我现在在初学zemax的
公差分析,找了一个双胶合
透镜 KQ 2]VN"?_ &K\di*kN
B,A/
-B\ 3 =S.- 然后添加了默认公差分析,基本没变
T{ojla( 19lx;^b
u''(;U[ 3c
^_IuW- 然后运行分析的结果如下:
l~\'Z2op fdPg{3x*k Analysis of Tolerances
38f9jF%7j w1.KRe{M File : E:\光学设计资料\zemax练习\f500.ZMX
gsZCWT Title:
'g$|:bw/ Date : TUE JUN 21 2011
KBOxr5w ")8wu1V- Units are Millimeters.
x0 j$]$ All changes are computed using linear differences.
V%3K") K.1#cf
^' Paraxial Focus compensation only.
|}#Rn`*2y g Ts5xDvJ WARNING: Solves should be removed prior to tolerancing.
WSh+5](: `s.y!(`q Mnemonics:
>
^D10Nf* TFRN: Tolerance on curvature in fringes.
4|*_mC TTHI: Tolerance on thickness.
\.}* s]6 TSDX: Tolerance on surface decentering in x.
:r!nz\%WW TSDY: Tolerance on surface decentering in y.
m 'a3}vRV( TSTX: Tolerance on surface tilt in x (degrees).
<oO^w&G TSTY: Tolerance on surface tilt in y (degrees).
fRq2sK;+ TIRR: Tolerance on irregularity (fringes).
SB]|y-su TIND: Tolerance on Nd index of refraction.
t\'URpa+5% TEDX: Tolerance on element decentering in x.
5z=;q!3 TEDY: Tolerance on element decentering in y.
!K3
#4 TETX: Tolerance on element tilt in x (degrees).
QQ pe.oF TETY: Tolerance on element tilt in y (degrees).
#N7@p}P O.!|;)HQ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
a2sN$k (L
q^C= WARNING: Boundary constraints on compensators will be ignored.
3d
\bB ! <w8*Ly:L Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
%e=BC^VW Mode : Sensitivities
&i6WVNGy Sampling : 2
Xul<,U~w6 Nominal Criterion : 0.54403234
!m:SRNPg Test Wavelength : 0.6328
bW[Y:}Hk~ <Ms,0YKx mpN|U(n Fields: XY Symmetric Angle in degrees
]iYjS # X-Field Y-Field Weight VDX VDY VCX VCY
"Bn!<h}mg 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
P!1y@R>Ln CH!Lf,G Sensitivity Analysis:
Nx,.4CI
"1WwSh}Z |----------------- Minimum ----------------| |----------------- Maximum ----------------|
c]#F^(-A` Type Value Criterion Change Value Criterion Change
\M<C6m5 Fringe tolerance on surface 1
e=Kf<ZQt TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
?%#3p[ Change in Focus :
-0.000000 0.000000
^vfp; Fringe tolerance on surface 2
0c
/xE<h TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
P^T]U bv" Change in Focus : 0.000000 0.000000
6|~N5E~SX Fringe tolerance on surface 3
w%KU@$ TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
8<{)|GoqB Change in Focus : -0.000000 0.000000
p^<*v8,~7 Thickness tolerance on surface 1
"NMX>a,( TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
QS\H[?M$ Change in Focus : 0.000000 0.000000
{f<2VeJ Thickness tolerance on surface 2
<$qe2FtUq TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
'M VE5 Change in Focus : 0.000000 -0.000000
H0LEK(K Decenter X tolerance on surfaces 1 through 3
,l1A]Wx TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
}f?$QSF Change in Focus : 0.000000 0.000000
zU}Ru&T9 Decenter Y tolerance on surfaces 1 through 3
|@!4BA TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
Lzm9Kh; Change in Focus : 0.000000 0.000000
F^fL Tilt X tolerance on surfaces 1 through 3 (degrees)
