切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16683阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 2P9gS[Ub  
    ?bwF$Ku  
    bF:]MB^VK  
    BX :77?9,+  
    然后添加了默认公差分析,基本没变 0PIiG-o9  
    /fCj;8T3o  
    t2Dx$vT*&  
    `2X~3im  
    然后运行分析的结果如下: rYUhGmg`  
    `6:;*#jO,  
    Analysis of Tolerances 9U1cH qV  
    d#yb($HAJ  
    File : E:\光学设计资料\zemax练习\f500.ZMX ]m} <0-0  
    Title: C2RR(n=N^  
    Date : TUE JUN 21 2011 2_@vSwC  
    pp{Za@j  
    Units are Millimeters. ~e,k71  
    All changes are computed using linear differences. Qhlgu!  
    JBa( O- T  
    Paraxial Focus compensation only. .]+Z<5Fo  
    :A%|'HxH3  
    WARNING: Solves should be removed prior to tolerancing. Vy-N3L  
    /Po't(-x  
    Mnemonics: rblEyCR  
    TFRN: Tolerance on curvature in fringes. A<ca9g3  
    TTHI: Tolerance on thickness. f,GF3vu"  
    TSDX: Tolerance on surface decentering in x. _^cDB1I ?  
    TSDY: Tolerance on surface decentering in y. 8z&7wO  
    TSTX: Tolerance on surface tilt in x (degrees). rZ<n0w  
    TSTY: Tolerance on surface tilt in y (degrees). .kWMr^ g  
    TIRR: Tolerance on irregularity (fringes). $]:yc n9l  
    TIND: Tolerance on Nd index of refraction. [4uTp[U!r  
    TEDX: Tolerance on element decentering in x. ]jNv}{  
    TEDY: Tolerance on element decentering in y. l \~w(8g<A  
    TETX: Tolerance on element tilt in x (degrees). mY9^W2:  
    TETY: Tolerance on element tilt in y (degrees). ( )1\b  
    #$p&J1   
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. d~f_wN&r  
    (S/f!Dk&3  
    WARNING: Boundary constraints on compensators will be ignored. vto^[a6?  
    UJ-IK|P.#  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm BS<5b*wG  
    Mode                : Sensitivities J#DYZ>}Y  
    Sampling            : 2 Oga/  
    Nominal Criterion   : 0.54403234 aw9/bp*N  
    Test Wavelength     : 0.6328 l}-JtZ?[?  
    Vae}:8'}  
    8[  
    Fields: XY Symmetric Angle in degrees n}?XFx!%  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY  QDCu  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 XO sPKq  
    5Ug.J{d  
    Sensitivity Analysis: {+~}iF<%  
    FncK#hZ.  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| g?,\bmHE  
    Type                      Value      Criterion        Change          Value      Criterion        Change po@=$HK  
    Fringe tolerance on surface 1 N"d M+  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 QkbXm[K.Z  
    Change in Focus                :      -0.000000                            0.000000 xa+=9=<AQ  
    Fringe tolerance on surface 2 1} 1.5[4d  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ?@"F\Bv<h  
    Change in Focus                :       0.000000                            0.000000 P]]re,&R  
    Fringe tolerance on surface 3 !d Ns3d  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662  ismx evD  
    Change in Focus                :      -0.000000                            0.000000 K|Sh  
    Thickness tolerance on surface 1 O iRhp(  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 r;}%} /IX  
    Change in Focus                :       0.000000                            0.000000 @=CN#D12  
    Thickness tolerance on surface 2 +&?#Gdb  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ktlI(#\%  
    Change in Focus                :       0.000000                           -0.000000  ~DYUI#x  
    Decenter X tolerance on surfaces 1 through 3 b1An2 e[  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 \;&WF1d`ac  
    Change in Focus                :       0.000000                            0.000000 lYz{# UX}  
    Decenter Y tolerance on surfaces 1 through 3 om6'%nXhn  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 )+;Xfftz  
    Change in Focus                :       0.000000                            0.000000 %JUD54bBt  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Z$qLY<aV  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 :x"Q[079  
    Change in Focus                :       0.000000                            0.000000 E= 3Ui  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 8T ?=_|  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 HRX}r$  
    Change in Focus                :       0.000000                            0.000000 fmqHWu*wG  
    Decenter X tolerance on surface 1 ZDHm@,d  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $tKz|H)  
    Change in Focus                :       0.000000                            0.000000 (jj=CLe  
    Decenter Y tolerance on surface 1 ~z;G$jd  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 WdQR^'b$   
    Change in Focus                :       0.000000                            0.000000 n*twuB/P 1  
