切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16176阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 $p0D9mF  
    8~-TN1H  
    V61oK  
    fg#e*7Odn  
    然后添加了默认公差分析,基本没变 SH=S>  
    @YH>|{S&  
    1R~$m  
    '[F`!X  
    然后运行分析的结果如下: ro<w8V9.a  
    .u#Hg'oP  
    Analysis of Tolerances mIYKzu_k=  
    {Hl(t$3V`  
    File : E:\光学设计资料\zemax练习\f500.ZMX sGtxqnX:J  
    Title: JluA?B7E  
    Date : TUE JUN 21 2011 *k,3@_5  
    ^$O(oE(D  
    Units are Millimeters. ),B/NZ/-  
    All changes are computed using linear differences. vvxD}p=y  
    *kK +Nvt8s  
    Paraxial Focus compensation only. /N*<Fq7w~  
    Aqf91 [c  
    WARNING: Solves should be removed prior to tolerancing. [9Rh"H;h  
    )z74,n7-  
    Mnemonics: t!/~_}eDJ  
    TFRN: Tolerance on curvature in fringes. k`N*_/(|n  
    TTHI: Tolerance on thickness. r^C(|Vx  
    TSDX: Tolerance on surface decentering in x. %gFIu.c  
    TSDY: Tolerance on surface decentering in y. 5!Y\STn  
    TSTX: Tolerance on surface tilt in x (degrees). 1z&"V}y  
    TSTY: Tolerance on surface tilt in y (degrees). 9ETdO,L)f  
    TIRR: Tolerance on irregularity (fringes). O]hUOc `k  
    TIND: Tolerance on Nd index of refraction. `V V >AA5  
    TEDX: Tolerance on element decentering in x. J9 NuqV3  
    TEDY: Tolerance on element decentering in y. v+Y^mV`|  
    TETX: Tolerance on element tilt in x (degrees). >m1b/J3#  
    TETY: Tolerance on element tilt in y (degrees). a1I-d=]  
    Z'k?lkB2i  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Y1sK sdV  
    }DjVZ48  
    WARNING: Boundary constraints on compensators will be ignored. ,=Wj*S)~  
    4+ d(d  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm .Er+*j;&w  
    Mode                : Sensitivities FN!?o:|(  
    Sampling            : 2 l }^ziY!  
    Nominal Criterion   : 0.54403234 ;k#_/c  
    Test Wavelength     : 0.6328 jJ<&!=  
    Z9 ws{8@_  
    ]O:8o<0  
    Fields: XY Symmetric Angle in degrees bIBF2m4  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 1=IOio4U  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 |iBf6smF  
    W9c&"T9JT  
    Sensitivity Analysis: ^J7q,tvbJ  
    m ne)c[Qn  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| EmUn&p%hI  
    Type                      Value      Criterion        Change          Value      Criterion        Change &glh >9:G  
    Fringe tolerance on surface 1 w ]T_%mdk  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 |?0MRX0'g  
    Change in Focus                :      -0.000000                            0.000000 ~s'}_5;VY  
    Fringe tolerance on surface 2 =*ErN  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 _$IWr)8f  
    Change in Focus                :       0.000000                            0.000000 `fEzE\\!*  
    Fringe tolerance on surface 3 Q!IqvmO  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ;rL1[qwk  
    Change in Focus                :      -0.000000                            0.000000 X!z-J>  
    Thickness tolerance on surface 1 xu-bn  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 BRu}"29  
    Change in Focus                :       0.000000                            0.000000 x{w|Hy  
    Thickness tolerance on surface 2 F^Jz   
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Q Rr9|p{  
    Change in Focus                :       0.000000                           -0.000000 S#p_Y^A  
    Decenter X tolerance on surfaces 1 through 3 S m=ln)G=  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005  }+/Vk  
    Change in Focus                :       0.000000                            0.000000 7#UJ444b~  
    Decenter Y tolerance on surfaces 1 through 3 RLQ*&[A}  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 9 $X" D  
    Change in Focus                :       0.000000                            0.000000 y7 #+VF`xf  
    Tilt X tolerance on surfaces 1 through 3 (degrees) {_\dwe9  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 'Bt!X^  
    Change in Focus                :       0.000000                            0.000000 oaq,4FT  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) A~E S{Zkh  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Ei]Sks V>*  
    Change in Focus                :       0.000000                            0.000000 hTv*4J&@|  
    Decenter X tolerance on surface 1 (HeSL),1  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 m!<FlEkN  
    Change in Focus                :       0.000000                            0.000000 `:r-&QdU o  
    Decenter Y tolerance on surface 1 lAA6tlc#C  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 gk8 v{'0Er  
    Change in Focus                :       0.000000                            0.000000 k-^^Ao*@  
