切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15451阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    958
    光币
    1062
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 :C}2=  
    uch>AuF:  
    ZAJp%   
    B3H|+  
    然后添加了默认公差分析,基本没变 :(a]V"(&Eq  
    y" 6y!  
    Sr&515  
    yz-,)GB6  
    然后运行分析的结果如下: VA"*6F   
    q}/WQ]p} <  
    Analysis of Tolerances Yk'9U-.mc  
    :N<.?%Kf  
    File : E:\光学设计资料\zemax练习\f500.ZMX c&X{dJWD   
    Title: 2:BF[c`  
    Date : TUE JUN 21 2011 lqowG!3H  
    eVt$7d?Jw  
    Units are Millimeters. kloR#?8A  
    All changes are computed using linear differences. )J_\tv  
    21ppSN >  
    Paraxial Focus compensation only. t~e<z81p  
    cFN'bftH4  
    WARNING: Solves should be removed prior to tolerancing. r6;$1 K*0  
    }R)=S_j  
    Mnemonics: v?0r`<Mn  
    TFRN: Tolerance on curvature in fringes. 7}GK%H-u  
    TTHI: Tolerance on thickness. U9&k;`  
    TSDX: Tolerance on surface decentering in x. /erN;Oo%<  
    TSDY: Tolerance on surface decentering in y. "F3]X)}  
    TSTX: Tolerance on surface tilt in x (degrees). e/*$^i+S  
    TSTY: Tolerance on surface tilt in y (degrees). 4\pWB90V  
    TIRR: Tolerance on irregularity (fringes). RbGJ)K!  
    TIND: Tolerance on Nd index of refraction. gP-nluq  
    TEDX: Tolerance on element decentering in x. QDTBWM%  
    TEDY: Tolerance on element decentering in y. osOVg0Gyj  
    TETX: Tolerance on element tilt in x (degrees). l"{Sm6:;-  
    TETY: Tolerance on element tilt in y (degrees). 6 4D]Ypx  
    C@Nv;;AlU  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ^pS+/ZSi^  
    xy8#2  
    WARNING: Boundary constraints on compensators will be ignored. 6oinidB[l  
    *d(SI<j  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm X; 5Jb  
    Mode                : Sensitivities =?])['VaA  
    Sampling            : 2 _TUk(Qe  
    Nominal Criterion   : 0.54403234 `:wvh(  
    Test Wavelength     : 0.6328 R7s|`\  
    H{?9CxYa  
    ~"lJ'&J}  
    Fields: XY Symmetric Angle in degrees 6cdMS[_SD(  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY >#}2J[2HQ  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 .}k(L4T|=  
    QN>7~=`  
    Sensitivity Analysis: `e]6#iJ^  
     \dl ph  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ;' nL:\  
    Type                      Value      Criterion        Change          Value      Criterion        Change vBvNu<v7te  
    Fringe tolerance on surface 1 ~gI{\iNF/  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Kzb`$CGK  
    Change in Focus                :      -0.000000                            0.000000 Sf/q2/r?6[  
    Fringe tolerance on surface 2 1z*kc)=JF8  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Bi~:>X\[^6  
    Change in Focus                :       0.000000                            0.000000 P F`rWw  
    Fringe tolerance on surface 3  :Pq.,s  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 Fl{WAg  
    Change in Focus                :      -0.000000                            0.000000 D -IR!js ]  
    Thickness tolerance on surface 1 ?X9]HlH  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 H]\Zn%.#  
    Change in Focus                :       0.000000                            0.000000 ' )-M\'S$E  
    Thickness tolerance on surface 2 8ga_pNe  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 V8-h%|$p3W  
    Change in Focus                :       0.000000                           -0.000000 [4+q+  
    Decenter X tolerance on surfaces 1 through 3 F?u^"}%Fc  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 02JoA+  
    Change in Focus                :       0.000000                            0.000000 t` 8!AhOgc  
    Decenter Y tolerance on surfaces 1 through 3 W3&tJ8*3  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 I\Glc=T*  
    Change in Focus                :       0.000000                            0.000000 (QB+%2v  
    Tilt X tolerance on surfaces 1 through 3 (degrees) J$9:jE-4  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 h?UVDzI!O  
    Change in Focus                :       0.000000                            0.000000 ~%#mK:+  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) Nf9fb?  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 K{cbn1\,H  
    Change in Focus                :       0.000000                            0.000000 ,>LRa  
    Decenter X tolerance on surface 1 DlyMJ#a  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 *Q}[ ]g  
    Change in Focus                :       0.000000                            0.000000 c 5`US  
    Decenter Y tolerance on surface 1 'GJVWpvUU  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 w7-WUvxl  
    Change in Focus                :       0.000000                            0.000000 x`Fjf/1T*m  
    Tilt X tolerance on surface (degrees) 1 >qn/<??  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 N;HIsOT}t  
    Change in Focus                :       0.000000                            0.000000 BRbV7&  
