切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16048阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 egvb#:zW?  
    jU $G<G  
    o] Xt2E  
    V)5K/ U{  
    然后添加了默认公差分析,基本没变 =W &Mt  
    Wqkzj^;"G  
    &JXb) W  
    l n\qvD_  
    然后运行分析的结果如下: N+ak{3  
    W#%s0EN<_  
    Analysis of Tolerances }jUsv8`}8R  
    9b&|'BBW  
    File : E:\光学设计资料\zemax练习\f500.ZMX XC5/$3'M&  
    Title: ESNI$[`  
    Date : TUE JUN 21 2011 l>MDCqV  
    +J|H~`  
    Units are Millimeters. wk ^7/B  
    All changes are computed using linear differences. c:.~%AJx  
    c} +*$DeT  
    Paraxial Focus compensation only. lH;V9D^  
    F#>00b{Q  
    WARNING: Solves should be removed prior to tolerancing. )q[P&f(h  
    . %s U)$bH  
    Mnemonics: Z4EmRa30 p  
    TFRN: Tolerance on curvature in fringes. f-G)pHm  
    TTHI: Tolerance on thickness. 1_<x%>zG  
    TSDX: Tolerance on surface decentering in x. UXlZI'|He  
    TSDY: Tolerance on surface decentering in y. G[\TbPh  
    TSTX: Tolerance on surface tilt in x (degrees). 0|RofL&o  
    TSTY: Tolerance on surface tilt in y (degrees). ]bJz-6u#:  
    TIRR: Tolerance on irregularity (fringes). 1!KROes4  
    TIND: Tolerance on Nd index of refraction. \4L ur  
    TEDX: Tolerance on element decentering in x. X>Vc4n<}  
    TEDY: Tolerance on element decentering in y. X58U>4a  
    TETX: Tolerance on element tilt in x (degrees). ? Bpnnwx  
    TETY: Tolerance on element tilt in y (degrees). Vw1>d+<~-)  
    %(1O jfZc  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 4 kjfYf@A  
    jZ |M$I3*  
    WARNING: Boundary constraints on compensators will be ignored. R(d<PlZ  
    g#=<;X2  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm PqV F}  
    Mode                : Sensitivities =3 .dgtH  
    Sampling            : 2 GLn=*Dh#  
    Nominal Criterion   : 0.54403234 ' @RF  
    Test Wavelength     : 0.6328 Y {^*y  
    Qds<j{2  
    bGCC?}\  
    Fields: XY Symmetric Angle in degrees 2ZY$/  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY H-PVV&r   
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000  xgcxA:  
    WM'!|lg  
    Sensitivity Analysis: :QGkYJ  
    byxlC?q7  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| KClkPL!jP  
    Type                      Value      Criterion        Change          Value      Criterion        Change \ZZ6r^99  
    Fringe tolerance on surface 1 sfyLG3$/  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 @."K"i'Bl  
    Change in Focus                :      -0.000000                            0.000000 [kg?q5F)  
    Fringe tolerance on surface 2 v>]g="5}8  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ?4bYb]8Z  
    Change in Focus                :       0.000000                            0.000000 k( :Bl  
    Fringe tolerance on surface 3 cXPpxRXBD  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ,c&u\W=p  
    Change in Focus                :      -0.000000                            0.000000 ,`}y J*7  
    Thickness tolerance on surface 1 J8emz8J  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 8ttJ\m  
    Change in Focus                :       0.000000                            0.000000 M-nRhso  
    Thickness tolerance on surface 2 EB}B75)x  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 l+9RPJD/:  
    Change in Focus                :       0.000000                           -0.000000 ubM1Qr  
    Decenter X tolerance on surfaces 1 through 3 `;j1H<L  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 $VmV>NZ  
    Change in Focus                :       0.000000                            0.000000 ?{ )'O+s  
    Decenter Y tolerance on surfaces 1 through 3 3N_KNW  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 G3_7e A#;  
    Change in Focus                :       0.000000                            0.000000 N|yA]dg[  
    Tilt X tolerance on surfaces 1 through 3 (degrees) h"1}j'2>@  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 zDdo RK@  
    Change in Focus                :       0.000000                            0.000000 NCKR<!(  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) j\>&]0-Iq  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 {'{}@CuA2  
    Change in Focus                :       0.000000                            0.000000 N/o?\q8  
    Decenter X tolerance on surface 1 CH4Nz'X2  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 xRWfZ3E#  
    Change in Focus                :       0.000000                            0.000000 ;5/Se"Nd  
    Decenter Y tolerance on surface 1 :zU4K=kR  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 E!Q@AZ  
    Change in Focus                :       0.000000                            0.000000 z\|<h=EU  
    Tilt X tolerance on surface (degrees) 1 vFe=AY<Rt|  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 MGF !ZZ\  
    Change in Focus                :       0.000000                            0.000000 &}u_e`A  
    Tilt Y tolerance on surface (degrees) 1 1'hpg>U  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 WfO EI1  
    Change in Focus                :       0.000000                            0.000000 &MX&5@ Vu  
    Decenter X tolerance on surface 2 oO tjG3B({  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 . V!5Ui<  
    Change in Focus                :       0.000000                            0.000000 fQ9af)d  
    Decenter Y tolerance on surface 2 s]m]b#1!r  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 @wXYza0|d  
    Change in Focus                :       0.000000                            0.000000 Zna6-0o  
    Tilt X tolerance on surface (degrees) 2 e)H FI|>  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 D\G 8p;  
    Change in Focus                :       0.000000                            0.000000 \;-Yz  
    Tilt Y tolerance on surface (degrees) 2 C/!P&`<6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 cUug}/!I  
    Change in Focus                :       0.000000                            0.000000 t XzuP_0  
    Decenter X tolerance on surface 3 Jj ]<SWh  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 4M"'B A<  
    Change in Focus                :       0.000000                            0.000000 $D`Kz*/.  
