切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16540阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 5L'X3g  
    &82Za%  
    7X*$Fu<  
    '1_CMr  
    然后添加了默认公差分析,基本没变 ~*@ UQ9*p#  
    |9Q4VY'";  
    sEm-Td+A5  
    R<I)}<g(A3  
    然后运行分析的结果如下: j|c  
    &A)AV<=>T  
    Analysis of Tolerances K!;Z#$iw[  
    KLrxlD4\  
    File : E:\光学设计资料\zemax练习\f500.ZMX aSkH<5i`v  
    Title: #`?B:  
    Date : TUE JUN 21 2011 _8P0iC8Zg#  
    >08'+\~:b  
    Units are Millimeters. Qyx%:PE  
    All changes are computed using linear differences. <F{EZ Ii  
    xp7 `[.  
    Paraxial Focus compensation only. rozp  
    XEl-5-M"  
    WARNING: Solves should be removed prior to tolerancing. 3|x*lmit  
    QH7"' u6  
    Mnemonics: gqJSz}'  
    TFRN: Tolerance on curvature in fringes. ? Dm={S6  
    TTHI: Tolerance on thickness. \"Jgs.  
    TSDX: Tolerance on surface decentering in x. C@1B?OfJ  
    TSDY: Tolerance on surface decentering in y. ;5Spdi4w  
    TSTX: Tolerance on surface tilt in x (degrees). 4c^WQ>[  
    TSTY: Tolerance on surface tilt in y (degrees). jrk48z  
    TIRR: Tolerance on irregularity (fringes). dxfF.\BFDn  
    TIND: Tolerance on Nd index of refraction. *oZ]k`-!8  
    TEDX: Tolerance on element decentering in x. !Lkk1z o  
    TEDY: Tolerance on element decentering in y. |Lf>Z2E  
    TETX: Tolerance on element tilt in x (degrees). Pfi|RTX$'*  
    TETY: Tolerance on element tilt in y (degrees). >%LZ|*U  
    q(xr5iuP_  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ?"04u*u3  
    L8R{W0Zr>!  
    WARNING: Boundary constraints on compensators will be ignored. F#NuZ'U  
    o?5m^S14[1  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm c@f?0|66M  
    Mode                : Sensitivities &GYnGrw?@  
    Sampling            : 2 rZ`+g7&^Fh  
    Nominal Criterion   : 0.54403234 ETZE.a  
    Test Wavelength     : 0.6328 )<YfLDgTs  
    Sq22]  
    ^I W5c>;|  
    Fields: XY Symmetric Angle in degrees Kcl~cIh77  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY AwnQ5-IR\  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 7]sRHX0o%  
    pNUe|b+P  
    Sensitivity Analysis: HE!"3S2S&+  
    Z?JR6;@W  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| -So$ f-y  
    Type                      Value      Criterion        Change          Value      Criterion        Change O1+OE!w  
    Fringe tolerance on surface 1 )O+Vft&#  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 xB4}9zN s  
    Change in Focus                :      -0.000000                            0.000000 Z=R 6?jU*n  
    Fringe tolerance on surface 2 <cm(QNdcC  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 POXd,ON9  
    Change in Focus                :       0.000000                            0.000000 pTeN[Yu?  
    Fringe tolerance on surface 3 2 o)8'Lp  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ==#mlpi`S[  
    Change in Focus                :      -0.000000                            0.000000 Q&5s,)w-  
    Thickness tolerance on surface 1 /aV;EkyO,  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ~#MXhhqB  
    Change in Focus                :       0.000000                            0.000000 wE~&Y? ^  
    Thickness tolerance on surface 2 <S ae:m4  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 )B*D\9\Z  
    Change in Focus                :       0.000000                           -0.000000 >;Ag7Ex  
    Decenter X tolerance on surfaces 1 through 3 Kj53"eW  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 )WNw0cV}J>  
    Change in Focus                :       0.000000                            0.000000 Efp[K}Z^$  
    Decenter Y tolerance on surfaces 1 through 3 9QP-~V{$  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 /6 y9 u}  
    Change in Focus                :       0.000000                            0.000000 6L<Y   
    Tilt X tolerance on surfaces 1 through 3 (degrees) "%I<yUP]U  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 @ / .w%  
    Change in Focus                :       0.000000                            0.000000 w%1-_;.aU6  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) x$hT+z6DUC  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 N?EeT}m_  
    Change in Focus                :       0.000000                            0.000000 d%Ls'[Y^_0  
    Decenter X tolerance on surface 1 3p1U,B}  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 G)IK5zCDd  
    Change in Focus                :       0.000000                            0.000000 b9;w3Ba  
    Decenter Y tolerance on surface 1 k3+LP7|*  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 3ncN) E/@  
    Change in Focus                :       0.000000                            0.000000 70<{tjyc  
