切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16456阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 5X)M)"rq;V  
    0Q&(j7`^@  
    v { >3)$1  
    mLZ1u\ 7W  
    然后添加了默认公差分析,基本没变 ~>u| 7 M$(  
    [QgP6f]=  
    6d6cZGS[:  
    8R3{YJ6@T  
    然后运行分析的结果如下: O;<wD h)Yt  
    !P=Cv=  
    Analysis of Tolerances =;uMrb4  
    /"?DOsJ.  
    File : E:\光学设计资料\zemax练习\f500.ZMX b/:wpy+9Z  
    Title: }^Q:Q\  
    Date : TUE JUN 21 2011 >jAFt_  
    MmjZq  
    Units are Millimeters. #\lvzMjCC  
    All changes are computed using linear differences. y'!OA+ob  
    w/m@(EBK  
    Paraxial Focus compensation only. jjj<B'zt  
    [A84R04_%  
    WARNING: Solves should be removed prior to tolerancing. ?<!q F:r:  
    f_S$CFa@  
    Mnemonics: &/WM:]^?0)  
    TFRN: Tolerance on curvature in fringes. MZ,1mR  
    TTHI: Tolerance on thickness. 8eS(gKD  
    TSDX: Tolerance on surface decentering in x. O68-G  
    TSDY: Tolerance on surface decentering in y. Qs,\P^n  
    TSTX: Tolerance on surface tilt in x (degrees). hXjZ>n``  
    TSTY: Tolerance on surface tilt in y (degrees). *{w0=J[15  
    TIRR: Tolerance on irregularity (fringes). HD=F2p  
    TIND: Tolerance on Nd index of refraction. (O0Ry2u k  
    TEDX: Tolerance on element decentering in x. KM?4J6jH  
    TEDY: Tolerance on element decentering in y. Mc@9ivwL#  
    TETX: Tolerance on element tilt in x (degrees). ZDFq=)0C  
    TETY: Tolerance on element tilt in y (degrees). |?^<=%  
    JKM(fX+  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ?`U_|Yo  
    R|\eBnfI  
    WARNING: Boundary constraints on compensators will be ignored. "i;.>  
    bN. G%1  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ^~[7])}g6  
    Mode                : Sensitivities 5Z!$?J4Rl  
    Sampling            : 2 ~rBFP)  
    Nominal Criterion   : 0.54403234 Qt+D ,X  
    Test Wavelength     : 0.6328 Dz~0(  
    h(/? 81:  
    \ =hg^j  
    Fields: XY Symmetric Angle in degrees  pRobx  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY cpa" ,8  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 3k)xzv%r`  
    QAV6{QShj  
    Sensitivity Analysis: aA|{r/.10K  
    OCx'cSs-=  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ;\0|1Eem`  
    Type                      Value      Criterion        Change          Value      Criterion        Change 1YV1 Xnn,  
    Fringe tolerance on surface 1 L[2qCxB'^  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 a20w.6F  
    Change in Focus                :      -0.000000                            0.000000 w"9h_;'C_  
    Fringe tolerance on surface 2 Ep;uz5 ^8  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 $#h U_vr  
    Change in Focus                :       0.000000                            0.000000 b \}a   
    Fringe tolerance on surface 3 v8f3B<kj  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 #H~55))F  
    Change in Focus                :      -0.000000                            0.000000 lubsLI  
    Thickness tolerance on surface 1 qB$-H' j:;  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 9A.NM+u7  
    Change in Focus                :       0.000000                            0.000000 n>v1<^  
    Thickness tolerance on surface 2 cn} CI  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 7He"IJ  
    Change in Focus                :       0.000000                           -0.000000 XS&Pc  
    Decenter X tolerance on surfaces 1 through 3 8UjIC4'  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ^&YtZjV  
    Change in Focus                :       0.000000                            0.000000 FvT4?7-  
    Decenter Y tolerance on surfaces 1 through 3 %0-oZL  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 @o0HDS  
    Change in Focus                :       0.000000                            0.000000 uBww  
    Tilt X tolerance on surfaces 1 through 3 (degrees) eV?%3h.   