    Decenter Y tolerance on surface 3 yFAUD ro  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ?.,F3@W "  
    Change in Focus                :       0.000000                            0.000000 +IXr4M&3  
    Tilt X tolerance on surface (degrees) 3 J)g +I  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 {%wrx'<  
    Change in Focus                :       0.000000                            0.000000 d*TH$-F!p  
    Tilt Y tolerance on surface (degrees) 3 ):Fg {7b]n  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 z/j*zU `  
    Change in Focus                :       0.000000                            0.000000 i{}m 8K)  
    Irregularity of surface 1 in fringes !v3d:n\W8  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 @w33u^  
    Change in Focus                :       0.000000                            0.000000 .\`M oH  
    Irregularity of surface 2 in fringes -qSGa;PJ  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 g#P]72TQ  
    Change in Focus                :       0.000000                            0.000000 =?CIC%6m  
    Irregularity of surface 3 in fringes ZW))Mx#K=T  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ~e|E5[-i  
    Change in Focus                :       0.000000                            0.000000 }G(#jOYk  
    Index tolerance on surface 1 k Jz^\Re  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ^d>m`*px  
    Change in Focus                :       0.000000                            0.000000 Zq{gp1WC  
    Index tolerance on surface 2 Cno[:iom  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 <DqFfrpc  
    Change in Focus                :       0.000000                           -0.000000 K z^.v`  
    QfjoHeG7  
    Worst offenders: hXH+C-%{  
    Type                      Value      Criterion        Change a"cw%L  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 bz:En'2>F  
    TSTY   2             0.20000000     0.35349910    -0.19053324 e<DcuF<ZS  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 #Hy9 ;Q  
    TSTX   2             0.20000000     0.35349910    -0.19053324 )3F}IgD  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 3 JlM{N6+  
    TSTY   1             0.20000000     0.42678383    -0.11724851 6ZjUC1  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 BD$Lf,_  
    TSTX   1             0.20000000     0.42678383    -0.11724851 e0C_ NFS+  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 >8NUji2I  
    TSTY   3             0.20000000     0.42861670    -0.11541563 p>U= Jg  
    {DVMs|5;^  
    Estimated Performance Changes based upon Root-Sum-Square method: V%*91t_  
    Nominal MTF                 :     0.54403234 C\[:{d  
    Estimated change            :    -0.36299231 asW W@E  
    Estimated MTF               :     0.18104003 }w=|"a|,  
    ]'<}kJtN.  
    Compensator Statistics: t%y i3  
    Change in back focus: "MPS&OK  
    Minimum            :        -0.000000 nr>Yj?la  
    Maximum            :         0.000000 x[&)\[t  
    Mean               :        -0.000000 9G1ZW=83  
    Standard Deviation :         0.000000 6R2F,b(_  
    A{3nz DLI  
    Monte Carlo Analysis: !;t6\Z8&  
    Number of trials: 20 D3tcwjXoW_  
    75h]# k9\  
    Initial Statistics: Normal Distribution D=f$-rn  
    k/U rz*O  
      Trial       Criterion        Change fHuWBC_YO  
          1     0.42804416    -0.11598818 2Z9ck|L>  
    Change in Focus                :      -0.400171 PTQN.[bBh  
          2     0.54384387    -0.00018847 !(S.7#-r  
    Change in Focus                :       1.018470 `/G9*tIR8g  
          3     0.44510003    -0.09893230 xNJ*TA[+  
    Change in Focus                :      -0.601922 )*}?EI4.  
