切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16208阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 qvn.uujYS  
    xQsxc  
    Nbl&al@"  
    /+*"*Br/  
    然后添加了默认公差分析,基本没变 e)sR$]i:v  
    Odwe1q&  
     7)2K6<q  
    )Do 0  
    然后运行分析的结果如下: a_Y<daRO  
    yGR{-YwU!  
    Analysis of Tolerances ~0MpB~ {xd  
    R"W}\0k  
    File : E:\光学设计资料\zemax练习\f500.ZMX FGDVBUY@  
    Title: ggD T5hb  
    Date : TUE JUN 21 2011 }`qAb/Ov  
    J,}h{-Xy`  
    Units are Millimeters. +a5F:3$  
    All changes are computed using linear differences. H )ej]DXy  
    @!`__>K  
    Paraxial Focus compensation only. ?.e,NHf  
    >.meecE?Q  
    WARNING: Solves should be removed prior to tolerancing. B=0^Rysg  
    vPDw22L;'  
    Mnemonics: (p>|e\(]0  
    TFRN: Tolerance on curvature in fringes. <YvXyIs  
    TTHI: Tolerance on thickness. d{YvdN9d  
    TSDX: Tolerance on surface decentering in x. GLsa]}m,9  
    TSDY: Tolerance on surface decentering in y. SwOW%o  
    TSTX: Tolerance on surface tilt in x (degrees). JL6$7h  
    TSTY: Tolerance on surface tilt in y (degrees). NzgG7 7>  
    TIRR: Tolerance on irregularity (fringes). rUI?{CV  
    TIND: Tolerance on Nd index of refraction. 9@|52dz%  
    TEDX: Tolerance on element decentering in x. GK$[!{w;  
    TEDY: Tolerance on element decentering in y. kX8C'D4 gX  
    TETX: Tolerance on element tilt in x (degrees). c!IZLaVAr9  
    TETY: Tolerance on element tilt in y (degrees). `nF SJlr&  
    /2p*uv }IP  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. !Gmnck&+  
    ?+]=|hN  
    WARNING: Boundary constraints on compensators will be ignored. |.k'?!  
    .\ Ijq!  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm =Dn <DV  
    Mode                : Sensitivities `w!XO$"]Z  
    Sampling            : 2 p}^G#h{  
    Nominal Criterion   : 0.54403234 B0Df7jr%`>  
    Test Wavelength     : 0.6328 9,?~dx  
    afrF%!  
    D40 vCax^J  
    Fields: XY Symmetric Angle in degrees Ll]5u~  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY neFwxS?  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 zxn|]P bS  
    ]y@A=nR  
    Sensitivity Analysis: z$J m1l  
    AYn65Ly  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| C5~~$7k0  
    Type                      Value      Criterion        Change          Value      Criterion        Change WFF?VBT'^  
    Fringe tolerance on surface 1 COw"6czX/  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 zM0}(5$m  
    Change in Focus                :      -0.000000                            0.000000 i(.e=  
    Fringe tolerance on surface 2 ei5YxV6I  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 F{x+1hct0  
    Change in Focus                :       0.000000                            0.000000 I Cc{2l  
    Fringe tolerance on surface 3 Ksx-Y"  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 5_(\Cd<#  
    Change in Focus                :      -0.000000                            0.000000 AX`T ku  
    Thickness tolerance on surface 1 \B#tB?rA  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ^*AI19w!Ys  
    Change in Focus                :       0.000000                            0.000000 l|.}>SfL^u  
    Thickness tolerance on surface 2 ^+yz}YFM  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 S70#_{  
    Change in Focus                :       0.000000                           -0.000000 7eCj p  
    Decenter X tolerance on surfaces 1 through 3 UBwl2Di  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 >/n];fl>8  
    Change in Focus                :       0.000000                            0.000000 <q7o"NI6FZ  
    Decenter Y tolerance on surfaces 1 through 3 \HO)ss)"  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 4kL6aSqT  
    Change in Focus                :       0.000000                            0.000000 {4S UG o>  
    Tilt X tolerance on surfaces 1 through 3 (degrees) -_ 9k+AV  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 w'TAM"D`  
    Change in Focus                :       0.000000                            0.000000 >` s"C  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) =E2 a#Vd  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 rD}g9?ut  
    Change in Focus                :       0.000000                            0.000000 =f~<*wQ  
    Decenter X tolerance on surface 1 .?u<|4jE6  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ] hT\"5&6  
    Change in Focus                :       0.000000                            0.000000 s~7a-J  
    Decenter Y tolerance on surface 1 RiTL(Yx  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 &@6xu{o  
    Change in Focus                :       0.000000                            0.000000 $UzSPhv[  
    Tilt X tolerance on surface (degrees) 1 Z=&|__ +d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ^os_j39N9  
    Change in Focus                :       0.000000                            0.000000 as@8L|i*  
    Tilt Y tolerance on surface (degrees) 1 1WtE] D  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Q^ W,)%  
    Change in Focus                :       0.000000                            0.000000 %2:UsI  
    Decenter X tolerance on surface 2 +QN4hJK  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 0BXr[%{`  
    Change in Focus                :       0.000000                            0.000000 N[cIr{XBGN  
    Decenter Y tolerance on surface 2 ^=x/:0  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 $q\"d?n  
    Change in Focus                :       0.000000                            0.000000 0h1u W26^  
    Tilt X tolerance on surface (degrees) 2 2WS*c7Ct  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 M+:5gMB'  
    Change in Focus                :       0.000000                            0.000000 J'2 Yrn  
    Tilt Y tolerance on surface (degrees) 2 OkC.e')Vx  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 I7_lKr3  
    Change in Focus                :       0.000000                            0.000000 byI" ?  
