切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16463阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ?"B] "%M&  
    `9~ %6N?7#  
    ~ Z\:Nx  
    )g0fN+Mb  
    然后添加了默认公差分析,基本没变 FcDS*ZEk!  
    \(o"/*  
    G=zWhqieh  
    Z~5) )5Ye;  
    然后运行分析的结果如下: hx;f/E Px  
    *IG$"nu  
    Analysis of Tolerances Cm}2>eH  
    r* *zjv>  
    File : E:\光学设计资料\zemax练习\f500.ZMX wKV4-uyr  
    Title: NTg@UT <  
    Date : TUE JUN 21 2011 wVf~FssN  
    UtZ,q!sg  
    Units are Millimeters. -fR :W{u  
    All changes are computed using linear differences. }cKB)N BJb  
    zG!nqSDG  
    Paraxial Focus compensation only. }U_ ' 7_JT  
    "t@p9>  
    WARNING: Solves should be removed prior to tolerancing. c'2d+*[  
    K2   
    Mnemonics: i|YS>Pw~j  
    TFRN: Tolerance on curvature in fringes. v9*m0|T0M  
    TTHI: Tolerance on thickness. x(_[D08/TT  
    TSDX: Tolerance on surface decentering in x. / HTY>b  
    TSDY: Tolerance on surface decentering in y. }f}.>B0#  
    TSTX: Tolerance on surface tilt in x (degrees). `8:0x?X  
    TSTY: Tolerance on surface tilt in y (degrees). v3tJtb^'!  
    TIRR: Tolerance on irregularity (fringes). ]Bw0Qq F#  
    TIND: Tolerance on Nd index of refraction. 1>!LK_  
    TEDX: Tolerance on element decentering in x. G0cG%sIl  
    TEDY: Tolerance on element decentering in y. J=4>zQLW  
    TETX: Tolerance on element tilt in x (degrees). EY}:aur  
    TETY: Tolerance on element tilt in y (degrees). y8Va>ul"U  
    {Kz,_bo  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. M`xiC  
    eL!41_QI  
    WARNING: Boundary constraints on compensators will be ignored. !40>LpL[  
    ~E<2gMKjO  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm s\ IKSoE  
    Mode                : Sensitivities nla6QlFYn*  
    Sampling            : 2  >@ t  
    Nominal Criterion   : 0.54403234 <g4}7l8  
    Test Wavelength     : 0.6328 tYS4"Nfb+  
    Wboh2:TH:  
    " qI99e  
    Fields: XY Symmetric Angle in degrees !xM5 A[f  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY s}D>.9  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 |@qw  
    k$EVr([  
    Sensitivity Analysis: vdQoJWuB  
    2h E(h  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ?GhyVXS y.  
    Type                      Value      Criterion        Change          Value      Criterion        Change $Y$9]G":  
    Fringe tolerance on surface 1 &hCbXs=  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 >yIJ8IDF  
    Change in Focus                :      -0.000000                            0.000000 lOIk$"Ne  
    Fringe tolerance on surface 2 ,S)r%[ru^  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 b}J%4Lx%m  
    Change in Focus                :       0.000000                            0.000000 V5|ANt  
    Fringe tolerance on surface 3 ,pNx(a  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 R[WiW RfD  
    Change in Focus                :      -0.000000                            0.000000 95DEuReKi  
    Thickness tolerance on surface 1 Rx%S<i;9  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 <v"o+  
    Change in Focus                :       0.000000                            0.000000 L'e_?`!:  
    Thickness tolerance on surface 2 &)eg3P)7  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 +)]YvZ6%[,  
    Change in Focus                :       0.000000                           -0.000000 0lw>mxN  
    Decenter X tolerance on surfaces 1 through 3 y(A' *G9  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 J~YT~D 2L  
    Change in Focus                :       0.000000                            0.000000 GK?ual1  
    Decenter Y tolerance on surfaces 1 through 3 'U@o!\=a  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 |WS)KR !  
