切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16663阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 i=j4Wg,{J  
    {6 brVN.V  
    HQtUNtZ  
    YV"LM6`  
    然后添加了默认公差分析,基本没变 %LBT:Aw  
    ?&se]\  
    jS'hs>Ot  
    =%R|@lz_x  
    然后运行分析的结果如下: Ll'!aar,  
    (]*!`(_b  
    Analysis of Tolerances MD=VR(P?eq  
    l$eKV(CZ4  
    File : E:\光学设计资料\zemax练习\f500.ZMX 31n|ScXv  
    Title: &{(8EvuDd  
    Date : TUE JUN 21 2011 u(P;) E"1  
    "U%jG`q  
    Units are Millimeters. ybgAyJ{J<  
    All changes are computed using linear differences. jN^09T49  
    W5a>6u=g,  
    Paraxial Focus compensation only. X]AbBzy  
    NzuH&o][  
    WARNING: Solves should be removed prior to tolerancing. |4u?Q+k%%  
    %QKRl 5RM-  
    Mnemonics: FAP1Bm  
    TFRN: Tolerance on curvature in fringes. )uIH onXU  
    TTHI: Tolerance on thickness. tx{tIw^2;  
    TSDX: Tolerance on surface decentering in x. PbN"+qM  
    TSDY: Tolerance on surface decentering in y. +yYSp8>  
    TSTX: Tolerance on surface tilt in x (degrees). 1$a dX  
    TSTY: Tolerance on surface tilt in y (degrees). {qkd63 X  
    TIRR: Tolerance on irregularity (fringes). {uuvgFC  
    TIND: Tolerance on Nd index of refraction. B^sHFc""V  
    TEDX: Tolerance on element decentering in x. txW<r8  
    TEDY: Tolerance on element decentering in y. {glRX R  
    TETX: Tolerance on element tilt in x (degrees). kFF)6z:2  
    TETY: Tolerance on element tilt in y (degrees). 7+^4v(s  
    Hxzdxwz%$  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. sT"h)I)]*  
    JdW:%,sv  
    WARNING: Boundary constraints on compensators will be ignored. F Wzf8*^  
    l\Or.I7n  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Al(u|LbQ  
    Mode                : Sensitivities ;Z(~;D  
    Sampling            : 2 4yu ^cix(  
    Nominal Criterion   : 0.54403234 hV4\#K[  
    Test Wavelength     : 0.6328 a,U@ !}K  
    9QryW\6.@z  
    xr\wOQ*`  
    Fields: XY Symmetric Angle in degrees W!G2$e6  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY C6`<SW  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 7,N>u8cTh  
    Fl^}tC  
    Sensitivity Analysis: YOHYXhc{S  
    =2=n   
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| Kzd`|+?'`M  
    Type                      Value      Criterion        Change          Value      Criterion        Change -j 6U{l  
    Fringe tolerance on surface 1 >@o}l:*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 I=3e@aTZ,  
    Change in Focus                :      -0.000000                            0.000000 ii :h E=  
    Fringe tolerance on surface 2 #815h,nP+  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 (SlrV8;  
    Change in Focus                :       0.000000                            0.000000 De*Z UN|<  
    Fringe tolerance on surface 3 ?>p<!:E!r  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 tT;=l[7%  
    Change in Focus                :      -0.000000                            0.000000 Q`]E l<$  
    Thickness tolerance on surface 1 ?"no~(EB  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 fuxBoB  
    Change in Focus                :       0.000000                            0.000000 \KaWR  
    Thickness tolerance on surface 2 O} !L;?  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Y+#e| x  
    Change in Focus                :       0.000000                           -0.000000 _~`\TS8  
    Decenter X tolerance on surfaces 1 through 3 U&mJ_f#M  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 @lP<Mq~]  
    Change in Focus                :       0.000000                            0.000000 ?wR;"  
    Decenter Y tolerance on surfaces 1 through 3 eiF!yk?2  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 !m#cneV  
    Change in Focus                :       0.000000                            0.000000 AE)<ee%\\  
    Tilt X tolerance on surfaces 1 through 3 (degrees) U$`)|/8  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 $3! j1  
    Change in Focus                :       0.000000                            0.000000 y/m^G=Q6g#  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) #(53YoV_8  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 4C ;4"6  
    Change in Focus                :       0.000000                            0.000000 rZy38Wo  
    Decenter X tolerance on surface 1 o4b!U%  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 _= _]Yx  
    Change in Focus                :       0.000000                            0.000000 b-{\manH  
    Decenter Y tolerance on surface 1 PomX@N}1  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :ji_dQ8k  
    Change in Focus                :       0.000000                            0.000000 gnoV>ON0  
    Tilt X tolerance on surface (degrees) 1 pQxaT$  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 HB4Hz0Fa  
    Change in Focus                :       0.000000                            0.000000 B(mxW8y  
    Tilt Y tolerance on surface (degrees) 1 G^F4c{3c~  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 0C}7=_?  
