切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16477阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 5B=uvp|Y  
    <KMCNCU\+  
    B;k'J:-"  
    .psb# 4  
    然后添加了默认公差分析,基本没变 * %D_\0;  
    ]az(w&vqg2  
    #Y7jNrxE  
    I~4z%UG  
    然后运行分析的结果如下: .a4,Lr#q.  
    (`(D $%  
    Analysis of Tolerances 8t!jo.g  
    ^/C\:hw  
    File : E:\光学设计资料\zemax练习\f500.ZMX u*C*O4f>OC  
    Title: 4=Th<,<  
    Date : TUE JUN 21 2011 s~M$Wo8  
    b A+_/1C  
    Units are Millimeters. f,G*e367:  
    All changes are computed using linear differences. M}8P _<,  
    jQ{ @ol}n  
    Paraxial Focus compensation only. o/Ismg-p  
    SBxpJsW >  
    WARNING: Solves should be removed prior to tolerancing. Ema[M5$R  
    +ktv : d  
    Mnemonics: 6KddHyFz  
    TFRN: Tolerance on curvature in fringes. D ,kxB~  
    TTHI: Tolerance on thickness. u W]gBhO$O  
    TSDX: Tolerance on surface decentering in x. qPDNDkjDD  
    TSDY: Tolerance on surface decentering in y. {$8+n::  
    TSTX: Tolerance on surface tilt in x (degrees). a_b#hM/c;  
    TSTY: Tolerance on surface tilt in y (degrees). 6 f*:;  
    TIRR: Tolerance on irregularity (fringes). ]IV{;{E)  
    TIND: Tolerance on Nd index of refraction. UT;%I_i!'  
    TEDX: Tolerance on element decentering in x. o GuAF q  
    TEDY: Tolerance on element decentering in y. @2E52$zu  
    TETX: Tolerance on element tilt in x (degrees). 5*44QV  
    TETY: Tolerance on element tilt in y (degrees). Ul8HWk[6Iw  
    7O55mc>cF  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 505c(+  
    UFj H8jSBx  
    WARNING: Boundary constraints on compensators will be ignored. uE1;@Dm+  
    71{Q#%5U~  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm \,13mB6  
    Mode                : Sensitivities <|r|s  
    Sampling            : 2 wUaWF$~y  
    Nominal Criterion   : 0.54403234 h$8h@2%  
    Test Wavelength     : 0.6328 }ny7LQ  
    4X^$"lM  
    8H7#[?F  
    Fields: XY Symmetric Angle in degrees  \ ca<L  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY y i$+rPF1  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ?^U?ua6  
    m!ZY]:)$  
    Sensitivity Analysis: 2E1`r@L  
    J%?5d:iN+  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| }uma<b  
    Type                      Value      Criterion        Change          Value      Criterion        Change p8'$@:M\  
    Fringe tolerance on surface 1 |OeWM  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 )K[\j?   
    Change in Focus                :      -0.000000                            0.000000 Ch]d\GM  
    Fringe tolerance on surface 2 D>|`+=1'0"  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 4aArxJ  
    Change in Focus                :       0.000000                            0.000000 ao)';[%9s  
    Fringe tolerance on surface 3 xX-r<:'tmi  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 xt|^~~ /  
    Change in Focus                :      -0.000000                            0.000000 YYpC!)  
    Thickness tolerance on surface 1 DgT]Nty@b  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 J8)l,J"  
    Change in Focus                :       0.000000                            0.000000 &dtst??  
    Thickness tolerance on surface 2 fg LY{  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 +&S 7l%-  
    Change in Focus                :       0.000000                           -0.000000 |$\K/]q -  
    Decenter X tolerance on surfaces 1 through 3 -J3~j kf  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 _0+X32HjJ  
    Change in Focus                :       0.000000                            0.000000 VpJKH\)Rt(  
    Decenter Y tolerance on surfaces 1 through 3 pg%(6dqK4  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 x=cucZ  
    Change in Focus                :       0.000000                            0.000000 Z"VP<-  
    Tilt X tolerance on surfaces 1 through 3 (degrees) .e7tq\k  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 SMrfEmdH+  
    Change in Focus                :       0.000000                            0.000000 <&m50pq  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) vCP[7KhGj  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 v,iZnANZ&P  
    Change in Focus                :       0.000000                            0.000000 P4@`C{F5m  
    Decenter X tolerance on surface 1 %T]$kF++&  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 %tP*_d:  
    Change in Focus                :       0.000000                            0.000000 J$}]p  
    Decenter Y tolerance on surface 1 ]A2E2~~G  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671  igo9~.  
