切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16476阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Sj;:*jk!h  
    {'o\#4 Wk  
    mW#p&{  
    J6J; !~>_  
    然后添加了默认公差分析,基本没变 1ifPc5j}  
    lmx'w  
    Px`z$~*B:  
    `llSHsIkXb  
    然后运行分析的结果如下: TYedem<$  
    Y~ Nt9L  
    Analysis of Tolerances 8cbgP$X  
    41o ~5:&  
    File : E:\光学设计资料\zemax练习\f500.ZMX mk +BeK  
    Title: B0!W=T\  
    Date : TUE JUN 21 2011 Tl*FK?)MC^  
    _'P!>C!  
    Units are Millimeters. ~ym-Szo  
    All changes are computed using linear differences. "0{t~?ol  
    \)BDl  
    Paraxial Focus compensation only. SI;SnF'[7  
    r%II` i  
    WARNING: Solves should be removed prior to tolerancing. k5)e7Lb(  
    C6c]M@6  
    Mnemonics: MU~nvs;:  
    TFRN: Tolerance on curvature in fringes. xJ)vfo  
    TTHI: Tolerance on thickness. -;U3$[T,J7  
    TSDX: Tolerance on surface decentering in x. ;%Zn)etu  
    TSDY: Tolerance on surface decentering in y. } "AGX  
    TSTX: Tolerance on surface tilt in x (degrees). nNcmL/(  
    TSTY: Tolerance on surface tilt in y (degrees). <9Pf] G=  
    TIRR: Tolerance on irregularity (fringes). pAd SOR2  
    TIND: Tolerance on Nd index of refraction. !S[7IBk%  
    TEDX: Tolerance on element decentering in x. z*&r@P -  
    TEDY: Tolerance on element decentering in y. ]39A1&af}  
    TETX: Tolerance on element tilt in x (degrees). +#g?rCz  
    TETY: Tolerance on element tilt in y (degrees). B#(2,j7M  
    J/^|Y6  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. =#{i;CC%  
    8(0q,7)y  
    WARNING: Boundary constraints on compensators will be ignored. VTxLBFK;  
    30$Q5]T  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm O$ ;:5zT  
    Mode                : Sensitivities 2~SjRIpUw  
    Sampling            : 2 }\_[+@*EJ  
    Nominal Criterion   : 0.54403234 !_=3Dz  
    Test Wavelength     : 0.6328 P6o-H$ a+  
    w7X], auRC  
    DmgWIede|:  
    Fields: XY Symmetric Angle in degrees r!J?Lc])8  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY kDr0D$iE  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 N;d@)h(N!  
    (eJYv: ^  
    Sensitivity Analysis: `Hq)g1a7q  
    ;&G8e* bM2  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| olO&7jh7|  
    Type                      Value      Criterion        Change          Value      Criterion        Change ~85Pgb<  
    Fringe tolerance on surface 1 rWMG_eP:  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 \~bE|jWbj  
    Change in Focus                :      -0.000000                            0.000000 p;m2RHYF  
    Fringe tolerance on surface 2 (3+:/,{'$  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 1?bX$$y l;  
    Change in Focus                :       0.000000                            0.000000 _<1uO=km6  
    Fringe tolerance on surface 3 Um9]X@z  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 P(&9S`I  
    Change in Focus                :      -0.000000                            0.000000 o`]u&  
    Thickness tolerance on surface 1 FGG 7;0(  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 y!?l;xMS  
    Change in Focus                :       0.000000                            0.000000 -wjvD8fL  
    Thickness tolerance on surface 2 _oJq32  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ?H_'L4Wv  
    Change in Focus                :       0.000000                           -0.000000 %8lF%uu!x  
    Decenter X tolerance on surfaces 1 through 3 -(fvb  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 RxVf:h'l  
    Change in Focus                :       0.000000                            0.000000 T5+iX`#M  
    Decenter Y tolerance on surfaces 1 through 3 s`:-6{E  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 aj<=]=hr  
    Change in Focus                :       0.000000                            0.000000 \#; -C<[b  
    Tilt X tolerance on surfaces 1 through 3 (degrees) "' hc)58y  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 $}G03G@  
    Change in Focus                :       0.000000                            0.000000 =?/RaK/ w  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) x\Det$3Kx  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 UR&Uwa&.  
    Change in Focus                :       0.000000                            0.000000 2So7fZa^wg  
    Decenter X tolerance on surface 1 5B'};AQ  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 6T5nr  
    Change in Focus                :       0.000000                            0.000000 s]=s|  
    Decenter Y tolerance on surface 1 &k+'TcWm  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $6X CHVx  
    Change in Focus                :       0.000000                            0.000000 jWd 7>1R?  
