切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16521阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 % < D  
    2cY7sE068  
    -h%;L5oJ2,  
    <cW$ \P}hV  
    然后添加了默认公差分析,基本没变 E}sj l  
    \Q7Nz2X  
    qRT1Wre 3  
    3U9]&7^  
    然后运行分析的结果如下: Z;M]^?  
    r+-KrO'  
    Analysis of Tolerances ]S<y,d-  
    ( >zXapb2  
    File : E:\光学设计资料\zemax练习\f500.ZMX 4vq,W_n.hQ  
    Title: s,XKl5'+8e  
    Date : TUE JUN 21 2011 - } \g[|  
    w-*$gk]   
    Units are Millimeters. >H?l[*9  
    All changes are computed using linear differences. Sh(  
    u;18s-NY  
    Paraxial Focus compensation only. ;|Id g"2  
    [0U!Y/?6lA  
    WARNING: Solves should be removed prior to tolerancing. S'#KPzy.  
    i$gm/ZO  
    Mnemonics: &;S.1tg  
    TFRN: Tolerance on curvature in fringes. xZZW*d_b  
    TTHI: Tolerance on thickness. N>!RKf:ir  
    TSDX: Tolerance on surface decentering in x. >MZWm6M8  
    TSDY: Tolerance on surface decentering in y. teH $hd-q  
    TSTX: Tolerance on surface tilt in x (degrees). s1. YH?A;  
    TSTY: Tolerance on surface tilt in y (degrees). 0i/l2&x*k]  
    TIRR: Tolerance on irregularity (fringes). iD+Q\l;%  
    TIND: Tolerance on Nd index of refraction. ]`)50\pdw  
    TEDX: Tolerance on element decentering in x. m,NUNd#)\  
    TEDY: Tolerance on element decentering in y. (dn(:<_$  
    TETX: Tolerance on element tilt in x (degrees).  5 fY\0  
    TETY: Tolerance on element tilt in y (degrees). W8+Daw1Nr  
    =$;i  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. W}p>jP}  
    `p1szZD&  
    WARNING: Boundary constraints on compensators will be ignored. :bFCnV`Q  
    v1%rlP  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm )/kkvI()l  
    Mode                : Sensitivities i lk\&J~I  
    Sampling            : 2 awLN>KI]</  
    Nominal Criterion   : 0.54403234 a]XQM$T$  
    Test Wavelength     : 0.6328 tn!z^W  
    @9~a3k|  
    rM<|<6(L  
    Fields: XY Symmetric Angle in degrees P6V_cw$  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY rZ5vey  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 o5?f]Uq5 ,  
    aZEi|\VU  
    Sensitivity Analysis: +InAK>NZ'  
    l6Wa~E  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| fWiefv[&  
    Type                      Value      Criterion        Change          Value      Criterion        Change  *X- 6]C  
    Fringe tolerance on surface 1 l]D?S]{a  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 !i=LQUi.  
    Change in Focus                :      -0.000000                            0.000000 0; GnR0  
    Fringe tolerance on surface 2 !dQG 5v  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 \x?q!(;G2  
    Change in Focus                :       0.000000                            0.000000 |6/k2d{,(  
    Fringe tolerance on surface 3 _1jd{? kt  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 B@g 0QgA  
    Change in Focus                :      -0.000000                            0.000000 Y^DS~CrM  
    Thickness tolerance on surface 1 0 Y[LzLn  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 (8DJf"}  
    Change in Focus                :       0.000000                            0.000000 8sb<$M$c  
    Thickness tolerance on surface 2 ,>%2`Z)  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ?oF+?l  
    Change in Focus                :       0.000000                           -0.000000 ;v%Fw!b032  
    Decenter X tolerance on surfaces 1 through 3 'F>eieO  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 &5>R>rnB  
    Change in Focus                :       0.000000                            0.000000 5ZeE& vG2  
    Decenter Y tolerance on surfaces 1 through 3 Ojqbj0E9  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 >xQgCOi  
    Change in Focus                :       0.000000                            0.000000 iIWz\FM  
    Tilt X tolerance on surfaces 1 through 3 (degrees) [iVCorU  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 feM%-  
    Change in Focus                :       0.000000                            0.000000 T\7z87Q  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 6[fpe  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 IsjxD|u  
    Change in Focus                :       0.000000                            0.000000 e0iE6:i  
    Decenter X tolerance on surface 1 /Y$UJt  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 W" >[sn|  
    Change in Focus                :       0.000000                            0.000000 BoQLjS{kN  
    Decenter Y tolerance on surface 1 GPBp.$q+B  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 +-tvNX%IJ  
    Change in Focus                :       0.000000                            0.000000 )yvI  {  
    Tilt X tolerance on surface (degrees) 1 cojtQ D6  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 jo 0 d#  
    Change in Focus                :       0.000000                            0.000000 M^^5JNY  
    Tilt Y tolerance on surface (degrees) 1 '.Iz*%"  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 >i^8K U  
    Change in Focus                :       0.000000                            0.000000 ):"Z7~j=  
    Decenter X tolerance on surface 2 So>P)d$8+  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 >iD&n4TK  
    Change in Focus                :       0.000000                            0.000000 d%1Tv1={  
    Decenter Y tolerance on surface 2 *J[3f]PBmR  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 l&3f<e  
    Change in Focus                :       0.000000                            0.000000 0/{$5gy&  
    Tilt X tolerance on surface (degrees) 2 AX6z4G  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7|4t;F!  
