切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16075阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Gs,:$Im  
    sI!H=bp-8  
    'j6O2=1  
    tTLg;YjN  
    然后添加了默认公差分析,基本没变 P9 <U+\z  
    k||t<&`Ze  
    tg/UtE`V  
    eyCZ[SC  
    然后运行分析的结果如下: tX{yR'Qhu  
    'p&,'+x  
    Analysis of Tolerances GkIY2PD  
    Hsf::K x  
    File : E:\光学设计资料\zemax练习\f500.ZMX $Iwvecn?I  
    Title: ixd sz\<  
    Date : TUE JUN 21 2011 k2U*dn"9U  
    XVYFyza;  
    Units are Millimeters. }'$PYAf6  
    All changes are computed using linear differences. ZD]1C ~)  
      EO&Q  
    Paraxial Focus compensation only. <W"W13*j!  
    ^a4z*#IOr  
    WARNING: Solves should be removed prior to tolerancing. g"!(@]L!@  
    WTJ 0Q0U  
    Mnemonics: a[-!X7,IU  
    TFRN: Tolerance on curvature in fringes. Wh)D_  
    TTHI: Tolerance on thickness.  x]+PWk  
    TSDX: Tolerance on surface decentering in x. <1D|TrP  
    TSDY: Tolerance on surface decentering in y. i+*!" /De  
    TSTX: Tolerance on surface tilt in x (degrees). AI-*5[w#A  
    TSTY: Tolerance on surface tilt in y (degrees). tJ\ $%  
    TIRR: Tolerance on irregularity (fringes). +WH\,E  
    TIND: Tolerance on Nd index of refraction. ]ordqulq1  
    TEDX: Tolerance on element decentering in x. @Jzk2,rI  
    TEDY: Tolerance on element decentering in y. ]:|B).  
    TETX: Tolerance on element tilt in x (degrees). Z7;V}[wie  
    TETY: Tolerance on element tilt in y (degrees). HEF e?  
    L8VOiK=,  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ZSC*{dD$E  
    Ax;[Em?I  
    WARNING: Boundary constraints on compensators will be ignored. ju"z  
    m9 h '!X<  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm UlYFloZ  
    Mode                : Sensitivities $ Habhw  
    Sampling            : 2 e8F]m`{_"  
    Nominal Criterion   : 0.54403234 ;w7mr1  
    Test Wavelength     : 0.6328 ] G&*HMtp  
    8>&@"j  
    95l)s],  
    Fields: XY Symmetric Angle in degrees u^" I3u8$  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY EuK}L[Kl  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ~KBa-i%o  
    Hr|f(9xA  
    Sensitivity Analysis: /Z:j:l  
    D}_.D=)  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| `H+"7SO  
    Type                      Value      Criterion        Change          Value      Criterion        Change -NBVUUAgN  
    Fringe tolerance on surface 1 A~?M`L>B  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 )^>LnQ_u  
    Change in Focus                :      -0.000000                            0.000000 AUnfhk@$  
    Fringe tolerance on surface 2 cq1 5@a mX  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ujU,O%.n  
    Change in Focus                :       0.000000                            0.000000 wPlM= .Hq?  
    Fringe tolerance on surface 3 Hn|W3U  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 cHjQwl  
    Change in Focus                :      -0.000000                            0.000000 Pe`(9&iT.  
