切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16153阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 p<#WueR[  
    qx3@]9  
    #'}?.m  
    -ea":}/  
    然后添加了默认公差分析,基本没变 aw z(W >  
    i v7^ !  
    \A@Mlpe&t  
    };5d>#NK,Y  
    然后运行分析的结果如下: I^h^QeBis  
    .t\#>Fe  
    Analysis of Tolerances GAK!qLy9  
    sTx23RJ9  
    File : E:\光学设计资料\zemax练习\f500.ZMX R"NR-iU  
    Title: &s.S) 'l4l  
    Date : TUE JUN 21 2011 IbFS8 *a\  
    ZzZy2.7  
    Units are Millimeters. .W[ 9G\  
    All changes are computed using linear differences. L4bx [  
    ~gz_4gzb  
    Paraxial Focus compensation only. K0hmRR=  
    |G^w2"D_Z  
    WARNING: Solves should be removed prior to tolerancing. ?7 Kl)p3  
    p*F.WxB)4  
    Mnemonics: xY] Y  
    TFRN: Tolerance on curvature in fringes. B}n tD  
    TTHI: Tolerance on thickness. 7[=MgnmuC  
    TSDX: Tolerance on surface decentering in x. QDO.&G2  
    TSDY: Tolerance on surface decentering in y. 0Z.bd=H  
    TSTX: Tolerance on surface tilt in x (degrees). : b9X?%L~  
    TSTY: Tolerance on surface tilt in y (degrees). t= =+SHGP  
    TIRR: Tolerance on irregularity (fringes). A.0eeX{  
    TIND: Tolerance on Nd index of refraction. g\;&Z  
    TEDX: Tolerance on element decentering in x. Uy  $1X  
    TEDY: Tolerance on element decentering in y. -:mT8'.F-  
    TETX: Tolerance on element tilt in x (degrees). WvV!F?uqZ  
    TETY: Tolerance on element tilt in y (degrees). - \ {.]KL  
    QrmiQ]d*p  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. v(5zSo  
    :Fe}.* t  
    WARNING: Boundary constraints on compensators will be ignored. #9Src\V  
    7OF6;@<  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm S6~&g|T,  
    Mode                : Sensitivities i7N|p9O.  
    Sampling            : 2 g<ZB9;FX %  
    Nominal Criterion   : 0.54403234 :xd)]Ns  
    Test Wavelength     : 0.6328 yHrYSEM  
    2`2S94'  
    re\pE2&B  
    Fields: XY Symmetric Angle in degrees mU d['Z  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 7RE'KH_$  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 PH6!T/2[  
    rd#O ]   
    Sensitivity Analysis: /*v} .fH%  
    ZboY]1L[j  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| h^Bp^V5#  
    Type                      Value      Criterion        Change          Value      Criterion        Change .(D,CGtYb  
    Fringe tolerance on surface 1 Cp[{| U-?G  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 9Tju+KcK  
    Change in Focus                :      -0.000000                            0.000000 =\[}@Kh  
    Fringe tolerance on surface 2 _ML`Vh]  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ix.I)  
    Change in Focus                :       0.000000                            0.000000 6 07"Z\  
    Fringe tolerance on surface 3 El9D1],  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 2D`_!OG=  
    Change in Focus                :      -0.000000                            0.000000 #`kLU:  
    Thickness tolerance on surface 1 MlbQLtw  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 o3=2`BvJ  
    Change in Focus                :       0.000000                            0.000000 c-?2>%;(V  
    Thickness tolerance on surface 2 eaNMcC1  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Y*}xD;c k  
    Change in Focus                :       0.000000                           -0.000000 [ \41  
    Decenter X tolerance on surfaces 1 through 3 P&3Z,f0  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Hu4\4x$?  
    Change in Focus                :       0.000000                            0.000000 7[ 82~jM[  
    Decenter Y tolerance on surfaces 1 through 3 Vdpvo;4uy  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;s$bVGHr  
    Change in Focus                :       0.000000                            0.000000 Imv ]V6"D=  
    Tilt X tolerance on surfaces 1 through 3 (degrees) oM<Y o%n  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 d z-  
    Change in Focus                :       0.000000                            0.000000 reO^_q'  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) *_Sx^`"X`l  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 @'D ,T^I  
    Change in Focus                :       0.000000                            0.000000 "}91wfG9  
    Decenter X tolerance on surface 1 Uo D@ix&0  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 =zetZJg  
    Change in Focus                :       0.000000                            0.000000 ke~S[bL%-  
    Decenter Y tolerance on surface 1 .66_g@1  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 KV1/!r+*  
    Change in Focus                :       0.000000                            0.000000 L5wrc4  
    Tilt X tolerance on surface (degrees) 1 IRq@~vdt)  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 =&9x}4`;%  
    Change in Focus                :       0.000000                            0.000000 Vm_<eyI2  
    Tilt Y tolerance on surface (degrees) 1 2%i3[N*  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ,.Sd)JB'  
    Change in Focus                :       0.000000                            0.000000 iUH{rh!  