    Change in Focus                :       0.000000                            0.000000 N1KYV&'o  
    Decenter X tolerance on surface 2 cK>5!2b  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 @\_ tS H  
    Change in Focus                :       0.000000                            0.000000 2FO.!m  
    Decenter Y tolerance on surface 2 +0=u]  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 p1HU2APFP  
    Change in Focus                :       0.000000                            0.000000 3R?7&oXvH  
    Tilt X tolerance on surface (degrees) 2 Y]b5qguK  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Hi{c[;  
    Change in Focus                :       0.000000                            0.000000 ,LXuU8sB  
    Tilt Y tolerance on surface (degrees) 2 Etj*3/n|  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 -pj&|< h+9  
    Change in Focus                :       0.000000                            0.000000 56*}}B$?  
    Decenter X tolerance on surface 3 Y$EqBN  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195  y'Xg"  
    Change in Focus                :       0.000000                            0.000000 F]W'spF,  
    Decenter Y tolerance on surface 3 ,SJB 3if  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 $6:j3ZTXrt  
    Change in Focus                :       0.000000                            0.000000 uG3t%CmN  
    Tilt X tolerance on surface (degrees) 3 w&v_#\T  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 f& (u[W  
    Change in Focus                :       0.000000                            0.000000 b^PYA_k-Xn  
    Tilt Y tolerance on surface (degrees) 3 E`>-+~ZUsk  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Wn24eld"x  
    Change in Focus                :       0.000000                            0.000000 |nXs'TO'O  
    Irregularity of surface 1 in fringes m4ovppC  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 $qy%Q]  
    Change in Focus                :       0.000000                            0.000000 [S":~3^B6  
    Irregularity of surface 2 in fringes K(Otgp+zb  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 -<}_K,Ky`  
    Change in Focus                :       0.000000                            0.000000 Iq_cs '  
    Irregularity of surface 3 in fringes p[&'*"o!/  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 YmHn*N}:U  
    Change in Focus                :       0.000000                            0.000000 &oYX093di  
    Index tolerance on surface 1 ~LHG  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 f6^H Q1SSt  
    Change in Focus                :       0.000000                            0.000000 Gy 'l;2  
    Index tolerance on surface 2 gOO\` #  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 F%6al,8P  
    Change in Focus                :       0.000000                           -0.000000 J}KATpHs  
    1d|+7  
    Worst offenders: "VkraB.i  
    Type                      Value      Criterion        Change *gu~7&yoP  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 X'ryfa1|  
    TSTY   2             0.20000000     0.35349910    -0.19053324 s9qr;}U.`  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 uFb&WIo1  
    TSTX   2             0.20000000     0.35349910    -0.19053324 |>GtClL  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 _7]* 5Pxo  
    TSTY   1             0.20000000     0.42678383    -0.11724851 NXDdU^w7B  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 `>'E4z]-_  
    TSTX   1             0.20000000     0.42678383    -0.11724851  {k}S!T  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 +K;(H']Z<-  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ^ {-J Y  
    [Pby  d  
    Estimated Performance Changes based upon Root-Sum-Square method: znFa4  
    Nominal MTF                 :     0.54403234 ~0|Hw.OK  
    Estimated change            :    -0.36299231 n'1pNL:  
    Estimated MTF               :     0.18104003 o{?s\)aBa  
    UbJ_'>hK6  
    Compensator Statistics: Cz Jze  
    Change in back focus: {Aj}s3v  
    Minimum            :        -0.000000 ,K6s'3O(LW  
    Maximum            :         0.000000 P$N\o@  
    Mean               :        -0.000000 ?W9$=  
    Standard Deviation :         0.000000 3F[z]B  
    Bh"o{-$p8`  
    Monte Carlo Analysis:  B@A3T8'  
    Number of trials: 20 yiSv#wD9  
    Sh*LD QL<?  
