切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16420阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 *LBF+L^C%  
    +~G:z|k  
    _J \zj  
    vjGJRk|XED  
    然后添加了默认公差分析,基本没变 ".|8(Y  
    ] H;E(1iU  
    z6M5 '$\y  
    m[y~-n  
    然后运行分析的结果如下: rMJ@oc  
     gh[q*%#  
    Analysis of Tolerances 'q;MhnU+  
    'qiAmaX  
    File : E:\光学设计资料\zemax练习\f500.ZMX jbe:"S tw  
    Title: Wx3DWY;  
    Date : TUE JUN 21 2011 |7,$.MK-@  
    XN t` 4$L  
    Units are Millimeters. -eV*I >G  
    All changes are computed using linear differences. Ygg+=@].@  
    (T2HUmkQ6  
    Paraxial Focus compensation only. ) C~#W  
    ~2hzyEh  
    WARNING: Solves should be removed prior to tolerancing. )Rb t0   
    c %Y *XJ'  
    Mnemonics: [V?HK_~  
    TFRN: Tolerance on curvature in fringes. rC|nE=i  
    TTHI: Tolerance on thickness. yO8@.-jb  
    TSDX: Tolerance on surface decentering in x. r*mYtS  
    TSDY: Tolerance on surface decentering in y. q'H6oD`  
    TSTX: Tolerance on surface tilt in x (degrees). |wb_im  
    TSTY: Tolerance on surface tilt in y (degrees). o92BGqA>&  
    TIRR: Tolerance on irregularity (fringes). >#r0k|3J^J  
    TIND: Tolerance on Nd index of refraction. +fozE?  
    TEDX: Tolerance on element decentering in x. g$)0E<  
    TEDY: Tolerance on element decentering in y.  Iw?^  
    TETX: Tolerance on element tilt in x (degrees). <w~$S0_  
    TETY: Tolerance on element tilt in y (degrees). })@xWU6!  
    rLD1Cpeb,w  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. D6e?J.  
    ]S?G]/k}  
    WARNING: Boundary constraints on compensators will be ignored. _]'kw [  
    X0ugnQ6  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm En-=z`j G  
    Mode                : Sensitivities F\;l)  
    Sampling            : 2 |,n(9Ix  
    Nominal Criterion   : 0.54403234 f9_Pn'"I  
    Test Wavelength     : 0.6328 Bf^K?:r"V  
    ?t\GHQ$$?  
    G~&q  
    Fields: XY Symmetric Angle in degrees V0,5c`H c  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY yP-$@Ry  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 [=. iJ5,{2  
    F @t\D?  
    Sensitivity Analysis: I YptNR  
    Wkb>JnPo  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| $i8oLSRV  
    Type                      Value      Criterion        Change          Value      Criterion        Change Zg= {  
    Fringe tolerance on surface 1 +('xzW  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 pkG8g5(w  
    Change in Focus                :      -0.000000                            0.000000 H_Hr=_8}-  
    Fringe tolerance on surface 2 Gyi0SM6v5&  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Qd3ppJn  
    Change in Focus                :       0.000000                            0.000000 7PfNPz<4+  
    Fringe tolerance on surface 3 .gRb'  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ="@f~~  
    Change in Focus                :      -0.000000                            0.000000 H,/ =<Th;i  
    Thickness tolerance on surface 1 0lqh;/  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ;6]ag< Q  
    Change in Focus                :       0.000000                            0.000000 rf^IJY[  
    Thickness tolerance on surface 2 [ryII hQ  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Y>nQ<  
    Change in Focus                :       0.000000                           -0.000000 ]U4C2}u  
    Decenter X tolerance on surfaces 1 through 3 -yIx:*KI  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 :=quCzG  
    Change in Focus                :       0.000000                            0.000000 E7SmiD@)  
    Decenter Y tolerance on surfaces 1 through 3 SZxnYVY  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 NS x-~)  
    Change in Focus                :       0.000000                            0.000000 vls+E o]  
    Tilt X tolerance on surfaces 1 through 3 (degrees) !YM:?%B  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 2B6y1"B  
    Change in Focus                :       0.000000                            0.000000 j6*e^ B  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ?v+el,  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 0|\A5 eG  
    Change in Focus                :       0.000000                            0.000000 M6Ik'r"M  
    Decenter X tolerance on surface 1 {>ghX_m |  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 [w  FK!?  
