我现在在初学zemax的
公差分析,找了一个双胶合
透镜 9[c%J*r :u8(^]N
5}$b0<em~ E37<"(; 然后添加了默认公差分析,基本没变
:'F}Dy m!z|h9Ed
W!!S!JF 5 <wnva 然后运行分析的结果如下:
bwM@/g%DL dz
[!-M Analysis of Tolerances
OA/WtQ5
~=<}\a~ File : E:\光学设计资料\zemax练习\f500.ZMX
l
{jmlT Title:
R" )bDy? Date : TUE JUN 21 2011
+YLejjQ ae"]\a\&1o Units are Millimeters.
hQ6a~?f All changes are computed using linear differences.
N,2s?Y_! :l7U>~ o Paraxial Focus compensation only.
=[\s8XH, ;,i]w"* WARNING: Solves should be removed prior to tolerancing.
'TH15r@ @' ;B_iQ Mnemonics:
1&;QyTN TFRN: Tolerance on curvature in fringes.
"s!7dKXI" TTHI: Tolerance on thickness.
y2]-&]& TSDX: Tolerance on surface decentering in x.
8:BIbmtt5 TSDY: Tolerance on surface decentering in y.
g;$Xq)Dd TSTX: Tolerance on surface tilt in x (degrees).
Yt|6
X:l TSTY: Tolerance on surface tilt in y (degrees).
6 3`{.yZ*z TIRR: Tolerance on irregularity (fringes).
o?1;<gs TIND: Tolerance on Nd index of refraction.
.s+aZwTMT TEDX: Tolerance on element decentering in x.
322jR4QGr TEDY: Tolerance on element decentering in y.
`qd+f{Q TETX: Tolerance on element tilt in x (degrees).
uVzFsgBp TETY: Tolerance on element tilt in y (degrees).
<E\$3Ym9 5JEbe WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
'13ZX: s Y?,0T_m WARNING: Boundary constraints on compensators will be ignored.
V=fEPM mUS_(0q Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
:qChMU|Y6 Mode : Sensitivities
5_XV%-wM Sampling : 2
&Tl
0Pf Nominal Criterion : 0.54403234
zIP6\u Test Wavelength : 0.6328
pv^O"Bs '*\|;l#1 >^XBa*4;Y Fields: XY Symmetric Angle in degrees
z]b>VpW: # X-Field Y-Field Weight VDX VDY VCX VCY
#2r}?hP/m 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
>#,G}xf v1a6?- Sensitivity Analysis:
Qs9gTBS; CR6R?R3b |----------------- Minimum ----------------| |----------------- Maximum ----------------|
)M__
t5L Type Value Criterion Change Value Criterion Change
~ek$C Fringe tolerance on surface 1
,+~rd4a TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
+cD!1IT: Change in Focus :
-0.000000 0.000000
F(t=!k,4\ Fringe tolerance on surface 2
<dW]\h?) TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
rvr-XGK36\ Change in Focus : 0.000000 0.000000
(@iMLuewK Fringe tolerance on surface 3
Oft4-4$E TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
n_3O-X( Change in Focus : -0.000000 0.000000
1"pw Thickness tolerance on surface 1
ox+ 3U TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
Gs3LB/8? Change in Focus : 0.000000 0.000000
XJLQ{ Thickness tolerance on surface 2
$95h2oXt TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
wn)JXR Change in Focus : 0.000000 -0.000000
L#vI=GpL,r Decenter X tolerance on surfaces 1 through 3
hEh}PX: TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
} :Z#}8 Change in Focus : 0.000000 0.000000
SPp#f~%m Decenter Y tolerance on surfaces 1 through 3
v@e~k-# TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
EvOJ~'2 Y% Change in Focus : 0.000000 0.000000
Mi]L]-L Tilt X tolerance on surfaces 1 through 3 (degrees)
61xs%kxb.. TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
