切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16523阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 KQ2]VN"?_  
    &K\di*kN  
    B,A/ -B\  
    3 =S.-  
    然后添加了默认公差分析,基本没变 T{ojla(  
    19lx;^b  
    u''(;U[  
    3c ^_IuW-  
    然后运行分析的结果如下: l~\'Z2op   
    fdPg{3x*k  
    Analysis of Tolerances 3 8f9jF%7j  
    w1.KRe{M  
    File : E:\光学设计资料\zemax练习\f500.ZMX gsZCWT  
    Title: 'g$|:bw/  
    Date : TUE JUN 21 2011 KBOxr5w  
    ")8wu1V-  
    Units are Millimeters. x0 j$]$  
    All changes are computed using linear differences. V%3K")  
    K.1#cf ^'  
    Paraxial Focus compensation only. |}#Rn`*2y  
    gTs5xDvJ  
    WARNING: Solves should be removed prior to tolerancing. WSh+5](:  
    `s.y!(`q  
    Mnemonics: > ^D10Nf*  
    TFRN: Tolerance on curvature in fringes. 4|*_mC  
    TTHI: Tolerance on thickness. \.}* s]6  
    TSDX: Tolerance on surface decentering in x. :r!nz\%WW  
    TSDY: Tolerance on surface decentering in y. m'a3}vRV(  
    TSTX: Tolerance on surface tilt in x (degrees). <oO^ w&G  
    TSTY: Tolerance on surface tilt in y (degrees). fRq2sK;+  
    TIRR: Tolerance on irregularity (fringes). SB]|y -su  
    TIND: Tolerance on Nd index of refraction. t\'URpa+5%  
    TEDX: Tolerance on element decentering in x. 5z=;q!3  
    TEDY: Tolerance on element decentering in y. !K3 #4   
    TETX: Tolerance on element tilt in x (degrees). QQ pe.oF  
    TETY: Tolerance on element tilt in y (degrees). #N7@p }P  
    O.!|;)HQ  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.  a2sN$k  
    (L q^C=  
    WARNING: Boundary constraints on compensators will be ignored. 3d \bB !  
    <w 8*Ly:L  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm %e=BC^VW  
    Mode                : Sensitivities &i6WVNGy  
    Sampling            : 2 Xul<,U~w6  
    Nominal Criterion   : 0.54403234 !m:SRNPg  
    Test Wavelength     : 0.6328 bW[Y:}Hk~  
    <Ms,0YKx  
    mpN|U(n  
    Fields: XY Symmetric Angle in degrees ]iYjS  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY "Bn!<h}mg  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 P!1y@R>Ln  
    CH!Lf,G  
    Sensitivity Analysis: Nx,.4CI  
    "1WwSh}Z  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| c]#F^(-A`  
    Type                      Value      Criterion        Change          Value      Criterion        Change \M<C6m5  
    Fringe tolerance on surface 1 e=Kf<ZQt  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ?%#3p[  
    Change in Focus                :      -0.000000                            0.000000 ^vfp;  
    Fringe tolerance on surface 2 0c /xE<h  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 P^T]Ubv"  
    Change in Focus                :       0.000000                            0.000000 6|~N5E~SX  
    Fringe tolerance on surface 3 w%KU@$  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 8<{)|GoqB  
    Change in Focus                :      -0.000000                            0.000000 p^<*v8,~7  
    Thickness tolerance on surface 1 "NMX>a,(  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 QS\H[?M$  
    Change in Focus                :       0.000000                            0.000000 {f<2VeJ  
    Thickness tolerance on surface 2 <$qe2Ft Uq  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 'MVE5  
    Change in Focus                :       0.000000                           -0.000000 H0LEK(K  
    Decenter X tolerance on surfaces 1 through 3 ,l1A]Wx  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }f?$QSF  
    Change in Focus                :       0.000000                            0.000000 zU}Ru&T9  
    Decenter Y tolerance on surfaces 1 through 3 |@!4BA  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Lzm9Kh;  
    Change in Focus                :       0.000000                            0.000000 F^fL  
    Tilt X tolerance on surfaces 1 through 3 (degrees) $oDc  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Hyh$-iCa  
    Change in Focus                :       0.000000                            0.000000 XOe)tz L  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) Nb(c;|nV  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 o'+p,_y9Y@  
    Change in Focus                :       0.000000                            0.000000 RoS&oGYqR  
    Decenter X tolerance on surface 1 Na=.LW-ma=  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $3psSQQo  
    Change in Focus                :       0.000000                            0.000000 $pr\"!|z  
    Decenter Y tolerance on surface 1 .!/w[Z]  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 !Z]#1"A8  