          4     0.18154684    -0.36248550 y2B'0l  
    Change in Focus                :       0.920681 VYK%0S9yH[  
          5     0.28665820    -0.25737414 6 G ,cc  
    Change in Focus                :       1.253875 U $=Z`^<  
          6     0.21263372    -0.33139862 {\h:k\k  
    Change in Focus                :      -0.903878 : t D`e<  
          7     0.40051424    -0.14351809 *\0h^^|@  
    Change in Focus                :      -1.354815 6/0bis H  
          8     0.48754161    -0.05649072 nWd;XR6|  
    Change in Focus                :       0.215922 (76tYt~I=  
          9     0.40357468    -0.14045766 fG@]G9Z  
    Change in Focus                :       0.281783 $7O3+R/=  
         10     0.26315315    -0.28087919 ^= kr`5  
    Change in Focus                :      -1.048393 _GoFwVO  
         11     0.26120585    -0.28282649 PmE 8O  
    Change in Focus                :       1.017611 }?CKE<#%  
         12     0.24033815    -0.30369419 !%D;H~mQ  
    Change in Focus                :      -0.109292 R_80J=%0  
         13     0.37164046    -0.17239188 n482?Wp  
    Change in Focus                :      -0.692430 FbCuXS=+`  
         14     0.48597489    -0.05805744 }+:X=@Z@  
    Change in Focus                :      -0.662040 5sB~.z@  
         15     0.21462327    -0.32940907 gP ^A  
    Change in Focus                :       1.611296 (2 P&@!|  
         16     0.43378226    -0.11025008 NiVZ=wEp,  
    Change in Focus                :      -0.640081 Eb&=$4c=  
         17     0.39321881    -0.15081353 <`BDN  
    Change in Focus                :       0.914906 5IRUG)Icr  
         18     0.20692530    -0.33710703 d(vt0  
    Change in Focus                :       0.801607 'kJyE9*xU.  
         19     0.51374068    -0.03029165 ~'Korxa  
    Change in Focus                :       0.947293 OP``+z>  
         20     0.38013374    -0.16389860 c&g*nDuDj  
    Change in Focus                :       0.667010 E,/nK  
    _]< Tv3]RK  
    Number of traceable Monte Carlo files generated: 20 ~kI$8oAry  
    [KEw5-=i@  
    Nominal     0.54403234 BWkTQd<t  
    Best        0.54384387    Trial     2 DU@SXb  
    Worst       0.18154684    Trial     4 %y+v0.aWH+  
    Mean        0.35770970 Q^'xVS_.  
    Std Dev     0.11156454 mW3 IR3 b  
    .sZ"|j9m  
    1/=6s5vS}  
    Compensator Statistics: )|&FBz;  
    Change in back focus: g]?QV2bX6  
    Minimum            :        -1.354815 f5*hOzKG6  
    Maximum            :         1.611296 c`UizZ  
    Mean               :         0.161872 >4?735f=x  
    Standard Deviation :         0.869664 G#.q%Up  
    q3u:Tpn4%  
    90% >       0.20977951               Go7 oj'"  
    80% >       0.22748071               cZ ,}1?!  
    50% >       0.38667627               VP }To  
    20% >       0.46553746               wYd{X 8$  
    10% >       0.50064115                C)&BtiUN/  
    K*tomy  
    End of Run. ZkF6AF   
    rDLgQ{Sea  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 riSgb=7q9  
    cE*d(g  
    Md*.q^:  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 V+$fh2t  
    'On%p|s)H  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 (btm g<WT"  
    80% >       0.22748071                 V+t's*9o3  
    50% >       0.38667627                 -0P9|;h5  
    20% >       0.46553746                 Sv!JA#Ag  
    10% >       0.50064115 b8glZb*$  
    9A *gW j  
    最后这个数值是MTF值呢,还是MTF的公差? Cl!9/l?z  
    "NTiQ}i  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Yh; A)N p  
    D THWL  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ~]q>}/&YLo  
    90% >       0.20977951                 "c|Rpzs[  
    80% >       0.22748071                 z+-o}i  
    50% >       0.38667627                 w ?*eBLJ(G  
    20% >       0.46553746                 ZvMU3])u  
    10% >       0.50064115 /(.:l +[w[  
    ....... |Wjpnz  
    G? XS-oSv  
    hidQOh  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Cs7ol-\)  
    Mode                : Sensitivities ');vc~C  
    Sampling            : 2 _OyQ:>M6P  
    Nominal Criterion   : 0.54403234 8-Y*b89  
    Test Wavelength     : 0.6328 U||GeEd  
    Kk6=61}A  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 6Eu(C]nC(  
    3ie k >'T  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试