切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16673阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Z^h4%o-l{  
    -_2= NA?t  
    ZSbD4 |_  
    dJ|]W|q<  
    然后添加了默认公差分析,基本没变 #fFEo)YG  
    f2d"b+H#  
    d8x$NW-s  
    2V  
    然后运行分析的结果如下: W0?yPP=.  
    ?d_Cy\G  
    Analysis of Tolerances EatpORq  
    YZoH{p9f  
    File : E:\光学设计资料\zemax练习\f500.ZMX }R J2\CP  
    Title: ypml22)kz  
    Date : TUE JUN 21 2011 ]];7ozS)X  
    U %KoG-#  
    Units are Millimeters. oACE:h9U  
    All changes are computed using linear differences. 7?kvrIuY&  
     @P~ u k  
    Paraxial Focus compensation only. 9(H8MUF0{  
    %;zA_Wg  
    WARNING: Solves should be removed prior to tolerancing. Gd'^vqo<  
    PanyN3rC*  
    Mnemonics: gz$=\=%>RL  
    TFRN: Tolerance on curvature in fringes. u]oS91  
    TTHI: Tolerance on thickness. CjO/q)vV  
    TSDX: Tolerance on surface decentering in x. !867DX3*  
    TSDY: Tolerance on surface decentering in y. Ak1f*HGl|  
    TSTX: Tolerance on surface tilt in x (degrees). |g7E*1Ie  
    TSTY: Tolerance on surface tilt in y (degrees). ZkK +?:9  
    TIRR: Tolerance on irregularity (fringes). HL_MuyE  
    TIND: Tolerance on Nd index of refraction. a1Gy I  
    TEDX: Tolerance on element decentering in x. Xe%n.DW m  
    TEDY: Tolerance on element decentering in y. R!,RZ?|v  
    TETX: Tolerance on element tilt in x (degrees). "#p)Z{v"!  
    TETY: Tolerance on element tilt in y (degrees). 7u!p.kN  
    !Hgq7vZG  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 1~_]"Y'  
    Et7AAV*8g  
    WARNING: Boundary constraints on compensators will be ignored. u2F 3>s  
    $+rdzsf)+/  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm t=U[ ;?  
    Mode                : Sensitivities 2/h Mx-  
    Sampling            : 2 '9b<r7\@  
    Nominal Criterion   : 0.54403234 b^%4_[uRu  
    Test Wavelength     : 0.6328 )"q2DjfX*  
    qC]D9 A  
    >u6kT\|^C  
    Fields: XY Symmetric Angle in degrees 1*=[% d7  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY <x1(}x:u`  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 VNMhtwmK,  
    D'</eJ  
    Sensitivity Analysis: v_Jp 9  
    m(&ZNZK  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| O[-wm;_(=*  
    Type                      Value      Criterion        Change          Value      Criterion        Change 2Ejs{KUj  
    Fringe tolerance on surface 1 &\5T`|~)!  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 M>'-P  
    Change in Focus                :      -0.000000                            0.000000 v1;`.PWD  
    Fringe tolerance on surface 2 ^D6JckW  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 s=28.  
    Change in Focus                :       0.000000                            0.000000 o{:D  
    Fringe tolerance on surface 3 ##FN0|e&  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 AR)&W/S)7,  
    Change in Focus                :      -0.000000                            0.000000 X3q'x}{  
    Thickness tolerance on surface 1 m-;u]X=a  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 KUB"@wUr  
    Change in Focus                :       0.000000                            0.000000 gBresHrlH  
    Thickness tolerance on surface 2 w8>p[F5`O  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 .'SM|r$  
    Change in Focus                :       0.000000                           -0.000000 & 8e~<  
    Decenter X tolerance on surfaces 1 through 3 :e gSW2"5S  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 a-O9[?G/x  
    Change in Focus                :       0.000000                            0.000000 K34y3i_  
    Decenter Y tolerance on surfaces 1 through 3 0WQ0-~wx  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 +DVU"d  
    Change in Focus                :       0.000000                            0.000000 Fnr*.k  
    Tilt X tolerance on surfaces 1 through 3 (degrees) :y]l`Mo -  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 jp2l}C  
    Change in Focus                :       0.000000                            0.000000 DGp'Xx_8  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ah~7T~  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 "< [D1E\  
    Change in Focus                :       0.000000                            0.000000 "bC8/^  
    Decenter X tolerance on surface 1 O^ f[ ugs  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 2)mKcUL-  
    Change in Focus                :       0.000000                            0.000000 $yOfqr  
    Decenter Y tolerance on surface 1 N7Dm,Q]  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ^W'\8L  
    Change in Focus                :       0.000000                            0.000000 oz@yF)/Sm  