    Change in Focus                :       0.000000                            0.000000 E"d\N-I  
    Tilt Y tolerance on surface (degrees) 2 ~aKM+KmtPH  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Z*&y8;vUQ  
    Change in Focus                :       0.000000                            0.000000 K@av32{  
    Decenter X tolerance on surface 3 %04N"^mT'~  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 fik*-$V`  
    Change in Focus                :       0.000000                            0.000000 v4M1uJ8  
    Decenter Y tolerance on surface 3 05= $Dnv  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 B \?We\y  
    Change in Focus                :       0.000000                            0.000000 ^s*j<fH  
    Tilt X tolerance on surface (degrees) 3 *sNZ.Y:.  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 R@*mMWW,  
    Change in Focus                :       0.000000                            0.000000 0($@9k4!/  
    Tilt Y tolerance on surface (degrees) 3 lmmB=F  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Gk~QgD/Pix  
    Change in Focus                :       0.000000                            0.000000 q\+khy,k  
    Irregularity of surface 1 in fringes M"cB6{st[  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 qm RdO R  
    Change in Focus                :       0.000000                            0.000000 n~~0iU )  
    Irregularity of surface 2 in fringes 5=< y%VF  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 @tv3\eD  
    Change in Focus                :       0.000000                            0.000000 b{T". @b  
    Irregularity of surface 3 in fringes PL+r*M%ll  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 >K]s)VuWR  
    Change in Focus                :       0.000000                            0.000000 b| e7mis@  
    Index tolerance on surface 1 Wh PwD6l>  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 7G,{BBB  
    Change in Focus                :       0.000000                            0.000000 {NmpTb  
    Index tolerance on surface 2 uu08q<B5b)  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 b*C\0D  
    Change in Focus                :       0.000000                           -0.000000 :|j,x7&/{  
    w[`2t{^j  
    Worst offenders: O>8|Lc  
    Type                      Value      Criterion        Change |Z\?nZ~  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 i%~^3/K  
    TSTY   2             0.20000000     0.35349910    -0.19053324 D@jG+k-Lm  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 DeqTr:  
    TSTX   2             0.20000000     0.35349910    -0.19053324 }^T7S2_Qy  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 w8MQA!=l  
    TSTY   1             0.20000000     0.42678383    -0.11724851 2|="!c8K  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 8:W," "  
    TSTX   1             0.20000000     0.42678383    -0.11724851 *g0}pD;r  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 AH*{Bi[vX  
    TSTY   3             0.20000000     0.42861670    -0.11541563 4k}3^.#  
    BGk>:Z`  
    Estimated Performance Changes based upon Root-Sum-Square method: /-Saz29f^Q  
    Nominal MTF                 :     0.54403234 [VvTR#^  
    Estimated change            :    -0.36299231 +y%"[6c|  
    Estimated MTF               :     0.18104003 NO(^P+s  
    q. i2BoOd  
    Compensator Statistics: '. Ww*N  
    Change in back focus: U`{'-L.  
    Minimum            :        -0.000000 Cxn<#Kf\-<  
    Maximum            :         0.000000 ~|W0+&):  
    Mean               :        -0.000000 @UbH ;m  
    Standard Deviation :         0.000000 YH_mWN\Wu  
    JCL+uEX4S  
    Monte Carlo Analysis: qG=?+em  
    Number of trials: 20 {VB n@^'s  
    N)F&c!anh  
    Initial Statistics: Normal Distribution KyQO>g{R  
    .9":Ljs(L  
      Trial       Criterion        Change 87QK&S\  
          1     0.42804416    -0.11598818  z]/;?  
