我现在在初学zemax的
公差分析,找了一个双胶合
透镜 zvKypx 3gz4c1 s^:
,a\pdEPj bkL5srH 然后添加了默认公差分析,基本没变
yG:Pg MrB V3[>^ZCA
bX`VIFc 3M[5_OK 然后运行分析的结果如下:
{3G2-$yb Wa'm]J Analysis of Tolerances
p 4Y2AQ9 fHacVjJ File : E:\光学设计资料\zemax练习\f500.ZMX
=aRE
Title:
vLQh r&I Date : TUE JUN 21 2011
9 [wR/8Xm J0yo@O Units are Millimeters.
F}4jm,w All changes are computed using linear differences.
$-lP"m@} 2@a]x( Paraxial Focus compensation only.
oT[8Iu T0lbMp WARNING: Solves should be removed prior to tolerancing.
~MW_=6U r&D&xsbQ Mnemonics:
[ FNA: TFRN: Tolerance on curvature in fringes.
B#K2?Et!t TTHI: Tolerance on thickness.
"hXB_73)V TSDX: Tolerance on surface decentering in x.
usOIbrQ TSDY: Tolerance on surface decentering in y.
^?gs<-)B TSTX: Tolerance on surface tilt in x (degrees).
QVQ?a&HYS TSTY: Tolerance on surface tilt in y (degrees).
v`9n'+h-c6 TIRR: Tolerance on irregularity (fringes).
`+EjmY TIND: Tolerance on Nd index of refraction.
dS"%( ?o TEDX: Tolerance on element decentering in x.
UU2=W TEDY: Tolerance on element decentering in y.
5:~BGK&{Y TETX: Tolerance on element tilt in x (degrees).
@G0j/@v TETY: Tolerance on element tilt in y (degrees).
9`v[Jm% $m F<N{ x^ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
3NC-)S VH5Vg We WARNING: Boundary constraints on compensators will be ignored.
%)G]rta# O;~dao Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
$_NP4V8|z/ Mode : Sensitivities
4O'X+dv^I Sampling : 2
pTk1iGfB Nominal Criterion : 0.54403234
"+:~#&r Test Wavelength : 0.6328
#F!'B|n Z}4
`y"By y}!}*Qj+/ Fields: XY Symmetric Angle in degrees
'}$$o1R # X-Field Y-Field Weight VDX VDY VCX VCY
(
mKuFz7 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
s7}46\/U fS(IN~ Sensitivity Analysis:
l-RwCw4f L/n?1'he |----------------- Minimum ----------------| |----------------- Maximum ----------------|
x"QZ}28(t Type Value Criterion Change Value Criterion Change
&ZUV=q%g9n Fringe tolerance on surface 1
%#,EqN TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
a'2^kds Change in Focus :
-0.000000 0.000000
sZ9VXnz24 Fringe tolerance on surface 2
QL_9a,R'r TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
cN\Fgbt Change in Focus : 0.000000 0.000000
=g+Rk+ jn Fringe tolerance on surface 3
]7yr.4?a TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
\,5OPSB Change in Focus : -0.000000 0.000000
1O,<JrE+- Thickness tolerance on surface 1
wA;Cj TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
zVU{jmS Change in Focus : 0.000000 0.000000
jjrhl Thickness tolerance on surface 2
2[qlEtvQ TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
_]# ^2S Change in Focus : 0.000000 -0.000000
y}t1r |p Decenter X tolerance on surfaces 1 through 3
~E tW B TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
}L.&@P< Change in Focus : 0.000000 0.000000
J"Z=`I)KON Decenter Y tolerance on surfaces 1 through 3
b
qNM TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
>=Pn\"j Change in Focus : 0.000000 0.000000
]1(G:h\ Tilt X tolerance on surfaces 1 through 3 (degrees)
nVt,= ?_ U TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
