切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16113阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 d=D-s  
    jr=9.=jI8k  
    !Y ,7%  
    wXIRn?z  
    然后添加了默认公差分析,基本没变 $G".PWc  
    eFG/!b<17  
    5(+9a   
    #*o0n>O  
    然后运行分析的结果如下: Zw]"p63eMa  
    o-\h;aQJ  
    Analysis of Tolerances WC#6(H5t$  
    XQo\27Fo  
    File : E:\光学设计资料\zemax练习\f500.ZMX ~*HQPp?v  
    Title: 2_q/<8t  
    Date : TUE JUN 21 2011 9{u=  
    @G4Z  
    Units are Millimeters. g-eJan&]N  
    All changes are computed using linear differences. (/A.,8Ad  
    MTu\T  
    Paraxial Focus compensation only. D0Dz@25-  
    f/)Y {kS6  
    WARNING: Solves should be removed prior to tolerancing. e9{ii2M  
    }J#HIE\RG  
    Mnemonics: M+ +Dk7B  
    TFRN: Tolerance on curvature in fringes. t#^Cem<  
    TTHI: Tolerance on thickness. cYA:k  
    TSDX: Tolerance on surface decentering in x. !D=!  
    TSDY: Tolerance on surface decentering in y. tgF~5 o}?  
    TSTX: Tolerance on surface tilt in x (degrees). t<45[~[  
    TSTY: Tolerance on surface tilt in y (degrees). GW A T0  
    TIRR: Tolerance on irregularity (fringes). &;DCN  
    TIND: Tolerance on Nd index of refraction. ;/Hr ZhOE  
    TEDX: Tolerance on element decentering in x. 4fi4F1f  
    TEDY: Tolerance on element decentering in y. 9hzu!}~'I  
    TETX: Tolerance on element tilt in x (degrees). %g9y m@s  
    TETY: Tolerance on element tilt in y (degrees). w!m4>w  
    1CC0]pyHX  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. //&3{B  
    }F>RI jj  
    WARNING: Boundary constraints on compensators will be ignored. i]ZGq7YJ%  
    rS [4Pey  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm k8s)PN  
    Mode                : Sensitivities evyjHcCx  
    Sampling            : 2 &]TniQH  
    Nominal Criterion   : 0.54403234 b 7sfr!t_d  
    Test Wavelength     : 0.6328 WsHD Ip  
    d:'{h"M6  
    9K$ x2U  
    Fields: XY Symmetric Angle in degrees c}@E@Y`@w  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 9C7Npf?~M  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 <Y`(J#  
    %e:+@%]  
    Sensitivity Analysis: {,Z|8@Sl%  
    _ s 3aaOL  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| OC&BJNOi  
    Type                      Value      Criterion        Change          Value      Criterion        Change *$9U/  d  
    Fringe tolerance on surface 1 #w;"s*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Tb] 7# v  
    Change in Focus                :      -0.000000                            0.000000 T6/P54S  
    Fringe tolerance on surface 2 >#h,q|B  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 bPTtA;u  
    Change in Focus                :       0.000000                            0.000000 KpGx<+0p  
    Fringe tolerance on surface 3 2bCfY\k  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 "mn?*  
    Change in Focus                :      -0.000000                            0.000000 fq>{5ODO  
    Thickness tolerance on surface 1 "~VKUvDu  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 `+Nv =vk  
    Change in Focus                :       0.000000                            0.000000 + E{[j  
    Thickness tolerance on surface 2 >~,~X9   
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 F > rr.  