bQ~j=\[r Change in Focus : 0.000000 0.000000
+[5.WC7J Tilt Y tolerance on surfaces 1 through 3 (degrees)
-eX5z TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
da (km+ Change in Focus : 0.000000 0.000000
!qX_I db\ Decenter X tolerance on surface 1
}#X8@ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
e^ v.) Change in Focus : 0.000000 0.000000
6ND`l5
Decenter Y tolerance on surface 1
qL,tYJ<m% TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
dDF
.qXq. Change in Focus : 0.000000 0.000000
AE} )o)B Tilt X tolerance on surface (degrees) 1
CZ nOui TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
hUYd0qEbEt Change in Focus : 0.000000 0.000000
%'[&U# - Tilt Y tolerance on surface (degrees) 1
f%V4pzOc" TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
A'2w>8 Change in Focus : 0.000000 0.000000
.nyfYa+ Decenter X tolerance on surface 2
Nj?/J47?, TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
WD1G&5XP Change in Focus : 0.000000 0.000000
=|9H Decenter Y tolerance on surface 2
PG,_^QGCX TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
qG<$Ajiin Change in Focus : 0.000000 0.000000
&LbJT$}V Tilt X tolerance on surface (degrees) 2
g&`pgmUX TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
7U"[Gf Change in Focus : 0.000000 0.000000
Sv &[f}S Tilt Y tolerance on surface (degrees) 2
Ek6MYc8<b~ TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
%JLk$sP9y` Change in Focus : 0.000000 0.000000
/z}~zO Decenter X tolerance on surface 3
zToq^T TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
,mj@sC> Change in Focus : 0.000000 0.000000
JJ%ePgWT Decenter Y tolerance on surface 3
*k19LI.5 TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
ai{Sa U Change in Focus : 0.000000 0.000000
S%Us5`sd Tilt X tolerance on surface (degrees) 3
yV"ZRrjO'Z TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
e#E2>Bj; Change in Focus : 0.000000 0.000000
;INW`b~ Tilt Y tolerance on surface (degrees) 3
O)"gS!, TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
%?m$`9yU Change in Focus : 0.000000 0.000000
rfq;%C Irregularity of surface 1 in fringes
2z|*xS'G TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
?.YOI.U^ Change in Focus : 0.000000 0.000000
v{A
KEX* Irregularity of surface 2 in fringes
.j-IX1Sa TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
k68F-e[i^ Change in Focus : 0.000000 0.000000
`P9XqWr Irregularity of surface 3 in fringes
U{VCZ*0cj TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
A*um{E+ Change in Focus : 0.000000 0.000000
-e8}Pm
" Index tolerance on surface 1
KjQR$- TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
Ovj^IjG-` Change in Focus : 0.000000 0.000000
RoyPrO [3 Index tolerance on surface 2
S*n@81Z TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
NM06QzE Change in Focus : 0.000000 -0.000000
/FIE:Io W]nSR RWco Worst offenders:
J2^'Xj_V Type Value Criterion Change
3}/&w\$ TSTY 2 -0.20000000 0.35349910 -0.19053324
q#8 [ TSTY 2 0.20000000 0.35349910 -0.19053324
0D&t!$Ibf TSTX 2 -0.20000000 0.35349910 -0.19053324