^yo~C3r~ Change in Focus : 0.000000 0.000000
5p7?e3 Tilt Y tolerance on surfaces 1 through 3 (degrees)
1$#{om9 TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
96FS-` Change in Focus : 0.000000 0.000000
X|w[:[P Decenter X tolerance on surface 1
swh8-_[c/ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
yhpeP Change in Focus : 0.000000 0.000000
.sOEqwO}> Decenter Y tolerance on surface 1
hPB^|#} TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
t5Oeb<REz Change in Focus : 0.000000 0.000000
FELDz7DYya Tilt X tolerance on surface (degrees) 1
9Oe~e TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
]F4.m Change in Focus : 0.000000 0.000000
k ED1s's Tilt Y tolerance on surface (degrees) 1
shAoib?Kw: TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
U$,W/G}m Change in Focus : 0.000000 0.000000
_^5OoE"}! Decenter X tolerance on surface 2
g VPtd[r TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
GF=rGn@,)` Change in Focus : 0.000000 0.000000
R]! [h Decenter Y tolerance on surface 2
(6Tvu5*4U TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
_sGmkJi] Change in Focus : 0.000000 0.000000
@z-%:J/$ Tilt X tolerance on surface (degrees) 2
NM{/rvM TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
F?B`rw@xr Change in Focus : 0.000000 0.000000
XDdF7i} Tilt Y tolerance on surface (degrees) 2
%H AforH TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
/5$;W'I Change in Focus : 0.000000 0.000000
W#.+C6/ Decenter X tolerance on surface 3
G)G
257K"~ TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
;qN;oSK Change in Focus : 0.000000 0.000000
!\6<kQg# Decenter Y tolerance on surface 3
miTySY6^ TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
c&GVIrJ Change in Focus : 0.000000 0.000000
+M=`3jioL Tilt X tolerance on surface (degrees) 3
gZHuyp(B TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
^.HvuG},O Change in Focus : 0.000000 0.000000
6B=: P3Y Tilt Y tolerance on surface (degrees) 3
nR(v~_y[V TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
[Ep%9(SgA' Change in Focus : 0.000000 0.000000
45aUz@ Irregularity of surface 1 in fringes
iX|K4.Pz{ TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
.;$Ub[ Change in Focus : 0.000000 0.000000
CVt:tV Irregularity of surface 2 in fringes
S<Os\/* TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
js..k*j Change in Focus : 0.000000 0.000000
=G,wR'M Irregularity of surface 3 in fringes
R ~ZcTY[8 TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
BtA_1RO Change in Focus : 0.000000 0.000000
L GdM40 Index tolerance on surface 1
2Pm[
kD4E= TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
}nUq=@ej Change in Focus : 0.000000 0.000000
2t[P-on Index tolerance on surface 2
srCpgs]h TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
xMs!FMn[ Change in Focus : 0.000000 -0.000000
TKe\Bi ,`
64t'g Worst offenders:
!*1$j7`tP Type Value Criterion Change
v8} vk]b TSTY 2 -0.20000000 0.35349910 -0.19053324
@u @~gEt TSTY 2 0.20000000 0.35349910 -0.19053324
[o"<DP6w TSTX 2 -0.20000000 0.35349910 -0.19053324
