切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16395阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 $:9t(X)H  
    $8tk|uh  
    K~W(ZmB  
    qZ1'uln=C-  
    然后添加了默认公差分析,基本没变 #;[G>-tC  
    [doEArwn  
    .#[ 9q-  
    HD j6E"  
    然后运行分析的结果如下: hnj\|6L  
    |]\zlH"w  
    Analysis of Tolerances 4~fYG|a  
    l;-Ml{}|0  
    File : E:\光学设计资料\zemax练习\f500.ZMX HDe\Oty_  
    Title: #M-!/E  
    Date : TUE JUN 21 2011 N J3;[qJ  
    G m~ ./-  
    Units are Millimeters. \"lz,bT  
    All changes are computed using linear differences. .9~j%] q  
    =L W!$p  
    Paraxial Focus compensation only. mLCD N1UO{  
    & 3#7>oQ  
    WARNING: Solves should be removed prior to tolerancing. 3>O|i2U  
    #2tmi1 ya  
    Mnemonics: dGKo!;7{  
    TFRN: Tolerance on curvature in fringes. +%dXB&9x|Z  
    TTHI: Tolerance on thickness. E7Lqa S  
    TSDX: Tolerance on surface decentering in x. ">V1II 7  
    TSDY: Tolerance on surface decentering in y. SNj-h>&Mha  
    TSTX: Tolerance on surface tilt in x (degrees). uwwR$ (\7  
    TSTY: Tolerance on surface tilt in y (degrees). YxF@1_g  
    TIRR: Tolerance on irregularity (fringes). rN0<y4)!  
    TIND: Tolerance on Nd index of refraction. zv]ZEWVzc  
    TEDX: Tolerance on element decentering in x. $xO8?  
    TEDY: Tolerance on element decentering in y. ~\":o:qyc  
    TETX: Tolerance on element tilt in x (degrees). { I#>6  
    TETY: Tolerance on element tilt in y (degrees). BP/nK.  
    kR=sr/{  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. mU5Ox4>&9  
    W+h2rv  
    WARNING: Boundary constraints on compensators will be ignored. BgQEd@cN  
    zWY988fX0  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Exb64n-_=  
    Mode                : Sensitivities ] !/  
    Sampling            : 2 L(y70T  
    Nominal Criterion   : 0.54403234 O}M-6!%<,  
    Test Wavelength     : 0.6328 zxR]+9Zh  
    HP# SR';E  
    Af3|l  
    Fields: XY Symmetric Angle in degrees @*z"Hi>4  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY IO)B3,g  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 P6+ B!pY  
    *HoRYCL  
    Sensitivity Analysis: ^Jp T8B}  
    4'QX1p  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| jTa\I&s,A  
    Type                      Value      Criterion        Change          Value      Criterion        Change hGtz[u#p  
    Fringe tolerance on surface 1 ]]j^  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 \^)i!@v  
    Change in Focus                :      -0.000000                            0.000000 *b{IWOSe^  
    Fringe tolerance on surface 2 ';C'9k<P:  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 EBy7wU`S  
    Change in Focus                :       0.000000                            0.000000 Ht[$s40P  
    Fringe tolerance on surface 3 )vW'g3u_  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 U1 _"D+XB  
    Change in Focus                :      -0.000000                            0.000000 V}y]<  
    Thickness tolerance on surface 1 juF9:Eah  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 56;u 7  
    Change in Focus                :       0.000000                            0.000000 :nx+(xgw  
    Thickness tolerance on surface 2 wf8{v  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 h/EIFve  
    Change in Focus                :       0.000000                           -0.000000 u8-6s+ O  
    Decenter X tolerance on surfaces 1 through 3 (*S<2HN5  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 u)@:V)z  
    Change in Focus                :       0.000000                            0.000000 ,rMf;/[  
    Decenter Y tolerance on surfaces 1 through 3 A@V$~&JCL5  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 |  0  
    Change in Focus                :       0.000000                            0.000000 2!#g\"  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Xm#W}Y'  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 "OLg2O^  
    Change in Focus                :       0.000000                            0.000000 nxZz{&  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 'K7\[if{  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 sOhn@*X  
    Change in Focus                :       0.000000                            0.000000 f@i#Znkf*?  