~}+Hgi TSTX 2 0.20000000 0.35349910 -0.19053324
Dre]AsgiV TSTY 1 -0.20000000 0.42678383 -0.11724851
]GRWnif TSTY 1 0.20000000 0.42678383 -0.11724851
Y_QH&GZ TSTX 1 -0.20000000 0.42678383 -0.11724851
? 8LXP TSTX 1 0.20000000 0.42678383 -0.11724851
ma((2My'H TSTY 3 -0.20000000 0.42861670 -0.11541563
tuhA
9}E TSTY 3 0.20000000 0.42861670 -0.11541563
GxKqD;;u?= Cm\6tD Estimated Performance Changes based upon Root-Sum-Square method:
beu\cV3 Nominal MTF : 0.54403234
qu-/"w<3$ Estimated change : -0.36299231
DrO2 y Estimated MTF : 0.18104003
+mp@b942* 9F*+YG! Compensator Statistics: )'4k|@8| Change in back focus: Mv6-|O Minimum : -0.000000 TEaJG9RU>v Maximum : 0.000000 IzpZwx^3'' Mean : -0.000000 1+U Standard Deviation : 0.000000 /=gOa\k|p G 8V, Monte Carlo Analysis:
x(eb5YS Number of trials: 20
z
d-Tv`L# LH@j8YB5u Initial Statistics: Normal Distribution
>b]S3[Q( wy}k1E'M Trial Criterion Change
x*Y@Q?`>5W 1 0.42804416 -0.11598818
4'LB7}WG Change in Focus : -0.400171
)-`;1ca)s 2 0.54384387 -0.00018847
b%S62(qP Change in Focus : 1.018470
%,k][V 3 0.44510003 -0.09893230
XGkkB Change in Focus : -0.601922
p^'3Odd|O 4 0.18154684 -0.36248550
j<)9dEM' Change in Focus : 0.920681
|e2be1LD 5 0.28665820 -0.25737414
y})70w@+_ Change in Focus : 1.253875
(bh95X 6 0.21263372 -0.33139862
I;1lX
L Change in Focus : -0.903878
Z>^pCc\lH 7 0.40051424 -0.14351809
ryFxn|4 Change in Focus : -1.354815
#Z<a
8 0.48754161 -0.05649072
J|w)&bV Change in Focus : 0.215922
`ck$t5:6sp 9 0.40357468 -0.14045766
]TyisaT Change in Focus : 0.281783
.({smN,B 10 0.26315315 -0.28087919
Ey4z.s'-l Change in Focus : -1.048393
P'O#I}Dmw< 11 0.26120585 -0.28282649
8{Fsm;UsY Change in Focus : 1.017611
HO''&hz 12 0.24033815 -0.30369419
/0eYMG+K= Change in Focus : -0.109292
J:kmqk! 13 0.37164046 -0.17239188
@, W vvh Change in Focus : -0.692430
T0]*{k(FR 14 0.48597489 -0.05805744
w&x!,yd; Change in Focus : -0.662040
{je-I9%OK 15 0.21462327 -0.32940907
g{P%s'%* Change in Focus : 1.611296
_Y[jyD1> 16 0.43378226 -0.11025008
+r<0zh,n. Change in Focus : -0.640081
bk\yCt06y; 17 0.39321881 -0.15081353
5e fpeu Change in Focus : 0.914906
A+UU~?3y 18 0.20692530 -0.33710703
,DZX$Ug~+E Change in Focus : 0.801607
uy}%0vLo 19 0.51374068 -0.03029165
+tD[9b!
m Change in Focus : 0.947293
}@^4,FKJ 20 0.38013374 -0.16389860
Q"7Gy< Change in Focus : 0.667010
d`/tE?Gw is@b&V] Number of traceable Monte Carlo files generated: 20
_{ZqO;[u L*x[?x;)@ Nominal 0.54403234
MX ;J5(Ae Best 0.54384387 Trial 2
i}~SDY Worst 0.18154684 Trial 4
0p@k({] < Mean 0.35770970
E.U_W Std Dev 0.11156454
Q[d}J+l4{
(X?/"lC) +d%L\^?F Compensator Statistics:
+L5\; Change in back focus:
LvEnX S Minimum : -1.354815
B)QHM+[=F Maximum : 1.611296
%/rMg"f: Mean : 0.161872
K_ci_g": Standard Deviation : 0.869664
MW+b;0U`# xrN
&N_K# 90% > 0.20977951 ''kS*3 80% > 0.22748071 41_SRh7N 50% > 0.38667627 |qoKO:B4-[ 20% > 0.46553746 "hQ_sgz[Z 10% > 0.50064115 ;q1A*f\:# ":nQgV\9 End of Run.
<u=4*:QE mB\C?=_ 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
.%82P(
!L95^g ]K*8O< 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
@l0|*lo% 8Mbeg
,P 不吝赐教