    Tilt X tolerance on surface (degrees) 1 x-0O3IIE  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 fpd4 v|(  
    Change in Focus                :       0.000000                            0.000000 N]yh8"7X  
    Tilt Y tolerance on surface (degrees) 1 yU ?TdM\  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Er@'X0n  
    Change in Focus                :       0.000000                            0.000000 9j'(T:Zs  
    Decenter X tolerance on surface 2 g!/O)X3  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 l@edR)n <  
    Change in Focus                :       0.000000                            0.000000 pBo=omQV  
    Decenter Y tolerance on surface 2 3a|I| NP  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 "d1~(0=6<m  
    Change in Focus                :       0.000000                            0.000000 eI20)t`j  
    Tilt X tolerance on surface (degrees) 2 Z=c&</9e  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 KK-}&N8  
    Change in Focus                :       0.000000                            0.000000 .J?cV;:`  
    Tilt Y tolerance on surface (degrees) 2 Ql2zC9C  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ~m`j=ot  
    Change in Focus                :       0.000000                            0.000000 pi?$h"y7Q  
    Decenter X tolerance on surface 3 i n $~(+  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 mbSG  
    Change in Focus                :       0.000000                            0.000000 yLpsK[)}\  
    Decenter Y tolerance on surface 3 =Oyn<  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 x-E@[=  
    Change in Focus                :       0.000000                            0.000000 SM? rss.=  
    Tilt X tolerance on surface (degrees) 3 mz-sazgV  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 l~mC$>f  
    Change in Focus                :       0.000000                            0.000000 9E`Laf  
    Tilt Y tolerance on surface (degrees) 3 H\r- ;,&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 _bsAF^ ;  
    Change in Focus                :       0.000000                            0.000000 7{W#i<W  
    Irregularity of surface 1 in fringes -] @cUx  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 g \;,NW^  
    Change in Focus                :       0.000000                            0.000000 Fy#y.jK9v  
    Irregularity of surface 2 in fringes ~<.%sVwE  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 k-CW?=  
    Change in Focus                :       0.000000                            0.000000 9-ei#|Vnt[  
    Irregularity of surface 3 in fringes \+iZdZD  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 z^,P2kqK_  
    Change in Focus                :       0.000000                            0.000000 bukdyo;l  
    Index tolerance on surface 1 NflwmMJ  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 4tA`,}ywPq  
    Change in Focus                :       0.000000                            0.000000 [8 I*lsS  
    Index tolerance on surface 2 6<t<hP_3O  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 >~}}*yp  
    Change in Focus                :       0.000000                           -0.000000 H`T8ydNXa  
    j|-{*t{/x  
    Worst offenders: DeK&_)g| Z  
    Type                      Value      Criterion        Change xoe/I[P]U  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 '.gLqm}%  
    TSTY   2             0.20000000     0.35349910    -0.19053324 52P^0<Wq  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Y@l>4q")  
    TSTX   2             0.20000000     0.35349910    -0.19053324 8-5g6qAS  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 {3@"}Eh  
    TSTY   1             0.20000000     0.42678383    -0.11724851 n_9Wrx328  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 vp|.x |@  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ,R$U(,>_0  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 tBjMm8lgb  
    TSTY   3             0.20000000     0.42861670    -0.11541563 c&"OhzzJK'  
    hd>_K*oH  
    Estimated Performance Changes based upon Root-Sum-Square method: 49!(Sa_]j  
    Nominal MTF                 :     0.54403234 ,>3b|-C-  
    Estimated change            :    -0.36299231 p!/ *(TT  
    Estimated MTF               :     0.18104003 Nm{J=`  
    bMGU9~CeJ  
    Compensator Statistics: 2J&J  
    Change in back focus: U6IvN@ g  
    Minimum            :        -0.000000 EUmbNV0u  
    Maximum            :         0.000000 /P[@o  
    Mean               :        -0.000000 dUc?>#TU  
    Standard Deviation :         0.000000 WR zIK09@  
    } $oZZKS  
    Monte Carlo Analysis: 1 ~s$<  
    Number of trials: 20 ;s^F:O  
    tGw QUn  