    Decenter X tolerance on surface 1 HE&)N clY  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 .W{CJh  
    Change in Focus                :       0.000000                            0.000000 eoiz]L  
    Decenter Y tolerance on surface 1 Spn[:u@  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $1.-m{Bd  
    Change in Focus                :       0.000000                            0.000000 Z9vMz3^N  
    Tilt X tolerance on surface (degrees) 1 C.?^] Y  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 m.D8@[y  
    Change in Focus                :       0.000000                            0.000000 ~4 fE`-O  
    Tilt Y tolerance on surface (degrees) 1 /a\i  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 w)7y{ya$  
    Change in Focus                :       0.000000                            0.000000 7 yE\,  
    Decenter X tolerance on surface 2 6kAAdy}ck  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 \Oq2{S x\  
    Change in Focus                :       0.000000                            0.000000 Mt.Cj;h@^[  
    Decenter Y tolerance on surface 2 Y(UK:LZ'  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ad}8~6}_&  
    Change in Focus                :       0.000000                            0.000000 u+8"W[ZULq  
    Tilt X tolerance on surface (degrees) 2 |]G%b[  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 W&hW N9iR  
    Change in Focus                :       0.000000                            0.000000 U'=8:&  
    Tilt Y tolerance on surface (degrees) 2 J _rrc;F  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 'KH+e#?Ar  
    Change in Focus                :       0.000000                            0.000000 (WHg B0{  
    Decenter X tolerance on surface 3 -,y p?<  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 p{,#H/+J  
    Change in Focus                :       0.000000                            0.000000 eha|cAq  
    Decenter Y tolerance on surface 3 Ar<5UnT  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 a3 }V/MY  
    Change in Focus                :       0.000000                            0.000000 8\s#law  
    Tilt X tolerance on surface (degrees) 3 [H*JFKpx  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jL-2 }XrA  
    Change in Focus                :       0.000000                            0.000000 p_I^7 $  
    Tilt Y tolerance on surface (degrees) 3 `,}7LfY  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 c^I^jg2v  
    Change in Focus                :       0.000000                            0.000000 o< @![P  
    Irregularity of surface 1 in fringes  qNJc*@s  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 r;{$x  
    Change in Focus                :       0.000000                            0.000000 O}i+ 1  
    Irregularity of surface 2 in fringes kt6)F&;$  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047  v@EErF  
    Change in Focus                :       0.000000                            0.000000 FO*Gc Z  
    Irregularity of surface 3 in fringes @)d_zWE  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 P2vG)u  
    Change in Focus                :       0.000000                            0.000000 )#i@DHt=  
    Index tolerance on surface 1 M P8Sd1_=  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 @ujwN([I  
    Change in Focus                :       0.000000                            0.000000 Mp/l*"(  
    Index tolerance on surface 2 *H!BThft4  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Q/g!h}>(.  
    Change in Focus                :       0.000000                           -0.000000 >B6* `3v  
    3Y Mqp~4  
    Worst offenders: *47/BLys<  
    Type                      Value      Criterion        Change U~D~C~\2;  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 i.^ytbH  
    TSTY   2             0.20000000     0.35349910    -0.19053324 z% bH?1^o  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 jfG of*  
    TSTX   2             0.20000000     0.35349910    -0.19053324 qb[hKp5K6  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 8?iI;(  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ah*{NR)  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ulxlh8=  
    TSTX   1             0.20000000     0.42678383    -0.11724851 %tP*_d:  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 J$}]p  
    TSTY   3             0.20000000     0.42861670    -0.11541563 _tHhS@   
     igo9~.  
    Estimated Performance Changes based upon Root-Sum-Square method: l/={aF7+  
    Nominal MTF                 :     0.54403234 x/?ET1iGt  
    Estimated change            :    -0.36299231 1(@$bsgu2  
    Estimated MTF               :     0.18104003 bkd`7(r  
    :^ywc O   
    Compensator Statistics: &%rM|  
    Change in back focus: hdDT'+  
    Minimum            :        -0.000000 " AUSgVE+h  
    Maximum            :         0.000000 t.8r~2(?  
    Mean               :        -0.000000 @Fc:9a@  
    Standard Deviation :         0.000000 ": vGs_$  
    4|K\pCw  
    Monte Carlo Analysis: U> lf-iI2B  
    Number of trials: 20 Dizz ?O  
    >OaD7  
    Initial Statistics: Normal Distribution 6C2~0b   
    |'z8>1  
      Trial       Criterion        Change WGz)-IB!PE  
          1     0.42804416    -0.11598818 Imv#7{ndq  
    Change in Focus                :      -0.400171 %rb$tKk  
          2     0.54384387    -0.00018847 "`ftcJUd  
    Change in Focus                :       1.018470 )I&.6l!#  
          3     0.44510003    -0.09893230 &Pb:P?I  
    Change in Focus                :      -0.601922 &B&8$X  
          4     0.18154684    -0.36248550 #DgHF*GG+>  
    Change in Focus                :       0.920681 *|S6iSn9R!  
