切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16547阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 hO6RQ0Iv@  
    vU}: U)S  
    3u_oRs  
    Vv7PCaq  
    然后添加了默认公差分析,基本没变 O: JPJ"!  
    .E$q&7@/j  
    .!yq@Q|=u  
    /lJjQ]c;>  
    然后运行分析的结果如下: JpK[&/Ct  
    YBvd q1  
    Analysis of Tolerances G#0,CLGN^  
    rz.IoQo  
    File : E:\光学设计资料\zemax练习\f500.ZMX u s`}  
    Title: \f"1}f  
    Date : TUE JUN 21 2011 A$@o'Q;he  
    iNJAZ6@+  
    Units are Millimeters. <tuS,.  
    All changes are computed using linear differences. u!Bk,}CE`  
    qlUzr.^-  
    Paraxial Focus compensation only. 5 `=KyHi:b  
    Ek ZjO Ci  
    WARNING: Solves should be removed prior to tolerancing. fhRjYYGI  
    3ji:O T  
    Mnemonics: x: ~d@  
    TFRN: Tolerance on curvature in fringes. FJwt?3\u5  
    TTHI: Tolerance on thickness. -B 9S}NPo  
    TSDX: Tolerance on surface decentering in x. J`<f  
    TSDY: Tolerance on surface decentering in y. wyw<jH  
    TSTX: Tolerance on surface tilt in x (degrees). `W"G!X-  
    TSTY: Tolerance on surface tilt in y (degrees). 8=F%+  
    TIRR: Tolerance on irregularity (fringes). } 0;Sk(B>  
    TIND: Tolerance on Nd index of refraction. JZ=5Bpw  
    TEDX: Tolerance on element decentering in x. ,|pp67  
    TEDY: Tolerance on element decentering in y. O]{*(J/t  
    TETX: Tolerance on element tilt in x (degrees). {|6z+vR  
    TETY: Tolerance on element tilt in y (degrees). k[9A,N^lZB  
    )0-o%- e  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. # X/Q  
    |>2: eH  
    WARNING: Boundary constraints on compensators will be ignored. |<(t}}X  
    yM ,VrUh  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 6Z8l8:r-6  
    Mode                : Sensitivities FT.@1/)  
    Sampling            : 2 ]:et~pfW  
    Nominal Criterion   : 0.54403234 j=ihbR^]Tl  
    Test Wavelength     : 0.6328 31}W6l88c  
    /U*yw5  
    zfjw;sUX  
    Fields: XY Symmetric Angle in degrees Rp/-Pv   
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY T~J? AKx  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 C[YnrI!  
    &fSTR-8ev#  
    Sensitivity Analysis: J+Bdz6lt  
    e{C6by"j{S  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| "'A"U  
    Type                      Value      Criterion        Change          Value      Criterion        Change _tj&Psp  
    Fringe tolerance on surface 1 r )b<{u=]  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 !8$RBD %  
    Change in Focus                :      -0.000000                            0.000000 qks|d_   
    Fringe tolerance on surface 2 O >FO>  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 yd>}wHt  
    Change in Focus                :       0.000000                            0.000000 )ooWQ-%P  
    Fringe tolerance on surface 3 bk3Unreh  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 e<5Y94YE  
    Change in Focus                :      -0.000000                            0.000000 o.^y1mH'  
    Thickness tolerance on surface 1 yr{B5z,  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 xR908+>5  
    Change in Focus                :       0.000000                            0.000000 a)9rs\Is{  
    Thickness tolerance on surface 2 ]a/'6GbR  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ;&,.TC?l  
    Change in Focus                :       0.000000                           -0.000000 JD~aUB%  
    Decenter X tolerance on surfaces 1 through 3 0{R/<N  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 U)[ty@zyF  
    Change in Focus                :       0.000000                            0.000000 )( bxpW  
    Decenter Y tolerance on surfaces 1 through 3 d+}kg  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005  U:|H9+5  
    Change in Focus                :       0.000000                            0.000000 sKfXg`0  
    Tilt X tolerance on surfaces 1 through 3 (degrees) aws"3O% uW  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ez*jjm  
    Change in Focus                :       0.000000                            0.000000 1S%}xsR0  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) Q)^g3J  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 n )K6i7]xk  
    Change in Focus                :       0.000000                            0.000000 SLoo:)  
    Decenter X tolerance on surface 1 g:gB`8w?  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 "l,UOv c  
    Change in Focus                :       0.000000                            0.000000 @ls.&BHUP  
    Decenter Y tolerance on surface 1 )^ <3\e  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 >;nS8{2o  
    Change in Focus                :       0.000000                            0.000000 K{b-TT 4  
    Tilt X tolerance on surface (degrees) 1 >. LKct*5K  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 C5n?0I9  
    Change in Focus                :       0.000000                            0.000000 d 4O   
    Tilt Y tolerance on surface (degrees) 1 N[k<@Q?*a  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 )+Y&4Qu  
    Change in Focus                :       0.000000                            0.000000 f\K#>u* Q  
    Decenter X tolerance on surface 2 OD+5q(!"a  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 TnE+[.Qu  
    Change in Focus                :       0.000000                            0.000000 nGrVw&  
