切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16661阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 wISzT^RS  
    W -!dMa  
    DMRs}Yz6  
     z8tt+AU  
    然后添加了默认公差分析,基本没变 X~#@rg!"  
    .>oM z&  
    TR_(_Yd?36  
    ] : Wb1  
    然后运行分析的结果如下: `ITDTZ J  
     1dXh\r_n  
    Analysis of Tolerances 6vZt43"m?\  
    "9.6\Y\*  
    File : E:\光学设计资料\zemax练习\f500.ZMX ;?#i]Bh>S  
    Title:  MbM :3  
    Date : TUE JUN 21 2011 VN!^m]0  
    dfXV1B5  
    Units are Millimeters. ],!p p3U  
    All changes are computed using linear differences. mURX I'JkX  
    :nTkg[49pJ  
    Paraxial Focus compensation only. CVi<~7Am\  
    MEDskvBG  
    WARNING: Solves should be removed prior to tolerancing. CcbWW4 )  
    Yr Preuh  
    Mnemonics: p$&_fzb  
    TFRN: Tolerance on curvature in fringes. x%ZiE5#  
    TTHI: Tolerance on thickness. mfUKHX5  
    TSDX: Tolerance on surface decentering in x. >E{#HPpBi  
    TSDY: Tolerance on surface decentering in y. V}p*HB@:  
    TSTX: Tolerance on surface tilt in x (degrees). C3^X1F0  
    TSTY: Tolerance on surface tilt in y (degrees). $d5&~I  
    TIRR: Tolerance on irregularity (fringes). 69[w/\  
    TIND: Tolerance on Nd index of refraction. o(vZ*^\  
    TEDX: Tolerance on element decentering in x. ,[+ZjAyG}#  
    TEDY: Tolerance on element decentering in y. %Tk}sfx  
    TETX: Tolerance on element tilt in x (degrees). 5Xla_@WLW  
    TETY: Tolerance on element tilt in y (degrees). >V3W>5X  
    t^dakL  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. }P7xdQ6  
    ^$3w&$K*  
    WARNING: Boundary constraints on compensators will be ignored. %Td+J`|U+  
    0R.Gjz*Q  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Yk x&6M@t  
    Mode                : Sensitivities :6qUSE  
    Sampling            : 2 `1DU b7<  
    Nominal Criterion   : 0.54403234 _AA`R`p;  
    Test Wavelength     : 0.6328 '&&~IB4ud  
    ZhxfI?i)l  
    a2 IV!0x  
    Fields: XY Symmetric Angle in degrees h?M'7Lti  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY <L[  *hp  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 fte!Ll'  
    o%QhV6(F  
    Sensitivity Analysis: $Ykp8u,(  
    6+5(.z-[  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| uugzIV)  
    Type                      Value      Criterion        Change          Value      Criterion        Change K'ed5J  
    Fringe tolerance on surface 1 Q|zE@nLS  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 jp\JwE  
    Change in Focus                :      -0.000000                            0.000000 _~(M A-l  
    Fringe tolerance on surface 2 *&~sr  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 s7X~OF(#  
    Change in Focus                :       0.000000                            0.000000 CgaB)`.  
    Fringe tolerance on surface 3 k N uN4/  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 NiU tH  
    Change in Focus                :      -0.000000                            0.000000 &St~!y6M?  
    Thickness tolerance on surface 1 ^[SbV^DOL  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 1L(Nfkh  
    Change in Focus                :       0.000000                            0.000000 ;FIMCJS  
    Thickness tolerance on surface 2 1yY'hb,0  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ~Y}Z4" o  
    Change in Focus                :       0.000000                           -0.000000 3w6J V+?  
    Decenter X tolerance on surfaces 1 through 3 4%Z\G@0<'  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 r[i~4N=  
    Change in Focus                :       0.000000                            0.000000 UeC%Wa<[  
    Decenter Y tolerance on surfaces 1 through 3 (&a3v  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 n[S41809<  
    Change in Focus                :       0.000000                            0.000000  G> 5=`  
    Tilt X tolerance on surfaces 1 through 3 (degrees) \3@2rW"5  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 zrWq!F*-V\  
    Change in Focus                :       0.000000                            0.000000 6H. L!tUI  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) (urfaZ;@+  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 3IRRFIiO  
    Change in Focus                :       0.000000                            0.000000 EIVQu~,H  
    Decenter X tolerance on surface 1 -;DE&~p  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 1Tts3O .  
