切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16257阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ^IY1^x  
    Y!}BmRLh2  
    ]^R;3kU4Q  
    c/b} 39X  
    然后添加了默认公差分析,基本没变 F8.Fp[_tM  
    *joM[ML` 6  
    H+t^eg88  
    gFJd8#6t  
    然后运行分析的结果如下: `O-$qT, _  
    d.sxB}_O  
    Analysis of Tolerances >$k_tC'"  
    p^^E(<2  
    File : E:\光学设计资料\zemax练习\f500.ZMX ]hc.cj`\W&  
    Title: }m(u o T~  
    Date : TUE JUN 21 2011 (eFHMRMv~  
    *o`bBdZ  
    Units are Millimeters. [.;VCk)0x  
    All changes are computed using linear differences. l\JoWL  
    o=7 -&F.  
    Paraxial Focus compensation only. Od)]FvO  
    a8Nl' f*0  
    WARNING: Solves should be removed prior to tolerancing. ^dld\t:tV7  
    M5CFW >T  
    Mnemonics: R=xT\i{4h  
    TFRN: Tolerance on curvature in fringes. V_$BZm%8J  
    TTHI: Tolerance on thickness. vaW, O/F  
    TSDX: Tolerance on surface decentering in x. {b}Ri&oEOH  
    TSDY: Tolerance on surface decentering in y. 9ssTG4Sa  
    TSTX: Tolerance on surface tilt in x (degrees). ^3^n|T7le  
    TSTY: Tolerance on surface tilt in y (degrees). P_ U[OM\  
    TIRR: Tolerance on irregularity (fringes). LY-fp+  
    TIND: Tolerance on Nd index of refraction. `a*[@a#  
    TEDX: Tolerance on element decentering in x. k7'_  
    TEDY: Tolerance on element decentering in y. mY+J ju1  
    TETX: Tolerance on element tilt in x (degrees). g kT`C  
    TETY: Tolerance on element tilt in y (degrees). D<$, v(-  
    M|w;7P}  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 4 bw8^  
    @Xts}(L  
    WARNING: Boundary constraints on compensators will be ignored. nRzD[ 3I  
    oYG9i=lZ  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm kFg@|#0v9  
    Mode                : Sensitivities N`h,2!(j  
    Sampling            : 2 %4*-BCP  
    Nominal Criterion   : 0.54403234 S-NKT(H)c  
    Test Wavelength     : 0.6328 5B< em  
    `A_CLVE  
    Kc$j<MRtv  
    Fields: XY Symmetric Angle in degrees 4V@raI-  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY d="Oge8  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 MqDz cB]  
    <b.?G  
    Sensitivity Analysis: }6*+>?  
    G>& Tap>  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 2~h! ouleY  
    Type                      Value      Criterion        Change          Value      Criterion        Change mnh>gl!l  
    Fringe tolerance on surface 1 >x]b"@Hkw  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374  >\6Tm  
    Change in Focus                :      -0.000000                            0.000000 4jbqV  
    Fringe tolerance on surface 2 hLK5s1#K  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ux`)jOQ`Y]  
    Change in Focus                :       0.000000                            0.000000 ek\8u`GC  
    Fringe tolerance on surface 3 3M\~#>  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 Aru=f~!  
    Change in Focus                :      -0.000000                            0.000000 -FftEeo7  
    Thickness tolerance on surface 1 pBl'SQccp  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 k<(G)7'gm  
    Change in Focus                :       0.000000                            0.000000 Fjch<gAofS  
    Thickness tolerance on surface 2 xVw9_il2a  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 =;A p+}  
    Change in Focus                :       0.000000                           -0.000000 R-QSv$  
    Decenter X tolerance on surfaces 1 through 3 q#s:2#=  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;\-f7!s  
    Change in Focus                :       0.000000                            0.000000 UVa:~c$U4  
    Decenter Y tolerance on surfaces 1 through 3 a@4 Z x  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 @D1}).  