    Decenter Y tolerance on surface 2 L2|aHI1'l  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 6^YJ]w  
    Change in Focus                :       0.000000                            0.000000 ZBc|438[  
    Tilt X tolerance on surface (degrees) 2 #WufZ18#  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 P*G+eqX  
    Change in Focus                :       0.000000                            0.000000 Q$=*aUU%G  
    Tilt Y tolerance on surface (degrees) 2 V(mn yI  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 X+ f9q0  
    Change in Focus                :       0.000000                            0.000000 yFM>T\@  
    Decenter X tolerance on surface 3 xl] ;*&  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 <NB41/  
    Change in Focus                :       0.000000                            0.000000 Oif,|:  
    Decenter Y tolerance on surface 3 fp&Got!pB  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 `ROEV~  
    Change in Focus                :       0.000000                            0.000000 N z~" vi(t  
    Tilt X tolerance on surface (degrees) 3 UR3$B%i  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 G) 7)]yBL  
    Change in Focus                :       0.000000                            0.000000 =!<G!^  
    Tilt Y tolerance on surface (degrees) 3 X?df cS*!n  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 {XnPx? V  
    Change in Focus                :       0.000000                            0.000000 :vQM>9l7  
    Irregularity of surface 1 in fringes crn k|o  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 *fhX*e8y  
    Change in Focus                :       0.000000                            0.000000 GGE[{Gb9  
    Irregularity of surface 2 in fringes } uQ${]&D  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 3g'+0tEl  
    Change in Focus                :       0.000000                            0.000000 lrys3  
    Irregularity of surface 3 in fringes f7+Cz>R  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 x9V {R9_gf  
    Change in Focus                :       0.000000                            0.000000 '_o@V O  
    Index tolerance on surface 1 9<cOYY  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 #T% zfcUj  
    Change in Focus                :       0.000000                            0.000000 0.DQO;  
    Index tolerance on surface 2 "ahvNx;x  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 'ZnIRE,N  
    Change in Focus                :       0.000000                           -0.000000 H/jm f5  
    \ 4gXY$`@  
    Worst offenders: xzikD,FV  
    Type                      Value      Criterion        Change - ]Y wl  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 7~vqf3ON4J  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Z.Pi0c+  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 GS%b=kc  
    TSTX   2             0.20000000     0.35349910    -0.19053324 sh6(z?KP  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 T]71lRY5  
    TSTY   1             0.20000000     0.42678383    -0.11724851 |Fv?6qw+  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 knSuzq%*  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ~B_ D@gV|  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Q!$IQJ]|Y  
    TSTY   3             0.20000000     0.42861670    -0.11541563  aZgNPw  
    WK; (P4Z  
    Estimated Performance Changes based upon Root-Sum-Square method: j>!sN`dBj  
    Nominal MTF                 :     0.54403234 wj%wp[KA$  
    Estimated change            :    -0.36299231 h5-d;RKE  
    Estimated MTF               :     0.18104003 n\ Uh  
    j'Wp  
    Compensator Statistics: ct0v$ct>f  
    Change in back focus: 2 sSwDF  
    Minimum            :        -0.000000 YzV(nEW  
    Maximum            :         0.000000 n`<U"$*  
    Mean               :        -0.000000 e@j8T gI)  
    Standard Deviation :         0.000000 X47Ol  
    re uYTH  
    Monte Carlo Analysis: d@g2k> >  
    Number of trials: 20  cht  
    ou6j*eSN  
    Initial Statistics: Normal Distribution c]v +  
    }W}G X(?P  
      Trial       Criterion        Change PU+1=%'V  
          1     0.42804416    -0.11598818 AZ wa4n}"  
    Change in Focus                :      -0.400171 RgGA$HN/  
          2     0.54384387    -0.00018847 =pp:j`B9(  
    Change in Focus                :       1.018470 NI\H \#bJ  
          3     0.44510003    -0.09893230 EcW1;wH  
    Change in Focus                :      -0.601922 &@; RI~  
          4     0.18154684    -0.36248550 p&5S|![\  
    Change in Focus                :       0.920681 B01^oYM}  
          5     0.28665820    -0.25737414 8c).8RLf  
    Change in Focus                :       1.253875 |<Bpv{]P  
          6     0.21263372    -0.33139862 }17bV, t  
    Change in Focus                :      -0.903878 fuyl/bx}  
          7     0.40051424    -0.14351809 -eL'KO5'  
    Change in Focus                :      -1.354815 QUp?i  
          8     0.48754161    -0.05649072 GP]TnQ<*;  
    Change in Focus                :       0.215922 }ecs Gw  
          9     0.40357468    -0.14045766 )ddsyFGW  
    Change in Focus                :       0.281783 XRa#2 1pQ  
         10     0.26315315    -0.28087919 J wFned#T  
    Change in Focus                :      -1.048393 ':sTd^V  
         11     0.26120585    -0.28282649 $8@+j[>  
    Change in Focus                :       1.017611 *w 21U!  
