切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16518阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 v5_7r%Hiw  
    3X;{vO\a1  
    xACdZB(  
    ~:4~2d|  
    然后添加了默认公差分析,基本没变 `1Zhq+s  
    'cV?i&;  
    &SH1q_&BQ  
    T>A{ qu  
    然后运行分析的结果如下: 03k?:D+5  
    "X04mQn15  
    Analysis of Tolerances WNs}sNSf  
    i^)WPP>4Aw  
    File : E:\光学设计资料\zemax练习\f500.ZMX <_Eg?ePW#  
    Title: I9Eu',  
    Date : TUE JUN 21 2011 6BocGo({  
    bUZ_UW  
    Units are Millimeters. <P_ea/5:|  
    All changes are computed using linear differences. <@G8ni  
    =Q<L eh=G  
    Paraxial Focus compensation only. G_ >G'2  
    2 rN ,D(  
    WARNING: Solves should be removed prior to tolerancing. c>HK9z{  
    fY,|o3#  
    Mnemonics: x[(?#  
    TFRN: Tolerance on curvature in fringes. geM6G$V&  
    TTHI: Tolerance on thickness.  fvEAIs  
    TSDX: Tolerance on surface decentering in x. ;apzAF  
    TSDY: Tolerance on surface decentering in y. 8z2Rry w  
    TSTX: Tolerance on surface tilt in x (degrees). ?+0GfIV  
    TSTY: Tolerance on surface tilt in y (degrees). e5?PkFV^a1  
    TIRR: Tolerance on irregularity (fringes). ;`dh fcU  
    TIND: Tolerance on Nd index of refraction. t *G/]  
    TEDX: Tolerance on element decentering in x. VsK>6S\T  
    TEDY: Tolerance on element decentering in y. 47r&8C+&\  
    TETX: Tolerance on element tilt in x (degrees). y "w|g~x]c  
    TETY: Tolerance on element tilt in y (degrees). +G F#?X0^  
    Sv'y e  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. e`K)_>^n#  
    {Qv>q$Q  
    WARNING: Boundary constraints on compensators will be ignored. Km#pX1]>e  
    $t~@xCi]S  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm l [GOs&D1  
    Mode                : Sensitivities 3;[DJ5  
    Sampling            : 2 l?8M p$M  
    Nominal Criterion   : 0.54403234 6KZf%)$  
    Test Wavelength     : 0.6328 /9pM>Cd*Z  
    |X19fgk  
    ziE*'p  
    Fields: XY Symmetric Angle in degrees ^|!I +  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 2@=IT0[E\  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Hr<o!e{Y  
     m#vL*]c}  
    Sensitivity Analysis: @}-r&/#  
    SOZPZUUEJ  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| !v.9"!' N  
    Type                      Value      Criterion        Change          Value      Criterion        Change kq=V4-a[  
    Fringe tolerance on surface 1 Sh6JF574T  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 X-LA}YH=tS  
    Change in Focus                :      -0.000000                            0.000000 ;%C'FV e]  
    Fringe tolerance on surface 2 H( jXI  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 wC_l@7 t  
    Change in Focus                :       0.000000                            0.000000 DQ#H,\ ^<  
    Fringe tolerance on surface 3 wXMDh$  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 *l+OlQI0+  
    Change in Focus                :      -0.000000                            0.000000 U9y|>P\)T  
    Thickness tolerance on surface 1 (>4aibA'P  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 D]a:@x`+Bz  
    Change in Focus                :       0.000000                            0.000000 N,dT3we  
    Thickness tolerance on surface 2 WEg6Kz  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 3.d"rl  
    Change in Focus                :       0.000000                           -0.000000 \c v?^AI  
    Decenter X tolerance on surfaces 1 through 3 6lwta`2  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 D4Al3fe  
    Change in Focus                :       0.000000                            0.000000 >_dx_<75&  
    Decenter Y tolerance on surfaces 1 through 3 Q5{Pv}Jx  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 aI(7nJ=R  
    Change in Focus                :       0.000000                            0.000000 %3q0(Xl  
    Tilt X tolerance on surfaces 1 through 3 (degrees) X,aYK;q%z  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 {Gq*e/  
    Change in Focus                :       0.000000                            0.000000 kE8>dmH23  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) s>k Uh  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 &6 s) X  
    Change in Focus                :       0.000000                            0.000000 ml0.$z  
    Decenter X tolerance on surface 1 QxuhGA  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 }8|[;Qa`y  
    Change in Focus                :       0.000000                            0.000000 E!BPE>  
    Decenter Y tolerance on surface 1 @E( 7V(m/  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671  T9)nQ[  
    Change in Focus                :       0.000000                            0.000000 fkSO( C)  
    Tilt X tolerance on surface (degrees) 1 !Cgx.   