    Thickness tolerance on surface 1 ;qshd'?*  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 <J/ =$u/  
    Change in Focus                :       0.000000                            0.000000 AI|vL4*Xd  
    Thickness tolerance on surface 2 Y6` xb`  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Z>hTL_|]a{  
    Change in Focus                :       0.000000                           -0.000000 sy: xA w  
    Decenter X tolerance on surfaces 1 through 3 l5[5Y6c>  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 to={q CqU  
    Change in Focus                :       0.000000                            0.000000 z$~x 2<  
    Decenter Y tolerance on surfaces 1 through 3 LOh2eZ"n  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 <DF3!r  
    Change in Focus                :       0.000000                            0.000000 PTQ#8(_,  
    Tilt X tolerance on surfaces 1 through 3 (degrees) I'/3_AX  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 bJ ~H  
    Change in Focus                :       0.000000                            0.000000 (Ou%0 KW  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) n(: <pz  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 3SVGx< ,2  
    Change in Focus                :       0.000000                            0.000000 M5dYcCDE  
    Decenter X tolerance on surface 1 %Bs. XW,  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 pgU [di  
    Change in Focus                :       0.000000                            0.000000 =RoG?gd{R  
    Decenter Y tolerance on surface 1 3BFOZV+  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 UcRP/LR%C  
    Change in Focus                :       0.000000                            0.000000 f1 ;  
    Tilt X tolerance on surface (degrees) 1 O0  'iq^g  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 aJu&h2 G  
    Change in Focus                :       0.000000                            0.000000 '6so(>|  
    Tilt Y tolerance on surface (degrees) 1 rB>ge]$.  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 mQ"~x]  
    Change in Focus                :       0.000000                            0.000000 '7iz5wC#  
    Decenter X tolerance on surface 2 @DN/]P  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 >jm(2P(R   
    Change in Focus                :       0.000000                            0.000000 -l^<[%  
    Decenter Y tolerance on surface 2 Q6h+.  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 gq=t7b  
    Change in Focus                :       0.000000                            0.000000 p~D}Iyww1_  
    Tilt X tolerance on surface (degrees) 2 $0])%   
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 9vI~vl l  
    Change in Focus                :       0.000000                            0.000000 fvu{(Tb  
    Tilt Y tolerance on surface (degrees) 2 mRk)5{  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 odv2(\  
    Change in Focus                :       0.000000                            0.000000 U3(+8}Q  
    Decenter X tolerance on surface 3 8z=# 0+0  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 >F/^y O  
    Change in Focus                :       0.000000                            0.000000 ) .~ "  
    Decenter Y tolerance on surface 3 @8d 3  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 <,i4Ua  
    Change in Focus                :       0.000000                            0.000000 #<{v~sVp&  
    Tilt X tolerance on surface (degrees) 3 `TrWtSwv  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ~?Zib1f)  
    Change in Focus                :       0.000000                            0.000000 [doEArwn  
    Tilt Y tolerance on surface (degrees) 3 JZ5k3#@e  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ;mQj2Bwr  
    Change in Focus                :       0.000000                            0.000000 xS*UY.>  
    Irregularity of surface 1 in fringes H$![]Ujq  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 4~fYG|a  
    Change in Focus                :       0.000000                            0.000000 U4D7@KY +m  
    Irregularity of surface 2 in fringes "Q?+T:D8|  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 .. `I <2  
    Change in Focus                :       0.000000                            0.000000 O1c%XwMn^  
    Irregularity of surface 3 in fringes 8$(I! ;  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 a6{Zp{"Y  
    Change in Focus                :       0.000000                            0.000000 \!u<)kkyT  
    Index tolerance on surface 1 Sd7jd?#9'  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 uwe#& V-  
    Change in Focus                :       0.000000                            0.000000 uibmQ|AQ  
    Index tolerance on surface 2 N>mW64_H)  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 (x=$b(I  
    Change in Focus                :       0.000000                           -0.000000 %>KbaM1b  
    U]PB)  
    Worst offenders: SNj-h>&Mha  
    Type                      Value      Criterion        Change nY'V,v[F  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 =oAS(7o  
    TSTY   2             0.20000000     0.35349910    -0.19053324 (7 I|lf e  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 F8pA)!AH  
    TSTX   2             0.20000000     0.35349910    -0.19053324 <PLAAh8  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 U1\7Hcs$  
    TSTY   1             0.20000000     0.42678383    -0.11724851 yRXML\Ge  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 o'2eSm0H  
    TSTX   1             0.20000000     0.42678383    -0.11724851 !%>RHh[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 BT7{]2?&V  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ]#:WL)@  
    g'.OzD  
    Estimated Performance Changes based upon Root-Sum-Square method: PTe L3L  
    Nominal MTF                 :     0.54403234 6tKrR{3#A  
    Estimated change            :    -0.36299231 7;jD>wp 9D  
    Estimated MTF               :     0.18104003 ,i:?c  
    q/O2E<=w*c  
    Compensator Statistics: ;;0'BdsL`  
    Change in back focus: pz%s_g'  
    Minimum            :        -0.000000 ;(C<gt,r}  
    Maximum            :         0.000000 IO)B3,g  
    Mean               :        -0.000000 Tmzbh 9  
    Standard Deviation :         0.000000 ]?^V xB7L  
    <)7aNW.  