    Tilt Y tolerance on surface (degrees) 1 $R^AEa7  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 h4fLl3%H  
    Change in Focus                :       0.000000                            0.000000 :Gh~fm3}  
    Decenter X tolerance on surface 2 I<h=Cj[[  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 /&Jv,[2kV  
    Change in Focus                :       0.000000                            0.000000 {.k)2{  
    Decenter Y tolerance on surface 2 U!e6FHj7  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 uCzii o`S  
    Change in Focus                :       0.000000                            0.000000 }Ia 0"J4  
    Tilt X tolerance on surface (degrees) 2 N<JHjq  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 0y %L-:/c|  
    Change in Focus                :       0.000000                            0.000000 8NimZ(  
    Tilt Y tolerance on surface (degrees) 2 8 #oR/Nt  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 FA>1x*;c  
    Change in Focus                :       0.000000                            0.000000 =qoRS0Qa  
    Decenter X tolerance on surface 3 (U87}}/l  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 SFjU0*B$  
    Change in Focus                :       0.000000                            0.000000 Ie'P#e'  
    Decenter Y tolerance on surface 3 FUeq \Wuo  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 3@5p"X  
    Change in Focus                :       0.000000                            0.000000 6~5$s1Yc  
    Tilt X tolerance on surface (degrees) 3 &1)xoZ'\  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 #iis/6"  
    Change in Focus                :       0.000000                            0.000000 $V8vrT#:  
    Tilt Y tolerance on surface (degrees) 3 K5ZnS`c;  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 S2=%x.  
    Change in Focus                :       0.000000                            0.000000 5n:71$6[  
    Irregularity of surface 1 in fringes Ly (P=M>"y  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 BSXdvI1y  
    Change in Focus                :       0.000000                            0.000000 H`<?<ak6'M  
    Irregularity of surface 2 in fringes C ?H{CP  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ]TK=>;&  
    Change in Focus                :       0.000000                            0.000000 : d'65KMi  
    Irregularity of surface 3 in fringes x3p9GAd#  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 T$b\Q  
    Change in Focus                :       0.000000                            0.000000 ;;LuU<,$  
    Index tolerance on surface 1 Etmo7 8e  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 gOE_ ]  
    Change in Focus                :       0.000000                            0.000000 c%<2z  
    Index tolerance on surface 2 rB]W,8~%  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Fu0.~w  
    Change in Focus                :       0.000000                           -0.000000 6 S*zzJ.0K  
    =Nl5{qYz^&  
    Worst offenders: V;*pL1  
    Type                      Value      Criterion        Change 2uu[52H8d%  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 fykI,!  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ;?im(9h"v!  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 pv$tTWk  
    TSTX   2             0.20000000     0.35349910    -0.19053324 1*R_"#  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 U6i~A9;  
    TSTY   1             0.20000000     0.42678383    -0.11724851 DJ:38_F  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 sC6r.@[u8t  
    TSTX   1             0.20000000     0.42678383    -0.11724851 {a4xF2  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Ve:&'~F2 s  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ib50LCm  
    $y6rvQ 2>S  
    Estimated Performance Changes based upon Root-Sum-Square method:  Rkv  
    Nominal MTF                 :     0.54403234 i wz` x  
    Estimated change            :    -0.36299231 'jbMTI  
    Estimated MTF               :     0.18104003 ]I XAucI]  
    3Wj,}  
    Compensator Statistics: M'|)dM|  
    Change in back focus: S_T  
    Minimum            :        -0.000000 `V~LV<v5  
    Maximum            :         0.000000 R"Y?iZed3  
    Mean               :        -0.000000 JFJIls  
    Standard Deviation :         0.000000 -RCv7U`  
    (6#M9XL  
    Monte Carlo Analysis: B? TpBd  
    Number of trials: 20 vcOsq#UW  
    O2@" w23  
    Initial Statistics: Normal Distribution gN\*Y  
    4^MSX+zt  
      Trial       Criterion        Change w&+\Wo;([b  
          1     0.42804416    -0.11598818 Cji#?!Ra?  
    Change in Focus                :      -0.400171 $:]tcY-L9  
          2     0.54384387    -0.00018847 7BrV<)ih{*  
    Change in Focus                :       1.018470 _s@bz|yqw  
          3     0.44510003    -0.09893230 5^o3y.J?P  
    Change in Focus                :      -0.601922 iiehrK&T !  