    Initial Statistics: Normal Distribution L/"XIMI*Xg  
    'F?T4  
      Trial       Criterion        Change %rzC+=*;  
          1     0.42804416    -0.11598818 i(2s"Uww,  
    Change in Focus                :      -0.400171 @.a[2,o_  
          2     0.54384387    -0.00018847 O]~cv^  
    Change in Focus                :       1.018470 w=s:e M@  
          3     0.44510003    -0.09893230 {XC# -3O  
    Change in Focus                :      -0.601922 60*2k  
          4     0.18154684    -0.36248550 n87B[R  
    Change in Focus                :       0.920681 5<GC  
          5     0.28665820    -0.25737414 ^hq`dr|R=  
    Change in Focus                :       1.253875 \e T0d<  
          6     0.21263372    -0.33139862 VjBV2x  
    Change in Focus                :      -0.903878 >jME == U0  
          7     0.40051424    -0.14351809 OSK 3X Qc  
    Change in Focus                :      -1.354815 s|dcO  
          8     0.48754161    -0.05649072 >>Z.]  
    Change in Focus                :       0.215922 fDNiU"  
          9     0.40357468    -0.14045766 kTT!gZP$  
    Change in Focus                :       0.281783 {PnvQ?|Z  
         10     0.26315315    -0.28087919 /w^}(IJ4  
    Change in Focus                :      -1.048393 6x^#|;e>lI  
         11     0.26120585    -0.28282649 ly7\H3  
    Change in Focus                :       1.017611 d0"Hu^]  
         12     0.24033815    -0.30369419 (q59cAw~X  
    Change in Focus                :      -0.109292 WOrz7x  
         13     0.37164046    -0.17239188 |yx]TD{~P  
    Change in Focus                :      -0.692430 Q35$GFj"jD  
         14     0.48597489    -0.05805744 Pb]: i+c)  
    Change in Focus                :      -0.662040 |`1lCyV\tE  
         15     0.21462327    -0.32940907 u K6R+a  
    Change in Focus                :       1.611296 3~ ;LNi  
         16     0.43378226    -0.11025008 P B_ +:S^8  
    Change in Focus                :      -0.640081 :Gsh  
         17     0.39321881    -0.15081353 zp:kdN7!^  
    Change in Focus                :       0.914906 l<>syHCH;L  
         18     0.20692530    -0.33710703 PxNp'PZr9  
    Change in Focus                :       0.801607 F"1)y>2k  
         19     0.51374068    -0.03029165 @#hd8_)A.  
    Change in Focus                :       0.947293 'X d_8.  
         20     0.38013374    -0.16389860 Z,^`R] 9  
    Change in Focus                :       0.667010 }A\s`H m  
    ]B/Gz  
    Number of traceable Monte Carlo files generated: 20 {`2! 3= "  
    _ [su?C  
    Nominal     0.54403234 )y4bb^;z  
    Best        0.54384387    Trial     2 -~ \R.<+  
    Worst       0.18154684    Trial     4 y{ %2Q)  
    Mean        0.35770970 zePVB -@u  
    Std Dev     0.11156454 HT0VdvLw  
     S<#>g s4  
    dQT A^m  
    Compensator Statistics: n!z7N3Ak>  
    Change in back focus: SR)G!9z_/  
    Minimum            :        -1.354815 p2 V8{k  
    Maximum            :         1.611296 @iwVU]j  
    Mean               :         0.161872 <E/4/ ANN  
    Standard Deviation :         0.869664 |ZZl3l=]  
    F7P?*!dx  
    90% >       0.20977951               Hof@,w  
    80% >       0.22748071               W/DSj :  
    50% >       0.38667627               : 8dQ8p;  
    20% >       0.46553746               XHs>Q>`  
    10% >       0.50064115                +z}O*,M"q  
    s.7\?(Lg  
    End of Run. @SeInew;`l  
    "Zm**h.t  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 B3|h$aKC  
    ntR@[)K  
    H3\4&q  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 sdN@ZP  
    HY-7{irR~  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 <&w(%<;  
    80% >       0.22748071                 7x> \/l(  
    50% >       0.38667627                 Pgug!![  
    20% >       0.46553746                 (F=/r] Q  
    10% >       0.50064115  &<nj~BL  
    i ZU 1w7Z  
    最后这个数值是MTF值呢,还是MTF的公差? ycD.X"  
    ^*?mb)  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   lZ,w#sqbY  
    s!73To}>  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : yedEI[_4  
    90% >       0.20977951                 k0bDEz.X  
    80% >       0.22748071                 s&d!+-\6_  
    50% >       0.38667627                 9,jFQb(),  
    20% >       0.46553746                 o_C]O"  
    10% >       0.50064115 Y3.^a5o  
    ....... b"JX6efnN  
    \o}=ob  
    ,p' ;Xg6ez  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   HSj=g}r  
    Mode                : Sensitivities rVM?[_'O  
    Sampling            : 2 q uL+UFuM  
    Nominal Criterion   : 0.54403234 @(CJT-Ak  
    Test Wavelength     : 0.6328 888"X3.T  
    a}g <<{  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? }k0B   
    "R0(!3  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试