切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16146阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 RdLk85<n  
    E[c6*I  
    FR6 PY  
    LMI7Ih;  
    然后添加了默认公差分析,基本没变 PySFhb@  
    QQ./!   
    gm7 [m}  
    yhd]s0(!  
    然后运行分析的结果如下: 9~4@AGL  
    |F&02 f!]@  
    Analysis of Tolerances !twYjOryH[  
    Ceew~n{  
    File : E:\光学设计资料\zemax练习\f500.ZMX u4DrZ-v  
    Title: FM<`\ d'  
    Date : TUE JUN 21 2011 0t6DD  
    W'R^GIHs  
    Units are Millimeters. 6T%5<I*&3s  
    All changes are computed using linear differences. mi@ni+2Tn  
    oH(=T/{  
    Paraxial Focus compensation only. % \Mc6  
    | &/_{T  
    WARNING: Solves should be removed prior to tolerancing. #hXxrN  
    TVAa/_y2`  
    Mnemonics: %#E$wz  
    TFRN: Tolerance on curvature in fringes. @]dv   
    TTHI: Tolerance on thickness. Y-~ M kB  
    TSDX: Tolerance on surface decentering in x. *s|'V+1  
    TSDY: Tolerance on surface decentering in y. bRK\Tua 6  
    TSTX: Tolerance on surface tilt in x (degrees). r\FduyOXv  
    TSTY: Tolerance on surface tilt in y (degrees). #{@qC2!2/  
    TIRR: Tolerance on irregularity (fringes). =A(Az  
    TIND: Tolerance on Nd index of refraction. sCE%./h]  
    TEDX: Tolerance on element decentering in x. W6V((84(O  
    TEDY: Tolerance on element decentering in y. bfI= =  
    TETX: Tolerance on element tilt in x (degrees). %+ytX]E  
    TETY: Tolerance on element tilt in y (degrees). \Yh*ywwP#  
    nxe9^h7m  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ':]Hj8t_  
    `@8O|j  
    WARNING: Boundary constraints on compensators will be ignored. !1Nh`FN  
    rTim1<IXR  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm r`Dm;@JU  
    Mode                : Sensitivities 5RyxVC0<  
    Sampling            : 2 aev(CY,z  
    Nominal Criterion   : 0.54403234 C=JS]2W2  
    Test Wavelength     : 0.6328 DSlO.) dHu  
    cJzkA^T9  
    .TNGiUzG  
    Fields: XY Symmetric Angle in degrees y:Aha#<  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ^#U[v7y  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 9K-,#a  
    ZP ]Ok  
    Sensitivity Analysis: FSYs1Li_C  
    hp@F\9j  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ZtY?X- 4_  
    Type                      Value      Criterion        Change          Value      Criterion        Change Q;GcV&f;f  
    Fringe tolerance on surface 1 ~U5Tn3'~  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 S }qGf%  
    Change in Focus                :      -0.000000                            0.000000 m;!X{CV  
    Fringe tolerance on surface 2 ha7mXGN%  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 LQV&;O4'  
    Change in Focus                :       0.000000                            0.000000 BDLJDyf B  
    Fringe tolerance on surface 3 I8k+Rk*  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 i!iG7X)qT  
    Change in Focus                :      -0.000000                            0.000000 3Pvz57z{  
    Thickness tolerance on surface 1 M5 ^qc  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 G+<id1  
    Change in Focus                :       0.000000                            0.000000 +'_ peT.8  
    Thickness tolerance on surface 2 >X*Y jv:r  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 8+H 0  
    Change in Focus                :       0.000000                           -0.000000 U65oh8x  
    Decenter X tolerance on surfaces 1 through 3 ^DVryeLD  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 j1=su~  
    Change in Focus                :       0.000000                            0.000000 \\3 ?ij:v  
    Decenter Y tolerance on surfaces 1 through 3 T[MDjhv'  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 I]BhkJ  
    Change in Focus                :       0.000000                            0.000000 t:b}Mo0  
    Tilt X tolerance on surfaces 1 through 3 (degrees) s"p\-Z  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 H-mQ{K^  
    Change in Focus                :       0.000000                            0.000000 &"7+k5O  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) \["I.gQ  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 dVZ~n4  
    Change in Focus                :       0.000000                            0.000000 wCu!dxT|,  
    Decenter X tolerance on surface 1 Dw$RHogb~y  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 NMUF)ksjN  
    Change in Focus                :       0.000000                            0.000000 Q{CRy-ha  
    Decenter Y tolerance on surface 1 15OzO.Ud  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 J"$U$.W=  
    Change in Focus                :       0.000000                            0.000000 8C@6 b4VK  
    Tilt X tolerance on surface (degrees) 1 `U&'71B^  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 2#N?WlYw<S  
    Change in Focus                :       0.000000                            0.000000 A (H2Gt D  
    Tilt Y tolerance on surface (degrees) 1 `G%h=rr^c  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 !M(SEIc4A  
    Change in Focus                :       0.000000                            0.000000 JP^\   
    Decenter X tolerance on surface 2 Ao#bREm  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Rtlc&Q.b  
    Change in Focus                :       0.000000                            0.000000 ,C|{_4  
    Decenter Y tolerance on surface 2 BqUwvB4  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807  cp0yr:~  
    Change in Focus                :       0.000000                            0.000000 G ]uz$V6!  
