切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16563阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 fWyXy%Qq  
    eIQ@){lJ-]  
    @a,} k<@E  
    {RI)I  
    然后添加了默认公差分析,基本没变 i5SDy(?r  
    $E}N`B7  
    -PTfsQk  
    OO\$'% y`  
    然后运行分析的结果如下:  %e(DPX  
    5,?^SK|'x  
    Analysis of Tolerances Q9i[?=F:z  
    q4Mv2SPT  
    File : E:\光学设计资料\zemax练习\f500.ZMX ij?Ww'p9>  
    Title: 38GZ_ z}r  
    Date : TUE JUN 21 2011 %Z*N /nU  
    J3$@: S'  
    Units are Millimeters. 49YN@ PXC  
    All changes are computed using linear differences. C8D`:k  
    FM7`q7d  
    Paraxial Focus compensation only. :QC |N@C  
    xNjWo*y v  
    WARNING: Solves should be removed prior to tolerancing. Re*_Dt=r  
    'V\V=yc1  
    Mnemonics: &0]5zQ  
    TFRN: Tolerance on curvature in fringes. + ]iK^y-.r  
    TTHI: Tolerance on thickness. *,28@_EwY  
    TSDX: Tolerance on surface decentering in x. nd&i9l  
    TSDY: Tolerance on surface decentering in y. Yr[& *>S  
    TSTX: Tolerance on surface tilt in x (degrees). yW&ka3j\  
    TSTY: Tolerance on surface tilt in y (degrees). #7@p  
    TIRR: Tolerance on irregularity (fringes). z0Z1J8Qq6.  
    TIND: Tolerance on Nd index of refraction. ^0-e.@  
    TEDX: Tolerance on element decentering in x. dWdD^>8Ef  
    TEDY: Tolerance on element decentering in y. {C0Y8:"`  
    TETX: Tolerance on element tilt in x (degrees). ]E6r )C  
    TETY: Tolerance on element tilt in y (degrees). 0 {  
    GJ F &id  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ]r'D  
    (T%Ue2zlY  
    WARNING: Boundary constraints on compensators will be ignored. $9@AwS@Uu  
    P3nBxw"  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm GWv i  
    Mode                : Sensitivities ,T$ GOjt  
    Sampling            : 2 '8[; m_S  
    Nominal Criterion   : 0.54403234 Vcnc=ct  
    Test Wavelength     : 0.6328 v7\rW{~Jd&  
    BGHZL~  
    zRbY]dW  
    Fields: XY Symmetric Angle in degrees `YqXF=-  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY cICf V,j  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 UZ#oaD8H6  
    x2'pl (^  
    Sensitivity Analysis: lQEsa45  
    Ubgn^+AI  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| N,l"9>CF  
    Type                      Value      Criterion        Change          Value      Criterion        Change ~@(C+3,  
    Fringe tolerance on surface 1 M93*"jA  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Y6Ux*vhK  
    Change in Focus                :      -0.000000                            0.000000 =3`|D0E  
    Fringe tolerance on surface 2 K$w;|UJc  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 R_\o`v5  
    Change in Focus                :       0.000000                            0.000000 qDU4W7|T`  
    Fringe tolerance on surface 3 g>k?03;  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 @BG].UJo  
    Change in Focus                :      -0.000000                            0.000000 K/j u=>  
    Thickness tolerance on surface 1 @_7rd  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 [ D.%v~j  
    Change in Focus                :       0.000000                            0.000000 "eqzn KT%u  
    Thickness tolerance on surface 2 o\]U;#YD  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 tP"6H-)X&  
    Change in Focus                :       0.000000                           -0.000000 - Ry+WS=  
    Decenter X tolerance on surfaces 1 through 3 s;Gg  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 (\!?>T[En  
    Change in Focus                :       0.000000                            0.000000 u0A$}r$L  
    Decenter Y tolerance on surfaces 1 through 3 [cco/=c  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 v$w}UC%uf  
    Change in Focus                :       0.000000                            0.000000 /sj*@HF=  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Ow.DBL)x'>  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 +I3O/=)  
    Change in Focus                :       0.000000                            0.000000 ?c+$9  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) jM @N<k  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 4 Yv:\c  
    Change in Focus                :       0.000000                            0.000000 T\g+w\N  
    Decenter X tolerance on surface 1 XH@(V4J(.  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ir"t@"Y;o  
    Change in Focus                :       0.000000                            0.000000 fGqX dlP  
    Decenter Y tolerance on surface 1 g6;smtu_T  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 aKWxLe  
    Change in Focus                :       0.000000                            0.000000 >3@3~F%xAX  
    Tilt X tolerance on surface (degrees) 1 {L ~d ER  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 EmR82^_:  
    Change in Focus                :       0.000000                            0.000000 ZWo~!Z[Y  
    Tilt Y tolerance on surface (degrees) 1 %y|pVN!U  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 _> x}MW+  