    Tilt X tolerance on surface (degrees) 1 cY^'Cj  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 (nu;o!mo9  
    Change in Focus                :       0.000000                            0.000000 xs6kr  
    Tilt Y tolerance on surface (degrees) 1 T@jv0/(+  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 _]v@Dq VP  
    Change in Focus                :       0.000000                            0.000000 Hp>_:2O8s  
    Decenter X tolerance on surface 2 %(1Jt "9|  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 6]r#6c %  
    Change in Focus                :       0.000000                            0.000000 kGmz1S}2  
    Decenter Y tolerance on surface 2 S3UJ)@ E  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Xhs*nt%l  
    Change in Focus                :       0.000000                            0.000000 dsU'UG7L  
    Tilt X tolerance on surface (degrees) 2 I@oSRB  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 []jbzVwS2  
    Change in Focus                :       0.000000                            0.000000 <v6W l\  
    Tilt Y tolerance on surface (degrees) 2 ~8&P*oFC  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 JU#m?4g  
    Change in Focus                :       0.000000                            0.000000 .?`8B9w  
    Decenter X tolerance on surface 3 3#? 53s   
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ^[&,MQU{7  
    Change in Focus                :       0.000000                            0.000000 ~ o=kW2Y  
    Decenter Y tolerance on surface 3 .ah[!O  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ]D&U} n  
    Change in Focus                :       0.000000                            0.000000 "$/1.SX;]  
    Tilt X tolerance on surface (degrees) 3 E!RlH3})  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 7|xu)zYB  
    Change in Focus                :       0.000000                            0.000000 Bg[_MDWc-P  
    Tilt Y tolerance on surface (degrees) 3 F/PH=Dk  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 9;Q|" T  
    Change in Focus                :       0.000000                            0.000000 Eunmc  
    Irregularity of surface 1 in fringes v@4vitbG9  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 U[?f@.&  
    Change in Focus                :       0.000000                            0.000000 d}y")q|F  
    Irregularity of surface 2 in fringes o%!s/Z1  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Z~w2m6;s  
    Change in Focus                :       0.000000                            0.000000 g[*"LOw  
    Irregularity of surface 3 in fringes OIK46D6?.  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 "G^TA:O:=  
    Change in Focus                :       0.000000                            0.000000 *07?U")  
    Index tolerance on surface 1 ({zWyl  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 VsJKxa4  
    Change in Focus                :       0.000000                            0.000000 UhJ{MUH`  
    Index tolerance on surface 2 - ~4na{6x  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 JZK93R  
    Change in Focus                :       0.000000                           -0.000000 S['cX ~  
    .C.b5x!  
    Worst offenders: W~PMR/^i  
    Type                      Value      Criterion        Change P4zwTEk`  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 k }{o: N  
    TSTY   2             0.20000000     0.35349910    -0.19053324 \H9:%Tlp~4  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 l-P6B9e|\  
    TSTX   2             0.20000000     0.35349910    -0.19053324 &Yo|Pj  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 NG`Y{QT6N  
    TSTY   1             0.20000000     0.42678383    -0.11724851 P,xIDj4d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 &6vWz6!P  
    TSTX   1             0.20000000     0.42678383    -0.11724851 O._\l?m  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 t3!OqM  
    TSTY   3             0.20000000     0.42861670    -0.11541563 u0]u"T&N!  
    /OYa1,  
    Estimated Performance Changes based upon Root-Sum-Square method: %NfXe[T  
    Nominal MTF                 :     0.54403234 5dhy80|g]  
    Estimated change            :    -0.36299231 PD^G$LT  
    Estimated MTF               :     0.18104003 'oK o F  
    D.-G!0!  
    Compensator Statistics: as'yYn8  
    Change in back focus: vaJl}^T  
    Minimum            :        -0.000000 sgDSl@lB  
    Maximum            :         0.000000 PxQQfI>  
    Mean               :        -0.000000 Y mL{uV$  
    Standard Deviation :         0.000000 c1r+?q$f  
     WzoI0E`  
    Monte Carlo Analysis: 7r50y>  
    Number of trials: 20 OrYN-A4{  
    V2|By,.  
