切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16189阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜  gB\T[RV  
    0U66y6  
    )oo~m\`  
    {qKxz9.y  
    然后添加了默认公差分析,基本没变 IM=bK U  
    E{=2\Wkcp  
    qo+N,x9o  
    [~W`E1,  
    然后运行分析的结果如下: 89{HJ9}  
    zWw2V}U!  
    Analysis of Tolerances })vOaYT|-  
    [MX;,%;;  
    File : E:\光学设计资料\zemax练习\f500.ZMX 5q{h 2).)  
    Title: B}OY /J/*8  
    Date : TUE JUN 21 2011 r%wA&FQ8U  
    /9Q3iV$I]  
    Units are Millimeters. CZ 2`H[8  
    All changes are computed using linear differences. g}&hl"j  
    Y9SGRV(  
    Paraxial Focus compensation only. 78n=nHS  
    \u`)kJ5o1  
    WARNING: Solves should be removed prior to tolerancing. Ot&:mT!2  
    SEQ%'E5-'  
    Mnemonics: jD) {I  
    TFRN: Tolerance on curvature in fringes. DG(7|`(aY  
    TTHI: Tolerance on thickness. #Z=tJ  
    TSDX: Tolerance on surface decentering in x. kI*(V [i  
    TSDY: Tolerance on surface decentering in y. | sqZ$Mu  
    TSTX: Tolerance on surface tilt in x (degrees). Jsg I'  
    TSTY: Tolerance on surface tilt in y (degrees). ~:;3uL s,8  
    TIRR: Tolerance on irregularity (fringes). di9!lS$  
    TIND: Tolerance on Nd index of refraction. .=9 s1 ~]  
    TEDX: Tolerance on element decentering in x. ocwG7J\W  
    TEDY: Tolerance on element decentering in y. sK$wN4k  
    TETX: Tolerance on element tilt in x (degrees). XXmE+aI  
    TETY: Tolerance on element tilt in y (degrees). JL}\*  
    rgIrr5  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 2J;`m_oP  
    \a "Ct'  
    WARNING: Boundary constraints on compensators will be ignored. 9z m|Lbj  
    O@8pC+#`Z  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm vY6W|<s  
    Mode                : Sensitivities U IJx*  
    Sampling            : 2 %/"Oxi^G  
    Nominal Criterion   : 0.54403234 FHy76^h>e  
    Test Wavelength     : 0.6328 Itm8b4e9;  
    {!ZyCi19  
    @54*.q$  
    Fields: XY Symmetric Angle in degrees ]>##`X  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY oqkVYlE  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 i;\s.wrzH  
    v|Jlf$>  
    Sensitivity Analysis: 6,Hqb<(  
    hVoNw6fE  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| fT:}Lj\L1  
    Type                      Value      Criterion        Change          Value      Criterion        Change O/AE}]  
    Fringe tolerance on surface 1 BJjx|VA+  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 XR# ;{p+b  
    Change in Focus                :      -0.000000                            0.000000 KHiFJ_3  
    Fringe tolerance on surface 2 LDT(]HJ  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 (Ha@s^?.C  
    Change in Focus                :       0.000000                            0.000000 H(+<)qH  
    Fringe tolerance on surface 3 =Cf ]  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ,a|@d} U  
    Change in Focus                :      -0.000000                            0.000000 9pWy"h$H  
    Thickness tolerance on surface 1 4\X||5.c  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 :bM+&EP  
    Change in Focus                :       0.000000                            0.000000 6y+b5-{'  
    Thickness tolerance on surface 2 -H(vL=  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Q}%tt=KD  
    Change in Focus                :       0.000000                           -0.000000 tgFJZA  
    Decenter X tolerance on surfaces 1 through 3 HP2wtN{Zs  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Pd=,$UQp  
    Change in Focus                :       0.000000                            0.000000 l?N`{ ,1^  
    Decenter Y tolerance on surfaces 1 through 3 ucYkxi`x  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 a^nAZ  
    Change in Focus                :       0.000000                            0.000000 \9c$`nn  
    Tilt X tolerance on surfaces 1 through 3 (degrees) g1m-+a  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 y+mElG$F  
    Change in Focus                :       0.000000                            0.000000 A;K(J4y*  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) pck>;V  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 {5:Zl<0  
    Change in Focus                :       0.000000                            0.000000 >mu)/kl  
    Decenter X tolerance on surface 1 _"f  :`  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671  <dR,'  
    Change in Focus                :       0.000000                            0.000000 "Tbnxx]J  
    Decenter Y tolerance on surface 1 G"s0GpvQ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 `_AM` >_  
    Change in Focus                :       0.000000                            0.000000 vS; '}N  