    Change in Focus                :       0.000000                           -0.000000 F:jNv3W1  
    Decenter X tolerance on surfaces 1 through 3 ./I?|ih  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 (VO'Kd  
    Change in Focus                :       0.000000                            0.000000 _OGv2r  
    Decenter Y tolerance on surfaces 1 through 3 |M?s[}ll  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ?GX@&_  
    Change in Focus                :       0.000000                            0.000000 6 |=]i-8  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ^P,Pj z  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 fgqCX:SWz  
    Change in Focus                :       0.000000                            0.000000 T`^Jw s{;7  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) `\@n&y[`7  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 iY>P7Uvvz  
    Change in Focus                :       0.000000                            0.000000 %oqKpD+  
    Decenter X tolerance on surface 1 ASdW!4.p  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 3^P;mQ$p1  
    Change in Focus                :       0.000000                            0.000000 <zpxodM@T  
    Decenter Y tolerance on surface 1 <<-L,0  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Z,p@toj'  
    Change in Focus                :       0.000000                            0.000000  dw;<Q  
    Tilt X tolerance on surface (degrees) 1 b"\lF1Nf&o  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 GLIY!BU<C  
    Change in Focus                :       0.000000                            0.000000 ^U?Ac=  
    Tilt Y tolerance on surface (degrees) 1 =oVC*b  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 3rK\ f4'  
    Change in Focus                :       0.000000                            0.000000 bj`GGxzOb  
    Decenter X tolerance on surface 2 Hya.OW{  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 8d$|JN;)  
    Change in Focus                :       0.000000                            0.000000 kB?/_a`]  
    Decenter Y tolerance on surface 2 <cZ/_+H%C  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 jW7ffb `O  
    Change in Focus                :       0.000000                            0.000000 }J?,?>Z  
    Tilt X tolerance on surface (degrees) 2 CA|l| t^  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 "'t f]s  
    Change in Focus                :       0.000000                            0.000000 rV\G/)xL  
    Tilt Y tolerance on surface (degrees) 2 ,8zJD&HMx  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 n;Mk\*Cg  
    Change in Focus                :       0.000000                            0.000000 5=*i!c _m  
    Decenter X tolerance on surface 3 uhj]le!  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 A3.I|/  
    Change in Focus                :       0.000000                            0.000000 -'O|D}  
    Decenter Y tolerance on surface 3 [*u\S  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 `StuUa  
    Change in Focus                :       0.000000                            0.000000 y =sae  
    Tilt X tolerance on surface (degrees) 3 6|lsG6uf  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 :YRHO|  
    Change in Focus                :       0.000000                            0.000000 8D>5(Dg-  
    Tilt Y tolerance on surface (degrees) 3 !\|  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 i`52tH y_  
    Change in Focus                :       0.000000                            0.000000 :Z/\U*6~  
    Irregularity of surface 1 in fringes <V)z{uK  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 9BP'[SM%),  
    Change in Focus                :       0.000000                            0.000000 2!LDrvPP  
    Irregularity of surface 2 in fringes KaMg [ G  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 dSKvs"  
    Change in Focus                :       0.000000                            0.000000 P(yLRc  
    Irregularity of surface 3 in fringes _'mC*7+  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 v .*fJ   
    Change in Focus                :       0.000000                            0.000000 LK4NNZf7  
    Index tolerance on surface 1 N"<.v6Z  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 qi/k`T  
    Change in Focus                :       0.000000                            0.000000 OmkJP  
    Index tolerance on surface 2 IAzFwlO9  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 YJ6:O{AL1  
    Change in Focus                :       0.000000                           -0.000000 &x B^  
    )?OdD7gd  
    Worst offenders: @r[SqGa:  
    Type                      Value      Criterion        Change TDZ==<C  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 y$nI?:d  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Z,AY<[/C  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 8.jf6   
    TSTX   2             0.20000000     0.35349910    -0.19053324 Ax\d{0/oL2  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 -rYb{<;ST  
    TSTY   1             0.20000000     0.42678383    -0.11724851 _t"[p_llo  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 P<Z` 8a[  
    TSTX   1             0.20000000     0.42678383    -0.11724851 (Z @dz  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ~tTn7[!  
    TSTY   3             0.20000000     0.42861670    -0.11541563 G6{'|CV  
    ^w%%$9=:r  
    Estimated Performance Changes based upon Root-Sum-Square method: UrciCOQf  
    Nominal MTF                 :     0.54403234 PX?%}~ v  
    Estimated change            :    -0.36299231 h}'Hst  
    Estimated MTF               :     0.18104003 *tT}N@<%  
    UW}@oP$r  
    Compensator Statistics: 9i 9 ,X^=  
    Change in back focus: @D*PO-s9  
    Minimum            :        -0.000000 2gklGDJD  
    Maximum            :         0.000000 F{QOu0$cA4  
    Mean               :        -0.000000 iku*\,6W  
    Standard Deviation :         0.000000 <sm"3qs"_  
    !_3b#Caf  
    Monte Carlo Analysis: 49>b]f,Vc  
    Number of trials: 20 Z5oDj|&l}  
    d0}(d Gl  
    Initial Statistics: Normal Distribution M]k Q{(  
    !oXFDC3k  
      Trial       Criterion        Change f?^-JZ  
          1     0.42804416    -0.11598818 6ERMn"[_w  
    Change in Focus                :      -0.400171 aaf}AIL.  