    Change in Focus                :       0.000000                            0.000000 vSC1n8 /  
    Decenter X tolerance on surface 2 6@t&  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 X^K^az&L  
    Change in Focus                :       0.000000                            0.000000 d;]m wLB0  
    Decenter Y tolerance on surface 2 8Znr1=1   
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 &)gc{(4$  
    Change in Focus                :       0.000000                            0.000000 3Ovx)qKxd  
    Tilt X tolerance on surface (degrees) 2 V7r_Ubg@K  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 M<d!j I9)  
    Change in Focus                :       0.000000                            0.000000 ) $b F*  
    Tilt Y tolerance on surface (degrees) 2 i?;#Z Nh  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 nq8XVT.m^\  
    Change in Focus                :       0.000000                            0.000000 x,.=VB  
    Decenter X tolerance on surface 3 #v<`|_  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 7QNx*8p  
    Change in Focus                :       0.000000                            0.000000 =CJ`0yDQ>  
    Decenter Y tolerance on surface 3 CuvY^["  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 !Q15qvRS  
    Change in Focus                :       0.000000                            0.000000 l`ZL^uT  
    Tilt X tolerance on surface (degrees) 3 A|S)cr8z  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 vxTn  
    Change in Focus                :       0.000000                            0.000000 @#OL{yMy  
    Tilt Y tolerance on surface (degrees) 3 eZqEFMBTm  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 vt2. i$u  
    Change in Focus                :       0.000000                            0.000000 OKlR`Vaty  
    Irregularity of surface 1 in fringes lZL+j6Q  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 (${ #l  
    Change in Focus                :       0.000000                            0.000000 \t&! &R#  
    Irregularity of surface 2 in fringes ndzADVP  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 `;+x\0@<  
    Change in Focus                :       0.000000                            0.000000 UMe?nAC  
    Irregularity of surface 3 in fringes I9qFXvqL  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 /MY's&D(  
    Change in Focus                :       0.000000                            0.000000 L"vrX  
    Index tolerance on surface 1 v_EgY2l(  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 i.uyfV&F  
    Change in Focus                :       0.000000                            0.000000 {VW\EOPV~  
    Index tolerance on surface 2 D]fuX|f~ul  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 W&)f#/M8  
    Change in Focus                :       0.000000                           -0.000000 ][jwy-Uy;  
    T` h%=u|D  
    Worst offenders: z+7V}aPM  
    Type                      Value      Criterion        Change |ymW0gh7o$  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Ig}hap]G  
    TSTY   2             0.20000000     0.35349910    -0.19053324 H'zAMGZa  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ,"is%O.  
    TSTX   2             0.20000000     0.35349910    -0.19053324 //BJaWq  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 l`zh Kj  
    TSTY   1             0.20000000     0.42678383    -0.11724851 eN.6l2-  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 7*+CX  
    TSTX   1             0.20000000     0.42678383    -0.11724851 QUn!& 55  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 LYECX  
    TSTY   3             0.20000000     0.42861670    -0.11541563 slPr^)  
    npltsK):  
    Estimated Performance Changes based upon Root-Sum-Square method: qsW&kW~  
    Nominal MTF                 :     0.54403234 2|lR@L sr  
    Estimated change            :    -0.36299231 2PyuM=(Wt  
    Estimated MTF               :     0.18104003 XjN =UhC  
    Z9$pY=8^?  
    Compensator Statistics: e}yF2|0FD  
    Change in back focus: v)_c*+6u  
    Minimum            :        -0.000000 9e K~g0m  
    Maximum            :         0.000000 m_oUl(pk  
    Mean               :        -0.000000 \ YF@r7  
    Standard Deviation :         0.000000 S1Y,5,}  
    |.$B,cEd  
    Monte Carlo Analysis: \#]%S/_ A  
    Number of trials: 20 gi,7X\`KQ  
    -%MXt  
    Initial Statistics: Normal Distribution !9PAfi?  
    %C,zR&]F  
      Trial       Criterion        Change "[~yu* S  
          1     0.42804416    -0.11598818 k1xx>=md|C  
    Change in Focus                :      -0.400171 H"? 5]!p  
          2     0.54384387    -0.00018847 a5/, O4Q  
    Change in Focus                :       1.018470 E/oLE^yL  
          3     0.44510003    -0.09893230 "=s}xAM|A  
    Change in Focus                :      -0.601922 xbhHP2F |  
          4     0.18154684    -0.36248550 sx=1pnP9`  
    Change in Focus                :       0.920681 `oikSx$vB.  
