切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16169阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 R9!U _RH  
    [!4xInS  
    @<`V q  
    rVP{ ^Jdo  
    然后添加了默认公差分析,基本没变 +(PUiiP'"v  
    DQ30\b"gU  
    b3FKDm[  
    *@p"  
    然后运行分析的结果如下: %}e['d h  
    >lKu[nq;  
    Analysis of Tolerances `S0`3q}L3%  
    *CPpU|  
    File : E:\光学设计资料\zemax练习\f500.ZMX n_Qua|R  
    Title: {Wi*B(  
    Date : TUE JUN 21 2011 Np%Q-T\  
    ]tf`[bINP  
    Units are Millimeters. |'z24 :8  
    All changes are computed using linear differences. NU3TXO  
    L""ZI5J{F9  
    Paraxial Focus compensation only. :;eQ*{ `\  
    '%wSs,HD  
    WARNING: Solves should be removed prior to tolerancing. @_?2iN?4Z  
    ]A5Y/dd  
    Mnemonics: #/o~h|g  
    TFRN: Tolerance on curvature in fringes. kDDC@A $  
    TTHI: Tolerance on thickness. ;mT}Q;F#  
    TSDX: Tolerance on surface decentering in x. -gm5E qi  
    TSDY: Tolerance on surface decentering in y. ZE-vroh  
    TSTX: Tolerance on surface tilt in x (degrees). qxDMDMN  
    TSTY: Tolerance on surface tilt in y (degrees). /]^Y\U^  
    TIRR: Tolerance on irregularity (fringes). fge h;cD  
    TIND: Tolerance on Nd index of refraction. QS!Z*vG  
    TEDX: Tolerance on element decentering in x. pS |K[:5  
    TEDY: Tolerance on element decentering in y. sOlnc6  
    TETX: Tolerance on element tilt in x (degrees). dW%t ph  
    TETY: Tolerance on element tilt in y (degrees). LRts W(A/  
    3]GMQA{L)  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. D=mmBo  
    bm 4RRI  
    WARNING: Boundary constraints on compensators will be ignored. T[)!7@4r  
    *asv^aFpS  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm mvK^')  
    Mode                : Sensitivities 0FtwDM))  
    Sampling            : 2 q)L4*O  
    Nominal Criterion   : 0.54403234 -fk;Qq3O  
    Test Wavelength     : 0.6328 ge1. HG  
    )WbWp4  
    {0w2K82  
    Fields: XY Symmetric Angle in degrees :;.^r,QAI  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY `WN80d\)&  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 uxB)dS  
    :ujpLIjvVG  
    Sensitivity Analysis: (_"Zbw%cJy  
    IycZ\^5*-  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| %jy$4qAf%  
    Type                      Value      Criterion        Change          Value      Criterion        Change @;`'s  
    Fringe tolerance on surface 1 &>C+5`bg  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 cI'n[G  
    Change in Focus                :      -0.000000                            0.000000 NI#]#yM+  
    Fringe tolerance on surface 2 _%=CW' B  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 OPDT:e86Y=  
    Change in Focus                :       0.000000                            0.000000 'I&0$<  
    Fringe tolerance on surface 3 /0H}-i  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 s$isDG#Sr  
    Change in Focus                :      -0.000000                            0.000000 Jh0Grq  
    Thickness tolerance on surface 1 &TBFt;  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 babL.Ua8o  
    Change in Focus                :       0.000000                            0.000000 %L*EB;nK  
    Thickness tolerance on surface 2 W/bW=.d Jd  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 CTW\Dt5  
    Change in Focus                :       0.000000                           -0.000000 Qgj# k  
    Decenter X tolerance on surfaces 1 through 3 =DJ:LmK  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }n4 T!N  
    Change in Focus                :       0.000000                            0.000000 (O4oI U  
    Decenter Y tolerance on surfaces 1 through 3 qWheoyAB  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 17Cb{Q  
    Change in Focus                :       0.000000                            0.000000 e O\72? K  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 6!"wiM"]  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 cyJ{AS+  
    Change in Focus                :       0.000000                            0.000000 v,ZYh w  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ?-<lIF Fh  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 4F|79U #  
    Change in Focus                :       0.000000                            0.000000 IS&qFi}W|W  
    Decenter X tolerance on surface 1 KhfADqji|  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 KJ'ID  
    Change in Focus                :       0.000000                            0.000000 8C@u+tx  
    Decenter Y tolerance on surface 1 5<dg@,\  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 \L(cFjLIl  
    Change in Focus                :       0.000000                            0.000000 l;_IH|A  
    Tilt X tolerance on surface (degrees) 1 /S"jO [n9b  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 t<Yi!6  
    Change in Focus                :       0.000000                            0.000000 GLtd<M"  
    Tilt Y tolerance on surface (degrees) 1 )~wKRyQff  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 1OM Xg=Y  
    Change in Focus                :       0.000000                            0.000000 XeI2 <=@%  
    Decenter X tolerance on surface 2 c EYHB1*cT  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 y<Q"]H.CkQ  
    Change in Focus                :       0.000000                            0.000000 H9(?yI@Zr#  
    Decenter Y tolerance on surface 2 /ovVS6Ai  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Dhn7N8(LF!  