    Change in Focus                :       0.000000                            0.000000 goBl~fqy0  
    Tilt X tolerance on surfaces 1 through 3 (degrees) r&!Ebe-  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 \vwsRT 1  
    Change in Focus                :       0.000000                            0.000000 iXLODuI  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) l Oxz&m  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 wzX(]BG  
    Change in Focus                :       0.000000                            0.000000 }9=X*'BO  
    Decenter X tolerance on surface 1 0> {&8:  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 T1$=0VSEa+  
    Change in Focus                :       0.000000                            0.000000 W;L<zFFbU)  
    Decenter Y tolerance on surface 1 E&>3{uZI  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 )bqSM&SO  
    Change in Focus                :       0.000000                            0.000000 v<0\+}T1R  
    Tilt X tolerance on surface (degrees) 1 'C[{cr.`  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 {o>51fXc)  
    Change in Focus                :       0.000000                            0.000000 :DWvH,{+&  
    Tilt Y tolerance on surface (degrees) 1 ,jH<i.2R  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 nUb0R~wr$G  
    Change in Focus                :       0.000000                            0.000000 x;N@_FZ7KY  
    Decenter X tolerance on surface 2 J n>3c  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807  #dO8) t  
    Change in Focus                :       0.000000                            0.000000 vtx3a^  
    Decenter Y tolerance on surface 2 G42J  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 JJC Y M  
    Change in Focus                :       0.000000                            0.000000 z3Id8G&>  
    Tilt X tolerance on surface (degrees) 2 ;@ <E  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 /6fa 7;  
    Change in Focus                :       0.000000                            0.000000 WzinEo{ f  
    Tilt Y tolerance on surface (degrees) 2 Sjb[v  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 !V.2~V[^M  
    Change in Focus                :       0.000000                            0.000000 ?58,Ja  
    Decenter X tolerance on surface 3 )\aCeY8o  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 qe/dWJBa  
    Change in Focus                :       0.000000                            0.000000 ` |uwR5  
    Decenter Y tolerance on surface 3 wmV7g7t6  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 , B90r7K:  
    Change in Focus                :       0.000000                            0.000000 zjE|UK{  
    Tilt X tolerance on surface (degrees) 3 Th.Mn}1%L  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 +jD*Jtb<  
    Change in Focus                :       0.000000                            0.000000 \|@u)n_  
    Tilt Y tolerance on surface (degrees) 3 ) t#>fnN  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 VsU*yG a  
    Change in Focus                :       0.000000                            0.000000 ~SzHIVj:6  
    Irregularity of surface 1 in fringes ob. Br:x  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 |7CFm  
    Change in Focus                :       0.000000                            0.000000 =# /BCL7  
    Irregularity of surface 2 in fringes 0%(.$c>:f  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 h4,g pV>t  
    Change in Focus                :       0.000000                            0.000000 OUtXu7E$  
    Irregularity of surface 3 in fringes 9B)<7JJX!J  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 w|,BTM:e  
    Change in Focus                :       0.000000                            0.000000 B0+r  
    Index tolerance on surface 1 l/i7<q  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 5mqwNAv  
    Change in Focus                :       0.000000                            0.000000 9cqq"-$G`  
    Index tolerance on surface 2 c3__=$)'kP  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 #@UzOQ>  
    Change in Focus                :       0.000000                           -0.000000 /_(q7:<ZF  
    1CmjEAv%/  
    Worst offenders: ~bD'QMk  
    Type                      Value      Criterion        Change q?##S'  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 <*Bk.>f!  
    TSTY   2             0.20000000     0.35349910    -0.19053324 eAl;:0=%L  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 zz m[sX}  
    TSTX   2             0.20000000     0.35349910    -0.19053324 Gnthz0\]{  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 huat,zLS  
    TSTY   1             0.20000000     0.42678383    -0.11724851 WU +OS(  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 aj`_* T"A  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ,9.-A-Yw  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ix+sT|>  
    TSTY   3             0.20000000     0.42861670    -0.11541563 V44M=c7E  
    #d*)W3e2{  
    Estimated Performance Changes based upon Root-Sum-Square method: /idrb c  
    Nominal MTF                 :     0.54403234 \- f^C}m  
    Estimated change            :    -0.36299231 h0z>dLA#2  
    Estimated MTF               :     0.18104003 yx\I&\i  
    Yw6^(g8  
    Compensator Statistics: BM>'w,$KL  
    Change in back focus: Oz1S*<]=,~  
    Minimum            :        -0.000000 @%b&(x^UD  
    Maximum            :         0.000000 78UE?) X"  
    Mean               :        -0.000000 eqQ=HT7J  
    Standard Deviation :         0.000000 cii! WCu  
    efrVF5,y?  
    Monte Carlo Analysis: I&JjyR  
    Number of trials: 20 %8c2d  
    8`B]UcL)  
    Initial Statistics: Normal Distribution cCB YM  
    ?,z/+/:  
      Trial       Criterion        Change hd N[wC]  
          1     0.42804416    -0.11598818 ?}ly`Js  
    Change in Focus                :      -0.400171 &cf(}  
          2     0.54384387    -0.00018847 #`o]{UfW  
    Change in Focus                :       1.018470 GX#SCZ&}C  
          3     0.44510003    -0.09893230 _j sJS<21  
    Change in Focus                :      -0.601922 | k?r1dj%O  
          4     0.18154684    -0.36248550 OzA'd\|  
    Change in Focus                :       0.920681 $'%.w|MJp  
          5     0.28665820    -0.25737414 ,a'Y^[4k?  