    Tilt X tolerance on surface (degrees) 1 t%n3~i4X:  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 {IW pI *  
    Change in Focus                :       0.000000                            0.000000 `%x6;Ha  
    Tilt Y tolerance on surface (degrees) 1 =-c"~4  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 4S]`S\w  
    Change in Focus                :       0.000000                            0.000000 ;O2r+n  
    Decenter X tolerance on surface 2 e'c~;Z\A  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 FasA f( 3  
    Change in Focus                :       0.000000                            0.000000 ;@@1$mzK  
    Decenter Y tolerance on surface 2 OwwlQp ~!J  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 FSqS]6b3  
    Change in Focus                :       0.000000                            0.000000 O&!tW^ih  
    Tilt X tolerance on surface (degrees) 2 ncluA~8  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 9@-^! DBM  
    Change in Focus                :       0.000000                            0.000000 MU^7(s="  
    Tilt Y tolerance on surface (degrees) 2 %<oey%ue  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ~(xIG  
    Change in Focus                :       0.000000                            0.000000 uOqWMRsoi  
    Decenter X tolerance on surface 3 ,?+rM ;  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 $^Dx4:k<2  
    Change in Focus                :       0.000000                            0.000000 mlR*S<Z  
    Decenter Y tolerance on surface 3 szC~?]<YY  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 _-*Lj;^V  
    Change in Focus                :       0.000000                            0.000000 $e;_N4d^  
    Tilt X tolerance on surface (degrees) 3 I-NzGx2u  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 JU7EC~7|2c  
    Change in Focus                :       0.000000                            0.000000 i51~/ R  
    Tilt Y tolerance on surface (degrees) 3 i!jZZj-{  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Eg?6$[U`8<  
    Change in Focus                :       0.000000                            0.000000 ;(Q4x"?I  
    Irregularity of surface 1 in fringes .,pGW8Js  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 $-$^r;  
    Change in Focus                :       0.000000                            0.000000 xV'\2n=1T  
    Irregularity of surface 2 in fringes )g:\N8AZK  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 n\}!'>d'  
    Change in Focus                :       0.000000                            0.000000 |\ j'Z0  
    Irregularity of surface 3 in fringes SLL%XF~/Sb  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 H'E >QT  
    Change in Focus                :       0.000000                            0.000000 CUT D]:\  
    Index tolerance on surface 1 a[:0<Ek  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Vt:]D?\3  
    Change in Focus                :       0.000000                            0.000000 LXaT_3 ;  
    Index tolerance on surface 2 d_&R>GmR$  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 A e&t#,)  
    Change in Focus                :       0.000000                           -0.000000 E8WOXoP(  
    yVm~5Y&Z  
    Worst offenders: rS>JzbWa  
    Type                      Value      Criterion        Change q28i9$Yqj\  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 0A@'w*=  
    TSTY   2             0.20000000     0.35349910    -0.19053324 3~\mP\/4v  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 o Q= Q}  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ewqfs/  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 aE6 I|6W?  
    TSTY   1             0.20000000     0.42678383    -0.11724851 T=}(S4n#BX  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 zR/d:P?  
    TSTX   1             0.20000000     0.42678383    -0.11724851 <jT6|2'  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 R74kt36M  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ^ad p<?q4  
    2H_|Attoi  
    Estimated Performance Changes based upon Root-Sum-Square method: uh3%}2'P  
    Nominal MTF                 :     0.54403234 W6D|Rr.q  
    Estimated change            :    -0.36299231 _*1/4^  
    Estimated MTF               :     0.18104003 Uu{I4ls6B  
    'D8WNZ8Q  
    Compensator Statistics: Y25S:XHk9  
    Change in back focus: [K;J#0V+&L  
    Minimum            :        -0.000000 Qj? +R F6(  
    Maximum            :         0.000000 _niXl&C  
    Mean               :        -0.000000 |jV>  
    Standard Deviation :         0.000000 A^_BK(EY  
    kJqgY|  
    Monte Carlo Analysis: u-3A6Q  
    Number of trials: 20 rIg1]q  
    7wsn8_n9  
