切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16319阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 P0$q{ j  
    JGZ,5RTq4-  
    9QJ=?bIC#  
    h 88iZK  
    然后添加了默认公差分析,基本没变 .hgc1  
    1W-t})!a  
    $c0SWz  
    H7"I+qE-G  
    然后运行分析的结果如下: IGql^,b  
    XPzwT2_E  
    Analysis of Tolerances `a:@[0r0U  
    FqsG#6|x  
    File : E:\光学设计资料\zemax练习\f500.ZMX .x6*9z#q  
    Title: ZcX%:ebKS  
    Date : TUE JUN 21 2011  AO;+XP=  
    BmUEo$w  
    Units are Millimeters. ] V]~I.  
    All changes are computed using linear differences. M O* m@  
    =0,")aa!  
    Paraxial Focus compensation only. u 8U>R=M  
    mMrvr9%  
    WARNING: Solves should be removed prior to tolerancing. @Sub.z&T{  
    i1vBg}WHN  
    Mnemonics: OjMDxG w  
    TFRN: Tolerance on curvature in fringes. }<FBcc(n  
    TTHI: Tolerance on thickness. 0Qw?.#[9  
    TSDX: Tolerance on surface decentering in x. EPI mh  
    TSDY: Tolerance on surface decentering in y. F#4?@W  
    TSTX: Tolerance on surface tilt in x (degrees). <3HW!7Ad1  
    TSTY: Tolerance on surface tilt in y (degrees). O:r<es1  
    TIRR: Tolerance on irregularity (fringes). &[I#5 bGk  
    TIND: Tolerance on Nd index of refraction. oX3Q9)  
    TEDX: Tolerance on element decentering in x. nUmA  
    TEDY: Tolerance on element decentering in y. lhQ*;dMj%"  
    TETX: Tolerance on element tilt in x (degrees). LLgN%!&  
    TETY: Tolerance on element tilt in y (degrees). ,Q(n(m'  
    ]lQhIf6)k  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. VbBZ\`b  
    L)Un9&4L  
    WARNING: Boundary constraints on compensators will be ignored. (U!WD`Ym  
    PKdM-R'Z  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ,2H5CFX/  
    Mode                : Sensitivities )^%,\l-!  
    Sampling            : 2 Jd1eOeS  
    Nominal Criterion   : 0.54403234 sXoBw.^Ir_  
    Test Wavelength     : 0.6328 sdS<-! %u4  
    ),bdj+wr78  
    yuFuYo&[?v  
    Fields: XY Symmetric Angle in degrees ?]kIztH  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY U <4<8'  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 'y-IE#!5  
    xZ`t~4qR  
    Sensitivity Analysis: 'r1&zw(  
    Vl^jTX5N  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 8Mws?]\/q  
    Type                      Value      Criterion        Change          Value      Criterion        Change !6<2JNf  
    Fringe tolerance on surface 1 o>U%3-+T^J  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Yz-b~D/=}  
    Change in Focus                :      -0.000000                            0.000000 X:8=jHkz  
    Fringe tolerance on surface 2 ( }JX ]-  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Kh<v2  
    Change in Focus                :       0.000000                            0.000000 *XtZ;os]  
    Fringe tolerance on surface 3 5Odi\SJ&  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 a^Zn }R r  
    Change in Focus                :      -0.000000                            0.000000 3w{ i5gGn  
    Thickness tolerance on surface 1 [`ttNW(_  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ` mCcD  
    Change in Focus                :       0.000000                            0.000000 dP)8T  
    Thickness tolerance on surface 2 gvA&F |4  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 C6'[Tn  
    Change in Focus                :       0.000000                           -0.000000 /"iYEr%_  
    Decenter X tolerance on surfaces 1 through 3 Vx* =  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 3: mF!  
