切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16149阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 xZp`Ke!  
    J)a^3>  
    7s.vJdA]6  
    WU<C7   
    然后添加了默认公差分析,基本没变 .GNl31f0  
    GXx/pBdy[4  
    $sBje*;  
    iXFN|ml  
    然后运行分析的结果如下: b1frAA  
    y/yg-\/XF  
    Analysis of Tolerances _0=$ 2Y^  
    u4;#~##  
    File : E:\光学设计资料\zemax练习\f500.ZMX oEnCe  
    Title: CAV Q[r5y  
    Date : TUE JUN 21 2011 _#rE6./@q  
    Fg -4u&Ik  
    Units are Millimeters. )6,Pmq~)  
    All changes are computed using linear differences. Pg/$ N5->  
    &?j]L4%  
    Paraxial Focus compensation only. 8f{;oO  
    coFQu ; i  
    WARNING: Solves should be removed prior to tolerancing. =}Xw}X+[WY  
    FV W&)-I  
    Mnemonics: 8lcB.M  
    TFRN: Tolerance on curvature in fringes. H`X>  
    TTHI: Tolerance on thickness. u &s>UkR  
    TSDX: Tolerance on surface decentering in x. hp)k[|u;  
    TSDY: Tolerance on surface decentering in y. T *8rR"  
    TSTX: Tolerance on surface tilt in x (degrees). )A H)*Mg  
    TSTY: Tolerance on surface tilt in y (degrees). TBp$S=_**  
    TIRR: Tolerance on irregularity (fringes). @E@5/N6M  
    TIND: Tolerance on Nd index of refraction. Wo8.tu-2  
    TEDX: Tolerance on element decentering in x. YR} P;  
    TEDY: Tolerance on element decentering in y. v05B7^1@_  
    TETX: Tolerance on element tilt in x (degrees). R2!_)Rpf  
    TETY: Tolerance on element tilt in y (degrees). A*_ |/o  
    3a\.s9A "  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. q%xq\L.  
    u*i[A\Y  
    WARNING: Boundary constraints on compensators will be ignored. 4c/.#?  
    f))'8  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 5u3SP?.&  
    Mode                : Sensitivities o?\v 8.n  
    Sampling            : 2 9#A&Qvyywg  
    Nominal Criterion   : 0.54403234 o$,Dh?l  
    Test Wavelength     : 0.6328 4ZN&Yf`  
    m?#J`?E  
    :ncR7:Z  
    Fields: XY Symmetric Angle in degrees cf ~TVa)M  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY <.qhW^>X  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 sLh %k  
    s@c.nT%BYL  
    Sensitivity Analysis: m^rrbU+HM?  
    qwx{U  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| >s+TD4OfY  
    Type                      Value      Criterion        Change          Value      Criterion        Change o$FYCz n  
    Fringe tolerance on surface 1 !-gjA@Pk  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 K!a4>Du{  
    Change in Focus                :      -0.000000                            0.000000 =$t  
    Fringe tolerance on surface 2 f-b#F2I  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 loPBHoE3@H  
    Change in Focus                :       0.000000                            0.000000 tQ > IJ  
    Fringe tolerance on surface 3 P:8P>#L  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ehCZhi~  
    Change in Focus                :      -0.000000                            0.000000 Hg}@2n)/  
    Thickness tolerance on surface 1 ?c!W*`yP  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7 ,![oY[  
    Change in Focus                :       0.000000                            0.000000 e}Xmb$  
    Thickness tolerance on surface 2 ,*Z:a 4  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 M~/R1\'&j  
    Change in Focus                :       0.000000                           -0.000000 ?6[X=GeUs  
    Decenter X tolerance on surfaces 1 through 3 _x ;fTW0  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 b=-LQkcZhK  
    Change in Focus                :       0.000000                            0.000000 t/HUG#W{  
    Decenter Y tolerance on surfaces 1 through 3 hz8Z)xjJ V  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 lh?TEQ  
    Change in Focus                :       0.000000                            0.000000 > l@ o\  
    Tilt X tolerance on surfaces 1 through 3 (degrees) D>~S-]  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 cA8"Ft{P)  
    Change in Focus                :       0.000000                            0.000000 qr~= S  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ~>]/1JFz  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 c[xH:$G?Y  
    Change in Focus                :       0.000000                            0.000000 k}o*=s>M  
    Decenter X tolerance on surface 1 d].(x)|st  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 [8J/# !B  
    Change in Focus                :       0.000000                            0.000000 T)QT_ST.9  
    Decenter Y tolerance on surface 1 }N6r/ VtOQ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 *`HE$k!  
    Change in Focus                :       0.000000                            0.000000 F;&a=R!.  