    Change in Focus                :       0.000000                            0.000000 Cs $5Of(  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 8h )XULs2  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 '\Xkvi  
    Change in Focus                :       0.000000                            0.000000 (8nv&|  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) BD g]M/{  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 7#8Gn=g  
    Change in Focus                :       0.000000                            0.000000  *kr/,_K  
    Decenter X tolerance on surface 1 V\~.  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 `-NK:;^  
    Change in Focus                :       0.000000                            0.000000 ?^|`A}q#  
    Decenter Y tolerance on surface 1 \l+v,ELX=  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Fu7:4+  
    Change in Focus                :       0.000000                            0.000000 }r}*=;Ea  
    Tilt X tolerance on surface (degrees) 1 J3 $>~?^1  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Iq$| ?MH  
    Change in Focus                :       0.000000                            0.000000 I[z:;4W}L^  
    Tilt Y tolerance on surface (degrees) 1 M  .#}  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 8$00\><r  
    Change in Focus                :       0.000000                            0.000000 LiJYyp  
    Decenter X tolerance on surface 2 a6p0_-MF  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Sn CwoxK  
    Change in Focus                :       0.000000                            0.000000 nhI+xqfn  
    Decenter Y tolerance on surface 2  U 'jt'(  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 _=v#"l  
    Change in Focus                :       0.000000                            0.000000 t0)1;aBZ  
    Tilt X tolerance on surface (degrees) 2 H`EhsYYK  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 A q i:h]x  
    Change in Focus                :       0.000000                            0.000000 O"m7r ds  
    Tilt Y tolerance on surface (degrees) 2 'uPAG;)m  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 XN<SKW(H3  
    Change in Focus                :       0.000000                            0.000000 q*!R4yE;C  
    Decenter X tolerance on surface 3 nD wh  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ?W/.'_  
    Change in Focus                :       0.000000                            0.000000 Z:4/lx7Bq  
    Decenter Y tolerance on surface 3 A^U84kV=  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 &|>@K#V8-;  
    Change in Focus                :       0.000000                            0.000000 |OQ]F  
    Tilt X tolerance on surface (degrees) 3 =]5tYIU  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 4vhf!!1  
    Change in Focus                :       0.000000                            0.000000 =C %)(|  
    Tilt Y tolerance on surface (degrees) 3 \ovs[&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 3bEcKA_z(  
    Change in Focus                :       0.000000                            0.000000 ~uQ*u.wi  
    Irregularity of surface 1 in fringes =~^b  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 -YoL.`s1   
    Change in Focus                :       0.000000                            0.000000 kUT2/3Vi  
    Irregularity of surface 2 in fringes blc?[ [,!  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 N['DqS =  
    Change in Focus                :       0.000000                            0.000000 LG}{ibB  
    Irregularity of surface 3 in fringes k %I83,+  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 j,n:%5P\v  
    Change in Focus                :       0.000000                            0.000000 iOL$|Z(  
    Index tolerance on surface 1 p_$^keOL  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578  F/Goq`  
    Change in Focus                :       0.000000                            0.000000 }1a}pm2p  
    Index tolerance on surface 2 <o EAy  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ?_Qe45 @  
    Change in Focus                :       0.000000                           -0.000000 <z Gh}.6v  
    *A-_*A  
    Worst offenders: J}|X  
    Type                      Value      Criterion        Change fRp]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 %ms%0%  
    TSTY   2             0.20000000     0.35349910    -0.19053324 LI,wSTVjC  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 $b8[/],  
    TSTX   2             0.20000000     0.35349910    -0.19053324 R'BB-  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 1NYR8W]2  
    TSTY   1             0.20000000     0.42678383    -0.11724851 !Ko2yn}6l  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 U}92%W?  
    TSTX   1             0.20000000     0.42678383    -0.11724851 2>z YJqG|  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 .7iRV  
    TSTY   3             0.20000000     0.42861670    -0.11541563 HoI6(t  
    :!gNOR6Lh  
    Estimated Performance Changes based upon Root-Sum-Square method: B,b8\\^k|  
    Nominal MTF                 :     0.54403234 |Xt G9A>  
    Estimated change            :    -0.36299231 bWSN]]e1#  
