切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16542阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ky>wOaTmN6  
    wiOgyMdx  
    ?Y:x[pOe  
    iDl;!b&V.  
    然后添加了默认公差分析,基本没变 zPEg  
    Cp^@zw*/  
    sfr(/mp(  
    + SZYg[  
    然后运行分析的结果如下: KucV3-I  
    d1!i(MaV!  
    Analysis of Tolerances DlMe5=n -u  
    .%'(9E  
    File : E:\光学设计资料\zemax练习\f500.ZMX e@@?AB$n(  
    Title: J68j=`Y  
    Date : TUE JUN 21 2011 UV}73Sp  
    Sj'ht=  
    Units are Millimeters. _$<Gyz*  
    All changes are computed using linear differences. ` b !5^W  
    $@\mpwANl  
    Paraxial Focus compensation only. G.+l7bnZM  
    kE.x+2  
    WARNING: Solves should be removed prior to tolerancing. . .QB~  
    oRN-xng  
    Mnemonics: }MR1^  
    TFRN: Tolerance on curvature in fringes. C\_zdADUb%  
    TTHI: Tolerance on thickness. Q|}a R:4  
    TSDX: Tolerance on surface decentering in x. gADmN8G=  
    TSDY: Tolerance on surface decentering in y. H@X oqgI  
    TSTX: Tolerance on surface tilt in x (degrees). U(&oj e  
    TSTY: Tolerance on surface tilt in y (degrees). N-lGa@ j  
    TIRR: Tolerance on irregularity (fringes). ?6Cz[5\  
    TIND: Tolerance on Nd index of refraction. ~/_9P Fk  
    TEDX: Tolerance on element decentering in x. -B#yy]8  
    TEDY: Tolerance on element decentering in y. %zC[KE*~  
    TETX: Tolerance on element tilt in x (degrees). ogM%N  
    TETY: Tolerance on element tilt in y (degrees). |eoid?=  
    STfyCtS  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. k<w(i k1bi  
    qZ@0]"h  
    WARNING: Boundary constraints on compensators will be ignored. Mv|ykJoz"  
    uBg 8h{>  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 6Dws,_UAZ4  
    Mode                : Sensitivities `&M{cfp_  
    Sampling            : 2 aI zv  
    Nominal Criterion   : 0.54403234 ZA~Z1Mro#"  
    Test Wavelength     : 0.6328 ^x*nq3^h\  
    @Un/c:n  
    +&tgJ07A  
    Fields: XY Symmetric Angle in degrees k.h`Cji@  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY j$fAq\B  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 J MX6yV  
    t<uYM  
    Sensitivity Analysis: SEQ%'E5-'  
    LiDvaF:@L!  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| fkfZ>D^1  
    Type                      Value      Criterion        Change          Value      Criterion        Change P7r'ffA  
    Fringe tolerance on surface 1 | sqZ$Mu  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 G DSfT{kK\  
    Change in Focus                :      -0.000000                            0.000000 5yh/0i5|  
    Fringe tolerance on surface 2 MFJE6ei  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 z;]CmR@Ki  
    Change in Focus                :       0.000000                            0.000000 >Sk[vI0Y  
    Fringe tolerance on surface 3 n9LGP2#!  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 $ E1Tb{'  
    Change in Focus                :      -0.000000                            0.000000 Ocg"M Gb  
    Thickness tolerance on surface 1 _\5~>g_  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 +5<k-0v  
    Change in Focus                :       0.000000                            0.000000 >: 0tA{bV  
    Thickness tolerance on surface 2 GYRYbiwqdi  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 D|I Ec?  
    Change in Focus                :       0.000000                           -0.000000 i< (s}wg  
    Decenter X tolerance on surfaces 1 through 3 ~CRSL1?  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 z^* '@  
    Change in Focus                :       0.000000                            0.000000 ${~|+zdB  
    Decenter Y tolerance on surfaces 1 through 3 gLD`wfZR  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Qx|H1_6  
    Change in Focus                :       0.000000                            0.000000 5`^o1nGO'  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ~KjJ\b)R  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 3 K/Df#  
    Change in Focus                :       0.000000                            0.000000 $<@\-vYvr@  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) :L?_Y/K  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314  }`/gX=91  
    Change in Focus                :       0.000000                            0.000000 :@ uIxa$[  
    Decenter X tolerance on surface 1 <x%M3BTx  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ]*"s\ix  
    Change in Focus                :       0.000000                            0.000000 1N`vCt]w  
    Decenter Y tolerance on surface 1 2)iD4G`  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 }m]q}r  
    Change in Focus                :       0.000000                            0.000000 `T*U]/zQ  
    Tilt X tolerance on surface (degrees) 1 @ $cUNvI  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 huFz97?y(  
    Change in Focus                :       0.000000                            0.000000 "vF MSY  
    Tilt Y tolerance on surface (degrees) 1 r2*<\ax  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 4Wel[]  
    Change in Focus                :       0.000000                            0.000000 dLh6:Gh8_I  
    Decenter X tolerance on surface 2 Y,z??bm~J  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Lrz3   
    Change in Focus                :       0.000000                            0.000000 BWPP5X9  
    Decenter Y tolerance on surface 2 $FM' 3%B[  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 /4S;QEv  
    Change in Focus                :       0.000000                            0.000000 'E;W  
    Tilt X tolerance on surface (degrees) 2 ;Kxbg>U  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 i`U: gw  
    Change in Focus                :       0.000000                            0.000000 6o3T;h  
    Tilt Y tolerance on surface (degrees) 2 Id8wS!W`7  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 }amU[U,  
    Change in Focus                :       0.000000                            0.000000 #5CI)4x0!  