    Tilt X tolerance on surface (degrees) 1 `?PpzDV7Y  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 1*>lYd8 _  
    Change in Focus                :       0.000000                            0.000000 xNaDzu"  
    Tilt Y tolerance on surface (degrees) 1 QNzx(IV@  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 <&$:$_ah  
    Change in Focus                :       0.000000                            0.000000 Vu`O%[Q/  
    Decenter X tolerance on surface 2 cI Byv I-  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ZrA OX'>u9  
    Change in Focus                :       0.000000                            0.000000 eT|"6WJ:{  
    Decenter Y tolerance on surface 2 Apfs&{Uy  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 jPjFp35;zb  
    Change in Focus                :       0.000000                            0.000000 $M(ZKS3,j  
    Tilt X tolerance on surface (degrees) 2 %HNe"7gk  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 *A,h ^  
    Change in Focus                :       0.000000                            0.000000 F9SkEf]99  
    Tilt Y tolerance on surface (degrees) 2 dgIEc]#pH  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 )|`# BC  
    Change in Focus                :       0.000000                            0.000000 pM^r8kIH  
    Decenter X tolerance on surface 3 +$YluGEJ  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 O\(0{qu  
    Change in Focus                :       0.000000                            0.000000 9Fkzt=(E~  
    Decenter Y tolerance on surface 3 VZ:L K  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ;6?VkF  
    Change in Focus                :       0.000000                            0.000000 $ 4& )  
    Tilt X tolerance on surface (degrees) 3 hu G]kv3F:  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 BZP~m=kq  
    Change in Focus                :       0.000000                            0.000000 T%\f$jh6  
    Tilt Y tolerance on surface (degrees) 3 ,/qS1W(  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jo-qP4w  
    Change in Focus                :       0.000000                            0.000000 Ba9le|c5  
    Irregularity of surface 1 in fringes v/Z!Wp1LV  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 2bB&/Uumsd  
    Change in Focus                :       0.000000                            0.000000 f0^DsP  
    Irregularity of surface 2 in fringes z}" Xt=G?  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 6S~l gH:  
    Change in Focus                :       0.000000                            0.000000 0PK*ULwSN  
    Irregularity of surface 3 in fringes k3/V$*i,1b  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 "t{|e6   
    Change in Focus                :       0.000000                            0.000000 ;LBq!  
    Index tolerance on surface 1 Q+O3Wgjy  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 #_, l7q8U  
    Change in Focus                :       0.000000                            0.000000 F`3J=AJOJ  
    Index tolerance on surface 2 vPV=K+1  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 `;@#yyj:_  
    Change in Focus                :       0.000000                           -0.000000 YB}p`b42L  
    ;JK !dzi}  
    Worst offenders: wuv2bd )+  
    Type                      Value      Criterion        Change er0hf2N]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 {hr+ENgV  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Dt9[uyP&  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 "0lC:Wu]  
    TSTX   2             0.20000000     0.35349910    -0.19053324 o+H;ZGT5H  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 X\I"%6$  
    TSTY   1             0.20000000     0.42678383    -0.11724851 Puu O2TZ  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 U-P\F-  
    TSTX   1             0.20000000     0.42678383    -0.11724851 s4$Z.xwr  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 bUW`MH7yJ  
    TSTY   3             0.20000000     0.42861670    -0.11541563 {~"&$DY2  
    2VNMz[W'  
    Estimated Performance Changes based upon Root-Sum-Square method: PLi[T4u  
    Nominal MTF                 :     0.54403234 &J\V !uVo  
    Estimated change            :    -0.36299231 a-t}L{~  
    Estimated MTF               :     0.18104003 YlZe  
    QsaaA MGY  
    Compensator Statistics: Hd1e9Q,:|  
    Change in back focus: $6ZO V/0  
    Minimum            :        -0.000000 p~T)Af<(  
    Maximum            :         0.000000 #gw ys  
    Mean               :        -0.000000 -`mHb  
    Standard Deviation :         0.000000 uqhNi!;  
    !$:lv)y  
    Monte Carlo Analysis: A.!V*1h{  
    Number of trials: 20 Z2yZz:.'  