    Decenter X tolerance on surface 2 I4Y; 9Gg  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 y?r:`n  
    Change in Focus                :       0.000000                            0.000000 CLn}BxgD  
    Decenter Y tolerance on surface 2 z[E gMS!  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 XFS"~{  
    Change in Focus                :       0.000000                            0.000000 ~WKcO&  
    Tilt X tolerance on surface (degrees) 2 GM{J3O=  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 IegZ)&_n  
    Change in Focus                :       0.000000                            0.000000 Z` ;.62S  
    Tilt Y tolerance on surface (degrees) 2 BS(XEmJn&j  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 li`4&<WGC  
    Change in Focus                :       0.000000                            0.000000 D=!e6E<>@  
    Decenter X tolerance on surface 3 i!tF{'*%#  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 fc,^H&  
    Change in Focus                :       0.000000                            0.000000 ]TTQ;F  
    Decenter Y tolerance on surface 3 P.j0Xlof  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Q*GJREC  
    Change in Focus                :       0.000000                            0.000000 d^.@~  
    Tilt X tolerance on surface (degrees) 3 n#.~XNbxv  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 $@ R[$/  
    Change in Focus                :       0.000000                            0.000000 'IykIf  
    Tilt Y tolerance on surface (degrees) 3 dM^1O-K:  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ruf*-&Kr7  
    Change in Focus                :       0.000000                            0.000000 )ld !(d=  
    Irregularity of surface 1 in fringes sz?/4tY  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 E+tV7xa~  
    Change in Focus                :       0.000000                            0.000000 8'n xc#&  
    Irregularity of surface 2 in fringes 4/Wqeq,E8  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 faqh }4  
    Change in Focus                :       0.000000                            0.000000 L FncY(b  
    Irregularity of surface 3 in fringes X (0`"rjg  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 {,Py%.vvR  
    Change in Focus                :       0.000000                            0.000000 i#RT4}l"a  
    Index tolerance on surface 1 z4UJo!{S  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 x9lG$0k:V  
    Change in Focus                :       0.000000                            0.000000 X / {;  
    Index tolerance on surface 2 }ag -J."5M  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Z~WUILx,  
    Change in Focus                :       0.000000                           -0.000000 a-9Y &#U  
    FFvF4]|L  
    Worst offenders: hG8 !aJo  
    Type                      Value      Criterion        Change <"SOH; w  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 b5Sgf'B^  
    TSTY   2             0.20000000     0.35349910    -0.19053324 2y"|l  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 bt2`elH|  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ZB|y  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 VuiK5?m  
    TSTY   1             0.20000000     0.42678383    -0.11724851 1(;_1@P  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 WF!u2E+  
    TSTX   1             0.20000000     0.42678383    -0.11724851 S.Z2gFE&tu  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Sj`GP p  
    TSTY   3             0.20000000     0.42861670    -0.11541563 u5LrZt]k  
    "'8^OZR  
    Estimated Performance Changes based upon Root-Sum-Square method: 2/coa+Qkv]  
    Nominal MTF                 :     0.54403234 QUSyVp{$  
    Estimated change            :    -0.36299231 x U1](O  
    Estimated MTF               :     0.18104003 z;F6:aBa  
    ,Zs"r}G^  
    Compensator Statistics: uv}?8$<\  
    Change in back focus: C'a%piX  
    Minimum            :        -0.000000 Go8?8*  
    Maximum            :         0.000000 G5R"5d'  
    Mean               :        -0.000000 <$8`]e?I  
    Standard Deviation :         0.000000 =HGC<#  
    6n  
    Monte Carlo Analysis: U11bQ4ak  
    Number of trials: 20 nJ]oApb/-  
    /%P|<[< [  
    Initial Statistics: Normal Distribution O6gl[aZN  
    aSy^( WN8  
      Trial       Criterion        Change qVpV ZH!  