    Tilt X tolerance on surface (degrees) 1 dpTap<Noby  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 9;q@;)'5  
    Change in Focus                :       0.000000                            0.000000 ynDa4HB  
    Tilt Y tolerance on surface (degrees) 1 8a"aJYj  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 oXfLNe6>L  
    Change in Focus                :       0.000000                            0.000000 v%B^\S3)  
    Decenter X tolerance on surface 2 *bwLi h!}H  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 U<o,`y[Tn  
    Change in Focus                :       0.000000                            0.000000 zYF'XB]4  
    Decenter Y tolerance on surface 2 #&&^5r-b-  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 KWU#Swa`  
    Change in Focus                :       0.000000                            0.000000 XnV|{X%]U  
    Tilt X tolerance on surface (degrees) 2 (\M&/X~q  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 >WG$!o+R  
    Change in Focus                :       0.000000                            0.000000 } fSbH  
    Tilt Y tolerance on surface (degrees) 2 2Xgn[oI{  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 q!}&<w~|  
    Change in Focus                :       0.000000                            0.000000 :aco$ZNH5  
    Decenter X tolerance on surface 3 ^D/*Hp _  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 oDA1#-  
    Change in Focus                :       0.000000                            0.000000 4l[f}Z  
    Decenter Y tolerance on surface 3 0Ac]&N d`  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 5Sk87o1E(d  
    Change in Focus                :       0.000000                            0.000000 BxlpI[yWq  
    Tilt X tolerance on surface (degrees) 3 fv#e 8y  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Zj!S('hSY  
    Change in Focus                :       0.000000                            0.000000 7 ?/ Fr(\  
    Tilt Y tolerance on surface (degrees) 3 Ge|caiH1I  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 =3""D{l  
    Change in Focus                :       0.000000                            0.000000 f+J<sk  
    Irregularity of surface 1 in fringes =suj3.   
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 %p@A8'b  
    Change in Focus                :       0.000000                            0.000000 6-<,1Q'D  
    Irregularity of surface 2 in fringes pSay^9ZI  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 &vd9\Pp  
    Change in Focus                :       0.000000                            0.000000 'szkn0  
    Irregularity of surface 3 in fringes e)>Z&e,3  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 )|'? uN7  
    Change in Focus                :       0.000000                            0.000000 >:h 8T]F  
    Index tolerance on surface 1 En-eG37 l  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 rzY7f: '  
    Change in Focus                :       0.000000                            0.000000 N!r@M."  
    Index tolerance on surface 2 KZ;U6TBiB  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 CKrh14ul  
    Change in Focus                :       0.000000                           -0.000000 I6h{S}2  
    lvcX}{>\  
    Worst offenders: nA5v+d-<T  
    Type                      Value      Criterion        Change z2S53^C*  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 8_mdh+  
    TSTY   2             0.20000000     0.35349910    -0.19053324 \S1WF ?<,  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Fg`r:,(a  
    TSTX   2             0.20000000     0.35349910    -0.19053324 {.;MsE  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Vz51=?75  
    TSTY   1             0.20000000     0.42678383    -0.11724851 cAA J7?  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 .kvuI6H  
    TSTX   1             0.20000000     0.42678383    -0.11724851 6^}GXfJAc  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 //f[%j*>  
    TSTY   3             0.20000000     0.42861670    -0.11541563 F(}d|z@@  
    x1?p+  
    Estimated Performance Changes based upon Root-Sum-Square method: RhXX/HFk  
    Nominal MTF                 :     0.54403234 y! 7;Z~"  
    Estimated change            :    -0.36299231 Z'PL?;&+R  
    Estimated MTF               :     0.18104003 hH`yQGZ  
    5|&Sg}_  
    Compensator Statistics: nD!C9G#oS  
    Change in back focus: I?Eh 0fI  
    Minimum            :        -0.000000 )xlNj$(x5n  
    Maximum            :         0.000000 enK4`+.7  
    Mean               :        -0.000000 u*}6)=+:  
    Standard Deviation :         0.000000 Z9 }qds6 y  
    A&)P_B1|  
    Monte Carlo Analysis: ;m{[9i` 2  
    Number of trials: 20 H Viu7kue`  
    :KMo'pL  
