切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16506阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 [Yyb)Qf  
    l~C=yP(~  
    h>:eu#  
    US'rhSV  
    然后添加了默认公差分析,基本没变 />dH\KvN  
    f\vy5''  
    !7>~=n_,L.  
    = }!4%.$  
    然后运行分析的结果如下: |=rb#z&  
     %>z)Q  
    Analysis of Tolerances ,7/F?!G!J  
    #*tWhXU  
    File : E:\光学设计资料\zemax练习\f500.ZMX Vb++K0CK  
    Title: Uaz$<K6  
    Date : TUE JUN 21 2011 U3tA"X.K  
    h?-*SLT  
    Units are Millimeters. 0Q{^BgW  
    All changes are computed using linear differences. Q1 5h \!u  
    %NH{%K,  
    Paraxial Focus compensation only. -L6V)aK&  
    aWk1D.  
    WARNING: Solves should be removed prior to tolerancing. uG^RU\(  
    *%aWGAu:  
    Mnemonics: zqlgJn  
    TFRN: Tolerance on curvature in fringes. B.Y8O^rx  
    TTHI: Tolerance on thickness. '\wZKY VN  
    TSDX: Tolerance on surface decentering in x. ',l}$]y5  
    TSDY: Tolerance on surface decentering in y. &57s//PrX  
    TSTX: Tolerance on surface tilt in x (degrees). k.6gX<T  
    TSTY: Tolerance on surface tilt in y (degrees). I=c}6  
    TIRR: Tolerance on irregularity (fringes). =C4!h'hz  
    TIND: Tolerance on Nd index of refraction. _!C M  
    TEDX: Tolerance on element decentering in x. P+gY LX8  
    TEDY: Tolerance on element decentering in y. 9>!B .Z?!#  
    TETX: Tolerance on element tilt in x (degrees). HlgkW&}c^  
    TETY: Tolerance on element tilt in y (degrees). #,jw! HO]  
    Z~6PrM-M  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. :p0<AU47  
    @A1Ohl  
    WARNING: Boundary constraints on compensators will be ignored. j= vlsW  
    =LyR CrA  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm PCX X[N  
    Mode                : Sensitivities +sm9H"_0  
    Sampling            : 2 _J ZlXY  
    Nominal Criterion   : 0.54403234 PlC8&$   
    Test Wavelength     : 0.6328 H+?@LPV*N  
     ?@iGECll  
    lEr_4!h$rZ  
    Fields: XY Symmetric Angle in degrees cqZuG}VR  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 0UN65JBuD  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Br}0dha3E  
    17) `CM$<[  
    Sensitivity Analysis: i7|sVz=  
    *$*V#,V-  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| /=+Bc=<lZ  
    Type                      Value      Criterion        Change          Value      Criterion        Change CZ|h` ";P2  
    Fringe tolerance on surface 1 *<#$B}!{  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 BW5!@D2  
    Change in Focus                :      -0.000000                            0.000000 4H@K?b`  
    Fringe tolerance on surface 2 P+(q38f[  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 <:!;79T\  
    Change in Focus                :       0.000000                            0.000000 bVW2Tjc:  
    Fringe tolerance on surface 3 +I[Hxf~  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 _d*QA{  
    Change in Focus                :      -0.000000                            0.000000 CMviR<.  
    Thickness tolerance on surface 1 hw)#TEt   
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 vI5'npM  
    Change in Focus                :       0.000000                            0.000000 x!;;;iS  
    Thickness tolerance on surface 2 vf/|b6'y  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 =BVBCh  
    Change in Focus                :       0.000000                           -0.000000 [`_-;/Gx2  
    Decenter X tolerance on surfaces 1 through 3 6[S-%|f  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;(0|2I'"  
    Change in Focus                :       0.000000                            0.000000 tJ9-8ZT*  
    Decenter Y tolerance on surfaces 1 through 3 S E0&CV4  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 vQsI^p  
    Change in Focus                :       0.000000                            0.000000 2e*"<>aeq  
    Tilt X tolerance on surfaces 1 through 3 (degrees) K/IG6s;Xj  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 bP HtP\)  
    Change in Focus                :       0.000000                            0.000000 0;n}{26a  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) g;._Q   
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 [*W l=  
    Change in Focus                :       0.000000                            0.000000 V m]u-R`{  
    Decenter X tolerance on surface 1 1qN+AT  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 xk@fBa }  
    Change in Focus                :       0.000000                            0.000000 DQyy">]Mh  
    Decenter Y tolerance on surface 1  ie4BE'  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 0.!!rq,  
    Change in Focus                :       0.000000                            0.000000 qJ%AbdOI8  
    Tilt X tolerance on surface (degrees) 1 h-6zQs   
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 u~\l~v^mj  
    Change in Focus                :       0.000000                            0.000000 "e@?^J)  
    Tilt Y tolerance on surface (degrees) 1 +A%"_7L}  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 M#o'hc  
    Change in Focus                :       0.000000                            0.000000 7J[s5'~|  
    Decenter X tolerance on surface 2 q&d5V~q  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 fUa[3)I  
    Change in Focus                :       0.000000                            0.000000 &8M^E/#.^;  
    Decenter Y tolerance on surface 2 U_61y;Q"  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 xG~7kj3  
    Change in Focus                :       0.000000                            0.000000 wgFAPZr  
    Tilt X tolerance on surface (degrees) 2 #-9@*FFL,  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 0.lOSAq  
    Change in Focus                :       0.000000                            0.000000 %mr6p}E|  
    Tilt Y tolerance on surface (degrees) 2 {/}p"(^  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 m'YYkq(5%Z  
    Change in Focus                :       0.000000                            0.000000 /& wA$h  
    Decenter X tolerance on surface 3 *G(ZRj@ 33  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 +_v#V9?  