    Initial Statistics: Normal Distribution C/QmtT~`e  
    yXoNfsv  
      Trial       Criterion        Change Mk0x#-F  
          1     0.42804416    -0.11598818 nF_q{e7  
    Change in Focus                :      -0.400171 8{QCW{K  
          2     0.54384387    -0.00018847 .k-6LR  
    Change in Focus                :       1.018470 -`DYDIr  
          3     0.44510003    -0.09893230 E p;i],}  
    Change in Focus                :      -0.601922 d:w/{m% #  
          4     0.18154684    -0.36248550 D(;+my2  
    Change in Focus                :       0.920681 )bR0 >3/  
          5     0.28665820    -0.25737414 [*Ai@:F  
    Change in Focus                :       1.253875 'l=>H#}<B  
          6     0.21263372    -0.33139862 y/ Bo 4fM  
    Change in Focus                :      -0.903878 E N%{ $  
          7     0.40051424    -0.14351809 G<=I\T'g;  
    Change in Focus                :      -1.354815 #g0_8>t  
          8     0.48754161    -0.05649072 BWQ`8  
    Change in Focus                :       0.215922 qHp2;  
          9     0.40357468    -0.14045766 :o ~'\:/  
    Change in Focus                :       0.281783 C0 KFN  
         10     0.26315315    -0.28087919 b_a k@LYiu  
    Change in Focus                :      -1.048393 {lH'T1^m  
         11     0.26120585    -0.28282649 mI!iSVqr  
    Change in Focus                :       1.017611 \O4s0*gw  
         12     0.24033815    -0.30369419 -seLa(8F  
    Change in Focus                :      -0.109292 6)ibXbH  
         13     0.37164046    -0.17239188 OdZ/\_Z  
    Change in Focus                :      -0.692430 c+E\e]{  
         14     0.48597489    -0.05805744 YPGzI]\  
    Change in Focus                :      -0.662040 l?2  
         15     0.21462327    -0.32940907 fkp(M  
    Change in Focus                :       1.611296 8b.k*,r>  
         16     0.43378226    -0.11025008 }nX0h6+1  
    Change in Focus                :      -0.640081 #h^nvRmON  
         17     0.39321881    -0.15081353 R.*;] R>M  
    Change in Focus                :       0.914906 |'1.a jxw  
         18     0.20692530    -0.33710703 <Vk}U   
    Change in Focus                :       0.801607 R;pW,]}g,  
         19     0.51374068    -0.03029165 D4@?>ek6U  
    Change in Focus                :       0.947293 %hN>o)  
         20     0.38013374    -0.16389860 @wa"pWx8  
    Change in Focus                :       0.667010 _hyqHvP  
    z[1uub,)1  
    Number of traceable Monte Carlo files generated: 20 $*G3'G2'iS  
    >;1w-n  
    Nominal     0.54403234 y>x"/jzF#  
    Best        0.54384387    Trial     2 wkGr}  
    Worst       0.18154684    Trial     4 fo+s+Q|Y  
    Mean        0.35770970 2,q*8=?{6P  
    Std Dev     0.11156454 2F`#df  
    AC(qx:/6  
    D{Nd2G  
    Compensator Statistics: Be]z @E1x  
    Change in back focus: ;$6L_C4B  
    Minimum            :        -1.354815 $)"T9 $>$  
    Maximum            :         1.611296 uP%VL}% 0  
    Mean               :         0.161872 K"XwSZ/  
    Standard Deviation :         0.869664 gEsD7]o(=  
    BHAFO E  
    90% >       0.20977951               WN{8gL&y  
    80% >       0.22748071               6]%=q)oL[  
    50% >       0.38667627               hWbu Z%  
    20% >       0.46553746               :t!J 9  
    10% >       0.50064115                hG.}>(VV  
    #K:iB*  
    End of Run. *Vq'%b9  
    =23B9WT   
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 9) ]`le  
    >^`#%$+  
    72xf| s=  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 NR(rr.  
    ,"`3N2!Y}  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 TTj] _R{n  
    80% >       0.22748071                 : c iwh  
    50% >       0.38667627                 aMydeTCHi  
    20% >       0.46553746                 ^8oN~HLZ  
    10% >       0.50064115 ZU B]qzmK  
    *B&i`tq  
    最后这个数值是MTF值呢,还是MTF的公差? Y(rQ032s  
    gPK O-Fsd"  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   7]L}~  
    U/q"F<?.c  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : &ujq6~#  
    90% >       0.20977951                 /EM=!@ka  
    80% >       0.22748071                 *zPz)3;  
    50% >       0.38667627                 g9gyx/'*  
    20% >       0.46553746                 5m6I:s`pK  
    10% >       0.50064115 Kv\uBMJNW  
    ....... ?B4X&xf.D  
    7LW %:0  
    _3Q8R}  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   F, p~O{ Q  
    Mode                : Sensitivities RT=(vq @  
    Sampling            : 2 (=i+{ 3`|  
    Nominal Criterion   : 0.54403234 M$GZK'%  
    Test Wavelength     : 0.6328 8 =<&9TmE  
    <~!R|5sK  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? H#j Z'I  
    V2|XcR  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试