          4     0.18154684    -0.36248550 T"A^[ r*  
    Change in Focus                :       0.920681 ox JGJ  
          5     0.28665820    -0.25737414 b7qnO jC  
    Change in Focus                :       1.253875 d.b?! kn  
          6     0.21263372    -0.33139862 7n<#y;wo  
    Change in Focus                :      -0.903878 xrX?ZJ  
          7     0.40051424    -0.14351809 E.4n}s  
    Change in Focus                :      -1.354815 IKtiR8  
          8     0.48754161    -0.05649072 &V FjH W  
    Change in Focus                :       0.215922 xtu]F  
          9     0.40357468    -0.14045766 (-#rFO5~l  
    Change in Focus                :       0.281783 B{N=0 cSi  
         10     0.26315315    -0.28087919 wC(XRqlE  
    Change in Focus                :      -1.048393 cC' ^T6  
         11     0.26120585    -0.28282649 ?bn;{c;E  
    Change in Focus                :       1.017611 t3Qm-J}wSB  
         12     0.24033815    -0.30369419 U !.~XT=  
    Change in Focus                :      -0.109292 `L+ ~&M  
         13     0.37164046    -0.17239188 vsw7|  
    Change in Focus                :      -0.692430 GW:\l~ d  
         14     0.48597489    -0.05805744 t{[gKV-b  
    Change in Focus                :      -0.662040 AE]i V{p  
         15     0.21462327    -0.32940907 `6n!$Cxo  
    Change in Focus                :       1.611296 SAQs {M  
         16     0.43378226    -0.11025008 hq]xmM?&  
    Change in Focus                :      -0.640081 T&mbXMN  
         17     0.39321881    -0.15081353 \kfcv  
    Change in Focus                :       0.914906 4*YOFU}l  
         18     0.20692530    -0.33710703 h<Jc;ht  
    Change in Focus                :       0.801607 #%:`p9p.S  
         19     0.51374068    -0.03029165 ;7wwY$PBH  
    Change in Focus                :       0.947293 $8EV, 9^U  
         20     0.38013374    -0.16389860 Gmqs`{tc  
    Change in Focus                :       0.667010 v hR twi  
    [U% .Gi  
    Number of traceable Monte Carlo files generated: 20 .Kg|f~InO  
    P}+2>EU  
    Nominal     0.54403234  W{L  
    Best        0.54384387    Trial     2 b1eK(F  
    Worst       0.18154684    Trial     4 'E@2I9Kj  
    Mean        0.35770970 >~.Zr3P6kC  
    Std Dev     0.11156454 (QA-"9v#i,  
    D9e+  
    0>I]=M]@  
    Compensator Statistics: y*y`t6D  
    Change in back focus: &NlS  =  
    Minimum            :        -1.354815 rsd2v9  
    Maximum            :         1.611296 FGV}5L  
    Mean               :         0.161872 E~rs11  
    Standard Deviation :         0.869664 4!NfQk>X  
    y21)~  
    90% >       0.20977951               YJ &lB&xH  
    80% >       0.22748071               4jDs0Hn"  
    50% >       0.38667627               E`A<]dAoK  
    20% >       0.46553746               R-=_z 6<  
    10% >       0.50064115                1}i&HIr!b  
    ~uP r]#  
    End of Run. Y\+(rC27  
    -d$8WSI 8  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Ib_n'$5#z  
    .Z(S4wV  
    Xtu:  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 HA$^ *qn  
    V%X:1 8j  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 pJ 2:` f<;  
    80% >       0.22748071                 v&[X&Hu[  
    50% >       0.38667627                 L5-T6CD  
    20% >       0.46553746                 '[M^f+H|  
    10% >       0.50064115 <WQ<<s@#pb  
    q 2_N90u  
    最后这个数值是MTF值呢,还是MTF的公差? O X5Co <u  
    ex@,F,u>o  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   .pB8=_e:  
    6)uPM"cO  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 49J+&G?)j  
    90% >       0.20977951                 4_m /_Z0x  
    80% >       0.22748071                 Hdq/E>u  
    50% >       0.38667627                 @R OY}CZ{/  
    20% >       0.46553746                 'j"N2NJ  
    10% >       0.50064115 dE}b8|</  
    ....... wD?=u\% &  
    {DXZ}7w:v  
    A_(+r  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   9-E>n)  
    Mode                : Sensitivities <<2b2?a S`  
    Sampling            : 2 @`y?\fWh  
    Nominal Criterion   : 0.54403234 qnfRN'  
    Test Wavelength     : 0.6328 ^Lfn3.M  
    + $a:X  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 645C]l  
    wY ;8UN  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试