          1     0.42804416    -0.11598818 5Lo\[K >j  
    Change in Focus                :      -0.400171 GW[g!6 6^  
          2     0.54384387    -0.00018847 uq~Z  
    Change in Focus                :       1.018470 @'Y^A  
          3     0.44510003    -0.09893230 j\o<r0I  
    Change in Focus                :      -0.601922 ("+J*u*kq_  
          4     0.18154684    -0.36248550 @Ft\~ +}  
    Change in Focus                :       0.920681 5,;>b^gXY`  
          5     0.28665820    -0.25737414 bIR&e E  
    Change in Focus                :       1.253875 1F*3K3T {  
          6     0.21263372    -0.33139862 Rx}*I00  
    Change in Focus                :      -0.903878 v*pN~}5  
          7     0.40051424    -0.14351809 _$oN"pj  
    Change in Focus                :      -1.354815 -!~ T$}/F  
          8     0.48754161    -0.05649072 zK5/0zMZ  
    Change in Focus                :       0.215922 bJ$6[H-:  
          9     0.40357468    -0.14045766 R'#1|eWCa  
    Change in Focus                :       0.281783 p#yq'kY  
         10     0.26315315    -0.28087919 sFvu@Wm'7W  
    Change in Focus                :      -1.048393 PU"C('AP  
         11     0.26120585    -0.28282649 }#0i1]n$D  
    Change in Focus                :       1.017611 D (>,#F  
         12     0.24033815    -0.30369419 |6ZH+6[  
    Change in Focus                :      -0.109292 VX;br1$X  
         13     0.37164046    -0.17239188 R[%ZyQ_  
    Change in Focus                :      -0.692430 49gm=XPm  
         14     0.48597489    -0.05805744 O :'ENoQ:&  
    Change in Focus                :      -0.662040 d;<gwCc  
         15     0.21462327    -0.32940907 $P{|^ou3a#  
    Change in Focus                :       1.611296 K ]  
         16     0.43378226    -0.11025008 mn>$K"_k  
    Change in Focus                :      -0.640081 1hz:AUH  
         17     0.39321881    -0.15081353 Q|gRBu  
    Change in Focus                :       0.914906 9HtzBS  
         18     0.20692530    -0.33710703 =tS1|_  
    Change in Focus                :       0.801607 W$I^Ej}>$  
         19     0.51374068    -0.03029165 Al 0 i{.V  
    Change in Focus                :       0.947293 323zR*\m  
         20     0.38013374    -0.16389860 .:`+4n  
    Change in Focus                :       0.667010 #DqVh!t"  
    h W<fu  
    Number of traceable Monte Carlo files generated: 20 x3`b5^  
    MHm=X8eg  
    Nominal     0.54403234 ;VL v2J*  
    Best        0.54384387    Trial     2 FK^JCs^  
    Worst       0.18154684    Trial     4 aLWNqe&1  
    Mean        0.35770970 |3a1hCxt  
    Std Dev     0.11156454 3p%B  
    fW'@+<b  
    GW29Rj1  
    Compensator Statistics: ~)ecQ  
    Change in back focus: $wQkTx  
    Minimum            :        -1.354815 `2B,+ytW8  
    Maximum            :         1.611296 |2YkZ nJn  
    Mean               :         0.161872 O]XdPH20  
    Standard Deviation :         0.869664 ?tf/#5t}  
    w6PKr^  
    90% >       0.20977951               o)(N*tC  
    80% >       0.22748071               6<uJ}3  
    50% >       0.38667627               l\?HeVk^  
    20% >       0.46553746               iPD5 KsAOA  
    10% >       0.50064115                {x-iBg9#l2  
    sy ]k  
    End of Run. "M GX(SQ  
    )t$<FP  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 o:p6[SGd  
    ;x|E}XD  
    RW?F{Jy{  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 WeqE 9@V  
    |qn`z-  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 *2? -6  
    80% >       0.22748071                 ^`HP&V  
    50% >       0.38667627                 q_hkI]  
    20% >       0.46553746                 csEF^T-  
    10% >       0.50064115 oHW:s96e  
    |8|_^`  
    最后这个数值是MTF值呢,还是MTF的公差? DE$HF*WY  
    Epl\(  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   hk +@ngh%  
    *hk8[  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : K,$Ro@!  
    90% >       0.20977951                 2H]~X9,z2  
    80% >       0.22748071                 6]mFw{6qn1  
    50% >       0.38667627                 e=).0S`*F  
    20% >       0.46553746                 dB=aq34l  
    10% >       0.50064115 Y~fa=R{W  
    ....... i:@n6GW+iw  
    kgQyG[u  
    F s{}bQyQ  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   br[n5  
    Mode                : Sensitivities  z^YL$  
    Sampling            : 2 ]CnqPLqL  
    Nominal Criterion   : 0.54403234 EYaX@|)  
    Test Wavelength     : 0.6328 A $GiO  
    >+3tOv3:  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? Kd%>:E*  
    0D=7Mef  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试