我现在在初学zemax的
公差分析,找了一个双胶合
透镜 G^{~'TZv% 6r"NU`1A;r
_1)n_P4 "]jN'N(. 然后添加了默认公差分析,基本没变
7=G6ao7 &&CrF~
xD*Zcw(vj~ @(L}:]{@ 然后运行分析的结果如下:
i\lvxbp 2<*"@Vj Analysis of Tolerances
!RJ@;S Ch{6=k bK File : E:\光学设计资料\zemax练习\f500.ZMX
0Y!"3bw| Title:
!84Lvg0& Date : TUE JUN 21 2011
,R=!ts[qi z:S:[X0 Units are Millimeters.
iZk4KX All changes are computed using linear differences.
> 3& x
.@O]}UH Paraxial Focus compensation only.
xJ<RQCW$ cAN8'S(s1 WARNING: Solves should be removed prior to tolerancing.
>!Gq[i0 <Z t ]V`- Mnemonics:
Tp@Yn TFRN: Tolerance on curvature in fringes.
X"3p/!W.4 TTHI: Tolerance on thickness.
]2L11"erP TSDX: Tolerance on surface decentering in x.
0Gj/yra9MO TSDY: Tolerance on surface decentering in y.
Z:^<NdKe TSTX: Tolerance on surface tilt in x (degrees).
T$mT;k TSTY: Tolerance on surface tilt in y (degrees).
\4qF3# TIRR: Tolerance on irregularity (fringes).
o#"yFP1 TIND: Tolerance on Nd index of refraction.
>/Z*\6|Zx# TEDX: Tolerance on element decentering in x.
+|;Ri68 TEDY: Tolerance on element decentering in y.
?#c "wA& TETX: Tolerance on element tilt in x (degrees).
POm;lM$ TETY: Tolerance on element tilt in y (degrees).
+Y*4/w[
lq-F*r\/~+ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
OqsuuE xN$V(ZX4 WARNING: Boundary constraints on compensators will be ignored.
Q65M(x+oy l9/}fMi Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
k6DJ(.n'%a Mode : Sensitivities
O.#Rr/+) Sampling : 2
[Y@}{[q5 Nominal Criterion : 0.54403234
"1""1"; Test Wavelength : 0.6328
qPi $kecx &OFVqm^ iuqJPW^} Fields: XY Symmetric Angle in degrees
qm#?DSLap # X-Field Y-Field Weight VDX VDY VCX VCY
pqv l,G5 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
sAO/yG U(+QrC: Sensitivity Analysis:
us5Zi# } zxs)o}8icO |----------------- Minimum ----------------| |----------------- Maximum ----------------|
Te!eM{_$T Type Value Criterion Change Value Criterion Change
StR)O))I Fringe tolerance on surface 1
S&=@Hj- TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
08@4u
L Change in Focus :
-0.000000 0.000000
L4+R8ojG Fringe tolerance on surface 2
AvIheR TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
P5dD& Change in Focus : 0.000000 0.000000
ku57<kb Fringe tolerance on surface 3
=|O]X|y-lZ TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
~K)FuL[* Change in Focus : -0.000000 0.000000
#WUN=u Thickness tolerance on surface 1
LkafB2y TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
$0{h Uex Change in Focus : 0.000000 0.000000
_Q\rZ
l Thickness tolerance on surface 2
uFuH/(}K[ TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
"AqLR Change in Focus : 0.000000 -0.000000
q}'<[Wg Decenter X tolerance on surfaces 1 through 3
R/B/|x TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
7"eIZ Change in Focus : 0.000000 0.000000
kSJ;kz,_ Decenter Y tolerance on surfaces 1 through 3
8%; .H- TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
oN83`Z Change in Focus : 0.000000 0.000000
[N*S5^>1 Tilt X tolerance on surfaces 1 through 3 (degrees)
.1h\r,
# TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
=JTwH>fD Change in Focus : 0.000000 0.000000
mWoN\Rwj Tilt Y tolerance on surfaces 1 through 3 (degrees)
b*Hk}
!qH TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
j$u Change in Focus : 0.000000 0.000000
&B+_#V=X@ Decenter X tolerance on surface 1
Z@JTZMN_ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
0jXDjk5'< Change in Focus : 0.000000 0.000000
1)xj 'n Decenter Y tolerance on surface 1
b
V_<5PHP TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
ok-q9dM Change in Focus : 0.000000 0.000000
RU.MJ
kYQ5 Tilt X tolerance on surface (degrees) 1
ykx13|iR TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
2nFr?Y3g, Change in Focus : 0.000000 0.000000
e=tM=i" Tilt Y tolerance on surface (degrees) 1
&"1 _n]JO TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
X)TZ S Change in Focus : 0.000000 0.000000
fA V.Mj- Decenter X tolerance on surface 2
EN>a^B+! TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
su60j^e* Change in Focus : 0.000000 0.000000
m,4'@jg0 Decenter Y tolerance on surface 2
M.$=tuUL TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
\WUCm.w6\% Change in Focus : 0.000000 0.000000
{j[*:l0Ui Tilt X tolerance on surface (degrees) 2
#5{lOeN TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Cb|R Change in Focus : 0.000000 0.000000
]3U|K .G Tilt Y tolerance on surface (degrees) 2
=xH>,-8} TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Y}\3PaUa Change in Focus : 0.000000 0.000000
:W'.SRD Decenter X tolerance on surface 3
vMXn#eR TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
Tz(Dhb, Change in Focus : 0.000000 0.000000
ZE/Aj/7Qy Decenter Y tolerance on surface 3
xnZ TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
85H*Xm?d# Change in Focus : 0.000000 0.000000
hg^klQD Tilt X tolerance on surface (degrees) 3
ccW{88II7w TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
v`jFWq8I, Change in Focus : 0.000000 0.000000
A~a7/N6s; Tilt Y tolerance on surface (degrees) 3
p|r>tBv?x TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
)qWO}]F Change in Focus : 0.000000 0.000000
r_V^sX Irregularity of surface 1 in fringes
{X\FS TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
V2 }.X+u&< Change in Focus : 0.000000 0.000000
'
b,zE[Q Irregularity of surface 2 in fringes
|L)qH"Eo TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
!uKuO Change in Focus : 0.000000 0.000000
H M\}C.u Irregularity of surface 3 in fringes
5e'**tbKH TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
U<yKC8 Change in Focus : 0.000000 0.000000
$yZP"AsAR Index tolerance on surface 1
)B^T7{ TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
y= 1(o3( Change in Focus : 0.000000 0.000000
BQ~\ p\ Index tolerance on surface 2
Nu; 9 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
{RH)&k&% Change in Focus : 0.000000 -0.000000
PiX(Ase M[Jy?b) Worst offenders:
`]2y=f<{X Type Value Criterion Change
({t6Cbw TSTY 2 -0.20000000 0.35349910 -0.19053324
~HX'8\5 TSTY 2 0.20000000 0.35349910 -0.19053324
C:}"?tri TSTX 2 -0.20000000 0.35349910 -0.19053324