    Tilt X tolerance on surface (degrees) 1  1 <T|  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 c%b|+4 }x  
    Change in Focus                :       0.000000                            0.000000 J#@+1 Nt  
    Tilt Y tolerance on surface (degrees) 1 G2!<C-T{2  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 pQ7elv]  
    Change in Focus                :       0.000000                            0.000000 GK11fZpO:i  
    Decenter X tolerance on surface 2 >{Mv+  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 o\Fv~^  
    Change in Focus                :       0.000000                            0.000000 _M7|:*  
    Decenter Y tolerance on surface 2 0;`FS /[(f  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 M{)eA<6  
    Change in Focus                :       0.000000                            0.000000 P>~Usuf4  
    Tilt X tolerance on surface (degrees) 2 [N[4\W!!  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 j8?! J^TC  
    Change in Focus                :       0.000000                            0.000000 q%A>q ;l:  
    Tilt Y tolerance on surface (degrees) 2 ~qL/P 5*+  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 -3d`e2^&}  
    Change in Focus                :       0.000000                            0.000000 <Mo{o2F=  
    Decenter X tolerance on surface 3 k:j?8o3  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 "BpDlTYM  
    Change in Focus                :       0.000000                            0.000000 l>i:M#z&  
    Decenter Y tolerance on surface 3 oLlfqV,|L\  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 *&_A4)  
    Change in Focus                :       0.000000                            0.000000 D2 o|.e<r  
    Tilt X tolerance on surface (degrees) 3 {s6#h#U  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 W>{&" 5  
    Change in Focus                :       0.000000                            0.000000 r0&LjH&R  
    Tilt Y tolerance on surface (degrees) 3 U m`KmM3  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 3ErV" R4"$  
    Change in Focus                :       0.000000                            0.000000 cyjgi /Z  
    Irregularity of surface 1 in fringes v=dN$B5y3  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 *j1Skd.#At  
    Change in Focus                :       0.000000                            0.000000 wLO"[,  
    Irregularity of surface 2 in fringes =:R${F  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Ae^4  
    Change in Focus                :       0.000000                            0.000000 }7fzEo`g  
    Irregularity of surface 3 in fringes r}|)oG,=  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ^pfM/LQ@  
    Change in Focus                :       0.000000                            0.000000 SZ4@GK  
    Index tolerance on surface 1 @LU[po1I  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 T2|<YJ=  
    Change in Focus                :       0.000000                            0.000000 WoSKN7*  
    Index tolerance on surface 2 F$:mGyl5_  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 w+\RSqz/  
    Change in Focus                :       0.000000                           -0.000000 9/&1lFKJ  
    Y<@_d  
    Worst offenders: _m#TL60m  
    Type                      Value      Criterion        Change *z~J ]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 h"2^` )!u  
    TSTY   2             0.20000000     0.35349910    -0.19053324 @ K2Ncb7  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 3XbFg%8YG  
    TSTX   2             0.20000000     0.35349910    -0.19053324 l<"B[  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 R iLqMSq  
    TSTY   1             0.20000000     0.42678383    -0.11724851 %2G3+T8*x  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 m<MN.R7  
    TSTX   1             0.20000000     0.42678383    -0.11724851 &Dp&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 [a^<2V!vMn  
    TSTY   3             0.20000000     0.42861670    -0.11541563 3],(oQq^  
    4h}\Kl  
    Estimated Performance Changes based upon Root-Sum-Square method: 5rA>2<\pQ  
    Nominal MTF                 :     0.54403234 >u .u#de  
    Estimated change            :    -0.36299231 VF7H0XR/k5  
    Estimated MTF               :     0.18104003 <`A!9+  
    H3JDA^5  
    Compensator Statistics: TUp%Cx  
    Change in back focus: e5ww~%,  
    Minimum            :        -0.000000 = j l( Q  
    Maximum            :         0.000000 ')fIa2dO/  
    Mean               :        -0.000000 4 T/ ~erc  
    Standard Deviation :         0.000000 *Hh*!ePp  
    aJ]t1  
    Monte Carlo Analysis: ,zBc-Cm  
    Number of trials: 20 WCI'Kh   
    8Tc:TaL  