    Change in Focus                :      -0.400171 zWN/>~}U \  
          2     0.54384387    -0.00018847 x2q6y  
    Change in Focus                :       1.018470 bfjC:"!H  
          3     0.44510003    -0.09893230 v|\<N!g  
    Change in Focus                :      -0.601922 B =EI&+F+  
          4     0.18154684    -0.36248550 L5+X&  
    Change in Focus                :       0.920681 Iq76JJuCb  
          5     0.28665820    -0.25737414 ' 7lHWqN<  
    Change in Focus                :       1.253875 x,CTB  
          6     0.21263372    -0.33139862 Y]zy=8q  
    Change in Focus                :      -0.903878 o'oA.'ul  
          7     0.40051424    -0.14351809 h=:*cqp4  
    Change in Focus                :      -1.354815 |E%i t?3M  
          8     0.48754161    -0.05649072 d|P,e;m-  
    Change in Focus                :       0.215922 I:~KF/q  
          9     0.40357468    -0.14045766 cRR[ci34k  
    Change in Focus                :       0.281783 \a_75^2  
         10     0.26315315    -0.28087919 K;:_UJ>t  
    Change in Focus                :      -1.048393 ^M:Y$9r_s  
         11     0.26120585    -0.28282649 Dd:TFZo  
    Change in Focus                :       1.017611 iy<|<*s2D  
         12     0.24033815    -0.30369419 y4@zi"G  
    Change in Focus                :      -0.109292 Y/%(4q*'  
         13     0.37164046    -0.17239188 {Xw6]d  
    Change in Focus                :      -0.692430 L|?$F*bs  
         14     0.48597489    -0.05805744 J AQ y  
    Change in Focus                :      -0.662040 _Q9Mn-&qQ  
         15     0.21462327    -0.32940907 kp6{QKDj&  
    Change in Focus                :       1.611296 aUy!(Y  
         16     0.43378226    -0.11025008 _1c0pQ^}3  
    Change in Focus                :      -0.640081 W2$MH: j  
         17     0.39321881    -0.15081353 6 5%WjO  
    Change in Focus                :       0.914906 9\QeH'A  
         18     0.20692530    -0.33710703 Po)!vL"   
    Change in Focus                :       0.801607 mp !S<m  
         19     0.51374068    -0.03029165 %>z4hH,  
    Change in Focus                :       0.947293 >/]` f8^  
         20     0.38013374    -0.16389860 p\'0m0*   
    Change in Focus                :       0.667010 kFRl+,bi~  
    ifXGH>C  
    Number of traceable Monte Carlo files generated: 20 pmWt7 }  
    O(R1D/A[  
    Nominal     0.54403234 ; ,vGw <|o  
    Best        0.54384387    Trial     2 Q!91uNL  
    Worst       0.18154684    Trial     4 c\Z.V*o  
    Mean        0.35770970 wV604eO(  
    Std Dev     0.11156454 X7bS{GT  
    & t.G4  
    rIh"MQvi[  
    Compensator Statistics: A_y]6~Mu?~  
    Change in back focus: iBM;$0Y  
    Minimum            :        -1.354815 ?rJe"TOIy  
    Maximum            :         1.611296 d3[O!4<T  
    Mean               :         0.161872 #VvU8"u  
    Standard Deviation :         0.869664 5LX%S.CW  
    s3/iG37K  
    90% >       0.20977951               TQ,KPf$0U  
    80% >       0.22748071               FxFRrRRH@  
    50% >       0.38667627               qk{+Y  
    20% >       0.46553746               O x),jc[/  
    10% >       0.50064115                +W%3VV$  
    9n#lDL O  
    End of Run. U.GRN)fL4  
    N^TE ;BM  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 6CV9ewr  
    ^vY[d]R _\  
    \) FFV-k5  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Q,m&XpZ  
    W=S<DtG2  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 63fg l+  
    80% >       0.22748071                 _]t^F9l  
    50% >       0.38667627                 V%Ww;Ca]I  
    20% >       0.46553746                 "j/jhe6  
    10% >       0.50064115 a{@gzB  
    60#eTo?}o  
    最后这个数值是MTF值呢,还是MTF的公差? $]<wQH/?_  
    gZ>) S@  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   xl ]1TB@  
    ^oMdx2Ow#  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : .=zBUvy  
    90% >       0.20977951                 >en\:pJn)'  
    80% >       0.22748071                 4BZ7R,m#.  
    50% >       0.38667627                 [)?yH3  
    20% >       0.46553746                 %c@PTpAM  
    10% >       0.50064115 Q^8/"aV\  
    ....... X>%li$9J.  
    hi/Z>1ZOX  
    Z*'<9l_1  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   ]c M8TT  
    Mode                : Sensitivities BIEq(/-  
    Sampling            : 2 Vjd(Z  
    Nominal Criterion   : 0.54403234 sR^b_/ElxT  
    Test Wavelength     : 0.6328 Z3U%Afl2{  
    Vha,rIi  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 9I*2xy|I  
    jrpki<D  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试