切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16660阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 %@P``  
    n26>>N  
    D M}s0O$ 0  
    JR)/c6j  
    然后添加了默认公差分析,基本没变 x<s|vgl|  
    #X5hS w;  
    =53b Lzr  
    U. (Tl>K|0  
    然后运行分析的结果如下: Ft) lp>3gv  
    tOM(U-7Z&  
    Analysis of Tolerances e />:K' {  
    YDFCGA  
    File : E:\光学设计资料\zemax练习\f500.ZMX ]^ #`j  
    Title: [sj VRW-  
    Date : TUE JUN 21 2011 )v1CC..  
    .'/l'>  
    Units are Millimeters. Yx),6C3  
    All changes are computed using linear differences. thptm  
    5oJ Dux }  
    Paraxial Focus compensation only. z,x" a  
     ,1 P[  
    WARNING: Solves should be removed prior to tolerancing. -\Z `z}D  
    W' ep6O  
    Mnemonics: ?'w sIH]m  
    TFRN: Tolerance on curvature in fringes. ik5|,#}m&  
    TTHI: Tolerance on thickness. 9 mPIykAj8  
    TSDX: Tolerance on surface decentering in x. ~{M@?8wi  
    TSDY: Tolerance on surface decentering in y. jo_ sAb  
    TSTX: Tolerance on surface tilt in x (degrees). ) * TF"  
    TSTY: Tolerance on surface tilt in y (degrees). e\9g->DUs  
    TIRR: Tolerance on irregularity (fringes). ax_YKJ5#P  
    TIND: Tolerance on Nd index of refraction. *b"CPg/\  
    TEDX: Tolerance on element decentering in x.  so fu  
    TEDY: Tolerance on element decentering in y. 8%ik853`  
    TETX: Tolerance on element tilt in x (degrees). P'tMu6+)  
    TETY: Tolerance on element tilt in y (degrees). Pz@/|&]  
    K%gP5>y*9>  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. *QH[,F`I  
    [N:BM% FQ  
    WARNING: Boundary constraints on compensators will be ignored. ZXt?[Ll  
    6^E`Sa! s  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm TsHF tj9S  
    Mode                : Sensitivities `G?qY8  
    Sampling            : 2 n+;vjVS%  
    Nominal Criterion   : 0.54403234 q8sb n  
    Test Wavelength     : 0.6328 [bjN f2  
    \A<v=VM|  
    -e ml  
    Fields: XY Symmetric Angle in degrees #hJQbv=B"  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY Au5rR>W  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 U =cWmH  
    F P@qh  
    Sensitivity Analysis: [se^.[0,  
    Oq+E6"<y;?  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| xU}M;4kH~  
    Type                      Value      Criterion        Change          Value      Criterion        Change OCnFEX"  
    Fringe tolerance on surface 1 |pW\Ec#(  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 l>&sIX  
    Change in Focus                :      -0.000000                            0.000000 DMZ`Sx  
    Fringe tolerance on surface 2 [w+Q^\%bN  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 N:x0w+Ca  
    Change in Focus                :       0.000000                            0.000000 UFENy."P  
    Fringe tolerance on surface 3 eko]H!Ov(  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 }U[-44r:  
    Change in Focus                :      -0.000000                            0.000000 KDey(DN:  
    Thickness tolerance on surface 1 Sj-[%D*  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 #$'FSy#  
    Change in Focus                :       0.000000                            0.000000 6t}XJB$+7  
    Thickness tolerance on surface 2 64U6C*w+  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 y3IWfiz>/d  
    Change in Focus                :       0.000000                           -0.000000 B~TN/sd  
    Decenter X tolerance on surfaces 1 through 3 n &}s-`D  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 M{G xjmdx  
    Change in Focus                :       0.000000                            0.000000 SDBt @=Nl  
    Decenter Y tolerance on surfaces 1 through 3 }1QF+C f  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Fr5 Xp  
    Change in Focus                :       0.000000                            0.000000 "!L kp2\  
    Tilt X tolerance on surfaces 1 through 3 (degrees) saW!9HQj  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 S " pI  
    Change in Focus                :       0.000000                            0.000000 Gt~JA0+C)7  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) (V?@?25  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 u) *Kws  
    Change in Focus                :       0.000000                            0.000000 m 22wF>9  
    Decenter X tolerance on surface 1 `ZGcgO<c\  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 yn~P{}68  
    Change in Focus                :       0.000000                            0.000000 G/{ ~_&t  
    Decenter Y tolerance on surface 1 9B/1*+ M  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 B9M>e'H%<  
    Change in Focus                :       0.000000                            0.000000 N:W9},  