$oDc TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Hyh$-iCa Change in Focus : 0.000000 0.000000
XOe)tz
L Tilt Y tolerance on surfaces 1 through 3 (degrees)
Nb(c;|nV TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
o'+p,_y9Y@ Change in Focus : 0.000000 0.000000
RoS&oGYqR Decenter X tolerance on surface 1
Na=.LW-ma= TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
$3psSQQo Change in Focus : 0.000000 0.000000
$pr\"!|z Decenter Y tolerance on surface 1
.!/w[Z] TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
!Z]#1"A8 Change in Focus : 0.000000 0.000000
bvzNur_ Tilt X tolerance on surface (degrees) 1
Kg4\:A7Sa. TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
d< j+a1& Change in Focus : 0.000000 0.000000
"MM)AY*b Tilt Y tolerance on surface (degrees) 1
g3B%}!| TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
RrA9@95+ Change in Focus : 0.000000 0.000000
w#0/&\b= Decenter X tolerance on surface 2
|Y"nZK, TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
L6<.>\^Z" Change in Focus : 0.000000 0.000000
1u>[0<U~E Decenter Y tolerance on surface 2
wGy`0c]v? TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
r9sq3z|% Change in Focus : 0.000000 0.000000
wo>7^ZA Tilt X tolerance on surface (degrees) 2
f"9aL= 3 TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
lZ gX{ Change in Focus : 0.000000 0.000000
)seeBm-` Tilt Y tolerance on surface (degrees) 2
[/E|n[Bx TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
>L4q>S^v Change in Focus : 0.000000 0.000000
]WFr5 Decenter X tolerance on surface 3
1zIX
$A TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
IE]? WW5 Change in Focus : 0.000000 0.000000
KJ (|skO Decenter Y tolerance on surface 3
W2>VgMR [ TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
_"l2UDx Change in Focus : 0.000000 0.000000
l;7T.2J'Z Tilt X tolerance on surface (degrees) 3
Y[sBVz'j5 TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
vd{ban9 Change in Focus : 0.000000 0.000000
n Nu~)X Tilt Y tolerance on surface (degrees) 3
10}<n_I TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Dm{9;Abs% Change in Focus : 0.000000 0.000000
yjE$o?A Irregularity of surface 1 in fringes
Y'
FB
{ TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
/qaWUUf Change in Focus : 0.000000 0.000000
W79Sz}): Irregularity of surface 2 in fringes
MxLg8,M TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
>bRoQ8 Change in Focus : 0.000000 0.000000
5FMe & Irregularity of surface 3 in fringes
CXiDe)|<E TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
[b :0j- Change in Focus : 0.000000 0.000000
k^@dDLr" Index tolerance on surface 1
E[NszM[P TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
mswAao<y&x Change in Focus : 0.000000 0.000000
>BWe"{ ; Index tolerance on surface 2
0<FT=tKm TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
tqD=)0Uzs Change in Focus : 0.000000 -0.000000
3D}Pa :P8X?C63W] Worst offenders:
B=}s7$^ Type Value Criterion Change
6c6w w" TSTY 2 -0.20000000 0.35349910 -0.19053324
9y}/ G TSTY 2 0.20000000 0.35349910 -0.19053324
XOL_vS24 TSTX 2 -0.20000000 0.35349910 -0.19053324