    Change in Focus                :       0.000000                            0.000000 p$_X\,F  
    Decenter Y tolerance on surface 3 KGNBzy~9  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 =L9;8THY  
    Change in Focus                :       0.000000                            0.000000 'Z 82+uU%  
    Tilt X tolerance on surface (degrees) 3 qfa[KD)!aB  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Ot([5/K  
    Change in Focus                :       0.000000                            0.000000 *Vr;rk  
    Tilt Y tolerance on surface (degrees) 3 $Fik]TbQp  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 <= Aqi91  
    Change in Focus                :       0.000000                            0.000000 I_3{i`g  
    Irregularity of surface 1 in fringes 1rGi"kdf  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 At)\$GJ  
    Change in Focus                :       0.000000                            0.000000 6y   
    Irregularity of surface 2 in fringes m 7/b.B}  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 J8#3?Lp  
    Change in Focus                :       0.000000                            0.000000 J*m ~fZ^  
    Irregularity of surface 3 in fringes 5~\GAjf  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ]o2 Z 14  
    Change in Focus                :       0.000000                            0.000000 CN!~(1v  
    Index tolerance on surface 1 WN3]xw3  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 |nT+ W| 0U  
    Change in Focus                :       0.000000                            0.000000 {mmQv~|5q  
    Index tolerance on surface 2 NW`L6wgl  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 KvkU]s_  
    Change in Focus                :       0.000000                           -0.000000 #B &%Y6E5  
    xF])NZy|  
    Worst offenders: R(W}..U0R"  
    Type                      Value      Criterion        Change ,<O|Iis  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 `PI?RU[g*  
    TSTY   2             0.20000000     0.35349910    -0.19053324 @@} ]qT*  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 i f!   
    TSTX   2             0.20000000     0.35349910    -0.19053324 K\y W{y1  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 @lTd,V5f  
    TSTY   1             0.20000000     0.42678383    -0.11724851 j5V{,lf  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 1y7FvD~v  
    TSTX   1             0.20000000     0.42678383    -0.11724851 TDZ p1zpXb  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 {RHa1wc  
    TSTY   3             0.20000000     0.42861670    -0.11541563 }x(Ewr  
    A? T25<}  
    Estimated Performance Changes based upon Root-Sum-Square method: [[' (,,r  
    Nominal MTF                 :     0.54403234 9 gWqs'  
    Estimated change            :    -0.36299231 0W!S.]^1  
    Estimated MTF               :     0.18104003 MoMxKmI  
    S9lT4  
    Compensator Statistics: #kRt\Fzq  
    Change in back focus: uE-|]QQo  
    Minimum            :        -0.000000 84f^==Y  
    Maximum            :         0.000000 lCiRvh1K  
    Mean               :        -0.000000 )POU58$  
    Standard Deviation :         0.000000 'A)9h7k}  
    ~R  C\  
    Monte Carlo Analysis: EKf!j3  
    Number of trials: 20 0+6=ag%  
    NEff`mwm5)  
    Initial Statistics: Normal Distribution G}#p4 \/  
    ]Pf!wv  
      Trial       Criterion        Change )kvrQ6  
          1     0.42804416    -0.11598818 ,FWsgqL{l  
    Change in Focus                :      -0.400171 |0xP'(  
          2     0.54384387    -0.00018847 33OkY C%e  
    Change in Focus                :       1.018470 $_Q]3"U  
          3     0.44510003    -0.09893230 gaU1A"S}  
    Change in Focus                :      -0.601922 6h{>U*N"&d  
          4     0.18154684    -0.36248550 IA^*?,AZy  
    Change in Focus                :       0.920681 2g$;ZBHO|8  
          5     0.28665820    -0.25737414 ^17i98w  
    Change in Focus                :       1.253875 "mB /"  
          6     0.21263372    -0.33139862 cn2SMa[@S  
    Change in Focus                :      -0.903878 nZ8jBCh  
          7     0.40051424    -0.14351809 K?eY<L  
    Change in Focus                :      -1.354815  .F/0:)  
          8     0.48754161    -0.05649072 )| 0(#R  
    Change in Focus                :       0.215922 zCI.^^<?  