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 <!-sZ_qq  
    Change in Focus                :       0.000000                            0.000000 KrVcwAcq|1  
    Tilt Y tolerance on surface (degrees) 1 ih,%i4<}6m  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ~R$~&x(b  
    Change in Focus                :       0.000000                            0.000000 >Rvx[`|O!m  
    Decenter X tolerance on surface 2 UJ-?k &j,  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 2%*MW"Q  
    Change in Focus                :       0.000000                            0.000000 6S6f\gAM  
    Decenter Y tolerance on surface 2 HEL!GC>#  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 f/WQ[\<!I  
    Change in Focus                :       0.000000                            0.000000 7n]65].t  
    Tilt X tolerance on surface (degrees) 2 7Dnp'*H  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 &l$Q^g  
    Change in Focus                :       0.000000                            0.000000 J q{7R  
    Tilt Y tolerance on surface (degrees) 2 1im^17 X  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 L %ip>  
    Change in Focus                :       0.000000                            0.000000 JN^ &S  
    Decenter X tolerance on surface 3 f\'{3I29  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 izh<I0  
    Change in Focus                :       0.000000                            0.000000 DG4 d"Jy  
    Decenter Y tolerance on surface 3 e%8|<g+n6  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 M"%Q&o/I  
    Change in Focus                :       0.000000                            0.000000 Y(cN}44  
    Tilt X tolerance on surface (degrees) 3 ^c~)/F/cF  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 o6f_l^+H  
    Change in Focus                :       0.000000                            0.000000 ^F?&|clM/  
    Tilt Y tolerance on surface (degrees) 3 UobyK3.%  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ThPE 0V  
    Change in Focus                :       0.000000                            0.000000 Dnc(l(  
    Irregularity of surface 1 in fringes =rdY @  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 y_xnai  
    Change in Focus                :       0.000000                            0.000000 VG/3xR&y  
    Irregularity of surface 2 in fringes jx acg^c  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 %|G"-%_E  
    Change in Focus                :       0.000000                            0.000000 >]o}}KF?  
    Irregularity of surface 3 in fringes f+rz|(6vs{  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Y+K|1r  
    Change in Focus                :       0.000000                            0.000000 =^H4Yck/5  
    Index tolerance on surface 1 9qS"uj  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 5[j`6l  
    Change in Focus                :       0.000000                            0.000000 $gBd <N9|c  
    Index tolerance on surface 2 Y(.OF Q  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 .z13 =yv  
    Change in Focus                :       0.000000                           -0.000000 :eo  
    ~=R SKyzt  
    Worst offenders: P{Q=mEQ  
    Type                      Value      Criterion        Change j~j\\Y  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ~ %B<  
    TSTY   2             0.20000000     0.35349910    -0.19053324 vkLC-Mzm<  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 gm9mg*aM  
    TSTX   2             0.20000000     0.35349910    -0.19053324 r>GZ58i  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 xkOpa,=FI  
    TSTY   1             0.20000000     0.42678383    -0.11724851 Scv#zuv_  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 LJoGpr 8  
    TSTX   1             0.20000000     0.42678383    -0.11724851 u&wiGwF[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 \.mI  
    TSTY   3             0.20000000     0.42861670    -0.11541563 lI>SUsQFfm  
    #07gd#j4  
    Estimated Performance Changes based upon Root-Sum-Square method: 5q "ON)x  
    Nominal MTF                 :     0.54403234 /c):}PJ^#7  
    Estimated change            :    -0.36299231 ja=F7Usb  
    Estimated MTF               :     0.18104003 xq"Jy=4Q*  
    xC C:BO`pw  
    Compensator Statistics: |d6T/Uxo  
    Change in back focus: |p$spQ  
    Minimum            :        -0.000000 43V}# DA@  
    Maximum            :         0.000000 a1Qv@p^._b  
    Mean               :        -0.000000 M:5b4$Qh<  
    Standard Deviation :         0.000000 Ecs,$\  
    OzC\9YeA  
    Monte Carlo Analysis: 'U'yC2BI n  
    Number of trials: 20 NWxUn.Gy9  
    Y2'cs~~$Ce  
    Initial Statistics: Normal Distribution 7t.!lh5G%  
    G\T fL^A  
      Trial       Criterion        Change vX]Gf4,  
          1     0.42804416    -0.11598818 ^_lzZOhG  
    Change in Focus                :      -0.400171 ?.Pg\ur  
          2     0.54384387    -0.00018847 =~p>`nV  
    Change in Focus                :       1.018470 Ie%EH  
          3     0.44510003    -0.09893230 7=(Hy\Q5xH  
    Change in Focus                :      -0.601922 E@Ad'_H  
          4     0.18154684    -0.36248550 41SGWAd#:  
    Change in Focus                :       0.920681 U!Ek'  
          5     0.28665820    -0.25737414 zRPeNdX  
    Change in Focus                :       1.253875 1!>Jpi0  
          6     0.21263372    -0.33139862 4V~?.  