    Change in Focus                :       0.000000                            0.000000 \8Blq5n-O*  
    Decenter Y tolerance on surfaces 1 through 3 +#&2*nY  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 D\* raQ`n  
    Change in Focus                :       0.000000                            0.000000 HLk}E*.mC  
    Tilt X tolerance on surfaces 1 through 3 (degrees) m} Yf6:cr  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 IHxX:a/iv  
    Change in Focus                :       0.000000                            0.000000 <PV @JJ"  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) )%,bog(x  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 @ULr)&9  
    Change in Focus                :       0.000000                            0.000000 zT_{M qY  
    Decenter X tolerance on surface 1 w`#lLl B  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 JvHJ*E   
    Change in Focus                :       0.000000                            0.000000 !xe<@$  
    Decenter Y tolerance on surface 1 T w"^I*B  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ,3fw"P$  
    Change in Focus                :       0.000000                            0.000000 IUu[`\b=  
    Tilt X tolerance on surface (degrees) 1  KsUsj3J  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 L]HY*e  
    Change in Focus                :       0.000000                            0.000000 7z%zXDe~T[  
    Tilt Y tolerance on surface (degrees) 1 u{>5  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 TC R(  
    Change in Focus                :       0.000000                            0.000000 -QZped;?*  
    Decenter X tolerance on surface 2 gvy%`SSW  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 [xI@)5Xk  
    Change in Focus                :       0.000000                            0.000000 (#Y2H  
    Decenter Y tolerance on surface 2 ZB ~D_S  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 $fn Fi|-  
    Change in Focus                :       0.000000                            0.000000 e j!C^  
    Tilt X tolerance on surface (degrees) 2 <'GI<Hc  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 /1MO]u\  
    Change in Focus                :       0.000000                            0.000000 vRT1tOQ$  
    Tilt Y tolerance on surface (degrees) 2 1L &_3}  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Ns1u0$fg  
    Change in Focus                :       0.000000                            0.000000 +(|T\%$DT  
    Decenter X tolerance on surface 3 n$b/@hp$z  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 `?Y/:4  
    Change in Focus                :       0.000000                            0.000000 dAAE2}e  
    Decenter Y tolerance on surface 3 /ebYk-c  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 pazFVzT  
    Change in Focus                :       0.000000                            0.000000 vhhsOga  
    Tilt X tolerance on surface (degrees) 3 YO-O-NEP  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 t~@TUTbx  
    Change in Focus                :       0.000000                            0.000000 TSuHY0. cp  
    Tilt Y tolerance on surface (degrees) 3 1Z`<HW"  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 YtIJJH  
    Change in Focus                :       0.000000                            0.000000 yiI&>J))  
    Irregularity of surface 1 in fringes tb@/E  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 *5|\if\  
    Change in Focus                :       0.000000                            0.000000 M>T#MDK\(  
    Irregularity of surface 2 in fringes &1B)mj  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 WVwNjQ2PM  
    Change in Focus                :       0.000000                            0.000000 40q8,M  
    Irregularity of surface 3 in fringes c]xpp;%]  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 |5![k<o#  
    Change in Focus                :       0.000000                            0.000000 Xb;CY9&  
    Index tolerance on surface 1 "t\rjFw  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 gQ/zk3?k  
    Change in Focus                :       0.000000                            0.000000 jRq>Sz{8  
    Index tolerance on surface 2 C{Npipd}v  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 eKLxNw5  
    Change in Focus                :       0.000000                           -0.000000 //6m2a  
    RHB>svT^K>  
    Worst offenders: Ye1P5+W(  
    Type                      Value      Criterion        Change `9 $?g|rB  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 i>e75`9  
    TSTY   2             0.20000000     0.35349910    -0.19053324 S!g&&RDx  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 T8qG9)~3  
    TSTX   2             0.20000000     0.35349910    -0.19053324 JQbI^ef_;  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 M)3h 4yQ  
    TSTY   1             0.20000000     0.42678383    -0.11724851 TWxMexiW  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Wxp^*._q3I  
    TSTX   1             0.20000000     0.42678383    -0.11724851 <cWo]T`X!  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 dd$\Q  
    TSTY   3             0.20000000     0.42861670    -0.11541563 O gycP4z[  
    nC`=quM9  
    Estimated Performance Changes based upon Root-Sum-Square method: (>)Y0ki}  
    Nominal MTF                 :     0.54403234 h!)(R<  
    Estimated change            :    -0.36299231 kv5D=0r  
    Estimated MTF               :     0.18104003 N 8mK^{  
    AY *  
    Compensator Statistics: :Eob"WH  
    Change in back focus: zHx?-Q&3  
    Minimum            :        -0.000000 &G'R{s&"  
    Maximum            :         0.000000 d5WE^H)E.  