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ExO#V9DaW  
    Change in Focus                :       0.000000                            0.000000 |-=-/u1  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) jI8`trD  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 PL= v,NB  
    Change in Focus                :       0.000000                            0.000000 ^ `yhN  
    Decenter X tolerance on surface 1 ,5c7jZ5H  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 SdlO]y9E  
    Change in Focus                :       0.000000                            0.000000 QgU]3`z"  
    Decenter Y tolerance on surface 1 _|C3\x1c  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 55O}SUs!P  
    Change in Focus                :       0.000000                            0.000000 mHMsK}=~  
    Tilt X tolerance on surface (degrees) 1 uN<=v&]q  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 c/K#W$ l  
    Change in Focus                :       0.000000                            0.000000 U=D;Cj Ah  
    Tilt Y tolerance on surface (degrees) 1 961&rR}d  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 F[\T'{  
    Change in Focus                :       0.000000                            0.000000 [1(eSH  
    Decenter X tolerance on surface 2 ,.P]5 lE  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 zdJPMNHg  
    Change in Focus                :       0.000000                            0.000000 ;b [>{Q;  
    Decenter Y tolerance on surface 2 LE}`rW3  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 wBpt W2jA  
    Change in Focus                :       0.000000                            0.000000 %@:>hQ2;  
    Tilt X tolerance on surface (degrees) 2 G%~V b  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 PNAvT$0LaZ  
    Change in Focus                :       0.000000                            0.000000 Q+Nnj(AQY  
    Tilt Y tolerance on surface (degrees) 2 esSj 3E  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ]B(}^N>WH  
    Change in Focus                :       0.000000                            0.000000 6g-jhsW6  
    Decenter X tolerance on surface 3 Q)aoc.f!v  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 DH.`  
    Change in Focus                :       0.000000                            0.000000 &k)+]r  
    Decenter Y tolerance on surface 3 Ia](CN*;6  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 DH\Ox>b=  
    Change in Focus                :       0.000000                            0.000000 %t_'rv  
    Tilt X tolerance on surface (degrees) 3 i-0 :Fs  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 LF.i0^#J  
    Change in Focus                :       0.000000                            0.000000 \_.'/<aQ  
    Tilt Y tolerance on surface (degrees) 3 yzfiH4  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 7x`$ A  
    Change in Focus                :       0.000000                            0.000000 ?:vg`m!*  
    Irregularity of surface 1 in fringes 9Y2u/|!.3  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 *}:P  
    Change in Focus                :       0.000000                            0.000000 z]g#2xD2  
    Irregularity of surface 2 in fringes .n IGs'P  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 i/!{k2  
    Change in Focus                :       0.000000                            0.000000 rIPg,4y*S!  
    Irregularity of surface 3 in fringes |8}y?kAC  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ;,Vdj[W$>  
    Change in Focus                :       0.000000                            0.000000 f|~'(~Sr  
    Index tolerance on surface 1 d3EN0e+^  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 j\KOKvY)  
    Change in Focus                :       0.000000                            0.000000 n\I s}Czl  
    Index tolerance on surface 2 vH6(p(l  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 \t{4pobo  
    Change in Focus                :       0.000000                           -0.000000 B_Wig2xH0  
    !pe[H*Cy  
    Worst offenders: |qpm  
    Type                      Value      Criterion        Change P `<TO   
    TSTY   2            -0.20000000     0.35349910    -0.19053324 n)cc\JPQ  
    TSTY   2             0.20000000     0.35349910    -0.19053324 1;./e&%%  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 + ,]&&  
    TSTX   2             0.20000000     0.35349910    -0.19053324 6R m dt  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ajRht +{  
    TSTY   1             0.20000000     0.42678383    -0.11724851 M97+YMY)  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 D3 +|Os)  
    TSTX   1             0.20000000     0.42678383    -0.11724851 dh}"uM}a  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 vIi&D;  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ]nV_K}!w  
    sk5=$My  
    Estimated Performance Changes based upon Root-Sum-Square method: 9&kY>M>z0  
    Nominal MTF                 :     0.54403234 %\v  
    Estimated change            :    -0.36299231 ,EH-Sf2Cb  
    Estimated MTF               :     0.18104003 zGO_S\  
    #/(L.5d[  
    Compensator Statistics: pkIQ,W{Ke  
    Change in back focus: f3,Xb ]h  
    Minimum            :        -0.000000 ]%7m+-h@  
    Maximum            :         0.000000 LfnQcI$kO  
    Mean               :        -0.000000 V'.gE6we  
    Standard Deviation :         0.000000 #I ,c'Vj  
    " d~M \Az  
    Monte Carlo Analysis: "}uu-5]3  
    Number of trials: 20 ,iiI5FR  
    ?fU{?nI}>p  
    Initial Statistics: Normal Distribution ieEt C,U  
    M(^IRI-  
      Trial       Criterion        Change D_f :D^  
          1     0.42804416    -0.11598818 6(Cjak+~!  