    Change in Focus                :       0.000000                            0.000000 bvzNur_  
    Tilt X tolerance on surface (degrees) 1 Kg4\:A7Sa.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 d< j+a1&  
    Change in Focus                :       0.000000                            0.000000 "MM)AY*b  
    Tilt Y tolerance on surface (degrees) 1 g3B%}!|  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Rr A9@95+  
    Change in Focus                :       0.000000                            0.000000 w#0/&\ b=  
    Decenter X tolerance on surface 2 |Y"nZK,  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 L6<.>\^Z"  
    Change in Focus                :       0.000000                            0.000000 1u>[0<U~E  
    Decenter Y tolerance on surface 2 wGy`0c]v?  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 r9sq3z|%  
    Change in Focus                :       0.000000                            0.000000 wo>7^ZA  
    Tilt X tolerance on surface (degrees) 2 f"9aL= 3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 lZ gX{  
    Change in Focus                :       0.000000                            0.000000 )seeBm-`  
    Tilt Y tolerance on surface (degrees) 2 [/E|n[Bx  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 >L4q>S^v  
    Change in Focus                :       0.000000                            0.000000 ]WFr5  
    Decenter X tolerance on surface 3 1z IX $A  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 IE]? WW5  
    Change in Focus                :       0.000000                            0.000000 KJ (|skO  
    Decenter Y tolerance on surface 3 W2>VgMR [  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 _"l2UDx  
    Change in Focus                :       0.000000                            0.000000 l;7T.2J'Z  
    Tilt X tolerance on surface (degrees) 3 Y[sBVz'j5  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 vd{ban9  
    Change in Focus                :       0.000000                            0.000000 n Nu~)X  
    Tilt Y tolerance on surface (degrees) 3 10}< n_I  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Dm{9;Abs%  
    Change in Focus                :       0.000000                            0.000000 yjE $o?A  
    Irregularity of surface 1 in fringes Y' FB {  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 /qaWUUf  
    Change in Focus                :       0.000000                            0.000000 W79Sz}):  
    Irregularity of surface 2 in fringes MxLg8,M  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 >bRoQ8  
    Change in Focus                :       0.000000                            0.000000 5FMe&  
    Irregularity of surface 3 in fringes CXiDe)|<E  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 [b:0j-  
    Change in Focus                :       0.000000                            0.000000 k^@dDLr"  
    Index tolerance on surface 1 E[NszM[P  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 mswAao<y&x  
    Change in Focus                :       0.000000                            0.000000 >BWe"{;  
    Index tolerance on surface 2 0<FT=tKm  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 tqD=)0Uzs  
    Change in Focus                :       0.000000                           -0.000000 3D}Pa  
    :P8X?C63W]  
    Worst offenders: B=}s7$^  
    Type                      Value      Criterion        Change 6c6w w"  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 9y}/ G  
    TSTY   2             0.20000000     0.35349910    -0.19053324 XOL_vS24  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 B4/\=MXb  
    TSTX   2             0.20000000     0.35349910    -0.19053324 \RS0mb  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 7I/a  
    TSTY   1             0.20000000     0.42678383    -0.11724851 hsAk7KC  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 :JXGgl<y  
    TSTX   1             0.20000000     0.42678383    -0.11724851 l@:&0id4I  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 laRn![[  
    TSTY   3             0.20000000     0.42861670    -0.11541563 V}h <,E9  
    sK@]|9ciQ  
    Estimated Performance Changes based upon Root-Sum-Square method: X=@bzL;eq  
    Nominal MTF                 :     0.54403234 @$fvhEkrT@  
    Estimated change            :    -0.36299231 uCx6/ n6'  
    Estimated MTF               :     0.18104003 ^U9b)KA  
    ;$vVYC  
    Compensator Statistics: Q_6v3no1  
    Change in back focus: %RX!Pi}5+g  
    Minimum            :        -0.000000 OUhlQq\  
    Maximum            :         0.000000 6 \?GY  
    Mean               :        -0.000000 eRm*+l|?  