    Mean               :        -0.000000 Vuz!~kLYIn  
    Standard Deviation :         0.000000 Y @K9Hl  
    wBmbn=>#S  
    Monte Carlo Analysis: )fCl<KG*  
    Number of trials: 20 :!aFfb["  
    l sUQ7%f  
    Initial Statistics: Normal Distribution r%xNfTa  
    @zPWu}&m  
      Trial       Criterion        Change oXz:zoNQ  
          1     0.42804416    -0.11598818 o]k[l ;  
    Change in Focus                :      -0.400171 6o6m"6  
          2     0.54384387    -0.00018847 BKJW\gS2  
    Change in Focus                :       1.018470 $x`U)pv  
          3     0.44510003    -0.09893230 &os* @0h4  
    Change in Focus                :      -0.601922 tc# rL   
          4     0.18154684    -0.36248550 ozGK -$  
    Change in Focus                :       0.920681 ]Q)TqwYF  
          5     0.28665820    -0.25737414 U>:p`@  
    Change in Focus                :       1.253875 ok[R`99  
          6     0.21263372    -0.33139862 i44KTC"sB  
    Change in Focus                :      -0.903878 47t^{WrT  
          7     0.40051424    -0.14351809 SUvHLOA  
    Change in Focus                :      -1.354815 0eb`9yM  
          8     0.48754161    -0.05649072 U8.DPRa  
    Change in Focus                :       0.215922 `%rqQnVB  
          9     0.40357468    -0.14045766 Ou,B3kuQ+  
    Change in Focus                :       0.281783 7AtJ6  
         10     0.26315315    -0.28087919 Be}Cj(C  
    Change in Focus                :      -1.048393 1FY^_dvH  
         11     0.26120585    -0.28282649 i@d!g"tot  
    Change in Focus                :       1.017611 KXR  
         12     0.24033815    -0.30369419 7$b78wax  
    Change in Focus                :      -0.109292 6idYz"P %  
         13     0.37164046    -0.17239188 <hS >L1ZSr  
    Change in Focus                :      -0.692430 B\N,%vsx#U  
         14     0.48597489    -0.05805744 ~omX(kPzK  
    Change in Focus                :      -0.662040 ;i,yT ?so  
         15     0.21462327    -0.32940907 Ba@UX(t  
    Change in Focus                :       1.611296 Q@l3XNH|c  
         16     0.43378226    -0.11025008 a:@Eg;aN*O  
    Change in Focus                :      -0.640081 G =lC[i  
         17     0.39321881    -0.15081353  BeP0lZ  
    Change in Focus                :       0.914906 sd#a_  
         18     0.20692530    -0.33710703 -+c_TJ.dC  
    Change in Focus                :       0.801607 rsiG]o=8  
         19     0.51374068    -0.03029165 YMm Fpy  
    Change in Focus                :       0.947293 kbOo;<X9A  
         20     0.38013374    -0.16389860 aIJ[K  
    Change in Focus                :       0.667010 !&! sn"yD  
    ;l~gA|A  
    Number of traceable Monte Carlo files generated: 20 q \0>SG  
    PBkKn3P3  
    Nominal     0.54403234 ]k>S0  
    Best        0.54384387    Trial     2 m-ZVlj  
    Worst       0.18154684    Trial     4 9g " ?`_  
    Mean        0.35770970 Rrk3EL  
    Std Dev     0.11156454 =X>?Y,   
    <51(q_f  
    C+2*m=r  
    Compensator Statistics: T;.#=h  
    Change in back focus: n?:s/6tP  
    Minimum            :        -1.354815 M-0BQs`N  
    Maximum            :         1.611296 *Q5/d9B8TN  
    Mean               :         0.161872 cojuU=i  
    Standard Deviation :         0.869664 @u$4{sjgf\  
    Z?1.Y7Npr  
    90% >       0.20977951               Q- j+#NGc  
    80% >       0.22748071               Jf4D">h  
    50% >       0.38667627               U%U%a,rA5s  
    20% >       0.46553746               .pG_j]  
    10% >       0.50064115                Ns&SZO  
    'KM@$2tK^q  
    End of Run. lts{<AU~  
    uiO8F*,!&r  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 ,9  
    8CwgV  
    #@ lLx?U  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 x!gu&AA<*  
    265df Y9Pu  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 @=isN'>]O  
    80% >       0.22748071                 `og 3P:y  
    50% >       0.38667627                 :l'61$=  
    20% >       0.46553746                 V80g+)|  
    10% >       0.50064115 T:q!>"5  
    'n6D3Vse  
    最后这个数值是MTF值呢,还是MTF的公差? ;r B2Q H]  
    7%b?[}y4  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   XFUlV;ek  
    8rx?mX,}  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ^k{b8-)W<  
    90% >       0.20977951                 '&v.h#<  
    80% >       0.22748071                 b{4@ ~>i  
    50% >       0.38667627                 G)5R iRcs  
    20% >       0.46553746                 2aj9:S  
    10% >       0.50064115 w1>uD]  
    ....... Dfz3\|LJ  
    \MhSIlM#  
    .l1uqCuB  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   B=!&rKF  
    Mode                : Sensitivities Pk{eGG<F$  
    Sampling            : 2 ECW=865jL  
    Nominal Criterion   : 0.54403234 ^\"@r%|  
    Test Wavelength     : 0.6328 41^=z[k  
    z:gp\  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ]wxjd l  
    #S4lRVt5  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试