    Change in Focus                :       1.253875 [4 y7tjar^  
          6     0.21263372    -0.33139862 )WH;G:$&"  
    Change in Focus                :      -0.903878 fq<JX5DER  
          7     0.40051424    -0.14351809 ! _p(H  
    Change in Focus                :      -1.354815 d1BE;9*/7  
          8     0.48754161    -0.05649072 TsF>Y""*M  
    Change in Focus                :       0.215922 Q4h6K 7  
          9     0.40357468    -0.14045766  Op5S'  
    Change in Focus                :       0.281783 2Fc>6]:*  
         10     0.26315315    -0.28087919 [Ol~}@gV  
    Change in Focus                :      -1.048393 'Da*MGu9  
         11     0.26120585    -0.28282649 nm#,oX2C  
    Change in Focus                :       1.017611 G7N Rpr  
         12     0.24033815    -0.30369419 M37GQvo   
    Change in Focus                :      -0.109292 RAU"  
         13     0.37164046    -0.17239188 b]6@ O8  
    Change in Focus                :      -0.692430 $_f"NE}  
         14     0.48597489    -0.05805744 d}^G790  
    Change in Focus                :      -0.662040 @/W~lJ!e  
         15     0.21462327    -0.32940907  /C   
    Change in Focus                :       1.611296 Xy]Pmt  
         16     0.43378226    -0.11025008 N%Uk/ c'  
    Change in Focus                :      -0.640081 UUR+PfY  
         17     0.39321881    -0.15081353 !g7lJ\B  
    Change in Focus                :       0.914906 {'a|$u+  
         18     0.20692530    -0.33710703 uD4j.%  
    Change in Focus                :       0.801607 vf;&0j&`  
         19     0.51374068    -0.03029165 &>A<{J@VL  
    Change in Focus                :       0.947293 ]x5+v0   
         20     0.38013374    -0.16389860 ?k$'po*Eq  
    Change in Focus                :       0.667010 h,zM*zA_  
    *ry}T=  
    Number of traceable Monte Carlo files generated: 20 YhQ%S}  
    CmxQb,Uls  
    Nominal     0.54403234 m[DCA\M o@  
    Best        0.54384387    Trial     2  `6xr:s  
    Worst       0.18154684    Trial     4 @hwe  
    Mean        0.35770970 7m4*dBTr  
    Std Dev     0.11156454 Yfr4<;%  
    I7XJPc4}   
    g[Q+DT  
    Compensator Statistics: +3[8EM#g  
    Change in back focus: '!<gPAVTzV  
    Minimum            :        -1.354815 ; <l#k7/  
    Maximum            :         1.611296 IXv9mr?H}  
    Mean               :         0.161872 Q.,2G7[ <  
    Standard Deviation :         0.869664 2rxz<ck(  
    p(!d,YSE  
    90% >       0.20977951               l i) 5o  
    80% >       0.22748071               \b*z<Odv  
    50% >       0.38667627               (vFO'jtcB-  
    20% >       0.46553746               v>/_U  
    10% >       0.50064115                4n} a%ocv^  
    Ay0.D FL  
    End of Run. SS6K7  
    I8f='  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 dJ {q}U  
    weH3\@  
    5x"eM=  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 /B<QYvv  
    .Ta(v3om%  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 =*R6 O,  
    80% >       0.22748071                 _+X-D9j(l  
    50% >       0.38667627                 THARr#1b};  
    20% >       0.46553746                 l 0U23i  
    10% >       0.50064115 ^HxIy;EQ<z  
    CXi[$nF3  
    最后这个数值是MTF值呢,还是MTF的公差? !hFhw1  
    SsPZva  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   *%Fu/  
    Sy' ]fGvx  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Ml7 (<J  
    90% >       0.20977951                 d&[RfZ`  
    80% >       0.22748071                 h%krA<G9  
    50% >       0.38667627                 IHYLM;@L  
    20% >       0.46553746                 6,a H[ >W  
    10% >       0.50064115 @p L9a1PJv  
    ....... bh<;px-  
    fEX=csZ86  
    o87kF!x  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   "FWx;65CR  
    Mode                : Sensitivities RqtBz3v  
    Sampling            : 2 njF$1? )sq  
    Nominal Criterion   : 0.54403234 `o JQA$UD  
    Test Wavelength     : 0.6328 yGdX>h  
    =/!lK&  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? _x!id f  
    UqOBr2 UmG  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试