切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16438阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 K)9Rw2-AJ  
    }K5okxio  
    la}cGZ; p.  
    +n<W#O %  
    然后添加了默认公差分析,基本没变 shR|  
    /J(vqYK"  
    n@L@pgo%~  
    %Z p|1J'"  
    然后运行分析的结果如下: ve+bR   
    %fnG v\uI  
    Analysis of Tolerances _, E/HAX  
     l5 ]  
    File : E:\光学设计资料\zemax练习\f500.ZMX 9Z21|5  
    Title: HB{'MBs  
    Date : TUE JUN 21 2011 bZ_TW9mq  
    \%7fm#z6  
    Units are Millimeters. O}w%$ mq  
    All changes are computed using linear differences. wBvVY3VQ^  
    sopf-g:  
    Paraxial Focus compensation only. j XH9P q4  
    Af\  
    WARNING: Solves should be removed prior to tolerancing. )3)7zulnXH  
    ;?k<L\zaw  
    Mnemonics: ! Sw=ns7  
    TFRN: Tolerance on curvature in fringes. M!kSt1  
    TTHI: Tolerance on thickness. 1+gFfKq  
    TSDX: Tolerance on surface decentering in x. sPG500=)  
    TSDY: Tolerance on surface decentering in y. r ^\(M {  
    TSTX: Tolerance on surface tilt in x (degrees). n\M8>9c  
    TSTY: Tolerance on surface tilt in y (degrees). R*!s'R  
    TIRR: Tolerance on irregularity (fringes). uIbAlE  
    TIND: Tolerance on Nd index of refraction. <=V{tl  
    TEDX: Tolerance on element decentering in x. op\$(7<d-  
    TEDY: Tolerance on element decentering in y. x9AFN  
    TETX: Tolerance on element tilt in x (degrees). Lg~C:BN F  
    TETY: Tolerance on element tilt in y (degrees). l^d'8n  
    yQ$]`hr;  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. .9J}Z^FD  
    _3:%b6&Pz  
    WARNING: Boundary constraints on compensators will be ignored. )|vy}Jf7  
    vJaWHC$q  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm +ZwoA_k{  
    Mode                : Sensitivities l=b!O  
    Sampling            : 2 0ki- /{;  
    Nominal Criterion   : 0.54403234 "p*'HQ  
    Test Wavelength     : 0.6328 p_g`f9q6D  
    BvsSrse  
    1*yxSU@uY  
    Fields: XY Symmetric Angle in degrees lOp. c U  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY I8YUq   
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 SAdE9L =d  
    bD0l^?Hu!  
    Sensitivity Analysis: -2; 6Pwmv  
    jLVG=rOn  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| YR*gO TD  
    Type                      Value      Criterion        Change          Value      Criterion        Change y]0O"X-G  
    Fringe tolerance on surface 1 s*[ I"iE  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 }L)[>  
    Change in Focus                :      -0.000000                            0.000000 IJ&Lk=2E]  
    Fringe tolerance on surface 2 ^8;MY5Wbs  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 5h&sdzfG  
    Change in Focus                :       0.000000                            0.000000 A1INaL  
    Fringe tolerance on surface 3 ^hiY6N &  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 RARA_tii  
    Change in Focus                :      -0.000000                            0.000000 mmbe.$73  
    Thickness tolerance on surface 1 ~t~[@2?WG  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7H5VzV  
    Change in Focus                :       0.000000                            0.000000 \1jThJn  
    Thickness tolerance on surface 2 zXx/\B$&d*  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 XZ~kXE;B(  
    Change in Focus                :       0.000000                           -0.000000 X'jyR:ut#  
    Decenter X tolerance on surfaces 1 through 3 g ns}%\,  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 9gcW;  
    Change in Focus                :       0.000000                            0.000000 &U7v=a  
    Decenter Y tolerance on surfaces 1 through 3 I09 W=  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Tj#S')s8  
    Change in Focus                :       0.000000                            0.000000 2+rT .GFc  
    Tilt X tolerance on surfaces 1 through 3 (degrees) v*?8:>:}  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 le\-h'D  
    Change in Focus                :       0.000000                            0.000000 S(Afo`  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 'RV96lX<  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 wn5OgXxG<  
    Change in Focus                :       0.000000                            0.000000 ]JjS$VMauX  
    Decenter X tolerance on surface 1 7DJEx~"!2-  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 PPB/-F]rr  
    Change in Focus                :       0.000000                            0.000000 hm1s~@oEm  
    Decenter Y tolerance on surface 1 XnZ$ %?$  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 FC] *^B  
    Change in Focus                :       0.000000                            0.000000 A.vAk''(}+  
    Tilt X tolerance on surface (degrees) 1 Tse#{  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Gu*y7I8  
    Change in Focus                :       0.000000                            0.000000 22ON=NN  