    Tilt X tolerance on surface (degrees) 2 n)\(\V7  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 c'mg=jH  
    Change in Focus                :       0.000000                            0.000000 =woP~+  
    Tilt Y tolerance on surface (degrees) 2 /F6"uZSt4  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 q_98=fyE6  
    Change in Focus                :       0.000000                            0.000000 mF UsTb]f  
    Decenter X tolerance on surface 3 f4&;l|R0a  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ?FwHqyFVlQ  
    Change in Focus                :       0.000000                            0.000000 GVfRy@7n  
    Decenter Y tolerance on surface 3 w9n0p0xr<  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Y#6LNI   
    Change in Focus                :       0.000000                            0.000000 a <Iikx  
    Tilt X tolerance on surface (degrees) 3 -*O L+  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 +ej5C:El_}  
    Change in Focus                :       0.000000                            0.000000 h<8c{RuoZC  
    Tilt Y tolerance on surface (degrees) 3 J #jFX F\  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ;mC|> wSZ  
    Change in Focus                :       0.000000                            0.000000 Y0J:c?,  
    Irregularity of surface 1 in fringes \HG4i/V:h  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 1_l)$"  
    Change in Focus                :       0.000000                            0.000000 /a)^)  
    Irregularity of surface 2 in fringes N(3Bzd)   
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 'Gamb+[  
    Change in Focus                :       0.000000                            0.000000 PZO.$'L|7  
    Irregularity of surface 3 in fringes Cl3L)  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 t=|}?lN<  
    Change in Focus                :       0.000000                            0.000000 Qvel#*-4  
    Index tolerance on surface 1 L\5:od[EP  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ydj*Jy'  
    Change in Focus                :       0.000000                            0.000000 5NhAb$q2Y  
    Index tolerance on surface 2 S9ic4rcd  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 0C\cM92o  
    Change in Focus                :       0.000000                           -0.000000 ~*]7f%L-  
    [:q J1^UU  
    Worst offenders: LC$M_Cpw  
    Type                      Value      Criterion        Change V?mk*CU  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 0AF,} &$  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Z9q4W:jyS  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 #2$wI^O  
    TSTX   2             0.20000000     0.35349910    -0.19053324 +$#XV@@~  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Zsmv{p  
    TSTY   1             0.20000000     0.42678383    -0.11724851 &9z&#`AY]>  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ecO$L<9>  
    TSTX   1             0.20000000     0.42678383    -0.11724851 [9j,5d&m  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 =sefT@<  
    TSTY   3             0.20000000     0.42861670    -0.11541563 W]_a_5  
    _wX(OB  
    Estimated Performance Changes based upon Root-Sum-Square method: ~)[ pL(4  
    Nominal MTF                 :     0.54403234 QDVSFGwr  
    Estimated change            :    -0.36299231 adRIg:2  
    Estimated MTF               :     0.18104003 uI& 0/  
    lQ4^I^?m  
    Compensator Statistics: _n{_\/A6f  
    Change in back focus: /q,=!&f2  
    Minimum            :        -0.000000 ;b. m X  
    Maximum            :         0.000000 )s4: &!  
    Mean               :        -0.000000 bg_io*K  
    Standard Deviation :         0.000000 TTbJ9O<43  
    dw!Xt@,[g{  
    Monte Carlo Analysis: r`.Bj0  
    Number of trials: 20 ;!lwB  
    s{{8!Q  
    Initial Statistics: Normal Distribution )EQI>1_  
    VUP. \Vry  
      Trial       Criterion        Change ?^MH:o  
          1     0.42804416    -0.11598818 qFLt/ >  
    Change in Focus                :      -0.400171 nh80"Ny5  
          2     0.54384387    -0.00018847 x]?V*Jz  
    Change in Focus                :       1.018470 -3wid1SOm  
          3     0.44510003    -0.09893230 qs= i+  
    Change in Focus                :      -0.601922 49O_A[(d  
          4     0.18154684    -0.36248550 @g]+$Yj  
    Change in Focus                :       0.920681 6}0_o[23  
          5     0.28665820    -0.25737414 kmo#jITa`  
    Change in Focus                :       1.253875 (Q ^=^s|  
          6     0.21263372    -0.33139862 ?I:_FT  
    Change in Focus                :      -0.903878 .6y*Z+Zg  
          7     0.40051424    -0.14351809 z4` :n.  