    Change in Focus                :       0.000000                            0.000000 J;>epM ;*  
    Tilt X tolerance on surface (degrees) 2 "iK= 8  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 HXa[0VOx  
    Change in Focus                :       0.000000                            0.000000 dR]-R/1|  
    Tilt Y tolerance on surface (degrees) 2 E)$>t}$  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 gUru=p  
    Change in Focus                :       0.000000                            0.000000 D8wf`RUt  
    Decenter X tolerance on surface 3 pNb2t/8%%  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ^<OYW|q?\r  
    Change in Focus                :       0.000000                            0.000000 G^ W0!u,@  
    Decenter Y tolerance on surface 3 '%rT]u3U  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 =Nt HV4=b  
    Change in Focus                :       0.000000                            0.000000 gPKf8{#%e  
    Tilt X tolerance on surface (degrees) 3 8<C*D".T$  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 c9-$^yno  
    Change in Focus                :       0.000000                            0.000000 %i9 e<.Ot  
    Tilt Y tolerance on surface (degrees) 3 qS+;u`s  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 y{hg4|\  
    Change in Focus                :       0.000000                            0.000000 8D )nM|  
    Irregularity of surface 1 in fringes =o##z5j K  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 4]U=Y>\Sr  
    Change in Focus                :       0.000000                            0.000000 (&e!u{I  
    Irregularity of surface 2 in fringes SCcvU4`o  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 5)%ahmY  
    Change in Focus                :       0.000000                            0.000000 H]/ ~ #a  
    Irregularity of surface 3 in fringes Dds-;9  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 >)ekb7  
    Change in Focus                :       0.000000                            0.000000 ;0 B1P|7zK  
    Index tolerance on surface 1 z,TH}s6  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Qfm$q~`D^W  
    Change in Focus                :       0.000000                            0.000000 A7X a  
    Index tolerance on surface 2 TWpw/osW  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 n?@zp<  
    Change in Focus                :       0.000000                           -0.000000 'Bue*  
    d%8n   
    Worst offenders: -O *_+8f  
    Type                      Value      Criterion        Change uB  I/3aQ  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 7~XC_Yc1  
    TSTY   2             0.20000000     0.35349910    -0.19053324 2o?j{K  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 |eu8;~A  
    TSTX   2             0.20000000     0.35349910    -0.19053324 fY00  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 +\T8`iCFB  
    TSTY   1             0.20000000     0.42678383    -0.11724851 |_TiF ;^  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 {cs>Sy 4  
    TSTX   1             0.20000000     0.42678383    -0.11724851 5 b} w  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 d~u=,@FK  
    TSTY   3             0.20000000     0.42861670    -0.11541563 Nnh\FaI  
    [MpWvLP"x  
    Estimated Performance Changes based upon Root-Sum-Square method: B r#{  
    Nominal MTF                 :     0.54403234 dun`/QKV  
    Estimated change            :    -0.36299231 wG,"X'1  
    Estimated MTF               :     0.18104003 ' 4FH9J  
    2#.s{Bv  
    Compensator Statistics: QOXo(S  
    Change in back focus: KHAc!4lA  
    Minimum            :        -0.000000 1cK'B<5">]  
    Maximum            :         0.000000  +|LM"  
    Mean               :        -0.000000 '.bf88D  
    Standard Deviation :         0.000000 s:tX3X  
    wo0j/4o  
    Monte Carlo Analysis: EQ$k^Y8 "  
    Number of trials: 20 Ok_}d&A  
    3xy2ZYw  
    Initial Statistics: Normal Distribution +F)-n2Bi  
    |HmY`w6*z  
      Trial       Criterion        Change Vg NB^w  
          1     0.42804416    -0.11598818 A r!0GwE+  
    Change in Focus                :      -0.400171 'SFAJ  
          2     0.54384387    -0.00018847 YCDH0M  
    Change in Focus                :       1.018470 i3w~&y-  
          3     0.44510003    -0.09893230 9`*ST(0/  