         12     0.24033815    -0.30369419 rIlBH*aT  
    Change in Focus                :      -0.109292 Tc_do"uU  
         13     0.37164046    -0.17239188 sVoR?peQ  
    Change in Focus                :      -0.692430 %EoH4LzT  
         14     0.48597489    -0.05805744 } J(1V!EA  
    Change in Focus                :      -0.662040 ~ B]jV$=  
         15     0.21462327    -0.32940907 ?9S+Cj`  
    Change in Focus                :       1.611296 8uA<G/Q;  
         16     0.43378226    -0.11025008 N 8}lt  
    Change in Focus                :      -0.640081 VN+\>j-  
         17     0.39321881    -0.15081353 f".q9{+p,  
    Change in Focus                :       0.914906 %M6 c0d[9-  
         18     0.20692530    -0.33710703 +-P<CCvWz  
    Change in Focus                :       0.801607 -<d(  
         19     0.51374068    -0.03029165 2Oi'E  
    Change in Focus                :       0.947293 .C?GW1[c~@  
         20     0.38013374    -0.16389860 >13/h]3  
    Change in Focus                :       0.667010 6$(0Ty  
    97]4 :Zv  
    Number of traceable Monte Carlo files generated: 20 nNs .,J)  
    os_WYQ4>j  
    Nominal     0.54403234 yM|g|;U  
    Best        0.54384387    Trial     2 9A<0zt  
    Worst       0.18154684    Trial     4 C9pnU,[  
    Mean        0.35770970 - 3]|[  
    Std Dev     0.11156454 @T/qd>T o  
    HTN$ >QTI  
    [DhEh@  
    Compensator Statistics: ?OO%5PSen  
    Change in back focus: _XWnS9  
    Minimum            :        -1.354815 idz9YpW  
    Maximum            :         1.611296 Ge1duRGa  
    Mean               :         0.161872 {\Ys@FF  
    Standard Deviation :         0.869664 Z>h{` X\2  
    L ]*`4 L  
    90% >       0.20977951               }Az'Zu4 =  
    80% >       0.22748071               952V@.Zp  
    50% >       0.38667627               j%u8=  
    20% >       0.46553746               ^Rk^XQCh  
    10% >       0.50064115                [%? hCc  
    Pv[ykrm/  
    End of Run. VH<e))5C  
    vlAy!:CV  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 {s9<ej~<R  
    lfgtcR{l5  
    FR(QFt!g  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题  RY9. n  
    ( mt*y]p?  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 AT-0}9z{  
    80% >       0.22748071                 l -XnB   
    50% >       0.38667627                 -&$%|cyThQ  
    20% >       0.46553746                 $.;iu2iyo  
    10% >       0.50064115 ]M uF9={  
    ;tm3B2  
    最后这个数值是MTF值呢,还是MTF的公差? +<z7ds{Z  
    aw]8V:)$J  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   mcCB7<. e  
    A_aO }oBX  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : vd2uD2%con  
    90% >       0.20977951                 :y4)qF  
    80% >       0.22748071                 K-N]h  
    50% >       0.38667627                 vx({N?  
    20% >       0.46553746                 <\B],M1=s=  
    10% >       0.50064115 =1%zI%  
    ....... MtMvpHk  
    Z&AHM &,yj  
    45]Ym{]  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   u5  [1Z|O  
    Mode                : Sensitivities Co{MIuL  
    Sampling            : 2 r[C3u[  
    Nominal Criterion   : 0.54403234 eO|^Lu]+  
    Test Wavelength     : 0.6328 '6Pu[^x  
    :F!dTD$  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ?3B t ;<^  
    nzQYn  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试