    Decenter X tolerance on surface 3 eBB:~,C^q.  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 4z4v\IpB  
    Change in Focus                :       0.000000                            0.000000 M.%shrJ/  
    Decenter Y tolerance on surface 3 PB'0?b}fab  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 O??vm?eo  
    Change in Focus                :       0.000000                            0.000000  <dR,'  
    Tilt X tolerance on surface (degrees) 3 y%BX]~  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 g#^|oYuH6  
    Change in Focus                :       0.000000                            0.000000 6k0^x Q  
    Tilt Y tolerance on surface (degrees) 3 r((Tavn  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 0A$SYF$O+[  
    Change in Focus                :       0.000000                            0.000000 ^tAO_~4  
    Irregularity of surface 1 in fringes "X1vZwK8N  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 60B-ay0e$b  
    Change in Focus                :       0.000000                            0.000000 t\y-T$\\  
    Irregularity of surface 2 in fringes V 2znU  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 +H'\3^C-  
    Change in Focus                :       0.000000                            0.000000 a<Uqyilm  
    Irregularity of surface 3 in fringes - V) R<  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 83;IyvbL  
    Change in Focus                :       0.000000                            0.000000 T-L5zu  
    Index tolerance on surface 1 |"k&fkS$  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 -e>|kPfv!  
    Change in Focus                :       0.000000                            0.000000 \P?ToTTV  
    Index tolerance on surface 2 CmC0k-%w  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Hhv$4;&X  
    Change in Focus                :       0.000000                           -0.000000 L'kq>1QWf  
    Df=q-iq<{/  
    Worst offenders: QXQ  
    Type                      Value      Criterion        Change D[Iq n  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Vu]h4S:  
    TSTY   2             0.20000000     0.35349910    -0.19053324 +$pJ5+v  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 YB!!/ SX4  
    TSTX   2             0.20000000     0.35349910    -0.19053324 Wc'Ehyi;  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 :$H!@n*/R  
    TSTY   1             0.20000000     0.42678383    -0.11724851 `F1dyf!p<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Aka^e\Y@6*  
    TSTX   1             0.20000000     0.42678383    -0.11724851 mvTb~)  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 /8eW@IO.F  
    TSTY   3             0.20000000     0.42861670    -0.11541563 jMU9{Si  
    HhSjR%6HY;  
    Estimated Performance Changes based upon Root-Sum-Square method: 1bRL"{m^)-  
    Nominal MTF                 :     0.54403234 H?:Jq\Ba0  
    Estimated change            :    -0.36299231 X%4h(7;v  
    Estimated MTF               :     0.18104003 &hN,xpC  
    ?SX_gYe9  
    Compensator Statistics: m^tNqJs8  
    Change in back focus: U"5q;9#q  
    Minimum            :        -0.000000 Jp ]T9W\  
    Maximum            :         0.000000 UC!5 wVY  
    Mean               :        -0.000000 rz6jx  
    Standard Deviation :         0.000000 j[DIz@^  
    N lt4)  
    Monte Carlo Analysis: FMS2.E  
    Number of trials: 20 *T4ge|zUc  
    p.Y$A if.  
    Initial Statistics: Normal Distribution z\}!RBOq  
    @d)a~[pm  
      Trial       Criterion        Change 5-'vB  
          1     0.42804416    -0.11598818 Y ><(?  
    Change in Focus                :      -0.400171 R<g=\XO'y  
          2     0.54384387    -0.00018847 BX$hAQ(6Q  
    Change in Focus                :       1.018470 `pYE[y+  
          3     0.44510003    -0.09893230 FmA-OqEpA  
    Change in Focus                :      -0.601922 lG]GlgSs  
          4     0.18154684    -0.36248550 7Po/_%  
    Change in Focus                :       0.920681 . bG{T|  
          5     0.28665820    -0.25737414 NgxO&Zp  
    Change in Focus                :       1.253875 M[,^KJ!  