B4/\=MXb TSTX 2 0.20000000 0.35349910 -0.19053324
\RS0mb TSTY 1 -0.20000000 0.42678383 -0.11724851
7 I/a TSTY 1 0.20000000 0.42678383 -0.11724851
hsAk7KC TSTX 1 -0.20000000 0.42678383 -0.11724851
:JXGgl<y TSTX 1 0.20000000 0.42678383 -0.11724851
l@:&0id4I TSTY 3 -0.20000000 0.42861670 -0.11541563
laRn![[ TSTY 3 0.20000000 0.42861670 -0.11541563
V}h
<,E9 sK@]|9ciQ Estimated Performance Changes based upon Root-Sum-Square method:
X=@bzL;eq Nominal MTF : 0.54403234
@$fvhEkrT@ Estimated change : -0.36299231
uCx6/n6' Estimated MTF : 0.18104003
^U9b)KA ;$vVYC Compensator Statistics: Q_6v3no1 Change in back focus: %RX!Pi}5+g Minimum : -0.000000 OUhlQq\ Maximum : 0.000000 6 \?GY Mean : -0.000000 eRm*+l|? Standard Deviation : 0.000000 =F% <W7 {nMCU{*k Monte Carlo Analysis:
g;~$xXn Number of trials: 20
2WS Wfh Mtaky=l8~I Initial Statistics: Normal Distribution
,(B/R8ZF~ gI/SA Trial Criterion Change
=5O&4G`} 1 0.42804416 -0.11598818
kl|m @Nxp Change in Focus : -0.400171
d@?zCFD 2 0.54384387 -0.00018847
vt#&YXu{A Change in Focus : 1.018470
JMfv|>= 3 0.44510003 -0.09893230
_ 'K6S Change in Focus : -0.601922
6?';ip 4 0.18154684 -0.36248550
4D[(X=FSU Change in Focus : 0.920681
.[
s6x5M 5 0.28665820 -0.25737414
%_(^BZd Change in Focus : 1.253875
q}]z8 L 6 0.21263372 -0.33139862
JSoInR1E Change in Focus : -0.903878
)`#SMLMy~ 7 0.40051424 -0.14351809
VVe^s|~Z Change in Focus : -1.354815
g*WY kv 8 0.48754161 -0.05649072
]u\-_PP Change in Focus : 0.215922
;ykX]5jGh 9 0.40357468 -0.14045766
h^f?rWD:nz Change in Focus : 0.281783
Ow{NI-^K 10 0.26315315 -0.28087919
#[]B:
n6 Change in Focus : -1.048393
{>d\ 11 0.26120585 -0.28282649
#iT3aou Change in Focus : 1.017611
Cy5M0{ 12 0.24033815 -0.30369419
`^)oVs Change in Focus : -0.109292
8aY}b($*ZI 13 0.37164046 -0.17239188
M1eM^m8U Change in Focus : -0.692430
gMPvzBpP 14 0.48597489 -0.05805744
ynn>d Change in Focus : -0.662040
+;a\
gF^ 15 0.21462327 -0.32940907
lT8^BT Change in Focus : 1.611296
^@$T>SB1 16 0.43378226 -0.11025008
hdpA& OteR Change in Focus : -0.640081
/~+j[oB 17 0.39321881 -0.15081353
fS4 Ru Change in Focus : 0.914906
X
CHN'l' 18 0.20692530 -0.33710703
nc?Oj
B Change in Focus : 0.801607
#Wt1Ph_; 19 0.51374068 -0.03029165
)gG_K$08? Change in Focus : 0.947293
={I(i6 20 0.38013374 -0.16389860
v"sN
K Change in Focus : 0.667010
~V/?/J$ rs@qC>_C0 Number of traceable Monte Carlo files generated: 20
{;= {abj ,ysn7Y{Y Nominal 0.54403234
gFxa UrZA Best 0.54384387 Trial 2
Cp]q>lM" Worst 0.18154684 Trial 4
T*#< p; Mean 0.35770970
~g &Gi)je Std Dev 0.11156454
-V52?Hq \; zix(N[5 Gu%}B@ 4^ Compensator Statistics:
AE4>pzBe Change in back focus:
Zv8G[( Minimum : -1.354815
$kh6-y@ Maximum : 1.611296
G TW5f Mean : 0.161872
Bz6Zy)&sAL Standard Deviation : 0.869664
H?j}!JzAC AAK}t6 90% > 0.20977951 t8B==% 80% > 0.22748071 <a=k"'0 50% > 0.38667627 l_ycB%2e^ 20% > 0.46553746 M!iYj+nrP 10% > 0.50064115 h|.*V$3 lLZ?&z$ End of Run.
Q46sPMH+_ ]dHV^! 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
**Q
K}j[D
ETq~,g' d<v)ovQJ] 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
XLFo"f
/ Hexv#3 不吝赐教