv, Lb`^ ^$'z#ZN1 90% > 0.20977951 ck0%H#BYY 80% > 0.22748071 D`^wj FF 50% > 0.38667627 QnS^ G{ 20% > 0.46553746 d'MZ%.# 10% > 0.50064115 yW'{Z]09 vv,<#4d End of Run.
,yNuz@^
P CtN\-E- 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
KPz0;2}
{~O4*2zg;K ;5X~"#%U_ 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
meV Z_f/ HN367j2 e 不吝赐教