    Change in Focus                :       0.000000                            0.000000 l/={aF7+  
    Tilt X tolerance on surface (degrees) 1 WO.u{vW]'  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 1(@$bsgu2  
    Change in Focus                :       0.000000                            0.000000 a Vu!Qk=Z/  
    Tilt Y tolerance on surface (degrees) 1 E !ndXz 59  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ktrIi5B  
    Change in Focus                :       0.000000                            0.000000  2yJ{B   
    Decenter X tolerance on surface 2 YVc cO~!8  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 HThZ4Kg+  
    Change in Focus                :       0.000000                            0.000000 'Ou C[$Z  
    Decenter Y tolerance on surface 2 R `ViRJh  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 O[VY|.MEk  
    Change in Focus                :       0.000000                            0.000000 _Z(t**Zh6y  
    Tilt X tolerance on surface (degrees) 2 Wh i#Ii~  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7_\F$bp`  
    Change in Focus                :       0.000000                            0.000000 Hk*1Wrs*  
    Tilt Y tolerance on surface (degrees) 2 ~5+RK16  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 9nN1f@Y  
    Change in Focus                :       0.000000                            0.000000 8;?4rrS  
    Decenter X tolerance on surface 3 FGi7KV=N  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 nsI+04[F  
    Change in Focus                :       0.000000                            0.000000 0Ncpi=6  
    Decenter Y tolerance on surface 3 V~/G,3:0y%  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ES4Wtc)&  
    Change in Focus                :       0.000000                            0.000000 '?Dxe B  
    Tilt X tolerance on surface (degrees) 3 'TS_Am?o  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ^7y t>  
    Change in Focus                :       0.000000                            0.000000 =|-= 4.b+|  
    Tilt Y tolerance on surface (degrees) 3 At\(/Z y  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 k^Qf |  
    Change in Focus                :       0.000000                            0.000000 s21} a,eB  
    Irregularity of surface 1 in fringes RKP, w %  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 kY$EK]s  
    Change in Focus                :       0.000000                            0.000000 5csh8i'V  
    Irregularity of surface 2 in fringes 12lX-~[["  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 jM\{*!7b  
    Change in Focus                :       0.000000                            0.000000 SyVGm@  
    Irregularity of surface 3 in fringes :C>7HEh-2_  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 T`!R ki%~  
    Change in Focus                :       0.000000                            0.000000 1*=ev,Z  
    Index tolerance on surface 1 sm-[=d%@L  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ;+wB!/k,  
    Change in Focus                :       0.000000                            0.000000 _H]^7`;  
    Index tolerance on surface 2 M?lh1Yu"  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 H<Sf0>OA  
    Change in Focus                :       0.000000                           -0.000000 dO8 2T3T  
    Z8 v8@Y  
    Worst offenders:  )bF l-  
    Type                      Value      Criterion        Change 2#7|zhgb  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Dylm=ZZa  
    TSTY   2             0.20000000     0.35349910    -0.19053324 X6cn8ak 3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 w&?XsO@0W  
    TSTX   2             0.20000000     0.35349910    -0.19053324 y`va6 %u{  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 w5 .^meU  
    TSTY   1             0.20000000     0.42678383    -0.11724851 cp@Fj"  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 8Nzn%0(Q  
    TSTX   1             0.20000000     0.42678383    -0.11724851 |4mvB2r  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 !ekByD  
    TSTY   3             0.20000000     0.42861670    -0.11541563 kumV|$Y?kA  
    >T[/V3Z~K  
    Estimated Performance Changes based upon Root-Sum-Square method: b11I$b #  
    Nominal MTF                 :     0.54403234 zhw*Bed<  
    Estimated change            :    -0.36299231 Y2DL%'K^  
    Estimated MTF               :     0.18104003 D<J'\mo  
    Q|)>9m!tt  
    Compensator Statistics: !}!KT(% %  
    Change in back focus: ceG\Q2  
    Minimum            :        -0.000000 `a& L  
    Maximum            :         0.000000 nNCR5&,q  
    Mean               :        -0.000000  Gk~aTO  
    Standard Deviation :         0.000000 hTDGgSG^  
    W+i^tmj  
    Monte Carlo Analysis: .hW>#  
    Number of trials: 20 %k#+nad  
    iL;V5|(sb  
    Initial Statistics: Normal Distribution G^ GIHdo  
    lBfthLBa  
      Trial       Criterion        Change ;$iT]S  
          1     0.42804416    -0.11598818 #1%@R<`  
    Change in Focus                :      -0.400171 J,Ki2'=  
          2     0.54384387    -0.00018847 @_C]5D^J^~  
    Change in Focus                :       1.018470 aE'nW_f  
          3     0.44510003    -0.09893230 !kSemDC  
    Change in Focus                :      -0.601922 aA4RC0'  
          4     0.18154684    -0.36248550 vNw(hT5750  
    Change in Focus                :       0.920681 9Vm aB  
          5     0.28665820    -0.25737414 ~Fb@E0 }!  