    Initial Statistics: Normal Distribution {fxytiH8  
    '>Uip+'  
      Trial       Criterion        Change [P3 Z"&  
          1     0.42804416    -0.11598818 g0 k{b  
    Change in Focus                :      -0.400171 {C'9?4&  
          2     0.54384387    -0.00018847 jRBKy8?[C  
    Change in Focus                :       1.018470 *@E&O^%cO  
          3     0.44510003    -0.09893230 ,R*YI  
    Change in Focus                :      -0.601922 4"et4Y7  
          4     0.18154684    -0.36248550 F*_ytL  
    Change in Focus                :       0.920681 \Lz4ZZjSY  
          5     0.28665820    -0.25737414 |IZFWZd  
    Change in Focus                :       1.253875 #eY?6Kjn  
          6     0.21263372    -0.33139862 }kF*I@:g  
    Change in Focus                :      -0.903878 !{S HlS  
          7     0.40051424    -0.14351809 BDcA_= ^R&  
    Change in Focus                :      -1.354815 evE$$# 6R  
          8     0.48754161    -0.05649072 !glGW[r/7  
    Change in Focus                :       0.215922 &\5%C\0Z<  
          9     0.40357468    -0.14045766 l~#%j( Yo  
    Change in Focus                :       0.281783 t}fU 2Yb  
         10     0.26315315    -0.28087919 ` 7jdV  
    Change in Focus                :      -1.048393 FQBAt0  
         11     0.26120585    -0.28282649 </li<1  
    Change in Focus                :       1.017611 (;2]`D [x  
         12     0.24033815    -0.30369419 0#!Z1:Y  
    Change in Focus                :      -0.109292 .]LP327u  
         13     0.37164046    -0.17239188 2 X`5YN;  
    Change in Focus                :      -0.692430 7b hJt_`Q  
         14     0.48597489    -0.05805744 %)}y[ (  
    Change in Focus                :      -0.662040  c.Do b?5  
         15     0.21462327    -0.32940907 &-(p~[|  
    Change in Focus                :       1.611296 - %`iLu  
         16     0.43378226    -0.11025008 9~6~[z  
    Change in Focus                :      -0.640081 D`@*udn=  
         17     0.39321881    -0.15081353 dL|*#e  
    Change in Focus                :       0.914906 }^Ky)**  
         18     0.20692530    -0.33710703 0 ChdFf7  
    Change in Focus                :       0.801607 89l{h8R  
         19     0.51374068    -0.03029165 .WpvDDUK3  
    Change in Focus                :       0.947293 r=:o$e  
         20     0.38013374    -0.16389860 }Oe9Zq  
    Change in Focus                :       0.667010 5 u^;71  
    1'YksuYx6f  
    Number of traceable Monte Carlo files generated: 20 )"H r3  
    @WO>F G3  
    Nominal     0.54403234 ?vocI  
    Best        0.54384387    Trial     2 ~,O}wT6q  
    Worst       0.18154684    Trial     4 Z)dE#A_X  
    Mean        0.35770970 (7?jjH^4  
    Std Dev     0.11156454 hG qZB  
    [a\>"I\[  
    Bw*6X` 'Q  
    Compensator Statistics: =7 ${bp!  
    Change in back focus: .>+jtp}  
    Minimum            :        -1.354815 Ukg iSv+  
    Maximum            :         1.611296 &J}w_BFww  
    Mean               :         0.161872 &46 Ro|XE`  
    Standard Deviation :         0.869664 > @n?W"  
    WG(%Pkowv  
    90% >       0.20977951               @ Yzc?+x  
    80% >       0.22748071               "&N1$$  
    50% >       0.38667627               QP1 bm]QYA  
    20% >       0.46553746               V8IEfU  
    10% >       0.50064115                :P: OQ[$  
    r^$WX@ t&  
    End of Run. Bw8&Amxx:  
    @DK;i_i  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 7 J+cs^2  
    "%fvA;  
    k5TPzm=y{  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 -8D$[@y(  
    wwh)B92Y5  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 oiY&O]}  
    80% >       0.22748071                 f0,,<ib.w  
    50% >       0.38667627                 c<J/I_!  
    20% >       0.46553746                 UM QsYD)  
    10% >       0.50064115 Lp}>WCams  
    j/Rm~!q  
    最后这个数值是MTF值呢,还是MTF的公差? -yH8bm'0"  
    H^\2,x Z  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   r:*0)UZlD  
    WPzq?yK  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ]$VYzE2e  
    90% >       0.20977951                 ?t JyQT  
    80% >       0.22748071                 %di]1vQ  
    50% >       0.38667627                 .<Lbv5m  
    20% >       0.46553746                 1JIo,7  
    10% >       0.50064115 A"`^A brm  
    ....... !7KSNwGu  
    .-Xp]>f,  
    CfWtCA  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   >brf7h  
    Mode                : Sensitivities nS53mLU)  
    Sampling            : 2 #ZPU.NNT?  
    Nominal Criterion   : 0.54403234 =ca<..yh[d  
    Test Wavelength     : 0.6328 Gxtb@`f  
    hSO(s  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 8+L,a_q-  
    me#?1r  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试