切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16454阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 &e\A v.n@-  
    9}`A_KzFx  
    f#:7$:{F1  
    LPgP;%ohO/  
    然后添加了默认公差分析,基本没变 56Q9RU(M  
    @g*=xwve=~  
    q9j9"M'  
    m/"\+Hv  
    然后运行分析的结果如下: !BHIp7p  
    hB#z8D  
    Analysis of Tolerances .7-Yu1{2  
    EM+_c)d}  
    File : E:\光学设计资料\zemax练习\f500.ZMX ~Tv %6iaeE  
    Title: Az2HlKF"L  
    Date : TUE JUN 21 2011 K (yuL[p`  
    _zQ3sm  
    Units are Millimeters. &Y2mLPB  
    All changes are computed using linear differences. f!}c0nb  
    |q?I(b4Q@  
    Paraxial Focus compensation only. ,*fvA?  
    C[$uf  
    WARNING: Solves should be removed prior to tolerancing. DXAA[hUjF  
    Hh=D:kE  
    Mnemonics: DiF=<} >x  
    TFRN: Tolerance on curvature in fringes. ' vO+,-  
    TTHI: Tolerance on thickness. %=J<WA6\  
    TSDX: Tolerance on surface decentering in x. %Uk]e5Hu  
    TSDY: Tolerance on surface decentering in y. XJ;kyEx3=O  
    TSTX: Tolerance on surface tilt in x (degrees). h5 Y3 v  
    TSTY: Tolerance on surface tilt in y (degrees). ?U]/4]  
    TIRR: Tolerance on irregularity (fringes). Do}mCv  
    TIND: Tolerance on Nd index of refraction. y 1fl=i  
    TEDX: Tolerance on element decentering in x. T!o 4k  
    TEDY: Tolerance on element decentering in y. q2}<n'o+  
    TETX: Tolerance on element tilt in x (degrees). ': Gk~   
    TETY: Tolerance on element tilt in y (degrees). =4 &/Pr  
    _s./^B_w!  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. |2!/<%Yr`  
    8o~<\eF%  
    WARNING: Boundary constraints on compensators will be ignored. )J+vmY~&  
    )2mi6[qs0l  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm *7hr3x  
    Mode                : Sensitivities 4NxtU/5-sU  
    Sampling            : 2 VIL #q  
    Nominal Criterion   : 0.54403234 X%!#Ic]Q  
    Test Wavelength     : 0.6328 ?6@Y"5 z3g  
    E)%]?/w  
     hM2^[8  
    Fields: XY Symmetric Angle in degrees }et^'BkA(  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY F9]j{'#  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Fs7/3  
    /OaLkENgvf  
    Sensitivity Analysis: HUurDgRi]  
    DUiqt09`~  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| :Vq gmn  
    Type                      Value      Criterion        Change          Value      Criterion        Change 9I/o;Js  
    Fringe tolerance on surface 1 HPs$R [  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 v`B7[B4K3  
    Change in Focus                :      -0.000000                            0.000000 +O:Qw[BL/Z  
    Fringe tolerance on surface 2 P-ma~g>I  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 4RsV\Y{FN  
    Change in Focus                :       0.000000                            0.000000 w5|az6wZB!  
    Fringe tolerance on surface 3 & v=2u,]T  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662  5I5~GH  
    Change in Focus                :      -0.000000                            0.000000 C,-q2ry  
    Thickness tolerance on surface 1 |{HtY  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 pU)wxv[~  
    Change in Focus                :       0.000000                            0.000000 $@q)IK%FDL  
    Thickness tolerance on surface 2 39?iX'*p  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 }Tn]cL{]C  
    Change in Focus                :       0.000000                           -0.000000 72} MspzUt  
    Decenter X tolerance on surfaces 1 through 3 CDei+ q  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 [Fe`}F}Co8  
    Change in Focus                :       0.000000                            0.000000 d;|Pp;dc  
    Decenter Y tolerance on surfaces 1 through 3 KcP86H52I  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 z (rQ6  
    Change in Focus                :       0.000000                            0.000000 =kohQ d.n  
    Tilt X tolerance on surfaces 1 through 3 (degrees) zLue j'  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 )DuOo83n["  
    Change in Focus                :       0.000000                            0.000000 t)XNS!6#]?  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) NvXds;EC  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 eu ~WFI  
    Change in Focus                :       0.000000                            0.000000 ro7\}O:I  
    Decenter X tolerance on surface 1 {$4fRxj  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 9>d$a2 nc  
    Change in Focus                :       0.000000                            0.000000 e4Ol:V  
    Decenter Y tolerance on surface 1 Ph2jj,K  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 axnkuP(  
    Change in Focus                :       0.000000                            0.000000 & :x_  
    Tilt X tolerance on surface (degrees) 1 z^S=ji U++  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 |eWlB\ x8  
    Change in Focus                :       0.000000                            0.000000 -uenCWF\#  
    Tilt Y tolerance on surface (degrees) 1 `TKe+oS)  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 mZJ"e,AY  
    Change in Focus                :       0.000000                            0.000000 %0@Jm)K^  
    Decenter X tolerance on surface 2 s CSrwsbhv  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 HS]|s':  
    Change in Focus                :       0.000000                            0.000000 Q&^ti)vB  
    Decenter Y tolerance on surface 2 )#Ea~>v  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 pUZe.S>G  
    Change in Focus                :       0.000000                            0.000000 4dv+RRpGOv  
    Tilt X tolerance on surface (degrees) 2 W1M<6T.{7  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 %O>ehIerD  
    Change in Focus                :       0.000000                            0.000000 eiI}:5~ /g  
    Tilt Y tolerance on surface (degrees) 2 3,e^; {w  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 #rqLuqw  
    Change in Focus                :       0.000000                            0.000000 i1ur>4Ns  
    Decenter X tolerance on surface 3 dGf{d7D  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 zn&NLsA  
    Change in Focus                :       0.000000                            0.000000 B@G'6 ?  