    Initial Statistics: Normal Distribution y~An'+yBa  
    j^T.7Zv  
      Trial       Criterion        Change y]aV7 `]  
          1     0.42804416    -0.11598818 ;sCf2TD,_  
    Change in Focus                :      -0.400171 7jT]J   
          2     0.54384387    -0.00018847 N;7Xt9l  
    Change in Focus                :       1.018470 zlZ$t{[,  
          3     0.44510003    -0.09893230 Rz1&(_Ps  
    Change in Focus                :      -0.601922 wQ qI@  
          4     0.18154684    -0.36248550 yf+M  
    Change in Focus                :       0.920681 *SQ hXTn  
          5     0.28665820    -0.25737414 ) f9f_^;  
    Change in Focus                :       1.253875 VS<E?JnbFV  
          6     0.21263372    -0.33139862 9S@PY_ms  
    Change in Focus                :      -0.903878 ulV)X/]1  
          7     0.40051424    -0.14351809 jXkz,]Iy  
    Change in Focus                :      -1.354815 Io*`hA]  
          8     0.48754161    -0.05649072 BB5(=n+  
    Change in Focus                :       0.215922 0&2(1  
          9     0.40357468    -0.14045766 I.TdYSB  
    Change in Focus                :       0.281783 EV| 6._Z(D  
         10     0.26315315    -0.28087919 $Zp\^cIE+  
    Change in Focus                :      -1.048393 %mPIr4$Pg  
         11     0.26120585    -0.28282649 )#z c$D^U  
    Change in Focus                :       1.017611 = ;#?CAa:  
         12     0.24033815    -0.30369419 $ 5ZBNGr  
    Change in Focus                :      -0.109292 z=B*s!G  
         13     0.37164046    -0.17239188 .ml24SeC  
    Change in Focus                :      -0.692430 S\K;h/;V  
         14     0.48597489    -0.05805744 m8;; O  
    Change in Focus                :      -0.662040 -hw^3Af  
         15     0.21462327    -0.32940907 MW8GM}Ho[  
    Change in Focus                :       1.611296 9 o6ig>C  
         16     0.43378226    -0.11025008 nS)U+q-x&o  
    Change in Focus                :      -0.640081 JsI` #  
         17     0.39321881    -0.15081353 6/Y3#d  
    Change in Focus                :       0.914906 HtB>#`'  
         18     0.20692530    -0.33710703 Hj't.lg+j  
    Change in Focus                :       0.801607 Y%y=  
         19     0.51374068    -0.03029165 )WavG1  
    Change in Focus                :       0.947293 p'fq&a+  
         20     0.38013374    -0.16389860 `"zXf-qeE  
    Change in Focus                :       0.667010 +<7~yZ[Z8  
    yEIM58l  
    Number of traceable Monte Carlo files generated: 20 ?U.+SQ  
    hAtf)  
    Nominal     0.54403234 9HrT>{@  
    Best        0.54384387    Trial     2 FIhq>L.q4  
    Worst       0.18154684    Trial     4 HpY-7QTPJ~  
    Mean        0.35770970 S[(Tpk2_  
    Std Dev     0.11156454 U;u@\E@2  
    UZ7Zzc#g  
    Jt5\  
    Compensator Statistics: @dei} !e  
    Change in back focus: m/uBM6SXx  
    Minimum            :        -1.354815 NovF?kh2  
    Maximum            :         1.611296 ,Bax0p  
    Mean               :         0.161872 P}hHx<L  
    Standard Deviation :         0.869664 LdnHz#  
    QG {KEj2V  
    90% >       0.20977951               _Y@vO  
    80% >       0.22748071               =n .d'  
    50% >       0.38667627               %0l'Nuz  
    20% >       0.46553746               b>SG5EqU@  
    10% >       0.50064115                KGb:NQ=O6i  
    )(yD"]co  
    End of Run. koDIxj'%X  
    xa#;<8 iV  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Qc1NLU9:  
    mh&wvT<:{  
    o;5 J=  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 1) 7n (  
    {2"8^;  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 j'L/eps?S  
    80% >       0.22748071                 P;~`%,+S  
    50% >       0.38667627                 >}~\*Y\8@  
    20% >       0.46553746                 s"OP[YEke/  
    10% >       0.50064115 rK` x<  
    v9*ugu[K9  
    最后这个数值是MTF值呢,还是MTF的公差? HKB?G~  
    .,({&L  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   H){}28dX  
    RBOb/.$  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ]5O]=^ u0  
    90% >       0.20977951                 PyoIhe&ep  
    80% >       0.22748071                 >d3`\(v-  
    50% >       0.38667627                 ]?7q%7-e.a  
    20% >       0.46553746                 nl-y0xD9c  
    10% >       0.50064115 Cut7  
    ....... eH_< <Xh!v  
    29HyeLB@  
     ID]E3K  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   5S*aZ1t18  
    Mode                : Sensitivities +-!2nk`"a  
    Sampling            : 2 `F$lO2#k  
    Nominal Criterion   : 0.54403234 ]]NTvr  
    Test Wavelength     : 0.6328 l4> c  
    m%cwhH_B  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? <Gna}ALkg  
    +!K*FU=).  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试