    Change in Focus                :       0.000000                            0.000000 +WxD=|p;  
    Decenter Y tolerance on surface 1 6_w~#86=  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 K[V#Pj9  
    Change in Focus                :       0.000000                            0.000000 ^m.%FIwR  
    Tilt X tolerance on surface (degrees) 1 8RZqoQDH  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 FYg{IKg  
    Change in Focus                :       0.000000                            0.000000 T}'*Gry  
    Tilt Y tolerance on surface (degrees) 1 [].euDrX  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 zP!j {y4w  
    Change in Focus                :       0.000000                            0.000000 BQgK<_  
    Decenter X tolerance on surface 2 +I.{y  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 r/+~4W5  
    Change in Focus                :       0.000000                            0.000000 |t58n{V.O  
    Decenter Y tolerance on surface 2 @C~gU@F  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 -?)z@Lc  
    Change in Focus                :       0.000000                            0.000000 QcdAg%"yy  
    Tilt X tolerance on surface (degrees) 2 pe\]}&  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 <{HV|B7  
    Change in Focus                :       0.000000                            0.000000 ,G$<J0R1  
    Tilt Y tolerance on surface (degrees) 2 %:-2P  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 uH} }z!  
    Change in Focus                :       0.000000                            0.000000 0bQ"s*K  
    Decenter X tolerance on surface 3 99Nm?$ g  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 I^``x+a  
    Change in Focus                :       0.000000                            0.000000 r;zG  
    Decenter Y tolerance on surface 3 7*Gg#XQ>(  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 T' )l  
    Change in Focus                :       0.000000                            0.000000 V$  MMK  
    Tilt X tolerance on surface (degrees) 3 phcYQqR  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 N/B-u)?\:  
    Change in Focus                :       0.000000                            0.000000 EHq?yj;  
    Tilt Y tolerance on surface (degrees) 3 0*/[z~Z-1  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 5q}7#{A  
    Change in Focus                :       0.000000                            0.000000 Ch&2{ ng  
    Irregularity of surface 1 in fringes $)j f  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ~5~Cpu2v7  
    Change in Focus                :       0.000000                            0.000000 Bh q]h  
    Irregularity of surface 2 in fringes ~2 J!I^ J  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ? C6t Yd  
    Change in Focus                :       0.000000                            0.000000 [jKhC<t}  
    Irregularity of surface 3 in fringes y>JSo9[@  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 7Y1FFw |  
    Change in Focus                :       0.000000                            0.000000 KA9v?_@{F  
    Index tolerance on surface 1 h}GzQry1  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 T5TA kEVl  
    Change in Focus                :       0.000000                            0.000000 v==/tr)  
    Index tolerance on surface 2 2Ni {fC?  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 OGnuBK  
    Change in Focus                :       0.000000                           -0.000000 GaOM|F'>  
    rn-CQ2{?  
    Worst offenders: r )f+j@KF  
    Type                      Value      Criterion        Change f] kG%JEK  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 {60U6n  
    TSTY   2             0.20000000     0.35349910    -0.19053324 f;a55%3c  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 c"S{5xh0&  
    TSTX   2             0.20000000     0.35349910    -0.19053324 iq`caoi  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ys} I~MK-  
    TSTY   1             0.20000000     0.42678383    -0.11724851 6tBe,'*  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 N?mQ50o~C  
    TSTX   1             0.20000000     0.42678383    -0.11724851 yH',vC.  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 p) m0\  
    TSTY   3             0.20000000     0.42861670    -0.11541563 /qPhptV  
    7^]KQ2fF 8  
    Estimated Performance Changes based upon Root-Sum-Square method: YyD0g9{  
    Nominal MTF                 :     0.54403234 %2`.*]L  
    Estimated change            :    -0.36299231 T5+9#  
    Estimated MTF               :     0.18104003 /9@ VnM  
    -h,?_d>  
    Compensator Statistics: 3|1v)E  
    Change in back focus: %1kIaYZ  
    Minimum            :        -0.000000 !,cfA';S  
    Maximum            :         0.000000 cFloaCz  
    Mean               :        -0.000000 kuo!}QFL  
    Standard Deviation :         0.000000 Hus.Jfam  
    u:%Ln_S  
    Monte Carlo Analysis: PI$K+}E  
    Number of trials: 20 C5EaP%s  
    G Y+li {  
    Initial Statistics: Normal Distribution {*K7P>&  
    9wP,Z"  
      Trial       Criterion        Change =]W[{@P  
          1     0.42804416    -0.11598818 g,}_&+q:.M  
    Change in Focus                :      -0.400171 }<=_&n  
          2     0.54384387    -0.00018847 DAx 1  
    Change in Focus                :       1.018470 nm]m!.$d  
          3     0.44510003    -0.09893230 o%[swoM@  
    Change in Focus                :      -0.601922 >AUzsQ  
          4     0.18154684    -0.36248550 `E8D5'tt  
    Change in Focus                :       0.920681 D` 2w>{Y  
          5     0.28665820    -0.25737414 j4}Q  
    Change in Focus                :       1.253875 H[U"eS."  
