切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16310阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 0@0w+&*"@  
    AEI>\Y  
    FW;?s+Uyx  
    caR<Kb:;*  
    然后添加了默认公差分析,基本没变 ];$L &5^  
    Wx%H%FeK  
    ,Q$ q=E;X  
    hg]]Ok~cAs  
    然后运行分析的结果如下: `6(S^P  
    "m$##X\  
    Analysis of Tolerances ?T8}K>a  
    |)DGkOtd  
    File : E:\光学设计资料\zemax练习\f500.ZMX  M mj;-u  
    Title: \[i1JG  
    Date : TUE JUN 21 2011 .[KrlfI  
    5X$jl;6  
    Units are Millimeters. PcMD])Z{G  
    All changes are computed using linear differences. r| wS<cA2  
    ij`w} V  
    Paraxial Focus compensation only. :as$4|  
    w$iX.2|9%u  
    WARNING: Solves should be removed prior to tolerancing. =!A_^;NQf  
    \fLMr\LL&  
    Mnemonics: vkV0On  
    TFRN: Tolerance on curvature in fringes. '?' l;#^i<  
    TTHI: Tolerance on thickness. :K,i\  
    TSDX: Tolerance on surface decentering in x. ;u ({\K  
    TSDY: Tolerance on surface decentering in y.  @tnz]^V  
    TSTX: Tolerance on surface tilt in x (degrees). dh iuI|?@  
    TSTY: Tolerance on surface tilt in y (degrees). =U9*'EFr  
    TIRR: Tolerance on irregularity (fringes). /)>3Nq4Zx  
    TIND: Tolerance on Nd index of refraction. DH!~ BB;  
    TEDX: Tolerance on element decentering in x. rl;~pO5R9  
    TEDY: Tolerance on element decentering in y. #$07:UJ  
    TETX: Tolerance on element tilt in x (degrees). ^ig' bw+WS  
    TETY: Tolerance on element tilt in y (degrees). `UyG_;  
    x.6:<y  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. M#6W(|V/  
    wH&!W~M  
    WARNING: Boundary constraints on compensators will be ignored. 2 c{34:  
    %3-y[f  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm .f2bNnB~pP  
    Mode                : Sensitivities cd_yzpL@}J  
    Sampling            : 2 (k.[GfCbD  
    Nominal Criterion   : 0.54403234 hBUn \~z  
    Test Wavelength     : 0.6328 ]y '>=a|T  
    ql{ OETn#  
    6,"Q=9k4[  
    Fields: XY Symmetric Angle in degrees Do7Tj  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY I;|B.j  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 }@+0/W?\.  
    Qbn"=n2  
    Sensitivity Analysis: ;bib/  
    DV-d(@`K  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| <{cQM$ #  
    Type                      Value      Criterion        Change          Value      Criterion        Change Om\vMd@!  
    Fringe tolerance on surface 1 cp7=epho  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Ya"a`ozq  
    Change in Focus                :      -0.000000                            0.000000 zu{P#~21  
    Fringe tolerance on surface 2 J=I:CD%  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 sIGMA$EK  
    Change in Focus                :       0.000000                            0.000000 ,m:.-iy?  
    Fringe tolerance on surface 3 -;m0R  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 1};Stai'  
    Change in Focus                :      -0.000000                            0.000000 kJsN|=  
    Thickness tolerance on surface 1 ;:g@zAV  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Id .nu/  
    Change in Focus                :       0.000000                            0.000000 zKJ#`OhT  
    Thickness tolerance on surface 2 ]Ie 0S~  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 vMH  
    Change in Focus                :       0.000000                           -0.000000 "(~^w=d:$  
    Decenter X tolerance on surfaces 1 through 3 6j]0R*B7`Q  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 f+,qNvBY/  
    Change in Focus                :       0.000000                            0.000000 EgCAsSx(  
    Decenter Y tolerance on surfaces 1 through 3 <)c)%'v  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Fj3a.'  