          5     0.28665820    -0.25737414 VVch%  
    Change in Focus                :       1.253875 `RSiZ%Al  
          6     0.21263372    -0.33139862 #oTVfY#  
    Change in Focus                :      -0.903878 siCi+Y  
          7     0.40051424    -0.14351809 wE.jf.q  
    Change in Focus                :      -1.354815 a%m )8N;C  
          8     0.48754161    -0.05649072 ^-PYP:*  
    Change in Focus                :       0.215922 '6qH@r4Z<  
          9     0.40357468    -0.14045766 mvT /sC7I  
    Change in Focus                :       0.281783 qzxWv5UH  
         10     0.26315315    -0.28087919 J[6/dM  
    Change in Focus                :      -1.048393 4'#=_J  
         11     0.26120585    -0.28282649 p1niS:}j  
    Change in Focus                :       1.017611 ?GNR ab  
         12     0.24033815    -0.30369419 @JhkUGG]p  
    Change in Focus                :      -0.109292 Tdh.U {Nz  
         13     0.37164046    -0.17239188 u;nn:K1QFr  
    Change in Focus                :      -0.692430 =@4 ,szLO  
         14     0.48597489    -0.05805744 Uz_ob9l<#H  
    Change in Focus                :      -0.662040 y|O3*`&m  
         15     0.21462327    -0.32940907 &77J,\C$:  
    Change in Focus                :       1.611296 8/R$}b><  
         16     0.43378226    -0.11025008 Z1q<) O1QX  
    Change in Focus                :      -0.640081 }rmr0Bh  
         17     0.39321881    -0.15081353 :!Q(v(M  
    Change in Focus                :       0.914906 paV1o>_Rd  
         18     0.20692530    -0.33710703 K\Q4u4DjbJ  
    Change in Focus                :       0.801607 W895@  
         19     0.51374068    -0.03029165 i`l;k~rP  
    Change in Focus                :       0.947293 F%y#)53g  
         20     0.38013374    -0.16389860 xM<aQf\j  
    Change in Focus                :       0.667010 XkqsL0\  
    8v4krz<Iq  
    Number of traceable Monte Carlo files generated: 20 "B__a(  
    l^bak]9 1  
    Nominal     0.54403234 Gq1C"s$4'  
    Best        0.54384387    Trial     2 ]#shuZ##>0  
    Worst       0.18154684    Trial     4 >V)#y$Z  
    Mean        0.35770970 jNX6Ct?  
    Std Dev     0.11156454 /PaS <"<P@  
    YR\(*LJL  
    8u)>o* :  
    Compensator Statistics: !U4YA1>>  
    Change in back focus: Bj6%mI42hl  
    Minimum            :        -1.354815 ehr\lcS<  
    Maximum            :         1.611296 R$u1\r1I  
    Mean               :         0.161872 )!AH0p  
    Standard Deviation :         0.869664 Z"Lr5'}  
    Xbx=h^S  
    90% >       0.20977951               s~(`~Y4  
    80% >       0.22748071               M<l<n$rYS  
    50% >       0.38667627               \25EI]  
    20% >       0.46553746               ^2BiMH3j  
    10% >       0.50064115                DS4y@,/)'  
    7R5ebMW V  
    End of Run. :_HdOm  
    DQu)?Rsk  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 X*7VDt=  
    %8 DI)n#H  
    %=K[C  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 J=kf KQV  
    L^C B#5uG  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 4%<wxrod  
    80% >       0.22748071                 CO, {/  
    50% >       0.38667627                 M.qv'zV`xG  
    20% >       0.46553746                 NTK9`#SA  
    10% >       0.50064115 f#I#24)RH  
    `25<;@  
    最后这个数值是MTF值呢,还是MTF的公差? %<O~eXY  
    |eye) E:  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   3H>\hZ  
    L"c.15\  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : xBf->o S?  
    90% >       0.20977951                 H,7!"!?@N  
    80% >       0.22748071                 6T_Ya)  
    50% >       0.38667627                 DqmKD U  
    20% >       0.46553746                  B"5xs  
    10% >       0.50064115 sK/ymEfRv  
    ....... qM2m!  
    <7L-25 =  
    6iHY{WcDj  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   n!Y}D:6c6  
    Mode                : Sensitivities "&;X/~j  
    Sampling            : 2 e5; YY  
    Nominal Criterion   : 0.54403234 . _Jypk8  
    Test Wavelength     : 0.6328 7;r3Bxa Q  
    5'w&M{{9  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? IEkbVIA(  
    Z^WI~B0nt  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试