    Tilt Y tolerance on surface (degrees) 1 k_,7#:+  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Xx{| [2`  
    Change in Focus                :       0.000000                            0.000000 ICN>kJ\;M  
    Decenter X tolerance on surface 2 O~*i_t*i9{  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 %xlpOR4  
    Change in Focus                :       0.000000                            0.000000 j~k,d.17M  
    Decenter Y tolerance on surface 2 *~)6 sm  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 (Lgea  
    Change in Focus                :       0.000000                            0.000000 no3yzF3Hi  
    Tilt X tolerance on surface (degrees) 2 n?fy@R  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 YCD |lL#  
    Change in Focus                :       0.000000                            0.000000 TRGpE9i  
    Tilt Y tolerance on surface (degrees) 2 v`Jt+?I  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 o~~;I  
    Change in Focus                :       0.000000                            0.000000 .D 4G;=Q  
    Decenter X tolerance on surface 3 jg710.v:  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 'Gn>~m  
    Change in Focus                :       0.000000                            0.000000 ojy^ A  
    Decenter Y tolerance on surface 3 <R7{W"QTA)  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 O`~#X w  
    Change in Focus                :       0.000000                            0.000000 lV$JCNe  
    Tilt X tolerance on surface (degrees) 3 -wXeue},>  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 r E+B}O  
    Change in Focus                :       0.000000                            0.000000 .t_t)'L  
    Tilt Y tolerance on surface (degrees) 3 GQtNk<?$I  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 4=^_VDlpd  
    Change in Focus                :       0.000000                            0.000000 BYq80Vk%@  
    Irregularity of surface 1 in fringes UH!(`Z\C  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 r @4A% ql<  
    Change in Focus                :       0.000000                            0.000000 y|6n:<o  
    Irregularity of surface 2 in fringes XGB\rf vS  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 a<<4gXx  
    Change in Focus                :       0.000000                            0.000000 NfvPE]S  
    Irregularity of surface 3 in fringes *6/IO&y1a  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 )%K<pIk  
    Change in Focus                :       0.000000                            0.000000 c*)T4n[e  
    Index tolerance on surface 1 MT-Tt  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 L]kBY2c  
    Change in Focus                :       0.000000                            0.000000 *D?_,s  
    Index tolerance on surface 2 k_7m[o  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ^O_Z5NbC3  
    Change in Focus                :       0.000000                           -0.000000 oV vA`}  
    wb$uq/|  
    Worst offenders: CeYhn\m5K0  
    Type                      Value      Criterion        Change CVfV    
    TSTY   2            -0.20000000     0.35349910    -0.19053324 +Uq|Yh'Q  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Iq + N0G<j  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 RsZj  
    TSTX   2             0.20000000     0.35349910    -0.19053324 M`cxxDj&j  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 z%D7x5!,R  
    TSTY   1             0.20000000     0.42678383    -0.11724851 FgH7YkKrD  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 9^}&PEl  
    TSTX   1             0.20000000     0.42678383    -0.11724851 '0HOL)cIz  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 N{v)pu.  
    TSTY   3             0.20000000     0.42861670    -0.11541563 !/}3/iU  
    I\Op/`_=E  
    Estimated Performance Changes based upon Root-Sum-Square method: j9+4},>>CU  
    Nominal MTF                 :     0.54403234 ]>X_E%`G<b  
    Estimated change            :    -0.36299231 8gS7$ EH'  
    Estimated MTF               :     0.18104003 Tvx1+0Z%z  
    ?@'&<o0p#  
    Compensator Statistics: *BsK6iVb  
    Change in back focus: Zonjk%tC  
    Minimum            :        -0.000000 x"b'Pmw  
    Maximum            :         0.000000 |[.-pA^  
    Mean               :        -0.000000 TDH^x1P  
    Standard Deviation :         0.000000 |oPRP1F-;e  
    c2P}P* _  
    Monte Carlo Analysis: 4,)9@-|0R  
    Number of trials: 20 #LasTN9  
    ,Pa*; o\  
    Initial Statistics: Normal Distribution ?9~^QRLT  
    pl]|yIZ  
      Trial       Criterion        Change XO <0;9|  
          1     0.42804416    -0.11598818 ME)Tx3d  
    Change in Focus                :      -0.400171 1wR[nBg*|  
          2     0.54384387    -0.00018847 yNvAT>H  
    Change in Focus                :       1.018470 QC+ Z6WS;  
          3     0.44510003    -0.09893230 )]P(!hW.  