    Change in Focus                :      -0.601922 v.(dOIrX  
          4     0.18154684    -0.36248550 %aNm j)L  
    Change in Focus                :       0.920681 eNd&47lJ  
          5     0.28665820    -0.25737414 *tUOTA 3L  
    Change in Focus                :       1.253875 f'=u`*(b7  
          6     0.21263372    -0.33139862 %LrOGr  
    Change in Focus                :      -0.903878 O t)}:oG  
          7     0.40051424    -0.14351809 Y%?S:&GH  
    Change in Focus                :      -1.354815 qofAA!3z  
          8     0.48754161    -0.05649072 }b\hRy~=r  
    Change in Focus                :       0.215922 w0~%,S  
          9     0.40357468    -0.14045766 VM%g QOo<  
    Change in Focus                :       0.281783 lKsn6c,]  
         10     0.26315315    -0.28087919 zGtJ@HbB  
    Change in Focus                :      -1.048393 i.t%a{gL  
         11     0.26120585    -0.28282649 WutPy_L<  
    Change in Focus                :       1.017611 hS,&Nj+  
         12     0.24033815    -0.30369419 X)KCk2Ax  
    Change in Focus                :      -0.109292 WML--<dU  
         13     0.37164046    -0.17239188 :K6JrS  
    Change in Focus                :      -0.692430 @5^&&4>N  
         14     0.48597489    -0.05805744 xh2r?K@k>  
    Change in Focus                :      -0.662040 9vV==A#  
         15     0.21462327    -0.32940907 e#*3X4<\K  
    Change in Focus                :       1.611296 bG]0|  
         16     0.43378226    -0.11025008 Rge>20uTl$  
    Change in Focus                :      -0.640081 iAz0 A  
         17     0.39321881    -0.15081353 ["D!IqI :  
    Change in Focus                :       0.914906 N6._J b  
         18     0.20692530    -0.33710703 Z[nHo'  
    Change in Focus                :       0.801607  WwB_L.{  
         19     0.51374068    -0.03029165 yUnV%@.  
    Change in Focus                :       0.947293 J9[7AiEd(/  
         20     0.38013374    -0.16389860 86=W}eV1r  
    Change in Focus                :       0.667010 pT|s#-}  
    D|ceZ <9x  
    Number of traceable Monte Carlo files generated: 20 h[>pC"s?K  
    b&P)J|Fe  
    Nominal     0.54403234 B@(d5i{h  
    Best        0.54384387    Trial     2 ^s{Ff+]W  
    Worst       0.18154684    Trial     4 V[(fE=cIN~  
    Mean        0.35770970 c-k3<|H`  
    Std Dev     0.11156454 y^C5_w(^jZ  
    }.A]=Ew  
    ~LS</_N  
    Compensator Statistics: 'V?FeWp  
    Change in back focus: 0OM^,5%8  
    Minimum            :        -1.354815 WK6,K92  
    Maximum            :         1.611296 c]u ieig0~  
    Mean               :         0.161872 ZPH_s^  
    Standard Deviation :         0.869664 ;O}%SCF7  
    gO8d2?Oh  
    90% >       0.20977951               W4o8]&A  
    80% >       0.22748071               ;<M}ZL@m  
    50% >       0.38667627               uA#K59E+  
    20% >       0.46553746               |<u+Xi ~  
    10% >       0.50064115                oJ4HvrUO  
    0''p29  
    End of Run. Rt?CE jy  
    ~LuGfPO^  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Kzrd<h]`)  
    VNTbjn]  
    r,JQR)l0@V  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 j1;[6XG  
    +ALrHFG  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 p/ (Z2N"  
    80% >       0.22748071                 HX2u{2$  
    50% >       0.38667627                 [e` | <  
    20% >       0.46553746                 t}k:wzZ@  
    10% >       0.50064115 %Lh%bqGz  
    %/uLyCUZ  
    最后这个数值是MTF值呢,还是MTF的公差? ?+.mP]d_  
    /p<9C?  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   C_N|o|dX  
    =p4n @C  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : R=.?el  
    90% >       0.20977951                 Y\WQ0'y  
    80% >       0.22748071                 4AEw[(t  
    50% >       0.38667627                 s``a{ HZ  
    20% >       0.46553746                 >N al\  
    10% >       0.50064115 <eEIR  
    ....... KH)-=IJ8  
    FiMM-c|  
    zwC ,,U  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   9nVb$pfe#  
    Mode                : Sensitivities A-1K TD  
    Sampling            : 2 "7EK{6&jQ  
    Nominal Criterion   : 0.54403234 Pqx?0 f)  
    Test Wavelength     : 0.6328 w tGS"L  
    tJu:N'=Dy  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? l'4<^q  
    Jc?zX8>Ae:  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试