切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16157阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 j\[dx^\=  
    KVoS C @w  
     acajHs  
    ="1Ind@w!  
    然后添加了默认公差分析,基本没变 k_L7 kvpt  
    9|^2",V  
    .;y.]Z/;  
    h0*!;Z7  
    然后运行分析的结果如下: . oF &Ff/[  
    e8>})  
    Analysis of Tolerances %~O,zs.2p  
    !_]Y~[  
    File : E:\光学设计资料\zemax练习\f500.ZMX 9Z@hPX3.  
    Title: :;RMo2Tl  
    Date : TUE JUN 21 2011 @ wGPqg  
    ?h ZAxR\  
    Units are Millimeters. 4M=]wR;  
    All changes are computed using linear differences. Avge eJi  
    )!th7sH  
    Paraxial Focus compensation only. |{z:IQLv  
    p,EQ#Ik  
    WARNING: Solves should be removed prior to tolerancing. 4qb/da E:Z  
    8l>?Pv  
    Mnemonics: h"[AOfTE$  
    TFRN: Tolerance on curvature in fringes. zq 3\}9  
    TTHI: Tolerance on thickness. )nC]5MXU  
    TSDX: Tolerance on surface decentering in x. A9KET$i@v  
    TSDY: Tolerance on surface decentering in y. yJ[0WY8<kC  
    TSTX: Tolerance on surface tilt in x (degrees). A]_7}<<N  
    TSTY: Tolerance on surface tilt in y (degrees). 2 ~dE<}  
    TIRR: Tolerance on irregularity (fringes). 70 yFaW  
    TIND: Tolerance on Nd index of refraction. >2Y=*K,:  
    TEDX: Tolerance on element decentering in x. gldAP:  
    TEDY: Tolerance on element decentering in y. +C^nO=[E  
    TETX: Tolerance on element tilt in x (degrees). Z\(q@3C  
    TETY: Tolerance on element tilt in y (degrees). YU'k#\gi*  
    vz@A;t  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. <v"R.<  
    frm >4)9+  
    WARNING: Boundary constraints on compensators will be ignored. J@/kIrx  
    $H2u.U<ip  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm y B81f  
    Mode                : Sensitivities /`Ug9,*  
    Sampling            : 2 %HhBt5w  
    Nominal Criterion   : 0.54403234 sbfuzpg]*  
    Test Wavelength     : 0.6328 s-NX o  
    >1X|^  
    <X#C)-.  
    Fields: XY Symmetric Angle in degrees 9sM!`Lz{  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY .y'>[  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 dUD[e,?  
    4V"E8rUL(  
    Sensitivity Analysis: ob!P ;]T  
    x f'V{9*  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ]E{NNHK%2N  
    Type                      Value      Criterion        Change          Value      Criterion        Change m=1N>cq '  
    Fringe tolerance on surface 1 nd`1m[7MNu  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 4XL^D~V  
    Change in Focus                :      -0.000000                            0.000000 OMk y$d#  
    Fringe tolerance on surface 2 HRpte=`q  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 9V a}I-  
    Change in Focus                :       0.000000                            0.000000 [ XN={  
    Fringe tolerance on surface 3 1wii8B6  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 9v#CE!  
    Change in Focus                :      -0.000000                            0.000000 Mg+2. 8%  
    Thickness tolerance on surface 1 t"sBPLU\  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Q1lyj7c#x  
    Change in Focus                :       0.000000                            0.000000 M^A48u{,"  
    Thickness tolerance on surface 2  X hR4ru`  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 TbMW|0 #w  
    Change in Focus                :       0.000000                           -0.000000 9FF0%*tGo  
    Decenter X tolerance on surfaces 1 through 3 "BAK !N$9  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 *nd!)t  
    Change in Focus                :       0.000000                            0.000000 v<k?Vu  
    Decenter Y tolerance on surfaces 1 through 3 T%+ #xl  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 t <~h'U  
    Change in Focus                :       0.000000                            0.000000 -$\y_?}  
    Tilt X tolerance on surfaces 1 through 3 (degrees) k``_EiV4t  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 2y75  
    Change in Focus                :       0.000000                            0.000000 3s*mbk[J  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) UB@Rs|)  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 YH$-g  
    Change in Focus                :       0.000000                            0.000000 ]IaMp788  
    Decenter X tolerance on surface 1 K&u_R  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $+Z[K.2J  
    Change in Focus                :       0.000000                            0.000000 @b\$yB@z  
    Decenter Y tolerance on surface 1 MyOd,vU  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ~ZaY!(R<  
    Change in Focus                :       0.000000                            0.000000 VCYwzB  
    Tilt X tolerance on surface (degrees) 1 :x3QRF  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 cs48*+m  
    Change in Focus                :       0.000000                            0.000000 " > ypIR<  
    Tilt Y tolerance on surface (degrees) 1 g_E$=j92v  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 %64 )(z  
    Change in Focus                :       0.000000                            0.000000 TT%M' 5&  
    Decenter X tolerance on surface 2 e v}S+!|U  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 'B$yo]  
    Change in Focus                :       0.000000                            0.000000 |*Yr<zt  
    Decenter Y tolerance on surface 2 A.F%Ycq  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 7jrt7[{  
    Change in Focus                :       0.000000                            0.000000  l03B=$  
    Tilt X tolerance on surface (degrees) 2 3=#<X-);  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 |o"?gB}Dh  
    Change in Focus                :       0.000000                            0.000000 goNG' o %|  
    Tilt Y tolerance on surface (degrees) 2 q~Hn -5H4Q  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 4IK( 7  
    Change in Focus                :       0.000000                            0.000000 O ;Rqv  
    Decenter X tolerance on surface 3 E*& vy  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ;7*[Bcj.  