    Change in Focus                :       0.000000                            0.000000 |&)dh<  
    Tilt X tolerance on surfaces 1 through 3 (degrees) &.Qrs :U  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 oIzj,v8$  
    Change in Focus                :       0.000000                            0.000000 agDM~=#F  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) @9RM9zK.q  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 6}Ci>_i4#  
    Change in Focus                :       0.000000                            0.000000 ,Uqs1#r  
    Decenter X tolerance on surface 1 9 -a0:bP  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 _9Te!gJ4_#  
    Change in Focus                :       0.000000                            0.000000 qWPkT$ u  
    Decenter Y tolerance on surface 1 s)D;a-F  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $ >eCqC3  
    Change in Focus                :       0.000000                            0.000000 c]o'xd,T8\  
    Tilt X tolerance on surface (degrees) 1 <^jQo<kU  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 /{n-Y/j p  
    Change in Focus                :       0.000000                            0.000000 vw/J8'  
    Tilt Y tolerance on surface (degrees) 1 (vJNHY M  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 {ROVvs`  
    Change in Focus                :       0.000000                            0.000000 }V`"s^  
    Decenter X tolerance on surface 2 ]Q3ADh  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 p%=u#QNi  
    Change in Focus                :       0.000000                            0.000000 :J&oX <nF^  
    Decenter Y tolerance on surface 2 'S&zCTX7j  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 A]oV"`f  
    Change in Focus                :       0.000000                            0.000000 Moza".fiN  
    Tilt X tolerance on surface (degrees) 2 []1C$.5DD  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 V6X 0^g  
    Change in Focus                :       0.000000                            0.000000 .?sx&2R2  
    Tilt Y tolerance on surface (degrees) 2 mNTzUoZF'@  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 qqY"*uJ'  
    Change in Focus                :       0.000000                            0.000000 Wt-GjxGi  
    Decenter X tolerance on surface 3 ^k">A:E2  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 3bH'H*2  
    Change in Focus                :       0.000000                            0.000000 Y\8)OBZ  
    Decenter Y tolerance on surface 3 n 0L^e  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Cnh \%OW  
    Change in Focus                :       0.000000                            0.000000 vXZOy%$o  
    Tilt X tolerance on surface (degrees) 3 )F]]m#`  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 E]-/Zbvdv  
    Change in Focus                :       0.000000                            0.000000 =-n}[Y}A  
    Tilt Y tolerance on surface (degrees) 3 CkQ3#L<2  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 e6$WQd`O  
    Change in Focus                :       0.000000                            0.000000 ;[OH(!  
    Irregularity of surface 1 in fringes ?%[@Qb=2  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 lX4 x*  
    Change in Focus                :       0.000000                            0.000000 ~=l;=7 T  
    Irregularity of surface 2 in fringes ?IT*: A] E  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 yN(%-u"  
    Change in Focus                :       0.000000                            0.000000 A$0fKko  
    Irregularity of surface 3 in fringes = m#?neop  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 y766; X:J  
    Change in Focus                :       0.000000                            0.000000 ]Q)OL  
    Index tolerance on surface 1 Hf2_0wA3  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 je=a/Y=%U{  
    Change in Focus                :       0.000000                            0.000000 c 3)jccWTc  
    Index tolerance on surface 2 y}ev ,j  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 g*C7 '  
    Change in Focus                :       0.000000                           -0.000000 .p" xVfi6  
    `Eo.v#<  
    Worst offenders: }00BllJ  
    Type                      Value      Criterion        Change Txb#C[`  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 _F|Ek;y%  
    TSTY   2             0.20000000     0.35349910    -0.19053324 hT+_(>hT  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 GH$pKB  
    TSTX   2             0.20000000     0.35349910    -0.19053324 kJT)r6  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 RQ" ,3.R==  
    TSTY   1             0.20000000     0.42678383    -0.11724851 5K8^WK  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 sWnLEw  
    TSTX   1             0.20000000     0.42678383    -0.11724851 x7<K<k;s  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 u <v7;dF|s  
    TSTY   3             0.20000000     0.42861670    -0.11541563 =$JET<(  
    60?%<oJ oH  
    Estimated Performance Changes based upon Root-Sum-Square method: k>si5'W  
    Nominal MTF                 :     0.54403234 E""bTz@  
    Estimated change            :    -0.36299231 FP4P|kl/9'  
    Estimated MTF               :     0.18104003 O5T{eBo\  
    Ry6@VQ"NLb  
    Compensator Statistics: T'Dv.h  
    Change in back focus: U0P~  
    Minimum            :        -0.000000 B>P{A7Q  
    Maximum            :         0.000000 pG;U2wE  
    Mean               :        -0.000000 \d`h/tHk  
    Standard Deviation :         0.000000 U26}gT)  
    %YqEzlzF  
    Monte Carlo Analysis: 0*{%=M  
    Number of trials: 20 <*cikXS  
    &`2)V;t  
    Initial Statistics: Normal Distribution m#\ dSl}  
    Wt~BU.  