    Change in Focus                :       0.000000                            0.000000 NUO,"Bqq  
    Decenter Y tolerance on surface 1 Y+Q,4s  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 5i wikC=y  
    Change in Focus                :       0.000000                            0.000000 ^FyvaO  
    Tilt X tolerance on surface (degrees) 1 _tR.RAaa"  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 lpX p )r+  
    Change in Focus                :       0.000000                            0.000000 `U?H^,FVA  
    Tilt Y tolerance on surface (degrees) 1 |4 d{X@`&  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851  *<h  
    Change in Focus                :       0.000000                            0.000000 V.G9J!?<P  
    Decenter X tolerance on surface 2 uk>/I l  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Aj)< 8  
    Change in Focus                :       0.000000                            0.000000 2+G:04eS,e  
    Decenter Y tolerance on surface 2 Qe=Q8cT  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 |SXMu_w  
    Change in Focus                :       0.000000                            0.000000 ;V}FbWz^v6  
    Tilt X tolerance on surface (degrees) 2 7;#dX~>@{  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 9"u @<]  
    Change in Focus                :       0.000000                            0.000000 \t~u : D  
    Tilt Y tolerance on surface (degrees) 2 wW)&Px n  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 H:nu>pz t  
    Change in Focus                :       0.000000                            0.000000 @|*Z0bn'  
    Decenter X tolerance on surface 3 a[{QlD^D  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 1Qc(<gM  
    Change in Focus                :       0.000000                            0.000000 "x)pp  
    Decenter Y tolerance on surface 3 ,LW%'tQ~"  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 K Lv  
    Change in Focus                :       0.000000                            0.000000 3YNkT"~T  
    Tilt X tolerance on surface (degrees) 3 4 d1Y\  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 K+TTYQ  
    Change in Focus                :       0.000000                            0.000000 zR/p}Wu|!  
    Tilt Y tolerance on surface (degrees) 3 .f!eRV.&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 <t|9`l_XW  
    Change in Focus                :       0.000000                            0.000000 cX]{RVZo-/  
    Irregularity of surface 1 in fringes Iy 8E$B;  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 e4_aKuA  
    Change in Focus                :       0.000000                            0.000000 pQ2)M8 gf  
    Irregularity of surface 2 in fringes e hB1`%@  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 9+;f1nV  
    Change in Focus                :       0.000000                            0.000000 oG_'<5Bv>  
    Irregularity of surface 3 in fringes 6+d"3-R.  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 igbb=@QBJ  
    Change in Focus                :       0.000000                            0.000000 !JQ~r@j  
    Index tolerance on surface 1 TD=/C|  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 .g`*cDW^=  
    Change in Focus                :       0.000000                            0.000000 YQ`#C #Wb  
    Index tolerance on surface 2 n^(yW  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 +(k)1kCMn  
    Change in Focus                :       0.000000                           -0.000000 <{).x 6  
    zinl.8Uk  
    Worst offenders: <rI$"=7  
    Type                      Value      Criterion        Change ?g*T3S"  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Da[X HUk  
    TSTY   2             0.20000000     0.35349910    -0.19053324 (uxQBy  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 bOGDz|H``  
    TSTX   2             0.20000000     0.35349910    -0.19053324 >^ 1S26  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 TF3q?0  
    TSTY   1             0.20000000     0.42678383    -0.11724851 :XY3TI  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 <`p'6n79  
    TSTX   1             0.20000000     0.42678383    -0.11724851 p$G3r0 @  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 s6h Wq&C  
    TSTY   3             0.20000000     0.42861670    -0.11541563 `1v!sSR0R  
    ^znv[  
    Estimated Performance Changes based upon Root-Sum-Square method: vo<#sa^,j  
    Nominal MTF                 :     0.54403234 xR6IXF>*  
    Estimated change            :    -0.36299231 i/EiUH/~  
    Estimated MTF               :     0.18104003 i|noYo_Ah\  
    =5_F9nk-   
    Compensator Statistics: bQQ/7KM  
    Change in back focus: ;p"XCLHl  
    Minimum            :        -0.000000 BW\5RIWwE5  
    Maximum            :         0.000000 ;= @-j@?  
    Mean               :        -0.000000 ;{7lc9uRj  
    Standard Deviation :         0.000000 Br^b%12ZRS  
    *TI6Z$b|6  
    Monte Carlo Analysis: TUn@b11  
    Number of trials: 20 qtwmTT)  
    R[-:-8  
    Initial Statistics: Normal Distribution &rWJg6/  
    eQIi}\`  
      Trial       Criterion        Change !VTS $nJ4  
          1     0.42804416    -0.11598818 s H[34gCh;  
    Change in Focus                :      -0.400171 9)hC,)5  
          2     0.54384387    -0.00018847 Ntrn("!  