l'\m'Ioh TSTX 2 0.20000000 0.35349910 -0.19053324
CakB`q(8 TSTY 1 -0.20000000 0.42678383 -0.11724851
0^MRPE|f5 TSTY 1 0.20000000 0.42678383 -0.11724851
-fx$)d~
TSTX 1 -0.20000000 0.42678383 -0.11724851
'p,54<e TSTX 1 0.20000000 0.42678383 -0.11724851
T
"t%>g TSTY 3 -0.20000000 0.42861670 -0.11541563
Znh<r[p< TSTY 3 0.20000000 0.42861670 -0.11541563
DM !B@ Nu%MXu+ Estimated Performance Changes based upon Root-Sum-Square method:
,NU`aG- Nominal MTF : 0.54403234
VSm{]Z!x Estimated change : -0.36299231
(M t-2+"+ Estimated MTF : 0.18104003
:LR>U;2
`HM?Fc58 Compensator Statistics: :AC( \ Change in back focus: lLL) S Minimum : -0.000000 TC._kAm Maximum : 0.000000 ,-Yl%R.W= Mean : -0.000000 Cy\! H&0wg Standard Deviation : 0.000000 &;%LTF@I, M[ ,:NE4H Monte Carlo Analysis:
SfwNNX% Number of trials: 20
*h"7!g #6Fc-ysk: Initial Statistics: Normal Distribution
{c AGOx wd <SNu`,/I Trial Criterion Change
$[*<e~? 1 0.42804416 -0.11598818
s `
+cQ Change in Focus : -0.400171
$+[
v17lF 2 0.54384387 -0.00018847
8}!WJ2[R Change in Focus : 1.018470
[`|gj 3 0.44510003 -0.09893230
;XGO@*V5T Change in Focus : -0.601922
]hi5nA 4 0.18154684 -0.36248550
0\yA6`}! Change in Focus : 0.920681
kR;Hb3hb 5 0.28665820 -0.25737414
[Xo[J?w],2 Change in Focus : 1.253875
g,5Tr_ 6 0.21263372 -0.33139862
f5&K=4khn Change in Focus : -0.903878
b*"%E,? 7 0.40051424 -0.14351809
_{YUWV50} Change in Focus : -1.354815
: ]~G9]R` 8 0.48754161 -0.05649072
m3 W Change in Focus : 0.215922
GA"zO, 9 0.40357468 -0.14045766
`"qSr%| Change in Focus : 0.281783
c\(CbC 10 0.26315315 -0.28087919
Meo.
V|1 Change in Focus : -1.048393
/X97dF)zt 11 0.26120585 -0.28282649
X< p KAO\ Change in Focus : 1.017611
Xg1QF^ 12 0.24033815 -0.30369419
xr1,D5 Change in Focus : -0.109292
v,A8Mk2s# 13 0.37164046 -0.17239188
E4N{;' Change in Focus : -0.692430
'P3jUc) 14 0.48597489 -0.05805744
y` 6!Vj l Change in Focus : -0.662040
F>s5<pKAX 15 0.21462327 -0.32940907
QlK]2r9 Change in Focus : 1.611296
2"!s8x1$ 16 0.43378226 -0.11025008
Z+G/==%3#, Change in Focus : -0.640081
Y4I;-&d's 17 0.39321881 -0.15081353
,FDRU Change in Focus : 0.914906
2N[/Cc2Tg/ 18 0.20692530 -0.33710703
tkKiuh?m Change in Focus : 0.801607
R&]#@PW^ 19 0.51374068 -0.03029165
Ipyr+7/zJ Change in Focus : 0.947293
p5\B0G<m 20 0.38013374 -0.16389860
M)j.Uu Change in Focus : 0.667010
`0Bk@B[> yJ?S7+b Number of traceable Monte Carlo files generated: 20
\*5${[ E8]kd Nominal 0.54403234
;dZuO[4\ Best 0.54384387 Trial 2
0;2"X[e Worst 0.18154684 Trial 4
4Bz:n Mean 0.35770970
oA]rwaUX Std Dev 0.11156454
~l"]J'jF"H b,uudtlH jPa"|9A Compensator Statistics:
|!E: [UH Change in back focus:
_mc-CZ Minimum : -1.354815
u@pimRVo Maximum : 1.611296
QSSA) Mean : 0.161872
6w)a.^yx7 Standard Deviation : 0.869664
q1?}G5a? &ws^Dm]R 90% > 0.20977951 25{-GaB 80% > 0.22748071 D,P{ ,/ 50% > 0.38667627 rc`}QoB)R 20% > 0.46553746 uJ
T^=Y 10% > 0.50064115 X)b@ia'"Wp z1S
p'h$ End of Run.
x
?24oO )J{.z 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
dpSNh1
h'ik19 ]+A%37 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
FS^~e-A 3>QkO.b 不吝赐教