          9     0.40357468    -0.14045766 kWbD?i-  
    Change in Focus                :       0.281783 OTD<3Q q  
         10     0.26315315    -0.28087919 M=#g_*d  
    Change in Focus                :      -1.048393 p61F@=EL  
         11     0.26120585    -0.28282649 g-DFcwO,V  
    Change in Focus                :       1.017611 &{ZTtK&JF  
         12     0.24033815    -0.30369419 KZ$^Q<d^  
    Change in Focus                :      -0.109292 W ![*0pL  
         13     0.37164046    -0.17239188 ?9Sc KN  
    Change in Focus                :      -0.692430 DH!_UV  
         14     0.48597489    -0.05805744 ,Y`TP4Ip  
    Change in Focus                :      -0.662040 }$@E pM  
         15     0.21462327    -0.32940907 A75z/O{  
    Change in Focus                :       1.611296 e~PAi8B5  
         16     0.43378226    -0.11025008 kS< 9cy[O  
    Change in Focus                :      -0.640081 ,nSapmg  
         17     0.39321881    -0.15081353 {)PgN  
    Change in Focus                :       0.914906 -~ H?R  
         18     0.20692530    -0.33710703 i^}ib RQbN  
    Change in Focus                :       0.801607 C(&3L[  
         19     0.51374068    -0.03029165 9F2MCqvcm  
    Change in Focus                :       0.947293 ]:svR@E  
         20     0.38013374    -0.16389860 g]jCR*]  
    Change in Focus                :       0.667010 1)J' pDa  
    R/jHH{T3  
    Number of traceable Monte Carlo files generated: 20 q" @%WK  
    h7J4 p  
    Nominal     0.54403234 Mu/hTTiNx  
    Best        0.54384387    Trial     2 Huf;A1.  
    Worst       0.18154684    Trial     4 %nhE588xf  
    Mean        0.35770970 StU9r0`  
    Std Dev     0.11156454 ]:.9:RmEV  
    d/lV+yZ  
    >;+q,U}  
    Compensator Statistics: S3gd'Bahq  
    Change in back focus: 2-beq<I  
    Minimum            :        -1.354815 KEo?Cy?%ff  
    Maximum            :         1.611296 t(Gg 1  
    Mean               :         0.161872 %H3 M0J2L  
    Standard Deviation :         0.869664 2 >/}-a  
    `gz/?q  
    90% >       0.20977951               V=)' CCi{  
    80% >       0.22748071               TnJJ& "~3b  
    50% >       0.38667627               2q ~y\fe  
    20% >       0.46553746               Eg4_kp0Lq  
    10% >       0.50064115                .4XX )f5  
    ZiC~8p_f  
    End of Run. ='Yg^:n  
    Vr hd\  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 `Hd~H  
    f{)nxd >#  
    Ao$|`Lgj=z  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Lc_cB`  
    1"~$(@oxG  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 v (=E R%  
    80% >       0.22748071                 SE6c3  
    50% >       0.38667627                 6 tl#AJ-  
    20% >       0.46553746                 dP=,<H#]m  
    10% >       0.50064115 GQDW}b8  
    qO[_8's8  
    最后这个数值是MTF值呢,还是MTF的公差? u,./,:O%=  
    OJD!Ar8Q  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   RaOLy \  
    gjk;An  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : D 9UM8Hxi  
    90% >       0.20977951                 ,&L}^Up  
    80% >       0.22748071                 dWdD^>8Ef  
    50% >       0.38667627                 rU6A^p\,  
    20% >       0.46553746                 !+]KxB   
    10% >       0.50064115 [&kz4_  
    ....... f~7V<v  
    3-'3w,  
    MjWxfW/  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   0Ua=&;/2  
    Mode                : Sensitivities a$Hq<~46  
    Sampling            : 2 cL][sI  
    Nominal Criterion   : 0.54403234 #jd.i  
    Test Wavelength     : 0.6328 |>Fz:b d  
    SlwQ_F"4L  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? -m@PqJF^  
    lQBE q"7$  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试