    Change in Focus                :      -1.354815 "}ur"bU1  
          8     0.48754161    -0.05649072 g>eWX*Pa|  
    Change in Focus                :       0.215922 $}5M`p\&C  
          9     0.40357468    -0.14045766 xDSiTp=)O  
    Change in Focus                :       0.281783 $uUyp8F  
         10     0.26315315    -0.28087919 E[=&6T4  
    Change in Focus                :      -1.048393 Xc^(e?L4  
         11     0.26120585    -0.28282649 U3v~R4  
    Change in Focus                :       1.017611 "LW\osjen  
         12     0.24033815    -0.30369419 zV;NRf) 9.  
    Change in Focus                :      -0.109292 V$;`#J$\b  
         13     0.37164046    -0.17239188 w40*vBz  
    Change in Focus                :      -0.692430 W<[7LdAB  
         14     0.48597489    -0.05805744 Ol<LL#<j4  
    Change in Focus                :      -0.662040 H4{7,n  
         15     0.21462327    -0.32940907 GukwN]*OY  
    Change in Focus                :       1.611296 B}* \ pdJ  
         16     0.43378226    -0.11025008 pU,\ &3N  
    Change in Focus                :      -0.640081 $P#+Y,r~\  
         17     0.39321881    -0.15081353 \ $t{K  
    Change in Focus                :       0.914906 9$ VdYw7D  
         18     0.20692530    -0.33710703 '%:E4oI  
    Change in Focus                :       0.801607 b j<T`M!  
         19     0.51374068    -0.03029165 7~ZG"^k  
    Change in Focus                :       0.947293 kkj@!1q(wO  
         20     0.38013374    -0.16389860 R$MR|  
    Change in Focus                :       0.667010 {!{T,_ J  
    QfM^J5j.M?  
    Number of traceable Monte Carlo files generated: 20 W?.xtQEv  
    mUR[;;l  
    Nominal     0.54403234 ~ 7Nqwwx  
    Best        0.54384387    Trial     2 B>z^W+Unyn  
    Worst       0.18154684    Trial     4 F8{T/YhZ  
    Mean        0.35770970 -x J\/"A  
    Std Dev     0.11156454 kI5LG6  
    <Nc9F['&#  
    i12G\Ye  
    Compensator Statistics: -GQ.B{%G  
    Change in back focus: LUz`P6  
    Minimum            :        -1.354815 '=Jz}F <  
    Maximum            :         1.611296 #-R]HLW*  
    Mean               :         0.161872 36.mf_AM  
    Standard Deviation :         0.869664 >SYOtzg%  
    I<xcVY9L  
    90% >       0.20977951               KpS=oFX{}  
    80% >       0.22748071               c\tw#;\9  
    50% >       0.38667627               ?6I`$ &OA  
    20% >       0.46553746               rfZg  
    10% >       0.50064115                *]kE3  
    Yx ;j  
    End of Run. |Xv\3r  
    cmaha%3d  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 n iB<h  
    &;Go CU Le  
    y4!fu<[i  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题  Y!|};  
    /\1Q :B3W  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 E 6!V0D  
    80% >       0.22748071                 %g4)f9>  
    50% >       0.38667627                 6|%HCxWO  
    20% >       0.46553746                 YeF'r.Y  
    10% >       0.50064115 HlX7A 1i/  
    |e3YTLsI  
    最后这个数值是MTF值呢,还是MTF的公差? $5>x)jr:w+  
    \z2d=E  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ? 5hwz  
    eA/}$.R  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : aMjCqu05  
    90% >       0.20977951                 *CXVA&?  
    80% >       0.22748071                 sFxciCpN  
    50% >       0.38667627                 -^7n+ QX  
    20% >       0.46553746                 ^zaN?0%S33  
    10% >       0.50064115 bpe WK&  
    ....... S b3@7^  
    6e;.}i  
    E^. =^bR  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   <kmn3w,vi  
    Mode                : Sensitivities #yVY! +A  
    Sampling            : 2 1jozM"H7Q  
    Nominal Criterion   : 0.54403234 z7J2O  
    Test Wavelength     : 0.6328 5<ycF_  
    w#,C{6  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ]W%<<S  
    S:Ne g!`  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试