    Tilt X tolerance on surface (degrees) 1 fKkjn4&W  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 /1fwl5\  
    Change in Focus                :       0.000000                            0.000000 R^8{bP  
    Tilt Y tolerance on surface (degrees) 1 y=H@6$2EQ  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 U<bYFuS"  
    Change in Focus                :       0.000000                            0.000000 l [%lE  
    Decenter X tolerance on surface 2 /fwgqFVk  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 =+oZtP-+o  
    Change in Focus                :       0.000000                            0.000000 gx;O6S{  
    Decenter Y tolerance on surface 2 P} r)wAt  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Gr)-5qh  
    Change in Focus                :       0.000000                            0.000000 x-_vl 9P)  
    Tilt X tolerance on surface (degrees) 2 o""~jc~  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 g7V_ [R(6  
    Change in Focus                :       0.000000                            0.000000 p;%<mUI  
    Tilt Y tolerance on surface (degrees) 2 6 hiC?2b{x  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 {a "RXa  
    Change in Focus                :       0.000000                            0.000000 C-SLjJw  
    Decenter X tolerance on surface 3 ;BBpN`T  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 NQLiWz-q  
    Change in Focus                :       0.000000                            0.000000 -[]';f4]M  
    Decenter Y tolerance on surface 3 2 ZG@!Y|  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 %Fft R1"  
    Change in Focus                :       0.000000                            0.000000 pFO^/P'  
    Tilt X tolerance on surface (degrees) 3 ( ?Q|s,  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 `X -<$x  
    Change in Focus                :       0.000000                            0.000000 ~F[L4y!sL  
    Tilt Y tolerance on surface (degrees) 3 ?[TW<Yx  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 UI?=]"  
    Change in Focus                :       0.000000                            0.000000 QK <\kVZ8  
    Irregularity of surface 1 in fringes j _ ;fWBD:  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 WS,7dz  
    Change in Focus                :       0.000000                            0.000000 Mv|!2 [:  
    Irregularity of surface 2 in fringes '`l K'5;  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 xsP4\C>  
    Change in Focus                :       0.000000                            0.000000 u"+}I,'L  
    Irregularity of surface 3 in fringes 5*G%IR@@LK  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ];FtS>\x  
    Change in Focus                :       0.000000                            0.000000 Zb(t3I>n  
    Index tolerance on surface 1 *g$i5!yM'  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 `W5-.Tv  
    Change in Focus                :       0.000000                            0.000000 O\Eqr?%L)  
    Index tolerance on surface 2 wNDbHR  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 jk7 0u[\  
    Change in Focus                :       0.000000                           -0.000000 "wM1qX  
    n=!uNu7  
    Worst offenders: GyC)EFd  
    Type                      Value      Criterion        Change 2wlKBSON  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ,8VU&?`<}  
    TSTY   2             0.20000000     0.35349910    -0.19053324 bToq$%sCg  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 I/uy>*  
    TSTX   2             0.20000000     0.35349910    -0.19053324 !I8f#'p  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Yl({)qK{  
    TSTY   1             0.20000000     0.42678383    -0.11724851 j43$]'-  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 qqOFr!)g  
    TSTX   1             0.20000000     0.42678383    -0.11724851 #R5U   
    TSTY   3            -0.20000000     0.42861670    -0.11541563 8Y{s;U0n  
    TSTY   3             0.20000000     0.42861670    -0.11541563 mTf<  
    HW[L [&/  
    Estimated Performance Changes based upon Root-Sum-Square method: wk $,k  
    Nominal MTF                 :     0.54403234 Q{y{rC2P  
    Estimated change            :    -0.36299231 jRj=Awy  
    Estimated MTF               :     0.18104003 Y83GKh,*  
    82:Wvp6  
    Compensator Statistics: PHr a+NY#A  
    Change in back focus: C/tr$.2H=  
    Minimum            :        -0.000000 b2) \ MNH  
    Maximum            :         0.000000 <$i4?)f(  
    Mean               :        -0.000000 wL{qD  
    Standard Deviation :         0.000000 :T@r*7hNT  
    w{,4rk;Hr  
    Monte Carlo Analysis: 8]"(!i_;)  
    Number of trials: 20 )K]pnH|  
    qx)?buAij  