    Standard Deviation :         0.000000 =F% <W7  
    {nMCU{*k  
    Monte Carlo Analysis: g;~$xXn  
    Number of trials: 20 2WS Wfh  
    Mtaky=l8~I  
    Initial Statistics: Normal Distribution ,(B/R8ZF~  
    gI/ SA  
      Trial       Criterion        Change =5O&4G`}  
          1     0.42804416    -0.11598818 kl|m @Nxp  
    Change in Focus                :      -0.400171 d@? zCFD  
          2     0.54384387    -0.00018847 vt#&YXu{A  
    Change in Focus                :       1.018470 JMfv|>=  
          3     0.44510003    -0.09893230  _ 'K6S  
    Change in Focus                :      -0.601922 6?'; ip  
          4     0.18154684    -0.36248550 4D[(X=FSU  
    Change in Focus                :       0.920681 .[ s6x5M  
          5     0.28665820    -0.25737414 %_(^BZd  
    Change in Focus                :       1.253875 q}]z8 L  
          6     0.21263372    -0.33139862 JSoInR1E  
    Change in Focus                :      -0.903878 )`#SMLMy~  
          7     0.40051424    -0.14351809 VVe^s|~Z  
    Change in Focus                :      -1.354815 g*WY kv  
          8     0.48754161    -0.05649072 ] u\-_PP  
    Change in Focus                :       0.215922 ;ykX]5jGh  
          9     0.40357468    -0.14045766 h^f?rWD:nz  
    Change in Focus                :       0.281783 Ow {NI-^K  
         10     0.26315315    -0.28087919 #[]B: n6  
    Change in Focus                :      -1.048393 {>d\  
         11     0.26120585    -0.28282649 #iT3 aou  
    Change in Focus                :       1.017611  Cy5M0{  
         12     0.24033815    -0.30369419 `^ )oVs  
    Change in Focus                :      -0.109292 8aY}b($*ZI  
         13     0.37164046    -0.17239188 M1eM^m8U  
    Change in Focus                :      -0.692430 gMPvzBpP  
         14     0.48597489    -0.05805744 ynn>d  
    Change in Focus                :      -0.662040 +;a\ gF^  
         15     0.21462327    -0.32940907 lT8^BT  
    Change in Focus                :       1.611296 ^@$T>SB1  
         16     0.43378226    -0.11025008 hdpA& OteR  
    Change in Focus                :      -0.640081 /~+j[o B  
         17     0.39321881    -0.15081353 fS4 Ru  
    Change in Focus                :       0.914906 X CHN'l'  
         18     0.20692530    -0.33710703 nc?Oj B  
    Change in Focus                :       0.801607 #Wt1Ph_;  
         19     0.51374068    -0.03029165 )gG_K$08?  
    Change in Focus                :       0.947293 ={I(i6  
         20     0.38013374    -0.16389860 v"sN K  
    Change in Focus                :       0.667010 ~V/?/J$  
    rs@qC>_C0  
    Number of traceable Monte Carlo files generated: 20 {;={ abj  
    ,ysn7Y{Y  
    Nominal     0.54403234 gFxaUrZA  
    Best        0.54384387    Trial     2 Cp]q>lM"  
    Worst       0.18154684    Trial     4 T*#<p;  
    Mean        0.35770970 ~g&Gi)je  
    Std Dev     0.11156454 -V52?Hq  
    \; zix(N[5  
    Gu%}B@4^  
    Compensator Statistics: AE4>pzBe  
    Change in back focus: Zv8G[(  
    Minimum            :        -1.354815 $kh6-y@  
    Maximum            :         1.611296 GTW5f  
    Mean               :         0.161872 Bz6Zy)&sAL  
    Standard Deviation :         0.869664 H?j}!JzAC  
    AA K}t6  
    90% >       0.20977951               t8B==%  
    80% >       0.22748071               <a=k"'0  
    50% >       0.38667627               l_ycB%2e^  
    20% >       0.46553746               M!iYj+nrP  
    10% >       0.50064115                h|.*V$3  
    lLZ?&z$  
    End of Run. Q46sPMH+_  
    ] dHV^!  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 **Q K}j[D  
    ET q~, g'  
    d<v)ovQJ]  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 XLFo"f  
    / Hexv#3  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 _J`q\N K  
    80% >       0.22748071                 C~a- R#  
    50% >       0.38667627                 3ws}E6\D  
    20% >       0.46553746                 '74-rL:i  
    10% >       0.50064115 Qd$!?h  
    B0}f,J\  
    最后这个数值是MTF值呢,还是MTF的公差? f.&Y_G3a<  
    Rw\S-z/  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   CGkCLd*s]  
    ~#jD/  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : D 5qCn^R  
    90% >       0.20977951                 s wdW70  
    80% >       0.22748071                 '[fo  
    50% >       0.38667627                 aD~3C/?aW  
    20% >       0.46553746                 c8sY#I  
    10% >       0.50064115 9'I I!  
    ....... _-*Lj;^V  
    $e;_N4d^  
    I-NzGx2u  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   CUT D]:\  
    Mode                : Sensitivities 8 YAUy\  
    Sampling            : 2 \+E{8&TH'  
    Nominal Criterion   : 0.54403234 ~ jb6  
    Test Wavelength     : 0.6328 E0^~i:M k  
    (xJ6 : u  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? "w0>  
    k7Fa+Y)K7  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试