    Change in Focus                :       1.018470 0x/V1?gm  
          3     0.44510003    -0.09893230 )_.H #|r  
    Change in Focus                :      -0.601922 zO]dQ$r\Z  
          4     0.18154684    -0.36248550 C:EoUu  
    Change in Focus                :       0.920681 '^Np<  
          5     0.28665820    -0.25737414 d>-EtWd  
    Change in Focus                :       1.253875 SO<K#HfE$?  
          6     0.21263372    -0.33139862 Ri0+nJ6  
    Change in Focus                :      -0.903878 gbZX'D  
          7     0.40051424    -0.14351809 G7JZP T  
    Change in Focus                :      -1.354815 LKY Q?  
          8     0.48754161    -0.05649072 !K)|e4$  
    Change in Focus                :       0.215922 S60`'!y  
          9     0.40357468    -0.14045766 [B<{3*R_  
    Change in Focus                :       0.281783 bxHk0w  
         10     0.26315315    -0.28087919 l7um9@[4  
    Change in Focus                :      -1.048393 EwZt/r  
         11     0.26120585    -0.28282649 b4PK  
    Change in Focus                :       1.017611 FKm2slzb  
         12     0.24033815    -0.30369419 TI&J>/z;$  
    Change in Focus                :      -0.109292 <7Lz<{jaJ  
         13     0.37164046    -0.17239188 V-u\TiL  
    Change in Focus                :      -0.692430 4Lb<#e13R?  
         14     0.48597489    -0.05805744 lV="IP^7  
    Change in Focus                :      -0.662040 hlEvL  
         15     0.21462327    -0.32940907 NtL?cWct  
    Change in Focus                :       1.611296 rvO+=Tk  
         16     0.43378226    -0.11025008 Bqgw%_  
    Change in Focus                :      -0.640081 cIkLdh   
         17     0.39321881    -0.15081353 UG$i5PV%i  
    Change in Focus                :       0.914906 ]F#kM211  
         18     0.20692530    -0.33710703 (dZ&Af  
    Change in Focus                :       0.801607 kS!*kk*a  
         19     0.51374068    -0.03029165 M#|xj <p  
    Change in Focus                :       0.947293 h UDEjW@S  
         20     0.38013374    -0.16389860 ArM e[t0$  
    Change in Focus                :       0.667010 O-YE6u  
    4TV9t"Dk+c  
    Number of traceable Monte Carlo files generated: 20 Hc!_o`[{l  
    $5O&[/L  
    Nominal     0.54403234 ?-i&6i6Y  
    Best        0.54384387    Trial     2 9r}} m0  
    Worst       0.18154684    Trial     4 K~G^jAk+  
    Mean        0.35770970 #=m5*}=  
    Std Dev     0.11156454 =p:6u_@XWj  
    lPP7w`[PA  
    (Zkt2[E`  
    Compensator Statistics: y.OUn'^d4  
    Change in back focus: d4tVK0 ~  
    Minimum            :        -1.354815 !).d c.P  
    Maximum            :         1.611296 C5FtJquGN)  
    Mean               :         0.161872 EA72%Y9F  
    Standard Deviation :         0.869664 I115Rp0  
    \!Pm^FD .  
    90% >       0.20977951               S5M t?v|K  
    80% >       0.22748071               XZJx3!~fm  
    50% >       0.38667627               NU"X*g-x^  
    20% >       0.46553746               dXQWT@$y!E  
    10% >       0.50064115                H6QQ<~_&  
    Ft7l/  
    End of Run. aQuENsB  
    _1QNO#X  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 PT=%]o]  
    -g9f3Be  
    {Gy_QRsp,  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ~$<@:z{*  
    hw1s^:|+2  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 #gq3 e  
    80% >       0.22748071                 }[|"db  
    50% >       0.38667627                 x!J L9  
    20% >       0.46553746                 '5IJ;4k  
    10% >       0.50064115 & b%6pVj  
    mcvTz, ; =  
    最后这个数值是MTF值呢,还是MTF的公差? |( KM 8  
    Jx_4:G  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   a v/=x  
    ^^Y0 \3.  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ,u$$w  
    90% >       0.20977951                 e{"d6pF=  
    80% >       0.22748071                 A+? n=IHh  
    50% >       0.38667627                 IUzRE?Kzf  
    20% >       0.46553746                 i2y?CI  
    10% >       0.50064115 e7<~[>g)  
    ....... h$lY,7  
    ~]N% {;F}  
    =MMWcK&  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   9n$$D;  
    Mode                : Sensitivities F*} b),  
    Sampling            : 2 ARslw*SJ  
    Nominal Criterion   : 0.54403234 6? 2/b`k  
    Test Wavelength     : 0.6328 2f F)I&  
    'tF<7\!  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? lkBab$S)  
    350y6pVh  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试