    Initial Statistics: Normal Distribution (i@(ZG]/  
    {N-*eV9#  
      Trial       Criterion        Change w;Pe_m7\EO  
          1     0.42804416    -0.11598818 N,cj[6;T%  
    Change in Focus                :      -0.400171 =D 5!Xq'|  
          2     0.54384387    -0.00018847 .d4&s7n0  
    Change in Focus                :       1.018470 D sBZ%  
          3     0.44510003    -0.09893230 Lg6>\Z4  
    Change in Focus                :      -0.601922 I?<ibLpX  
          4     0.18154684    -0.36248550 3ZYrNul"  
    Change in Focus                :       0.920681 ljh,%#95=  
          5     0.28665820    -0.25737414 -]Oi/i,{  
    Change in Focus                :       1.253875 W5 RZsS]  
          6     0.21263372    -0.33139862 q1%xk =8  
    Change in Focus                :      -0.903878 V Z60   
          7     0.40051424    -0.14351809 2|+4xqNJm  
    Change in Focus                :      -1.354815 7^h*rL9  
          8     0.48754161    -0.05649072 gLg\W3TOi  
    Change in Focus                :       0.215922 00A2[gO9  
          9     0.40357468    -0.14045766 V4%7Xj  
    Change in Focus                :       0.281783 %vrUk;<35  
         10     0.26315315    -0.28087919 6rAenK-%  
    Change in Focus                :      -1.048393 sQY0Xys<4  
         11     0.26120585    -0.28282649 ^F/H?V/PX  
    Change in Focus                :       1.017611 dC">AW  
         12     0.24033815    -0.30369419 gHU0Pr9'  
    Change in Focus                :      -0.109292 m] IN-'  
         13     0.37164046    -0.17239188 YW-Ge  
    Change in Focus                :      -0.692430 YccD ^w[`B  
         14     0.48597489    -0.05805744 C5#$NV99p  
    Change in Focus                :      -0.662040 }Ot2; T  
         15     0.21462327    -0.32940907 r P&.`m88n  
    Change in Focus                :       1.611296 \OF"hPq  
         16     0.43378226    -0.11025008 7:S)J~s*O  
    Change in Focus                :      -0.640081 _57 68G`P  
         17     0.39321881    -0.15081353 &eX^ll  
    Change in Focus                :       0.914906 l8!n!sC[,  
         18     0.20692530    -0.33710703 HBgt!D0MZ  
    Change in Focus                :       0.801607 ^(yU)k3pu  
         19     0.51374068    -0.03029165 sX=_|<[  
    Change in Focus                :       0.947293 Y3f2RdGl  
         20     0.38013374    -0.16389860 ^G(+sb[t  
    Change in Focus                :       0.667010 {UEZ:a  
    0o&7l%Y/  
    Number of traceable Monte Carlo files generated: 20 ?|we.{  
    Aj2yAg  
    Nominal     0.54403234 lV<j?I~?Q  
    Best        0.54384387    Trial     2 ,O"zz7  
    Worst       0.18154684    Trial     4 ;jpsH?3g  
    Mean        0.35770970  jQ?6I1o  
    Std Dev     0.11156454 nSV OS6  
    [,p[%Dza  
    QW}N,j$  
    Compensator Statistics: cH\.-5NQ  
    Change in back focus: C&KH.h/N  
    Minimum            :        -1.354815 e? !A]2  
    Maximum            :         1.611296 Z&0*\.6S~  
    Mean               :         0.161872 UPJ3YpK  
    Standard Deviation :         0.869664 #s^~'2^%4  
    `zOQ*Y&  
    90% >       0.20977951               c27A)`   
    80% >       0.22748071               ,Tc598D  
    50% >       0.38667627               $[8GFv  
    20% >       0.46553746               !BW6l)=L  
    10% >       0.50064115                go$zi5{h#  
    *4F6U  
    End of Run. iOzY8M+N(  
    ;?0k>  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 E h>qUa  
    ,XNz.+Ov  
    ^iaG>rvA  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 8!{F6DG  
    x0_$,Tz@  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 -mlBr63Bj  
    80% >       0.22748071                 ErNL^Se1  
    50% >       0.38667627                 2#bpWk9  
    20% >       0.46553746                 ' s6SKjZS  
    10% >       0.50064115 ah\yw  
    ^%V^\DK  
    最后这个数值是MTF值呢,还是MTF的公差? CG(G){u&  
    L`Lro:E?kL  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ,dM}B-  
    .6m%/-whS  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : KiXRBFo  
    90% >       0.20977951                 ]m _<lRye  
    80% >       0.22748071                 To_Y 8 G  
    50% >       0.38667627                 |~'PEY  
    20% >       0.46553746                 z?NMQ8l|:6  
    10% >       0.50064115 Rt &Oz!TQ  
    ....... ){u/v[O9"  
    3oH.1M/  
    llbf(!  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   T*AXS|=ju  
    Mode                : Sensitivities *] H8X=[x  
    Sampling            : 2 ZtS>'W8l  
    Nominal Criterion   : 0.54403234 =l7@YCj5c  
    Test Wavelength     : 0.6328 ZCP r`H  
    U3R;'80 f  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? v:$Ka@v6  
    9L2]PU v  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试