    Initial Statistics: Normal Distribution Sc$UZ/qPT  
    HuI`#.MpWE  
      Trial       Criterion        Change )D@~|j:  
          1     0.42804416    -0.11598818 d7Ro}>lp  
    Change in Focus                :      -0.400171 jna;0)  
          2     0.54384387    -0.00018847 !m y8AWO'  
    Change in Focus                :       1.018470 *@S@x{{s  
          3     0.44510003    -0.09893230 uzU{z;  
    Change in Focus                :      -0.601922 WxUxc75  
          4     0.18154684    -0.36248550 WlVl[/qt  
    Change in Focus                :       0.920681 u$*>`Xe6  
          5     0.28665820    -0.25737414 #@f[bP}a  
    Change in Focus                :       1.253875 ZxHJ<2oD  
          6     0.21263372    -0.33139862 f~h~5  
    Change in Focus                :      -0.903878 \k@$~}xD,  
          7     0.40051424    -0.14351809 < n?=|g  
    Change in Focus                :      -1.354815 !iu5OX7K|  
          8     0.48754161    -0.05649072 $:bih4 @>  
    Change in Focus                :       0.215922 P~ 0Jg# V  
          9     0.40357468    -0.14045766 t~p y=\  
    Change in Focus                :       0.281783 1|| nR4yK  
         10     0.26315315    -0.28087919 A o/vp-e  
    Change in Focus                :      -1.048393 m VxO$A,  
         11     0.26120585    -0.28282649 +wfVL|.Wq  
    Change in Focus                :       1.017611 {})$ 99"x  
         12     0.24033815    -0.30369419 1y5Ex:JVZT  
    Change in Focus                :      -0.109292 AHbZQulC  
         13     0.37164046    -0.17239188 ~}ovuf=%  
    Change in Focus                :      -0.692430 HZjf`eM,  
         14     0.48597489    -0.05805744 [~mGsXV  
    Change in Focus                :      -0.662040 *I*i>==Z  
         15     0.21462327    -0.32940907 MQTdk*L_]  
    Change in Focus                :       1.611296 ?vtX"Fdz  
         16     0.43378226    -0.11025008 CboLH0Fa  
    Change in Focus                :      -0.640081 ?u$u?j|N  
         17     0.39321881    -0.15081353 ! fl4"  
    Change in Focus                :       0.914906 p9[6^rjx8  
         18     0.20692530    -0.33710703 R= 5 **  
    Change in Focus                :       0.801607 [ !%R#+o=F  
         19     0.51374068    -0.03029165 &1^%Nxu1  
    Change in Focus                :       0.947293 v/Pw9j!r;m  
         20     0.38013374    -0.16389860 6[ga$nF?  
    Change in Focus                :       0.667010 `N8 7 h"  
    `C72sA{M.  
    Number of traceable Monte Carlo files generated: 20 6[P-Ny{z  
    `lpz-"EEV  
    Nominal     0.54403234 4ne5=YY *  
    Best        0.54384387    Trial     2 &Z^(y}jPr  
    Worst       0.18154684    Trial     4 )}lRd#V  
    Mean        0.35770970 %&blJ6b  
    Std Dev     0.11156454 "M H6fF  
    XEH}4;C'{  
    kI\tqNJi  
    Compensator Statistics: x~DLW1I  
    Change in back focus: PGn);Baq  
    Minimum            :        -1.354815 nHOr AD|&  
    Maximum            :         1.611296 =t0tK}Y+4  
    Mean               :         0.161872 >t+ qe/  
    Standard Deviation :         0.869664 =\kMXB  
    ^krk&rW3  
    90% >       0.20977951               %:9oDK  
    80% >       0.22748071               e{w>%)rcP  
    50% >       0.38667627               X]j)+DX>  
    20% >       0.46553746               + %*&.@z_  
    10% >       0.50064115                D56<fg$  
    YV'pVO'_+  
    End of Run. |`rJJFA  
    7L(e h7  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 p.JXS n  
    S/A1RUt  
    n{5NNV6  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 W[''Cc.  
    @r7:NU}  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 vG.9 H_&  
    80% >       0.22748071                 5r,r%{@K  
    50% >       0.38667627                 vXj<  
    20% >       0.46553746                 T<b+s#n4  
    10% >       0.50064115 ?knYY>Kzh1  
    aG`;OgrH  
    最后这个数值是MTF值呢,还是MTF的公差? .3qu9eP   
    KP"%Rm`XN  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Z=S>0|`R  
    h11.'Eej`  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : W/ay.I  
    90% >       0.20977951                 m(iR|Zx  
    80% >       0.22748071                 ppIbjt6r  
    50% >       0.38667627                 V! |qYM.  
    20% >       0.46553746                 ''OfS D_g  
    10% >       0.50064115  Qe"pW\  
    ....... fQK"h  
    T=a=B(  
    \<0B1m  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Il@Y|hK  
    Mode                : Sensitivities q}BzyC=:n  
    Sampling            : 2 [[~w0G~1  
    Nominal Criterion   : 0.54403234 %Pqk63QF  
    Test Wavelength     : 0.6328 s#Jh -+lM  
    l=N2lHU  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? h0oMTiA  
    +(D$9{y   
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试