          2     0.54384387    -0.00018847 &`s{-<t<L  
    Change in Focus                :       1.018470 LHx ")H?,  
          3     0.44510003    -0.09893230 -z. wAp  
    Change in Focus                :      -0.601922 6Q>:vQ+E  
          4     0.18154684    -0.36248550 `peR,E  
    Change in Focus                :       0.920681 K%L6UQ;  
          5     0.28665820    -0.25737414 :4 z\Q]  
    Change in Focus                :       1.253875 cy(w*5Upu  
          6     0.21263372    -0.33139862 p),* 4@2<  
    Change in Focus                :      -0.903878 T=~d. &J  
          7     0.40051424    -0.14351809 a;KdkykG  
    Change in Focus                :      -1.354815 A{-S )Z3}  
          8     0.48754161    -0.05649072 ;p~!('{P  
    Change in Focus                :       0.215922 B*}]'  
          9     0.40357468    -0.14045766 c\>I0HH;!  
    Change in Focus                :       0.281783 "|J6*s   
         10     0.26315315    -0.28087919 Q1|6;4L  
    Change in Focus                :      -1.048393 &R.5t/x_  
         11     0.26120585    -0.28282649 G na%|tUz|  
    Change in Focus                :       1.017611 2DsP "q79k  
         12     0.24033815    -0.30369419 ?kZ-,@h:  
    Change in Focus                :      -0.109292 Q\IViM  
         13     0.37164046    -0.17239188 uUx7>algF  
    Change in Focus                :      -0.692430 1}c /l<d  
         14     0.48597489    -0.05805744 SD*q+Si,1U  
    Change in Focus                :      -0.662040 h]~FYY  
         15     0.21462327    -0.32940907 #m UQ@X@K  
    Change in Focus                :       1.611296 b"#S92R+  
         16     0.43378226    -0.11025008 ;Q q_  
    Change in Focus                :      -0.640081 E(6P%(yt8  
         17     0.39321881    -0.15081353 |6?s?tC"u  
    Change in Focus                :       0.914906 S9$,.aq  
         18     0.20692530    -0.33710703 A)!W VT&2A  
    Change in Focus                :       0.801607 w+j\Py_G"  
         19     0.51374068    -0.03029165 "8ZV%%elp  
    Change in Focus                :       0.947293 'xai5X  
         20     0.38013374    -0.16389860 n2-+.9cY  
    Change in Focus                :       0.667010 rxol7"2l  
    F[O147&C  
    Number of traceable Monte Carlo files generated: 20 mh[,E8'd  
    3}phg  
    Nominal     0.54403234 z8S]FpM6  
    Best        0.54384387    Trial     2 `EMGrw_  
    Worst       0.18154684    Trial     4 Jia@HrLR  
    Mean        0.35770970 )S4ga  
    Std Dev     0.11156454 r6Vw!^]8u8  
    b p?TO]LH  
    c-NUD$  
    Compensator Statistics: mYJ8O$  
    Change in back focus: JBw2#ry  
    Minimum            :        -1.354815 ?P|z,n{  
    Maximum            :         1.611296 52# *{q}  
    Mean               :         0.161872 '>1M~B  
    Standard Deviation :         0.869664 fX,O9d$  
    /<[_V/g[t?  
    90% >       0.20977951               :O@n6%pSL  
    80% >       0.22748071               bxxLAWQ(  
    50% >       0.38667627               S?i^ ~  
    20% >       0.46553746               ?(B}w*G~  
    10% >       0.50064115                I+kL;YdS  
    $4ZV(j]  
    End of Run. sVP\EF8PY  
    Ufi#y<dP  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 O,^s)>c  
    >m%TUQ#%  
    0)h.[O8@>  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 8'3&z-  
    yVn%Bz' [  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 $`0^E#Nl  
    80% >       0.22748071                 d9e~><bPJ  
    50% >       0.38667627                 {#z47Rz  
    20% >       0.46553746                 t*BCpC }  
    10% >       0.50064115 UDcr5u eKn  
    9_&]7ABV  
    最后这个数值是MTF值呢,还是MTF的公差? GP ^^ K  
    A9DFZZ0  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   si]MQ\i+  
    Y@ ;/Sf$Q  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : !i{5mc \  
    90% >       0.20977951                 V )oKsO  
    80% >       0.22748071                 IJZx$8&A  
    50% >       0.38667627                 Q'^$;X~-<  
    20% >       0.46553746                 Fcn@j#[J  
    10% >       0.50064115 &_]bzTok  
    ....... /5f=a  
    ]e? L,1-  
    E,A9+OKxJ  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   t1o_x}z4.  
    Mode                : Sensitivities Q6PMRG}/o  
    Sampling            : 2 &:=[\Ws R  
    Nominal Criterion   : 0.54403234 )EsFy6K:  
    Test Wavelength     : 0.6328 PW*[(VX  
    P[P]oT.N  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? +tv"j;z  
    `n%8y I%  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试