          6     0.21263372    -0.33139862 S0!w]Ku  
    Change in Focus                :      -0.903878 NbUbLzE  
          7     0.40051424    -0.14351809 a<l DT_2b  
    Change in Focus                :      -1.354815 -$cO0RSY  
          8     0.48754161    -0.05649072 hf< [$B  
    Change in Focus                :       0.215922 Nh"U~zlh  
          9     0.40357468    -0.14045766 OzUo}QN  
    Change in Focus                :       0.281783 Nd%j0lj  
         10     0.26315315    -0.28087919 Mk!bmFZOZ  
    Change in Focus                :      -1.048393 "*ww>0[  
         11     0.26120585    -0.28282649 sk7]s7  
    Change in Focus                :       1.017611 *b\&R%6dR  
         12     0.24033815    -0.30369419 o8u;2gZx  
    Change in Focus                :      -0.109292 A/88WC$v  
         13     0.37164046    -0.17239188 1}3tpO;  
    Change in Focus                :      -0.692430 KLgg([  
         14     0.48597489    -0.05805744 [Lq9lw&   
    Change in Focus                :      -0.662040 nG0R1<  
         15     0.21462327    -0.32940907 EjP9/V G@=  
    Change in Focus                :       1.611296 d VyT`  
         16     0.43378226    -0.11025008 0n*D](/NK  
    Change in Focus                :      -0.640081 I9*BT T]  
         17     0.39321881    -0.15081353 /-Z}=  
    Change in Focus                :       0.914906 U[W &D%'  
         18     0.20692530    -0.33710703 %{&,5|8  
    Change in Focus                :       0.801607 -|4 Oq  
         19     0.51374068    -0.03029165 KRb'kW  
    Change in Focus                :       0.947293 a6\`r^@  
         20     0.38013374    -0.16389860 N."x@mV  
    Change in Focus                :       0.667010 > Ft)v  
    ;Pe=cc"@  
    Number of traceable Monte Carlo files generated: 20 4OFv#$[  
    %BF,;(P  
    Nominal     0.54403234 fw)Q1"|  
    Best        0.54384387    Trial     2 hRZYvZ3  
    Worst       0.18154684    Trial     4 "D'"uMS`H  
    Mean        0.35770970 ji.T7wn1u  
    Std Dev     0.11156454 C!)ZRuRv  
    >35W{ d  
    JJy.)-R  
    Compensator Statistics: /h9v'Y}c  
    Change in back focus: 4`Lr^q}M+  
    Minimum            :        -1.354815  w>\_d  
    Maximum            :         1.611296 $N\k*=  
    Mean               :         0.161872 `N8t2yF  
    Standard Deviation :         0.869664 P|t2%:_  
    fGoJP[ae  
    90% >       0.20977951               ox5WboL  
    80% >       0.22748071               ~bsdy2&/q  
    50% >       0.38667627               p4D.nB8  
    20% >       0.46553746               ojc.ykP$  
    10% >       0.50064115                U7HfDDh  
    D~n-;T  
    End of Run. Ko0?c.l  
    1)!2D?w  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 `R!Q(rePx  
    zwk& 3  
    D>0(*O  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 [9G=x[  
    }m&\I  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Uz~B`  
    80% >       0.22748071                 TO.STK`  
    50% >       0.38667627                 JI  cm$  
    20% >       0.46553746                 "U+c`V=w  
    10% >       0.50064115 8!YQ9T[  
    ug.|ag'R  
    最后这个数值是MTF值呢,还是MTF的公差? ~!=Am:-wr  
    #RbdQH !  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ^4NRmlb  
    {]dG 9  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 5'+g[eNyBV  
    90% >       0.20977951                 y9]7LETv\M  
    80% >       0.22748071                 DBHHJD/q  
    50% >       0.38667627                 0^Vw^]w  
    20% >       0.46553746                 5+!yXkE^e  
    10% >       0.50064115 Te~jYkCd  
    ....... rir,|y,  
    J k`Jv;  
    wJJ|]^0.  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   @ N'P?i  
    Mode                : Sensitivities A{B$$7%  
    Sampling            : 2 v(JjvN21  
    Nominal Criterion   : 0.54403234 B* 3_m _a  
    Test Wavelength     : 0.6328 Ksh[I,+N\  
    "k  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? FMn|cO.vEP  
    fM:bXR2Y'  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试