    Decenter X tolerance on surface 3 B :%Vq2`  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 xuUEJ a&  
    Change in Focus                :       0.000000                            0.000000 k<1i.rh  
    Decenter Y tolerance on surface 3 i@9 qp?eb  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ir6aV|ea!  
    Change in Focus                :       0.000000                            0.000000 W/UA%We3+L  
    Tilt X tolerance on surface (degrees) 3 8)S)!2_h  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 7>f2P!:  
    Change in Focus                :       0.000000                            0.000000 bhD-;Y!6;  
    Tilt Y tolerance on surface (degrees) 3 Gbhw7 (&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 (wL$ h5SG  
    Change in Focus                :       0.000000                            0.000000 hj1;f<' U  
    Irregularity of surface 1 in fringes Sqi9'-%m  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 t0f7dU3e;L  
    Change in Focus                :       0.000000                            0.000000 Zd-qBOB2L  
    Irregularity of surface 2 in fringes +Kgl/Wg%  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Y%/RGYKh  
    Change in Focus                :       0.000000                            0.000000 waMV6w)<  
    Irregularity of surface 3 in fringes ]?]M5rP  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 _=0Ja S>M.  
    Change in Focus                :       0.000000                            0.000000 !BVCuuM>w  
    Index tolerance on surface 1 >8/Otg+h  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 - G>J  
    Change in Focus                :       0.000000                            0.000000 bqH [-mu6  
    Index tolerance on surface 2 B!mHO*g  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 j)/Vtf  
    Change in Focus                :       0.000000                           -0.000000 pmP~1=3  
    V(Pw|u" e  
    Worst offenders: !%$[p'  
    Type                      Value      Criterion        Change Y*@7/2,  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 sq=EL+=j  
    TSTY   2             0.20000000     0.35349910    -0.19053324  B=*0  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 CE M4E  
    TSTX   2             0.20000000     0.35349910    -0.19053324 A o* IshVh  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 [NE!  
    TSTY   1             0.20000000     0.42678383    -0.11724851 S$SCW<LuN  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 rL\}>VC)  
    TSTX   1             0.20000000     0.42678383    -0.11724851 @Nb/n  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 hRXnig{;3  
    TSTY   3             0.20000000     0.42861670    -0.11541563 J t.<Z&  
    I._ A  
    Estimated Performance Changes based upon Root-Sum-Square method: / xv5we~  
    Nominal MTF                 :     0.54403234 egsP\ '  
    Estimated change            :    -0.36299231 / ^)3V}  
    Estimated MTF               :     0.18104003 oC" [rn  
    :sw5@JdJ  
    Compensator Statistics: Re~6 '  
    Change in back focus: ~hq\XQX  
    Minimum            :        -0.000000 >&HW6 c  
    Maximum            :         0.000000 F~=kMQO  
    Mean               :        -0.000000 \\EX'L  
    Standard Deviation :         0.000000  gwIR3u  
    ]?_~QE`  
    Monte Carlo Analysis: .}F 39TS2  
    Number of trials: 20 $G <r2lPy  
    zW\a)~ E  
    Initial Statistics: Normal Distribution #rW-jW=A  
    ps:"0^7  
      Trial       Criterion        Change j8Mt"B  
          1     0.42804416    -0.11598818 2wO8;wiA  
    Change in Focus                :      -0.400171 78]*Jx>L  
          2     0.54384387    -0.00018847 rZ,3:x-:  
    Change in Focus                :       1.018470 x]YzVJ=Y  
          3     0.44510003    -0.09893230 O: I]v@  
    Change in Focus                :      -0.601922 #<Y3*^~5d  
          4     0.18154684    -0.36248550 Ruq;:5u  
    Change in Focus                :       0.920681 #:=c)[G8  
          5     0.28665820    -0.25737414 m^BXLG:b  
    Change in Focus                :       1.253875 w!*ZS~v/r  