('k9X cTPP TSTX 2 0.20000000 0.35349910 -0.19053324
!sG#3sUe[ TSTY 1 -0.20000000 0.42678383 -0.11724851
Iz^vt#b TSTY 1 0.20000000 0.42678383 -0.11724851
"P9(k> TSTX 1 -0.20000000 0.42678383 -0.11724851
&"r /&7: TSTX 1 0.20000000 0.42678383 -0.11724851
kz\Ss|jl TSTY 3 -0.20000000 0.42861670 -0.11541563
2Onp{,'} TSTY 3 0.20000000 0.42861670 -0.11541563
?Gl]O3@3 5MCnGg@ Estimated Performance Changes based upon Root-Sum-Square method:
Lc#GBaJ Nominal MTF : 0.54403234
"vka7r Estimated change : -0.36299231
x:K~?c3 Estimated MTF : 0.18104003
jQrj3*V Yu$QL@ Compensator Statistics: 4iI4+ Change in back focus: l+a1 `O Minimum : -0.000000 \i'Z(1 Maximum : 0.000000 $<QrV,T Mean : -0.000000 u*T(n s
l Standard Deviation : 0.000000 ~].?8C.>* [=BccT:b Monte Carlo Analysis:
o (k{Ed Number of trials: 20
J= [D'h } J[Z)u Initial Statistics: Normal Distribution
@ry/zG# apOa E7| Trial Criterion Change
O 9C&1A|lA 1 0.42804416 -0.11598818
%s! |,Cu Change in Focus : -0.400171
6_s(Kx>j 2 0.54384387 -0.00018847
BsU}HuQZQ Change in Focus : 1.018470
]|-sZ<?<i 3 0.44510003 -0.09893230
.* )e24` Change in Focus : -0.601922
H$+@O- 4 0.18154684 -0.36248550
4*ZY#7h Change in Focus : 0.920681
E<jW;trt_ 5 0.28665820 -0.25737414
&|<f|BMX Change in Focus : 1.253875
h
8xcq# 6 0.21263372 -0.33139862
wRvh/{xB Change in Focus : -0.903878
>%ovL8F 7 0.40051424 -0.14351809
[l3ys Change in Focus : -1.354815
v\[+ 8 0.48754161 -0.05649072
w_f.\\1r Change in Focus : 0.215922
XEnu0gr 9 0.40357468 -0.14045766
1ysQvz Change in Focus : 0.281783
* bd3^mP 10 0.26315315 -0.28087919
<.mH-Y5i Change in Focus : -1.048393
:KgH7s} 11 0.26120585 -0.28282649
\BuyJskE Change in Focus : 1.017611
u0GHcpOm 12 0.24033815 -0.30369419
O%3Hp.|! Change in Focus : -0.109292
vK%*5 13 0.37164046 -0.17239188
QtwQVOK Change in Focus : -0.692430
&JXb) W 14 0.48597489 -0.05805744
64mg :ed& Change in Focus : -0.662040
f4
qVUU 15 0.21462327 -0.32940907
pCDN9*0/ Change in Focus : 1.611296
,3!$mQL= 16 0.43378226 -0.11025008
^?$,sS
;Q Change in Focus : -0.640081
tYXE$i 17 0.39321881 -0.15081353
X@"G1j >/ Change in Focus : 0.914906
5f{P% x( 18 0.20692530 -0.33710703
D#G%WT/" Change in Focus : 0.801607
%@Z;;5 L 19 0.51374068 -0.03029165
1X[^^p~^ Change in Focus : 0.947293
,sIC=V + 20 0.38013374 -0.16389860
<sw@P":F Change in Focus : 0.667010
<|3%}? {O9(<g Number of traceable Monte Carlo files generated: 20
a%e` V
^+p:nP Nominal 0.54403234
W&=OtN
U! Best 0.54384387 Trial 2
s/=% kCo Worst 0.18154684 Trial 4
3*&
Y'/! Mean 0.35770970
o//h|f U@ Std Dev 0.11156454
>v %js!`f *X(:vET CVWT>M< Compensator Statistics:
g"Y_!)X Change in back focus:
+4.s4&f) Minimum : -1.354815
!(rAI Maximum : 1.611296
4WJY+) Mean : 0.161872
>UMxlvTg& Standard Deviation : 0.869664
_Z Sp$>)/ t|$jgM 90% > 0.20977951 8 ECX[fw 80% > 0.22748071 +U2lwd!j 50% > 0.38667627 &yvvea] 20% > 0.46553746 *m}8L%<HT 10% > 0.50064115 +bS\iw + \c
-m\| End of Run.
R>*z8n G;3%k.{ 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
@^<odmM
O|V0WiY< _Xt/U>N 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
`UTPX'Vz mUa#sTm 不吝赐教