    Change in Focus                :      -0.903878 'fPdpnJ<  
          7     0.40051424    -0.14351809 c_elShK8#  
    Change in Focus                :      -1.354815 ur$l Z0  
          8     0.48754161    -0.05649072 } CfqG?)  
    Change in Focus                :       0.215922 <I"S#M7-s  
          9     0.40357468    -0.14045766 `7H4Y&E  
    Change in Focus                :       0.281783 MeUaTJFEB  
         10     0.26315315    -0.28087919 _SA5e3#  
    Change in Focus                :      -1.048393 (dv]=5""  
         11     0.26120585    -0.28282649 A2|Ud_  
    Change in Focus                :       1.017611 R i^[i}  
         12     0.24033815    -0.30369419 "9n3VX)  
    Change in Focus                :      -0.109292 +E1h#cc)  
         13     0.37164046    -0.17239188 `UBYp p  
    Change in Focus                :      -0.692430 KgR<E  
         14     0.48597489    -0.05805744 -+O 9<3ly  
    Change in Focus                :      -0.662040 XQS9,Hl  
         15     0.21462327    -0.32940907 q/n,,!  
    Change in Focus                :       1.611296 @lvyDu6e  
         16     0.43378226    -0.11025008 <qGu7y"  
    Change in Focus                :      -0.640081 3d|9t9v  
         17     0.39321881    -0.15081353 nMJ#<'v^!2  
    Change in Focus                :       0.914906 '} $Dgp6e  
         18     0.20692530    -0.33710703 4^URX >nx8  
    Change in Focus                :       0.801607 r\/+Oa'  
         19     0.51374068    -0.03029165 50={%R  
    Change in Focus                :       0.947293 NC38fiH_N  
         20     0.38013374    -0.16389860 >;[*!<pfK5  
    Change in Focus                :       0.667010 {D=@n4JO  
    `]W| 8M  
    Number of traceable Monte Carlo files generated: 20 tPF.r  
     f& CBU  
    Nominal     0.54403234 o]opdw  
    Best        0.54384387    Trial     2 gg8Uo G  
    Worst       0.18154684    Trial     4 $*?,#ta  
    Mean        0.35770970 KY~- ;0x  
    Std Dev     0.11156454 >FkWH7  
    K>{T_){  
    s)pbS}L  
    Compensator Statistics: 9 yfJVg  
    Change in back focus: 87YyDWTn  
    Minimum            :        -1.354815 ^U!0-y  
    Maximum            :         1.611296 LEtG|3Dx  
    Mean               :         0.161872 ?5 {>;#0Z  
    Standard Deviation :         0.869664 j*vYBGD  
    gN"7be&J  
    90% >       0.20977951               b1( $R[  
    80% >       0.22748071               ,KFapz!  
    50% >       0.38667627               y_?Me]  
    20% >       0.46553746               ){b@}13cF  
    10% >       0.50064115                g?ULWeZg5  
    ;&)-;l7M  
    End of Run. FIsyiSY<j  
    Ll4g[8  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 c3CWRi`LE  
    7K98#;a)5  
    :n-]>Q>5=k  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Uw7h=UQh  
    T]c%!&^ _  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 CU@Rob}s  
    80% >       0.22748071                 .ufTQ?Fe  
    50% >       0.38667627                 &&8IU;J  
    20% >       0.46553746                 T^k7o^N>  
    10% >       0.50064115 'R'*kxf  
    q(.sq12<<W  
    最后这个数值是MTF值呢,还是MTF的公差? &-Gqdnc  
    SBfT20z[  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   lJ}_G>GJ  
    ?IqQ-C)6D  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Bn=by{i  
    90% >       0.20977951                 f=(?JT  
    80% >       0.22748071                 Y_;#UU689  
    50% >       0.38667627                 >:AARx%  
    20% >       0.46553746                 1L%CJ+Q#0i  
    10% >       0.50064115 X[*<NN  
    ....... ^crCy-`#  
    I WTwz!+  
    [pC$+NX  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   oz,np@f)J  
    Mode                : Sensitivities b(*!$EB  
    Sampling            : 2 6_J$UBT  
    Nominal Criterion   : 0.54403234 8UXjm_B^'  
    Test Wavelength     : 0.6328 xHUsFm s  
    )#BMTKA^  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ]p _L)  
    YNLV9.P6  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试