    Decenter Y tolerance on surface 3 5Y)*-JY1g  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 K+TRt"W8&s  
    Change in Focus                :       0.000000                            0.000000 `Q^G k{9P  
    Tilt X tolerance on surface (degrees) 3 ]wWN~G)2lV  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 f {AbCi  
    Change in Focus                :       0.000000                            0.000000 ^k]OQc7q'  
    Tilt Y tolerance on surface (degrees) 3 B<J} YN  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 _a"5[sG  
    Change in Focus                :       0.000000                            0.000000 w0x, ~  
    Irregularity of surface 1 in fringes E(*RtOC<W  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 QNJ )HNLp  
    Change in Focus                :       0.000000                            0.000000 1om:SHw  
    Irregularity of surface 2 in fringes m^@,0\F  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 O8"kIDr-  
    Change in Focus                :       0.000000                            0.000000 L0Bcx|)"$`  
    Irregularity of surface 3 in fringes :% )va  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 -("sp  
    Change in Focus                :       0.000000                            0.000000 \I1+J9Gl  
    Index tolerance on surface 1 |E&a3TQW  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 .&=nP?ZPC6  
    Change in Focus                :       0.000000                            0.000000 x6\EU=,  
    Index tolerance on surface 2 Zsc710_  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 puA~}6C  
    Change in Focus                :       0.000000                           -0.000000 8- 3]Bm!  
    uV`r_P  
    Worst offenders: v^0D  
    Type                      Value      Criterion        Change yt}Ve6  m  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 L,M=ogdb  
    TSTY   2             0.20000000     0.35349910    -0.19053324 pca `nN!  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Vb az#I  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ZH;VEX  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 sxinA8  
    TSTY   1             0.20000000     0.42678383    -0.11724851 zs:O HEZw  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 *,q ?mO  
    TSTX   1             0.20000000     0.42678383    -0.11724851 |RS9N_eRt  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 DKnjmZ:J|  
    TSTY   3             0.20000000     0.42861670    -0.11541563 XdjM/hB{fD  
    !f[LFQD  
    Estimated Performance Changes based upon Root-Sum-Square method: "bZ%1)+  
    Nominal MTF                 :     0.54403234 l8 k@.<nCO  
    Estimated change            :    -0.36299231 _>+!&_h  
    Estimated MTF               :     0.18104003 Fy37I/#)r&  
    GM=r{F &  
    Compensator Statistics: s(jixAf  
    Change in back focus: XFKe6:  
    Minimum            :        -0.000000 uP2e/a  
    Maximum            :         0.000000 t>"UenJt-  
    Mean               :        -0.000000 ]=!wMn**  
    Standard Deviation :         0.000000 _ dEc? R}  
    kN_ i0~y@-  
    Monte Carlo Analysis: ZmeSm& hQ_  
    Number of trials: 20 &~)PB |  
    |fqYMhA U  
    Initial Statistics: Normal Distribution kKL'rT6z  
    W6J%x[>Z  
      Trial       Criterion        Change nb dm@   
          1     0.42804416    -0.11598818 no_;^Ou?  