    Change in Focus                :       1.253875 MQP9^+f)O?  
          6     0.21263372    -0.33139862 {O>Td9  
    Change in Focus                :      -0.903878 yc*cT%?g  
          7     0.40051424    -0.14351809 tCrEcjT-  
    Change in Focus                :      -1.354815 wK2$hsque  
          8     0.48754161    -0.05649072 :Hq%y/  
    Change in Focus                :       0.215922 1vo3aF  
          9     0.40357468    -0.14045766 %O9Wm_%  
    Change in Focus                :       0.281783 +1wEoU.l2  
         10     0.26315315    -0.28087919 h^(U:M=A  
    Change in Focus                :      -1.048393 e&x)g;bn  
         11     0.26120585    -0.28282649 !U?C _  
    Change in Focus                :       1.017611 H}r]j\  
         12     0.24033815    -0.30369419 c $1u  
    Change in Focus                :      -0.109292 Q qF<HCO  
         13     0.37164046    -0.17239188 4vL\t uoz  
    Change in Focus                :      -0.692430 _zDS-e@  
         14     0.48597489    -0.05805744 j(y<oxh  
    Change in Focus                :      -0.662040 s#5#WNzP  
         15     0.21462327    -0.32940907 r#WqXh_uk  
    Change in Focus                :       1.611296 fL| 9/sojz  
         16     0.43378226    -0.11025008 <zqIq9}r  
    Change in Focus                :      -0.640081 er_6PV  
         17     0.39321881    -0.15081353 5{yg  
    Change in Focus                :       0.914906 K-]) RIM  
         18     0.20692530    -0.33710703 L&+k`b  
    Change in Focus                :       0.801607 _kBmKE  
         19     0.51374068    -0.03029165 >q;| dn9  
    Change in Focus                :       0.947293 0dwD ?GG2  
         20     0.38013374    -0.16389860 2(!W 9#]  
    Change in Focus                :       0.667010 j?C[ids<  
    Q.$/I+&j  
    Number of traceable Monte Carlo files generated: 20 EJ {vJZO  
    C)m@/w  
    Nominal     0.54403234 06HU6d ,  
    Best        0.54384387    Trial     2 z2V ->UK)  
    Worst       0.18154684    Trial     4 @8c@H#H  
    Mean        0.35770970 p*W{*wZ_^  
    Std Dev     0.11156454 2. nT k   
    O)^F z:  
    #.u &2eyqQ  
    Compensator Statistics: JQ ?8yl  
    Change in back focus: Z<|x6%  
    Minimum            :        -1.354815 /QS Nv  
    Maximum            :         1.611296 yUcU-pQ  
    Mean               :         0.161872 b:9"nALgC  
    Standard Deviation :         0.869664 +mG"m hF  
    .&5 3sJ0{  
    90% >       0.20977951               J_+2]X7n  
    80% >       0.22748071               \=RV?mI3?  
    50% >       0.38667627               >Ch2Ep  
    20% >       0.46553746               Eva&FHRTY  
    10% >       0.50064115                [GCaRk>b,  
    6-$95.Y2  
    End of Run. i*l =xW;bM  
     uWMSn   
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 .`KzA]&#  
    D|Tz{DRG  
     ~9YEb  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 rLeQB p'  
    zBca$Vp  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 4K~>  
    80% >       0.22748071                 .i;?8?  
    50% >       0.38667627                 ]"O* &  
    20% >       0.46553746                 5ld?N2<8/  
    10% >       0.50064115 Nw ,|4S  
    Jz0AYiCq  
    最后这个数值是MTF值呢,还是MTF的公差? zk@s#_3ct  
    ~4#D G^5  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   %"#ydOy  
    r0OP !u  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : vr6YE;Rs  
    90% >       0.20977951                 @ W,<8  
    80% >       0.22748071                 mM{cH=  
    50% >       0.38667627                 ?O]RQXsZ2  
    20% >       0.46553746                 $:A80(#+  
    10% >       0.50064115 R$Qhu xT|  
    ....... d*U<Ww^q  
    [e{W:7uFV  
    4#t-?5"  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   `'pAiu  
    Mode                : Sensitivities g^\!> i  
    Sampling            : 2 %E [HMq<H  
    Nominal Criterion   : 0.54403234 cVr+Wp7K#|  
    Test Wavelength     : 0.6328 T)ISDK4>S"  
    V"}Jsr  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 7QoMroR  
    Io&HzQW^a  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试