    Change in Focus                :      -0.601922 1&MCS%UTL  
          4     0.18154684    -0.36248550 t /+;#-  
    Change in Focus                :       0.920681 Cab.a)o  
          5     0.28665820    -0.25737414 r)^sHpK:`  
    Change in Focus                :       1.253875 xgk~%X%K  
          6     0.21263372    -0.33139862 *JJ8\R&P0  
    Change in Focus                :      -0.903878 '9}&@;-_  
          7     0.40051424    -0.14351809 {'IO  
    Change in Focus                :      -1.354815 g{'f%bkG  
          8     0.48754161    -0.05649072 &aRL}#U  
    Change in Focus                :       0.215922 Tdi^P}i_  
          9     0.40357468    -0.14045766 \FsA-W\X  
    Change in Focus                :       0.281783 N68mvBe  
         10     0.26315315    -0.28087919 KsKE#])&l  
    Change in Focus                :      -1.048393 $*0-+h  
         11     0.26120585    -0.28282649 -#ZLu.  
    Change in Focus                :       1.017611 hY&Yp^"}]^  
         12     0.24033815    -0.30369419 gC1LQ!:;Oi  
    Change in Focus                :      -0.109292 -pC'C%Q  
         13     0.37164046    -0.17239188 ZO<,V  
    Change in Focus                :      -0.692430 OFtaOjsyUa  
         14     0.48597489    -0.05805744 &ksuk9M  
    Change in Focus                :      -0.662040 >PA*L(Dh%  
         15     0.21462327    -0.32940907 ,U\ s89  
    Change in Focus                :       1.611296 zH]oAu=H  
         16     0.43378226    -0.11025008 Tx.N#,T|  
    Change in Focus                :      -0.640081 =dGp&9K,fw  
         17     0.39321881    -0.15081353 K%J?'-  
    Change in Focus                :       0.914906 *)E${\1'<  
         18     0.20692530    -0.33710703 5Y *4a%"  
    Change in Focus                :       0.801607 .y s_'F-]0  
         19     0.51374068    -0.03029165 E f\|3D_  
    Change in Focus                :       0.947293 |]< 3cW+  
         20     0.38013374    -0.16389860 x9 > ho  
    Change in Focus                :       0.667010  t;o\"H  
    }B-$}  
    Number of traceable Monte Carlo files generated: 20 "-&K!Vfs  
    u}%OC43  
    Nominal     0.54403234 MH.+pqIv^  
    Best        0.54384387    Trial     2 uRb48Qy2  
    Worst       0.18154684    Trial     4 2_wue49-l  
    Mean        0.35770970 F*KQhH7Gf  
    Std Dev     0.11156454 DzpWU8j  
    0b{jox\!B  
    Jw]!x1rF~  
    Compensator Statistics: !,`'VQw$  
    Change in back focus: hju^x8 ,=m  
    Minimum            :        -1.354815 U"r*kO%  
    Maximum            :         1.611296 u !BU^@P  
    Mean               :         0.161872 Y+"1'W  
    Standard Deviation :         0.869664 G=cRdiy`C  
    x {NBhq(4  
    90% >       0.20977951               .) Ej#mk  
    80% >       0.22748071               $4{sP Hi)I  
    50% >       0.38667627               }+!"mJx@  
    20% >       0.46553746               IH`Q=Pj  
    10% >       0.50064115                + +L7*1t  
    @6 "MhF  
    End of Run. tNY;wl:wp  
    d~<$J9%  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 |Y!^E % *  
    <W0(!<U  
    xQ"uC!Gu4  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Z,)H f  
    #f#6u2nF\  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 x_7$g<n  
    80% >       0.22748071                 5mAb9F8@  
    50% >       0.38667627                  C O6}D  
    20% >       0.46553746                 !mK()#6  
    10% >       0.50064115 m@ <,bZkl  
    RZxh"lIo  
    最后这个数值是MTF值呢,还是MTF的公差? HW[&q  
    K["rr/  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   BQfnoF  
    ;jgf,fbM  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : &K!0yR  
    90% >       0.20977951                 7/&taw%i  
    80% >       0.22748071                 &pl)E$Y  
    50% >       0.38667627                 ]l }v  
    20% >       0.46553746                 L]=mQo  
    10% >       0.50064115 ?p6@uM\Q7  
    ....... {B=64,D^7R  
    oTk\r$4eb  
    FXk*zXn6  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Z>`frL  
    Mode                : Sensitivities Hv"qRuQ?[  
    Sampling            : 2 y[f%0*\B  
    Nominal Criterion   : 0.54403234 xxGQXW  
    Test Wavelength     : 0.6328 ='I2&I,)  
    U0|wC,7"  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? $W;r S7b  
     1A]   
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试