    Tilt X tolerance on surface (degrees) 1 c,5n, i  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ,\ldz(D?+  
    Change in Focus                :       0.000000                            0.000000 <HoAj"xf  
    Tilt Y tolerance on surface (degrees) 1 gy_$#e  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 $%qg"  
    Change in Focus                :       0.000000                            0.000000 LVtu*k   
    Decenter X tolerance on surface 2 kl7A^0Qrz  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 H3FW52pjX  
    Change in Focus                :       0.000000                            0.000000 GG-[`!>.pw  
    Decenter Y tolerance on surface 2 3P=w =~e  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 : iCM=k  
    Change in Focus                :       0.000000                            0.000000 #!#z5DJu  
    Tilt X tolerance on surface (degrees) 2 4rB8Nm1  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ;b~~s.+  
    Change in Focus                :       0.000000                            0.000000 crmUrF#  
    Tilt Y tolerance on surface (degrees) 2 ~t/JCxa  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ?X_V#8JK  
    Change in Focus                :       0.000000                            0.000000 jz:gr=* z  
    Decenter X tolerance on surface 3 Y(i?M~3\t  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 |qUrEGjiSS  
    Change in Focus                :       0.000000                            0.000000 B4W\ t{  
    Decenter Y tolerance on surface 3 (Pi-uL<[a  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 *Zkss   
    Change in Focus                :       0.000000                            0.000000 UmP'L!  
    Tilt X tolerance on surface (degrees) 3 F-0UdV  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ! Tfij(91  
    Change in Focus                :       0.000000                            0.000000 "~$$  
    Tilt Y tolerance on surface (degrees) 3 Qlz Q]:dWC  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 RsSXhPk?  
    Change in Focus                :       0.000000                            0.000000 >Q2). E  
    Irregularity of surface 1 in fringes xb^ Mo.\[  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 vA?_-.J  
    Change in Focus                :       0.000000                            0.000000 H?:Jq\Ba0  
    Irregularity of surface 2 in fringes "bX4Q4Dq  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 [&VxaJ("3  
    Change in Focus                :       0.000000                            0.000000 TlPVHJyt  
    Irregularity of surface 3 in fringes U6{dI@|B  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 DX@}!6|T  
    Change in Focus                :       0.000000                            0.000000 Yo2Trh  
    Index tolerance on surface 1 olty4kGD$V  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 @-6?i)  
    Change in Focus                :       0.000000                            0.000000 'j79GC0  
    Index tolerance on surface 2 a-PGW2G  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 YFx=b!/ s  
    Change in Focus                :       0.000000                           -0.000000 njMLyT($  
    5u,sx664  
    Worst offenders: 7%CIt?Z%  
    Type                      Value      Criterion        Change zqGYOm$r  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 f5?hnt`m  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Z=9dMND  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 i$O#%12l  
    TSTX   2             0.20000000     0.35349910    -0.19053324 QkX@QQ T?  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 % 0v*n8  
    TSTY   1             0.20000000     0.42678383    -0.11724851 *i?.y*g  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 H1Xovr  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Zr"dOj$Jf  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 |h,FUj<r  
    TSTY   3             0.20000000     0.42861670    -0.11541563 D8/sz`N7Q  
    3wNN<R  
    Estimated Performance Changes based upon Root-Sum-Square method: kPJ~X0Fr{t  
    Nominal MTF                 :     0.54403234 FOp_[rR   
    Estimated change            :    -0.36299231 2u&c &G  
    Estimated MTF               :     0.18104003 OK\]*r  
    |Ow$n  
    Compensator Statistics: lIl9ypikg  
    Change in back focus: Q-Y@)Mf~?0  
    Minimum            :        -0.000000 @Z2/9K%1'  
    Maximum            :         0.000000 Fe4esg-B<  
    Mean               :        -0.000000 <4NQL*|>  
    Standard Deviation :         0.000000 WguV{#=H  
    M,{<TpCx  
    Monte Carlo Analysis: SRk7gfP*q  
    Number of trials: 20 AzX(~Qc  
    ,CW%JIM  