    Change in Focus                :      -0.400171 M;-FW5O't  
          2     0.54384387    -0.00018847 H6#SP~V  
    Change in Focus                :       1.018470 Odt<WG  
          3     0.44510003    -0.09893230 {dl@ #T u  
    Change in Focus                :      -0.601922 `EP-Qlm  
          4     0.18154684    -0.36248550 4mGRk)hk:>  
    Change in Focus                :       0.920681 \>/AF<2"  
          5     0.28665820    -0.25737414 h 1j1PRE  
    Change in Focus                :       1.253875 Q>=/u-  
          6     0.21263372    -0.33139862 i[U=-4 J  
    Change in Focus                :      -0.903878 huin?,eGz  
          7     0.40051424    -0.14351809  9mv6  
    Change in Focus                :      -1.354815 gcM(K.n  
          8     0.48754161    -0.05649072 :OaGdL   
    Change in Focus                :       0.215922 s;[64ca]Q  
          9     0.40357468    -0.14045766 >vfLlYx  
    Change in Focus                :       0.281783 b!;WF  
         10     0.26315315    -0.28087919 [/cJc%{N  
    Change in Focus                :      -1.048393 8/9YR(H3H  
         11     0.26120585    -0.28282649 G#^6H]`[J:  
    Change in Focus                :       1.017611 B8-Y)u1G  
         12     0.24033815    -0.30369419 ~r]$(V n  
    Change in Focus                :      -0.109292 1N8YD .3  
         13     0.37164046    -0.17239188 \cAifU  
    Change in Focus                :      -0.692430 ^6 ,}*@  
         14     0.48597489    -0.05805744 kb*b|pWlO  
    Change in Focus                :      -0.662040 >F!X'#Iv  
         15     0.21462327    -0.32940907 aOW~! f/M  
    Change in Focus                :       1.611296 7 (i\?  
         16     0.43378226    -0.11025008 X0m6<q  
    Change in Focus                :      -0.640081 <,'^dR7,  
         17     0.39321881    -0.15081353 WoMMAo~  
    Change in Focus                :       0.914906 6}mSA@4&  
         18     0.20692530    -0.33710703 sr.!EQ]  
    Change in Focus                :       0.801607 2f0_Xw_V_  
         19     0.51374068    -0.03029165 #fe zUU  
    Change in Focus                :       0.947293 h3-dJgb  
         20     0.38013374    -0.16389860 (7P VfS>;  
    Change in Focus                :       0.667010 w >#.id[k  
     O6!:Qd  
    Number of traceable Monte Carlo files generated: 20 p["20 ?^  
    =$%_asQJ  
    Nominal     0.54403234 Q"{Q]IT  
    Best        0.54384387    Trial     2 771r(X?Fa  
    Worst       0.18154684    Trial     4 U| 1&=8l  
    Mean        0.35770970 ~M J3-<I  
    Std Dev     0.11156454 yi1V\8DC  
    V^p XbDRl  
    .*w3ryQ  
    Compensator Statistics: {cYbM[}U"  
    Change in back focus: Ds%~J  
    Minimum            :        -1.354815 Js8d{\0\  
    Maximum            :         1.611296 ;hU~nj+{  
    Mean               :         0.161872 =Cr F(wVO"  
    Standard Deviation :         0.869664 +QFY. >KH  
    h|&qWv  
    90% >       0.20977951               k'Z$#  
    80% >       0.22748071               V}"w8i+D?  
    50% >       0.38667627               [kg*BaG:  
    20% >       0.46553746               !xZ`()D#  
    10% >       0.50064115                N]@e7P'9F  
    ig,v6lqhM  
    End of Run. E@$HO_;&  
    s av  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 )SFy Q  
    E?P:!V=_  
    yE),GJ-m\<  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 nHi6$ } I  
    3P2L phW  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 :X6A9jmd  
    80% >       0.22748071                 |YAnd=$  
    50% >       0.38667627                 RGim):1e  
    20% >       0.46553746                 5#U*vGVT  
    10% >       0.50064115 n7 S~n k  
    R\wG3Oxol  
    最后这个数值是MTF值呢,还是MTF的公差? aGz <Yip  
    u*$ 1e  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   LMvsYc~]q  
    =,=tSp  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : j0k"iv  
    90% >       0.20977951                 AO9F.A<T5  
    80% >       0.22748071                 C,w$)x5kls  
    50% >       0.38667627                 `n7z+  
    20% >       0.46553746                 ,2)LH 'Xx  
    10% >       0.50064115 }Y5Sf"~M  
    ....... H;<hmbN?d  
    ' hL\xf{  
    6ZVJ2xs[%  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   e.i5j^5u  
    Mode                : Sensitivities rZZueYuXO  
    Sampling            : 2 g!<@6\RB  
    Nominal Criterion   : 0.54403234 )5Kzq6.  
    Test Wavelength     : 0.6328 B5!$5 Qc  
    @Q3aJ98)2  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? c0u!V+V%  
    !tFs(![  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试