          5     0.28665820    -0.25737414 vS\2zwb}  
    Change in Focus                :       1.253875 Nbr$G=U  
          6     0.21263372    -0.33139862 $~1vXe  
    Change in Focus                :      -0.903878 yU!1q}L!  
          7     0.40051424    -0.14351809 ,40OCd!  
    Change in Focus                :      -1.354815 u79- B-YW^  
          8     0.48754161    -0.05649072 iv>MIdIm  
    Change in Focus                :       0.215922 3`cA!ZVQ  
          9     0.40357468    -0.14045766 l^&#9d  
    Change in Focus                :       0.281783 1<G+KC[F  
         10     0.26315315    -0.28087919 N#l2wT  
    Change in Focus                :      -1.048393 67iI wY*8'  
         11     0.26120585    -0.28282649 .yy-jf/  
    Change in Focus                :       1.017611 ~Fuq{e9`  
         12     0.24033815    -0.30369419 D#LV&4e>.E  
    Change in Focus                :      -0.109292 l$/pp  
         13     0.37164046    -0.17239188 2yK">xYY@  
    Change in Focus                :      -0.692430 Y]SF0:v!n  
         14     0.48597489    -0.05805744 'O(=Pz  
    Change in Focus                :      -0.662040 yIL=jzm`7  
         15     0.21462327    -0.32940907 tq59w  
    Change in Focus                :       1.611296 dLp1l2h!0  
         16     0.43378226    -0.11025008 m}'_Poc  
    Change in Focus                :      -0.640081 lBbb7*Ljt<  
         17     0.39321881    -0.15081353 E@ :9|5  
    Change in Focus                :       0.914906 % [$HX'Y  
         18     0.20692530    -0.33710703 ^+76^*0  
    Change in Focus                :       0.801607 g[G /If  
         19     0.51374068    -0.03029165 rk8pL[|  
    Change in Focus                :       0.947293 r""rJzFz'  
         20     0.38013374    -0.16389860 9;#RzelSp  
    Change in Focus                :       0.667010 V^,gpTyv*  
    fF)Q;~_VA  
    Number of traceable Monte Carlo files generated: 20 N_T5sZ\  
    S-Y{Vi"2  
    Nominal     0.54403234 T2Yf7Szp  
    Best        0.54384387    Trial     2 Z i6s0Uck  
    Worst       0.18154684    Trial     4 x{:U$[_  
    Mean        0.35770970 m,Y/ke\  
    Std Dev     0.11156454 z&gma Ywq  
    FY'0?CT$  
    KdCrI@^  
    Compensator Statistics: -LiGO#U  
    Change in back focus: jUm-!SK}q  
    Minimum            :        -1.354815 Hi09?AX  
    Maximum            :         1.611296 -{0Pq.v  
    Mean               :         0.161872 E /H%q|q  
    Standard Deviation :         0.869664 ceG\Q2  
    `a& L  
    90% >       0.20977951               m~&  
    80% >       0.22748071                Gk~aTO  
    50% >       0.38667627               hTDGgSG^  
    20% >       0.46553746               dq '2y  
    10% >       0.50064115                } [#8>T  
    ,7s>#b'  
    End of Run. iL;V5|(sb  
    j~N*TXkC  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 yF)J7a:U  
    {P6Bfh7CZ  
    dT0W8oL  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 r^ Dm|^f#  
    \$_02:#  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 $?F_Qsy{d  
    80% >       0.22748071                 qVh?%c1.Y  
    50% >       0.38667627                 M<Bo<,!ua  
    20% >       0.46553746                 +(DzE H |  
    10% >       0.50064115 3YLK?X8  
    h1q 3}-  
    最后这个数值是MTF值呢,还是MTF的公差? f1:>H.m`  
    oqvu8"  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   }m<+tn3m  
    Z><+4 '  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : A~{vja0?  
    90% >       0.20977951                 k0FAI0~(  
    80% >       0.22748071                 dM}c-=w`  
    50% >       0.38667627                 `+."X1  
    20% >       0.46553746                 !`H!!Kg0L  
    10% >       0.50064115 - ]/=WAOK  
    ....... tw 3zw`o:  
    ?1|\(W#  
    MYJMZ3qBi  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   lwG)&qyVd  
    Mode                : Sensitivities non5e)w3@  
    Sampling            : 2 hBz>E 4mEv  
    Nominal Criterion   : 0.54403234 W3('1  
    Test Wavelength     : 0.6328 Bs '=YK$  
    J}-e9vK-#  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? n%}#e!  
    $E8}||d  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试