          6     0.21263372    -0.33139862 \<9aS Y'U  
    Change in Focus                :      -0.903878 r=.@APZB  
          7     0.40051424    -0.14351809 k t`ln  
    Change in Focus                :      -1.354815 _fgsHx>l7  
          8     0.48754161    -0.05649072 jSBz),.XU}  
    Change in Focus                :       0.215922 s8A"x`5(  
          9     0.40357468    -0.14045766 Vxrj(knck,  
    Change in Focus                :       0.281783 :)Es]wA#HZ  
         10     0.26315315    -0.28087919 vC]r1q.(  
    Change in Focus                :      -1.048393 tMdSdJ8  
         11     0.26120585    -0.28282649 R%LFFMVn  
    Change in Focus                :       1.017611 IA}vN3  
         12     0.24033815    -0.30369419 5fs,UH  
    Change in Focus                :      -0.109292 noaR3)  
         13     0.37164046    -0.17239188 }x$@j  
    Change in Focus                :      -0.692430 "< Di  
         14     0.48597489    -0.05805744 C:&Sk\   
    Change in Focus                :      -0.662040 Ax|'uvVAPT  
         15     0.21462327    -0.32940907 M'|[:I.V  
    Change in Focus                :       1.611296 mGg/F&G9  
         16     0.43378226    -0.11025008 D;2V|CkU  
    Change in Focus                :      -0.640081 8 |= c3Z  
         17     0.39321881    -0.15081353 RpU i'  
    Change in Focus                :       0.914906 K_t >T)K  
         18     0.20692530    -0.33710703 T/u61}'U{  
    Change in Focus                :       0.801607 iiuT:r  
         19     0.51374068    -0.03029165 ~%tVb c  
    Change in Focus                :       0.947293 {8":c n j  
         20     0.38013374    -0.16389860 [V /f{y~ {  
    Change in Focus                :       0.667010 ;L",K?6#  
    i \Yd_  
    Number of traceable Monte Carlo files generated: 20 +5-|6  
    F~fN7<9R  
    Nominal     0.54403234 S_*Gv O  
    Best        0.54384387    Trial     2 L\#G#1x8  
    Worst       0.18154684    Trial     4 *EO*Gg0d  
    Mean        0.35770970 |0p@'X1  
    Std Dev     0.11156454 ?$I9/r  
    t?^!OJ:L  
    ~U7Bo(EJp  
    Compensator Statistics: AD!w:jT9  
    Change in back focus: Ymnh%wS  
    Minimum            :        -1.354815 m0 W3pf  
    Maximum            :         1.611296 FW2x  
    Mean               :         0.161872 X?ZLmP7|  
    Standard Deviation :         0.869664 zNGUll$  
    F `F|.TX  
    90% >       0.20977951               GXLh(d!C  
    80% >       0.22748071               v}5YUM0H`  
    50% >       0.38667627               i,;a( Sy4  
    20% >       0.46553746               s 7%iuP  
    10% >       0.50064115                bFG?mG:  
    n}9<7e~/  
    End of Run. ZJFF4($qN  
    55`p~:&VQ  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 : maBec)  
    }"RVUYU  
    c|'$3dB*  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 37IHn6r\  
    t0xE&#4  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Hit )mwfYE  
    80% >       0.22748071                 Q?>*h xzoP  
    50% >       0.38667627                 o8A8fHl  
    20% >       0.46553746                 cYOcl-*af  
    10% >       0.50064115 ,DCUBD u&  
    0>;[EFL  
    最后这个数值是MTF值呢,还是MTF的公差? 64y9.PY  
    x a\~(B.  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   $QT% -9&  
    @C('kUX~!  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : |c2;`T#`o  
    90% >       0.20977951                 "x3!F&  
    80% >       0.22748071                 On@p5YRwW  
    50% >       0.38667627                 5YiBPB")  
    20% >       0.46553746                 CZCVC (/u  
    10% >       0.50064115 I%0J=V;o{  
    ....... XpT})AV  
    RS7J~Q  
    ?CpM.{{s  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   ve*6WDK,H  
    Mode                : Sensitivities 6 c-9[-Px  
    Sampling            : 2 &Qv%~dvW  
    Nominal Criterion   : 0.54403234 ZD8E+]+  
    Test Wavelength     : 0.6328 Nw3IDy~T  
    zOL*XZ0c  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? tkhEjTZ  
    M`@Es#s  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试