          6     0.21263372    -0.33139862 f[@#7,2~M  
    Change in Focus                :      -0.903878 Yq;&F0paK  
          7     0.40051424    -0.14351809 cdsQ3o  
    Change in Focus                :      -1.354815 dofR)"<p,^  
          8     0.48754161    -0.05649072  y h-9u  
    Change in Focus                :       0.215922 n4*'B*  
          9     0.40357468    -0.14045766 c~oe, 9  
    Change in Focus                :       0.281783 =g2\CIlVU6  
         10     0.26315315    -0.28087919 Fe4esg-B<  
    Change in Focus                :      -1.048393 <4NQL*|>  
         11     0.26120585    -0.28282649 b-b;7a\N  
    Change in Focus                :       1.017611 w:R]!e_6\9  
         12     0.24033815    -0.30369419 nDn{zea7  
    Change in Focus                :      -0.109292 AzX(~Qc  
         13     0.37164046    -0.17239188 ,CW%JIM  
    Change in Focus                :      -0.692430 *]9XDc]{j1  
         14     0.48597489    -0.05805744 p;ZDpR  
    Change in Focus                :      -0.662040 q_5 8Lw  
         15     0.21462327    -0.32940907 gT7I9 (x!W  
    Change in Focus                :       1.611296 JOHp?3"4  
         16     0.43378226    -0.11025008 nK:`e9ES  
    Change in Focus                :      -0.640081 +}]wLM}\UF  
         17     0.39321881    -0.15081353 tQnJS2V"{u  
    Change in Focus                :       0.914906 Q2R>lzB  
         18     0.20692530    -0.33710703 V,'FlU  
    Change in Focus                :       0.801607 "j;!_v>=f`  
         19     0.51374068    -0.03029165 ZArf;&8  
    Change in Focus                :       0.947293 GD/nR4$  
         20     0.38013374    -0.16389860 :O#gJob-%s  
    Change in Focus                :       0.667010 nTQ (JDf  
    {8i}Ow  
    Number of traceable Monte Carlo files generated: 20 oG9SO^v_  
    ?/L1tX)  
    Nominal     0.54403234 dK7 ^  
    Best        0.54384387    Trial     2 Xa6qvg7/  
    Worst       0.18154684    Trial     4 dW6Q)Rfi  
    Mean        0.35770970 '|+=B u  
    Std Dev     0.11156454  A8`orMo2  
    '.xkn{c  
    `}n0=E  
    Compensator Statistics: ^:$j:w?j  
    Change in back focus: ~l@%=/m  
    Minimum            :        -1.354815 0MhxFoFO  
    Maximum            :         1.611296 P:vX }V |[  
    Mean               :         0.161872 kfIbgya   
    Standard Deviation :         0.869664 6UtG-WHHt  
     2fbvU  
    90% >       0.20977951               r6/<&1[  
    80% >       0.22748071               Kjvs@~6t  
    50% >       0.38667627               Pyit87h{  
    20% >       0.46553746               ol1AD: Ho  
    10% >       0.50064115                %hrsE5k^,  
    SwQOFE/Dv~  
    End of Run. LE Jlo%M  
    ug>]U ~0  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 | eK,Td%  
    ]*;RHy9  
    >4Fd xa  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ROcY'-  
    ">0 /8]l  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 fLf#2EA  
    80% >       0.22748071                 [j]}$f Fe  
    50% >       0.38667627                 :cIu?7A  
    20% >       0.46553746                 R A-^!4tX  
    10% >       0.50064115 U<#$w{d:  
    =+kvL2nx-  
    最后这个数值是MTF值呢,还是MTF的公差? F=P+;%.  
    0YgFjd 5  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   g0[<9.ke  
    AiR%MD  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : AcfkY m~  
    90% >       0.20977951                 4q 2=:"z4  
    80% >       0.22748071                 Z2pN<S{5  
    50% >       0.38667627                 fuIv,lDA  
    20% >       0.46553746                 H--*[3".  
    10% >       0.50064115 =-s20mdj  
    ....... Eg- Mm4o  
    K km7L-  
    ;z#9>99rH  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   KME #5=~  
    Mode                : Sensitivities $W2AiE[Wm  
    Sampling            : 2 g6farLBF  
    Nominal Criterion   : 0.54403234 @fw U%S[v  
    Test Wavelength     : 0.6328 -:QyWw/d  
    *QVE>{  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? E*%{Nn  
    o.Q9kk? L  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试