    Change in Focus                :      -0.400171 mrWPTCD{  
          2     0.54384387    -0.00018847 djJD'JL  
    Change in Focus                :       1.018470 j}O~6A>|  
          3     0.44510003    -0.09893230 MIma:N_c  
    Change in Focus                :      -0.601922 `Cq&;-u  
          4     0.18154684    -0.36248550 >L[n4x\  
    Change in Focus                :       0.920681 3kfrOf.4h  
          5     0.28665820    -0.25737414 Wd "<u2  
    Change in Focus                :       1.253875 -E{D' X  
          6     0.21263372    -0.33139862 eA q/[(  
    Change in Focus                :      -0.903878 (:Di/{i&r5  
          7     0.40051424    -0.14351809 w3l2u1u  
    Change in Focus                :      -1.354815 =`Ii ?xo  
          8     0.48754161    -0.05649072 %d?.v_Hu0  
    Change in Focus                :       0.215922 &JMp)zaI[  
          9     0.40357468    -0.14045766 z5.Uv/n\1  
    Change in Focus                :       0.281783 X<G"Ga L  
         10     0.26315315    -0.28087919 SFqY*:svOw  
    Change in Focus                :      -1.048393 "[h9hoN  
         11     0.26120585    -0.28282649 wT\JA4  
    Change in Focus                :       1.017611 3 UUOB.  
         12     0.24033815    -0.30369419 NzS(, F  
    Change in Focus                :      -0.109292 oP >+2.i  
         13     0.37164046    -0.17239188 (~S=DFsP  
    Change in Focus                :      -0.692430 #<h//<  
         14     0.48597489    -0.05805744 -)N, HAM>  
    Change in Focus                :      -0.662040 F(h jP  
         15     0.21462327    -0.32940907 m8[XA!,  
    Change in Focus                :       1.611296 PU8>.9x  
         16     0.43378226    -0.11025008 NJ]AxFG  
    Change in Focus                :      -0.640081 zm>^!j !  
         17     0.39321881    -0.15081353 4# +i\H`  
    Change in Focus                :       0.914906 \dAs<${(  
         18     0.20692530    -0.33710703 aF8'^xF  
    Change in Focus                :       0.801607 7b8+"5~  
         19     0.51374068    -0.03029165 ya3k;j2C  
    Change in Focus                :       0.947293 M02 U,!di  
         20     0.38013374    -0.16389860 M'gGoH}B+q  
    Change in Focus                :       0.667010 a+mrsyM  
    6LRvl6ik  
    Number of traceable Monte Carlo files generated: 20 ehTrjb3k  
    8MQb5( !  
    Nominal     0.54403234 Nyx)&T&I  
    Best        0.54384387    Trial     2 6W\G i>  
    Worst       0.18154684    Trial     4 =D~>$ Y  
    Mean        0.35770970 ohU}ST:9  
    Std Dev     0.11156454 s5s'[<  
    >U\1*F,Om,  
    ^sVr#T  
    Compensator Statistics: IL>VH`D  
    Change in back focus: k\76`!B  
    Minimum            :        -1.354815 Cer&VMrQK  
    Maximum            :         1.611296 C))x#P36  
    Mean               :         0.161872 T W#s)iDi  
    Standard Deviation :         0.869664 =;Q:z^S  
    gpw,bV  
    90% >       0.20977951               Xb<>AzEM  
    80% >       0.22748071               q-hREO  
    50% >       0.38667627               \>$3'i=mQ  
    20% >       0.46553746               'fjouO  
    10% >       0.50064115                I+{2DY/}  
    V O\g"Yc  
    End of Run. % * k`z#b  
    @WCA 7DW!  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 FUVp}>#U  
    i 558&:  
    ;Zm-B]\  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 EVlj#~mV  
    fc&djd`FuX  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 d_,Ql708f  
    80% >       0.22748071                 j 1;<3)%0  
    50% >       0.38667627                 C :An  
    20% >       0.46553746                 y/E:6w  
    10% >       0.50064115 h'HI92; [  
    hF{gN3v5  
    最后这个数值是MTF值呢,还是MTF的公差? UZdGV?o ?  
    4fIjVx  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   {+m8^-T  
    '4Jf[  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : u4IK7[=  
    90% >       0.20977951                 -yB}(69  
    80% >       0.22748071                 Dm{Xd+Y  
    50% >       0.38667627                 v@|<.  
    20% >       0.46553746                 F{;#\Ob  
    10% >       0.50064115 6i-G{)=l  
    ....... CV\^gTPmx  
    AwXzI;F^  
    .n1&Jsey  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   !DzeJWM|  
    Mode                : Sensitivities +Ps.HW#NY  
    Sampling            : 2 Sc]K-]1(H  
    Nominal Criterion   : 0.54403234 3s/1\m%  
    Test Wavelength     : 0.6328 CyR`&u  
    :-}K:ucaj  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? `jGeS[FhR  
    p /-du^:2  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试