    0 ttM_]#q  
    Initial Statistics: Normal Distribution PXZ ZPW/  
     1k5o?'3&  
      Trial       Criterion        Change B rGaCja  
          1     0.42804416    -0.11598818 VQr)VU=jb  
    Change in Focus                :      -0.400171 t?1+Yw./em  
          2     0.54384387    -0.00018847 L}bS"=B[&W  
    Change in Focus                :       1.018470 3H0~?z_  
          3     0.44510003    -0.09893230 O\64)V 0  
    Change in Focus                :      -0.601922 ,8KD-"l^g  
          4     0.18154684    -0.36248550 -Mb`I >=  
    Change in Focus                :       0.920681 V@0Z\&  
          5     0.28665820    -0.25737414 x"@Y[  
    Change in Focus                :       1.253875 %)7HBj(*J  
          6     0.21263372    -0.33139862 ;:nO5VFOg  
    Change in Focus                :      -0.903878 N798("  
          7     0.40051424    -0.14351809 SBnwlM"AN  
    Change in Focus                :      -1.354815 -q9`Btz  
          8     0.48754161    -0.05649072 OPp>z0p%6X  
    Change in Focus                :       0.215922 Fm@G@W7,m  
          9     0.40357468    -0.14045766 {L[n\h.4.  
    Change in Focus                :       0.281783 MtYi8"+<e.  
         10     0.26315315    -0.28087919 Rc2|o.'y  
    Change in Focus                :      -1.048393 |OXufV?I  
         11     0.26120585    -0.28282649 RO-ABFEi(  
    Change in Focus                :       1.017611 0jY#,t?>  
         12     0.24033815    -0.30369419 26fbBt8nP  
    Change in Focus                :      -0.109292 #`tn:cP  
         13     0.37164046    -0.17239188 O]OZt,k(  
    Change in Focus                :      -0.692430 x)M=_u2 _  
         14     0.48597489    -0.05805744 E>j*m}b  
    Change in Focus                :      -0.662040 6e1/h@p\7  
         15     0.21462327    -0.32940907 ~/hyf]*j  
    Change in Focus                :       1.611296 #GBe=tm\K  
         16     0.43378226    -0.11025008 aB9Pdu t  
    Change in Focus                :      -0.640081 ZyBNo]  
         17     0.39321881    -0.15081353 IS; F9{  
    Change in Focus                :       0.914906 iyw "|+  
         18     0.20692530    -0.33710703 Is~bA_- ;  
    Change in Focus                :       0.801607 @\,WJmW  
         19     0.51374068    -0.03029165 q' };.tv  
    Change in Focus                :       0.947293 d($f8{~W  
         20     0.38013374    -0.16389860 ='1J&w~7  
    Change in Focus                :       0.667010 4qtjP8Zv[  
    zbt>5S_  
    Number of traceable Monte Carlo files generated: 20 ipB*]B F[  
    r>N5 ^  
    Nominal     0.54403234 ;m{*iKL6{  
    Best        0.54384387    Trial     2 Xp <RG p7E  
    Worst       0.18154684    Trial     4 9/OB!<*V|  
    Mean        0.35770970 ;H5H7ezV  
    Std Dev     0.11156454 30 Vv Zb  
    ^ q]BCOfJ(  
    r40#-A$  
    Compensator Statistics: h>,yqiY4p  
    Change in back focus: 5_U3Fs  
    Minimum            :        -1.354815 $ig%YB  
    Maximum            :         1.611296 C' C'@?]  
    Mean               :         0.161872 | fAt[e_E  
    Standard Deviation :         0.869664 k$nQY  
    [\NyBc  
    90% >       0.20977951               yZ t}Jnv  
    80% >       0.22748071               Yr@)W~  
    50% >       0.38667627               >jjuWO3T  
    20% >       0.46553746               CybHr#LBc  
    10% >       0.50064115                /[YH  W]  
    AY['!&T  
    End of Run. 9.R)iA  
    tp2CMJc{L  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 hv 18V>8  
    T$/6qZew  
    7MreBs(M  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 YC\~PVG  
    s$e0;C!D  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 knZee!FA7  
    80% >       0.22748071                 s)W^P4<  
    50% >       0.38667627                 */ZrZ^?o  
    20% >       0.46553746                 U}(*}Ut  
    10% >       0.50064115 iO4YZ!  
    D OiL3i"H  
    最后这个数值是MTF值呢,还是MTF的公差? eZs34${fN  
    YuXq   
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   !q!.OQ  
    09pnM|8A  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : E4~k)4R  
    90% >       0.20977951                 WrBiAh,  
    80% >       0.22748071                 kKwb)i  
    50% >       0.38667627                 cX u"-/  
    20% >       0.46553746                 daS l.:1  
    10% >       0.50064115 r=l hYn  
    ....... v1wMXOR  
    R@Ch3l@  
    -E_lwK  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   :s|" ZR  
    Mode                : Sensitivities CPGiKE  
    Sampling            : 2 H0tj Bnu   
    Nominal Criterion   : 0.54403234 = rDoXm  
    Test Wavelength     : 0.6328 e7rD,`NiV  
    F"o K*s  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? fX"cQ&  
    V?x&.C2Z  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试