      Trial       Criterion        Change f x+/C8GK  
          1     0.42804416    -0.11598818 A_q3KB!$=+  
    Change in Focus                :      -0.400171 Ao&"r[oJSv  
          2     0.54384387    -0.00018847 q9s=~d7  
    Change in Focus                :       1.018470 G2: agqL/  
          3     0.44510003    -0.09893230 NyNXP_8  
    Change in Focus                :      -0.601922 1tFNM[R  
          4     0.18154684    -0.36248550 )MTOU47U  
    Change in Focus                :       0.920681 WOL:IZX%  
          5     0.28665820    -0.25737414 g}(L;fy>7  
    Change in Focus                :       1.253875 j*r{2f4Rt  
          6     0.21263372    -0.33139862 IF:;`r@%  
    Change in Focus                :      -0.903878 t'k$&l}+  
          7     0.40051424    -0.14351809 T{[=oH+  
    Change in Focus                :      -1.354815 U z>+2m(  
          8     0.48754161    -0.05649072 -m~#Bq  
    Change in Focus                :       0.215922 u;2[AQ.  
          9     0.40357468    -0.14045766 XVZ   
    Change in Focus                :       0.281783 draN0v f  
         10     0.26315315    -0.28087919  H6/$d  
    Change in Focus                :      -1.048393 [Y| t]^M  
         11     0.26120585    -0.28282649 \(2sW^fY  
    Change in Focus                :       1.017611 II{&{S'HU  
         12     0.24033815    -0.30369419 v):Or'$~M  
    Change in Focus                :      -0.109292 H$UcF1k<  
         13     0.37164046    -0.17239188 NqWdRU  
    Change in Focus                :      -0.692430 E+;7>ja  
         14     0.48597489    -0.05805744 ^^D0^k!R  
    Change in Focus                :      -0.662040 I9ep`X6Y  
         15     0.21462327    -0.32940907 ePo}y])2  
    Change in Focus                :       1.611296 A^<jy=F&  
         16     0.43378226    -0.11025008 U&p${IcEm  
    Change in Focus                :      -0.640081 2g! +<YZ~  
         17     0.39321881    -0.15081353 61'XgkacDS  
    Change in Focus                :       0.914906 =Jb>x#Y  
         18     0.20692530    -0.33710703 9q~s}='"  
    Change in Focus                :       0.801607 c9h6C  
         19     0.51374068    -0.03029165 6(ol1 (U  
    Change in Focus                :       0.947293 l2Rb\4  
         20     0.38013374    -0.16389860 z-)O9PV  
    Change in Focus                :       0.667010 |@4' <4t  
    k;FUs[  
    Number of traceable Monte Carlo files generated: 20 *gWwALGo5  
    r* Ca}Z  
    Nominal     0.54403234 xU`p|(SS-  
    Best        0.54384387    Trial     2 :"/d|i`T  
    Worst       0.18154684    Trial     4 }&D32\  
    Mean        0.35770970 #AQV(;r7@  
    Std Dev     0.11156454 Ds:'Lb  
    oNF6<A(@$  
    Ig>(m49d  
    Compensator Statistics: }*]-jWt1J\  
    Change in back focus: 1iF1GkLEq  
    Minimum            :        -1.354815 ~Z' ?LV<t  
    Maximum            :         1.611296 3h`f  6  
    Mean               :         0.161872 P~X2^bw  
    Standard Deviation :         0.869664 R4:b{)=O  
    S30%)<W  
    90% >       0.20977951               |&i<bqLw:  
    80% >       0.22748071               t"oeQ*d%  
    50% >       0.38667627               _X x/(.O  
    20% >       0.46553746               &Au@S$ij  
    10% >       0.50064115                I%KYtv~ `  
    Otn1wBI  
    End of Run. d%n-[ZL  
    ysY*k`5  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 $ $mV d+  
    ab?aQ*$+  
    d8P^lv*rQW  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 }Jj}%XxKs  
    s!$a \k  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 nQ3A~ ()  
    80% >       0.22748071                 42ge3>  
    50% >       0.38667627                 xxQ;xI0+]  
    20% >       0.46553746                 <qt|d&  
    10% >       0.50064115 C\hM =%  
    &_8 947  
    最后这个数值是MTF值呢,还是MTF的公差? 1s;S aq+  
    _Y m2/3!  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   {Qj~M<@3  
    (S Yln>o  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : l}P=/#</T  
    90% >       0.20977951                 lk=<A"^S  
    80% >       0.22748071                 *yGGBqd  
    50% >       0.38667627                 {2gwk8  
    20% >       0.46553746                 dgP3@`YS  
    10% >       0.50064115 @E8+C8'  
    ....... _(zG?]y0P  
    #rg6,.I)<  
    A?0Nm{O;3v  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Ht&Y C<X  
    Mode                : Sensitivities wS3'?PRX  
    Sampling            : 2 D3K8F@d  
    Nominal Criterion   : 0.54403234 V^~:F  
    Test Wavelength     : 0.6328 HLi%%"'  
    i{qgn%#}Y  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? f|oh.z_R  
    AkiDL=;w  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试