    Change in Focus                :       0.000000                            0.000000 - nm"of\o  
    Decenter Y tolerance on surface 3 uo:J\E  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 >-?f0 K  
    Change in Focus                :       0.000000                            0.000000 1y &\5kB  
    Tilt X tolerance on surface (degrees) 3 D_2:k'4  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 L<c4kw  
    Change in Focus                :       0.000000                            0.000000 >tS'Q`R  
    Tilt Y tolerance on surface (degrees) 3 |T /ZL!  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 r wL`Czs  
    Change in Focus                :       0.000000                            0.000000 'ycJMYP8  
    Irregularity of surface 1 in fringes b)#hSjWO#  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 sfH_5 #w  
    Change in Focus                :       0.000000                            0.000000 W.jGGt\<\  
    Irregularity of surface 2 in fringes \<h0Q,e  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 $QF{iV@6d4  
    Change in Focus                :       0.000000                            0.000000 <\ y@*fg+  
    Irregularity of surface 3 in fringes yqs4[C  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 u]wZQl#-  
    Change in Focus                :       0.000000                            0.000000 ~%F9%=  
    Index tolerance on surface 1 =[ 46`-_  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 hF?1y`20  
    Change in Focus                :       0.000000                            0.000000 KM0ru  
    Index tolerance on surface 2 ;LfXi 8)  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 OdbEq?3S/?  
    Change in Focus                :       0.000000                           -0.000000 ~G p [_ %K  
    RU{twL.B  
    Worst offenders: $p8xEcQdU#  
    Type                      Value      Criterion        Change ;a!S!% .h  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 e ,'_xV  
    TSTY   2             0.20000000     0.35349910    -0.19053324 G5_=H,Vmd  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 @s>Czm5  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ;>hO+Wo  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ldcqe$7,  
    TSTY   1             0.20000000     0.42678383    -0.11724851 G>_*djUf  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ^6x%*/l|  
    TSTX   1             0.20000000     0.42678383    -0.11724851 PQt")[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 uCvj!  
    TSTY   3             0.20000000     0.42861670    -0.11541563 GKqm&/M*=  
    KkyVSoD\  
    Estimated Performance Changes based upon Root-Sum-Square method: + J{IRyBc  
    Nominal MTF                 :     0.54403234 +480 l}  
    Estimated change            :    -0.36299231 @IKYh{j4  
    Estimated MTF               :     0.18104003 \sixI;-2  
    P:S.~Jq  
    Compensator Statistics: 6- YU[HF  
    Change in back focus: YqD=>P[O  
    Minimum            :        -0.000000 2W(s(-hD  
    Maximum            :         0.000000 _ye |Y  
    Mean               :        -0.000000 /62!cp/F/D  
    Standard Deviation :         0.000000 w "F 9l  
    5I;&mW`1,`  
    Monte Carlo Analysis: j;Gtu  
    Number of trials: 20 539>WyG5  
    ]mq|w  
    Initial Statistics: Normal Distribution -IudgO]  
    <}Vrl`?h  
      Trial       Criterion        Change nPtuTySG  
          1     0.42804416    -0.11598818 **0~K";\  
    Change in Focus                :      -0.400171 Wi<m{.%\E  
          2     0.54384387    -0.00018847 {?0lBfB"  
    Change in Focus                :       1.018470 9RL`<,Q  
          3     0.44510003    -0.09893230 CW K7wZM  
    Change in Focus                :      -0.601922 {z|)Njhg  
          4     0.18154684    -0.36248550 a!SiX  
    Change in Focus                :       0.920681 <=&`ZH   
          5     0.28665820    -0.25737414 dQX6(J j  
    Change in Focus                :       1.253875 0> E r=,e  