    Initial Statistics: Normal Distribution *]9XDc]{j1  
    p;ZDpR  
      Trial       Criterion        Change 2V<# Y  
          1     0.42804416    -0.11598818 2o}8W7y  
    Change in Focus                :      -0.400171 )fR1n}#  
          2     0.54384387    -0.00018847 gD40y\9r  
    Change in Focus                :       1.018470 dh,7iQ s  
          3     0.44510003    -0.09893230 7eH@n <]Y2  
    Change in Focus                :      -0.601922 mg/]4)SF  
          4     0.18154684    -0.36248550 _ ^3@PM>  
    Change in Focus                :       0.920681 _Fvsi3d/  
          5     0.28665820    -0.25737414 Sl~C0eO  
    Change in Focus                :       1.253875 e)og4  
          6     0.21263372    -0.33139862 Faw. GU  
    Change in Focus                :      -0.903878 ]=pWZ~A  
          7     0.40051424    -0.14351809 A3!2"}L  
    Change in Focus                :      -1.354815 C9+Dw#-f V  
          8     0.48754161    -0.05649072 qZc)Sa.S  
    Change in Focus                :       0.215922 L%4tw5*N  
          9     0.40357468    -0.14045766 ceI [hM  
    Change in Focus                :       0.281783 y7 <(,uT  
         10     0.26315315    -0.28087919 w5=EtKTi  
    Change in Focus                :      -1.048393 Ae3#>[]{  
         11     0.26120585    -0.28282649 p!V) 55J*  
    Change in Focus                :       1.017611 m&{rBz0  
         12     0.24033815    -0.30369419 33S`aJ  
    Change in Focus                :      -0.109292 4t(QvIydA  
         13     0.37164046    -0.17239188 ";58B} ki  
    Change in Focus                :      -0.692430 <#!8?o&i  
         14     0.48597489    -0.05805744 (N9`WuI  
    Change in Focus                :      -0.662040 :4b- sg#  
         15     0.21462327    -0.32940907 ;W =by2x*  
    Change in Focus                :       1.611296 @~Rk^/0  
         16     0.43378226    -0.11025008 {S# 5g2  
    Change in Focus                :      -0.640081 0$(jBnE  
         17     0.39321881    -0.15081353 *+# k{D,  
    Change in Focus                :       0.914906 Xek E#?.  
         18     0.20692530    -0.33710703 DwQp$l'NfW  
    Change in Focus                :       0.801607 <`b|L9  
         19     0.51374068    -0.03029165 9yp^zL  
    Change in Focus                :       0.947293 $Jt8d|UP  
         20     0.38013374    -0.16389860 ]lC4+{V  
    Change in Focus                :       0.667010 J\9jsx!WQ  
    F\l!A'Q+t  
    Number of traceable Monte Carlo files generated: 20 + >Fv*lux  
    m}sh I8S  
    Nominal     0.54403234 g!z8oPT  
    Best        0.54384387    Trial     2 FxMMxY,*%  
    Worst       0.18154684    Trial     4 Z7ZWf'o  
    Mean        0.35770970 [)B@  
    Std Dev     0.11156454 _p?I{1O  
    !k ;[^>  
    C5d/)aC  
    Compensator Statistics: VN1# 8{  
    Change in back focus: "1E?3PFJ  
    Minimum            :        -1.354815 vjY);aQ  
    Maximum            :         1.611296 PP~CZ2Fze  
    Mean               :         0.161872 .kz(V5  
    Standard Deviation :         0.869664 h6K!|-Gq.  
    H d96[Uo  
    90% >       0.20977951               $=X!nQ& Z|  
    80% >       0.22748071               dICnB:SSB  
    50% >       0.38667627               ;g!xQvcR  
    20% >       0.46553746               s2kGU^]y  
    10% >       0.50064115                3ytx"=B%  
    4"`=huQ  
    End of Run. @|JPE%T   
    n C\(+K1%  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 dpl"}+  
    fLf#2EA  
    |YMzp8Da(  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 gt(X!iN]  
    N GX-'w  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 C>\h?<s  
    80% >       0.22748071                 pfT`WT  
    50% >       0.38667627                 H_xQ>~b  
    20% >       0.46553746                 .j]OO/,  
    10% >       0.50064115 RLeSA\di  
    )SlUQ7f>  
    最后这个数值是MTF值呢,还是MTF的公差? v\r7.l:hf  
    %^)JaEUC  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   J_((o  
    !Barc ,kA  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : kI[O{<kQ  
    90% >       0.20977951                 #* /W!UOu  
    80% >       0.22748071                 5`{;hFl  
    50% >       0.38667627                 : R*^Izs=  
    20% >       0.46553746                 $?JLCa  
    10% >       0.50064115 _>)"+z^r  
    ....... m+8b2H:V  
    s2v#evI`+  
    "drh+oo.  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   GTIfrqT  
    Mode                : Sensitivities IEr`6|X  
    Sampling            : 2 +FKP5L}  
    Nominal Criterion   : 0.54403234 $cpQ7  
    Test Wavelength     : 0.6328 y#Sw>-zRq  
    LW 3J$Am  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ^V,/4u  
    5%aKlx9^#  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试