    Initial Statistics: Normal Distribution rOS fDv  
    3zMmpeq  
      Trial       Criterion        Change qS+'#Sn  
          1     0.42804416    -0.11598818 fh:=ja?bM3  
    Change in Focus                :      -0.400171 L&q~5 9  
          2     0.54384387    -0.00018847 ;@ %~eIlu  
    Change in Focus                :       1.018470 hFs0qPVY  
          3     0.44510003    -0.09893230 R qOEQ*k  
    Change in Focus                :      -0.601922 yV=hi?f-[V  
          4     0.18154684    -0.36248550 _Ev"/ %  
    Change in Focus                :       0.920681 ZO W{rv]  
          5     0.28665820    -0.25737414 -P@o>#Em  
    Change in Focus                :       1.253875 cD-\fRBGK  
          6     0.21263372    -0.33139862 GcHWalm  
    Change in Focus                :      -0.903878 .ikFqZ$$  
          7     0.40051424    -0.14351809 |#f P8OK  
    Change in Focus                :      -1.354815 6@; w%Ea  
          8     0.48754161    -0.05649072 z| i$eF;x3  
    Change in Focus                :       0.215922  @X  
          9     0.40357468    -0.14045766 DM~Q+C=Yr  
    Change in Focus                :       0.281783 ezC55nm  
         10     0.26315315    -0.28087919 dcYUw]  
    Change in Focus                :      -1.048393 RkP7}ZA;  
         11     0.26120585    -0.28282649 t.485L %  
    Change in Focus                :       1.017611 d\'M ~VQ  
         12     0.24033815    -0.30369419 0JKbp*H  
    Change in Focus                :      -0.109292 ]%"Z[R   
         13     0.37164046    -0.17239188 _H<ur?G  
    Change in Focus                :      -0.692430 :q0C$xF  
         14     0.48597489    -0.05805744 V92e#AR  
    Change in Focus                :      -0.662040 xGPt5l<M&  
         15     0.21462327    -0.32940907 80c\O-{  
    Change in Focus                :       1.611296 +twJHf_U  
         16     0.43378226    -0.11025008 ;'p X1T  
    Change in Focus                :      -0.640081 bmzs!fg_~R  
         17     0.39321881    -0.15081353 ^L*:0P~  
    Change in Focus                :       0.914906 ~Se/uL;*  
         18     0.20692530    -0.33710703 @;JT }R H-  
    Change in Focus                :       0.801607 b6R0za  
         19     0.51374068    -0.03029165 +.b~2K1  
    Change in Focus                :       0.947293 adHHnH`,  
         20     0.38013374    -0.16389860 ^h4Q2Mv o  
    Change in Focus                :       0.667010 [{f{E  
    {SCwi;m  
    Number of traceable Monte Carlo files generated: 20 JG0TbM1(Bt  
    MpGWt#  
    Nominal     0.54403234 8&3+=<U  
    Best        0.54384387    Trial     2 : R.,<DQM  
    Worst       0.18154684    Trial     4 f:=q=i  
    Mean        0.35770970 |!flR? OU  
    Std Dev     0.11156454 rR^VW^|f  
    "a>%tsl$K  
    gMFTZQsP  
    Compensator Statistics: m:ITyQ+  
    Change in back focus: rnEWTk7&  
    Minimum            :        -1.354815 OAc+LdT  
    Maximum            :         1.611296 "72 _Sw  
    Mean               :         0.161872 ~~&8I!r e  
    Standard Deviation :         0.869664 haqL DVrf  
    \b{=&B[Q$'  
    90% >       0.20977951               ,.x1+9X  
    80% >       0.22748071               !sK{:6s  
    50% >       0.38667627               zl4Iq+5~6Q  
    20% >       0.46553746               xud =(HLl  
    10% >       0.50064115                p@YU7_sF^!  
    2{| U  
    End of Run. ` ~VV1  
    }+,1G!? z  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 xBl}=M?Qu  
    &5~bJ]P   
    +p>tO\mo  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 n;/yo~RR  
    AQ'~EbH(  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 */u_RJ  
    80% >       0.22748071                 oDrfzm|[Y  
    50% >       0.38667627                 OtBVfA:[  
    20% >       0.46553746                 zr-HL:js  
    10% >       0.50064115 p>Qzz`@e  
    Xt_8=Q  
    最后这个数值是MTF值呢,还是MTF的公差? sV%<U-X  
    qm{(.b^  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   OT+=H)/  
    -2{NI.-Xd  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 55q!2>Jh.  
    90% >       0.20977951                 'K&^y%~py,  
    80% >       0.22748071                 m#1 >y}  
    50% >       0.38667627                 8?LsV<  
    20% >       0.46553746                 Oy EOb>  
    10% >       0.50064115 diHK  
    ....... KCP$i@Pjv  
    A0X'|4I  
    QTr) r;Tro  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   b'q ru~i  
    Mode                : Sensitivities )qSjI_qt5  
    Sampling            : 2 g y5^JL  
    Nominal Criterion   : 0.54403234 n8 UG{. =  
    Test Wavelength     : 0.6328 ^AhV1rBB  
    gGZ-B<  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? qu\cU(H|  
    35Ro8 5j  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试