    Estimated MTF               :     0.18104003 >ohCz@~  
    eORXyh\K  
    Compensator Statistics: @ @[xTyA  
    Change in back focus: x&B&lFmo 8  
    Minimum            :        -0.000000 Ni~IY# '  
    Maximum            :         0.000000 Nd8>p.iqO  
    Mean               :        -0.000000 8/e-?2l  
    Standard Deviation :         0.000000 :Cq73:1\B  
    N0 {e7M  
    Monte Carlo Analysis: 3,PR6a,b'  
    Number of trials: 20 ch i=]*9  
    @SfQbM##%  
    Initial Statistics: Normal Distribution 7q0_lEh  
    m*^)#  
      Trial       Criterion        Change s-p)^B  
          1     0.42804416    -0.11598818 4v[y^P  
    Change in Focus                :      -0.400171 H'A N osv  
          2     0.54384387    -0.00018847 j~v`q5X  
    Change in Focus                :       1.018470 PV68d; $:8  
          3     0.44510003    -0.09893230 5c- P lm%  
    Change in Focus                :      -0.601922 s5~k]"{j  
          4     0.18154684    -0.36248550 v9(5H Y  
    Change in Focus                :       0.920681 !73y(Y%TE  
          5     0.28665820    -0.25737414 tYA@J["^  
    Change in Focus                :       1.253875 "i&)+dr-  
          6     0.21263372    -0.33139862 Q2 q~m8(  
    Change in Focus                :      -0.903878 la[ pA  
          7     0.40051424    -0.14351809 G,C`+1$*  
    Change in Focus                :      -1.354815 ?(ORk|)kU  
          8     0.48754161    -0.05649072 qu B[S)2}  
    Change in Focus                :       0.215922 7F<{ Qn  
          9     0.40357468    -0.14045766 r]9-~1T  
    Change in Focus                :       0.281783 Vr2A7kq  
         10     0.26315315    -0.28087919 RELNWr  
    Change in Focus                :      -1.048393 {Y~>&B5  
         11     0.26120585    -0.28282649 tN#C.M7.'7  
    Change in Focus                :       1.017611 r1!1u7dr t  
         12     0.24033815    -0.30369419 yr\ClIU  
    Change in Focus                :      -0.109292 B=A!hXNa  
         13     0.37164046    -0.17239188 TdFU,  
    Change in Focus                :      -0.692430 ^0]0ss;##R  
         14     0.48597489    -0.05805744 pg{VKrT`  
    Change in Focus                :      -0.662040 f:Pl Mv!{  
         15     0.21462327    -0.32940907 5CK+\MK  
    Change in Focus                :       1.611296 BTAbDyH5  
         16     0.43378226    -0.11025008 ^4=#, K  
    Change in Focus                :      -0.640081 Q/o,2R  
         17     0.39321881    -0.15081353 |[],z 8  
    Change in Focus                :       0.914906 N~/ 'EaO  
         18     0.20692530    -0.33710703 i1evB9FZ1z  
    Change in Focus                :       0.801607 UPtj@gtcY  
         19     0.51374068    -0.03029165  h,/Aq  
    Change in Focus                :       0.947293 UL[,A+X8D  
         20     0.38013374    -0.16389860 SkuR~!  
    Change in Focus                :       0.667010 L{/% "2>  
    L<FXtBJ  
    Number of traceable Monte Carlo files generated: 20 $+j1^  
    "B'c;0 @q  
    Nominal     0.54403234 /8; m.J>bf  
    Best        0.54384387    Trial     2 '$FF/|{  
    Worst       0.18154684    Trial     4 x2v0cR"KL  
    Mean        0.35770970 k4Q>J,k  
    Std Dev     0.11156454 V]|X ,G  
    ,I"T9k-^  
    `r$7Cc$C  
    Compensator Statistics: 8 a]'G)(ts  
    Change in back focus: )j;^3LiV3  
    Minimum            :        -1.354815 gnJ8tuS  
    Maximum            :         1.611296 97liSd  
    Mean               :         0.161872 m%0 -3c(  
    Standard Deviation :         0.869664 @gN"Q\;F  
    s)Y1%#  
    90% >       0.20977951               Q6m8N  
    80% >       0.22748071               Pn!~U] A$%  
    50% >       0.38667627               7y$\|WG?!r  
    20% >       0.46553746               um%_kX  
    10% >       0.50064115                _ [k \S|iY  
    K]|UdNo  
    End of Run. 4jXo5SkEJ  
    z& ;8pZr  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 WEwa<%Ss  
    J>(X0@eWz  
    }AS?q?4?  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Zv!`R($  
    ?^voA.Bv<  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 M!,H0( @G  
    80% >       0.22748071                 X%b1KG|#(  
    50% >       0.38667627                 9[/0  
    20% >       0.46553746                 ?I=1T.  
    10% >       0.50064115 $e+sqgU  
    HAn{^8"@  
    最后这个数值是MTF值呢,还是MTF的公差? f=^xU P  
    4<Vi`X7[F  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   iTHwH{!  
    ~A>fB2.pM  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : c~U0&V_`j  
    90% >       0.20977951                 xCZ_x$bk  
    80% >       0.22748071                 3#t9pI4  
    50% >       0.38667627                 <.)=CK  
    20% >       0.46553746                 l`\L@~ln  
    10% >       0.50064115 qlcd[Y*B  
    ....... `sm Cfh}j6  
    !`_f  
    \oPe" k=  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   "1s ]74  
    Mode                : Sensitivities /K!)}f( 6  
    Sampling            : 2 w5z]=dN  
    Nominal Criterion   : 0.54403234 b]]k\b  
    Test Wavelength     : 0.6328 '5aA+XP|  
    \y7?w*K  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ?e-rwaW  
    xd3mAf  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试