          6     0.21263372    -0.33139862 2'Uu:Y^  
    Change in Focus                :      -0.903878 U>SShpmZA  
          7     0.40051424    -0.14351809 S+6.ZZ9c  
    Change in Focus                :      -1.354815 Q\vpqE! 9  
          8     0.48754161    -0.05649072 :,7hWs  
    Change in Focus                :       0.215922 Zl!kJ:0  
          9     0.40357468    -0.14045766 'oVx#w^mf  
    Change in Focus                :       0.281783 hE/cd1iJ$  
         10     0.26315315    -0.28087919 v/plpNVp >  
    Change in Focus                :      -1.048393  > |=ts  
         11     0.26120585    -0.28282649 UDFDJm$  
    Change in Focus                :       1.017611 $wa{~'  
         12     0.24033815    -0.30369419 hZ,_ 6mNg  
    Change in Focus                :      -0.109292 ]N]!o#q}L  
         13     0.37164046    -0.17239188 C.P*#_R  
    Change in Focus                :      -0.692430 QIEJ6`  
         14     0.48597489    -0.05805744 Y|qTyE%  
    Change in Focus                :      -0.662040 DCa^ u'f  
         15     0.21462327    -0.32940907 Nx;~@  
    Change in Focus                :       1.611296 IPpN@  
         16     0.43378226    -0.11025008 {Xy5pfW Q  
    Change in Focus                :      -0.640081 M3y NAN  
         17     0.39321881    -0.15081353 372rbY  
    Change in Focus                :       0.914906 N~gzDQ3  
         18     0.20692530    -0.33710703 v1JzP#  
    Change in Focus                :       0.801607 t?gic9 q  
         19     0.51374068    -0.03029165 r5/0u(\LB  
    Change in Focus                :       0.947293 s8Q 5ui]  
         20     0.38013374    -0.16389860 re<{ >  
    Change in Focus                :       0.667010 2,F .$X  
     F(n$  
    Number of traceable Monte Carlo files generated: 20 P+sW[:  
    I{2hfKUe`  
    Nominal     0.54403234 C) s5D  
    Best        0.54384387    Trial     2 n@i HFBb  
    Worst       0.18154684    Trial     4 uW{l(}0N  
    Mean        0.35770970 B$K=\6o  
    Std Dev     0.11156454 Or+U@vAnk  
    bJ%h53  
    w9imKVry  
    Compensator Statistics: +\A,&;!SR  
    Change in back focus: :Yl-w-oe  
    Minimum            :        -1.354815 V!=,0zy~Z  
    Maximum            :         1.611296 3"i-o$P  
    Mean               :         0.161872 *fxG?}YT  
    Standard Deviation :         0.869664 J@'wf8Ub  
    ITBE|b  
    90% >       0.20977951               e T{ 4{  
    80% >       0.22748071               'H!Uh]!  
    50% >       0.38667627               m0SlOgRsk  
    20% >       0.46553746               reWot&;  
    10% >       0.50064115                X_h}J=33Q  
    %> eiAB_b  
    End of Run. 8<.Oq4ku  
    {\5  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 y%T_pTcU  
    o.!Dq7 R  
    w@E3ZL^  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 eMsd37J  
    HV|,}Wks6s  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 W=?<<dVYD  
    80% >       0.22748071                 Bzf^ivT3L  
    50% >       0.38667627                 [/r(__.  
    20% >       0.46553746                 {Sh ;(.u^  
    10% >       0.50064115 Pm7}"D'/  
    E1 2uZ$X  
    最后这个数值是MTF值呢,还是MTF的公差? 9(Xn>G'iT  
    e0 ecD3  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   >t+P(*u  
    p_4<6{KEt  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 2 E= L8<  
    90% >       0.20977951                 ~J]qP#C  
    80% >       0.22748071                 i/.6>4tE:  
    50% >       0.38667627                 '%;m?t% q  
    20% >       0.46553746                 naNghGQ  
    10% >       0.50064115 HOi`$vX }N  
    ....... gM]:Ma  
    !x)R=Z/C  
    $~kA B8z  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   ykJ>*z  
    Mode                : Sensitivities |[lKY+26:{  
    Sampling            : 2 (?];VG  
    Nominal Criterion   : 0.54403234 y>LBl]  
    Test Wavelength     : 0.6328 =|9!vzG4  
    &3&HY:yF  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ('~LMu_  
    D'4\*4is  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试