    Monte Carlo Analysis: s9Hxiw@D  
    Number of trials: 20 D<WnPLA$g  
    gN/<g8  
    Initial Statistics: Normal Distribution (b25g!  
    ale'-V)5  
      Trial       Criterion        Change z; GQnAG@  
          1     0.42804416    -0.11598818 f-%M~:  
    Change in Focus                :      -0.400171 2KLMFI.F  
          2     0.54384387    -0.00018847 !se1W5ke#  
    Change in Focus                :       1.018470 IkCuw./  
          3     0.44510003    -0.09893230 1 Pk+zBJ$  
    Change in Focus                :      -0.601922 7FC!^)x1  
          4     0.18154684    -0.36248550 DY2*B"^  
    Change in Focus                :       0.920681 u/=hueR<^  
          5     0.28665820    -0.25737414 D$l!lRu8+L  
    Change in Focus                :       1.253875 }3 xkA  
          6     0.21263372    -0.33139862 M7=,J;@  
    Change in Focus                :      -0.903878 VZ9 p "  
          7     0.40051424    -0.14351809 L}h_\1  
    Change in Focus                :      -1.354815 K_YrdA)6  
          8     0.48754161    -0.05649072 f,G*e367:  
    Change in Focus                :       0.215922 }0'LKwIR  
          9     0.40357468    -0.14045766 {irc0gI  
    Change in Focus                :       0.281783 ]?6wU-a  
         10     0.26315315    -0.28087919 w6BBu0,KC  
    Change in Focus                :      -1.048393 Tg{5%~L]   
         11     0.26120585    -0.28282649 &5W;E+Pub  
    Change in Focus                :       1.017611 Y`g oV  
         12     0.24033815    -0.30369419 D Q.4b  
    Change in Focus                :      -0.109292 Q(& @ra!{  
         13     0.37164046    -0.17239188 j_<qnBeQ  
    Change in Focus                :      -0.692430 UarLxPQ  
         14     0.48597489    -0.05805744 |Y3w6!$  
    Change in Focus                :      -0.662040 {H)7K.hQN  
         15     0.21462327    -0.32940907 VrIN.x  
    Change in Focus                :       1.611296 ]0UYxv%]  
         16     0.43378226    -0.11025008 JSL&` `  
    Change in Focus                :      -0.640081 m.D8@[y  
         17     0.39321881    -0.15081353 WARiw[  
    Change in Focus                :       0.914906 /a\i  
         18     0.20692530    -0.33710703 !)bZ.1o  
    Change in Focus                :       0.801607 ?UsCSJ1V  
         19     0.51374068    -0.03029165 )LGVR 3#  
    Change in Focus                :       0.947293 5]&sXs  
         20     0.38013374    -0.16389860 Mt.Cj;h@^[  
    Change in Focus                :       0.667010 Y(UK:LZ'  
    ZID-~ 6  
    Number of traceable Monte Carlo files generated: 20 B_[efM<R$  
    O#D{:H_dD>  
    Nominal     0.54403234 /@\`Ibe  
    Best        0.54384387    Trial     2 O>L,G)g  
    Worst       0.18154684    Trial     4 f&<+45JI  
    Mean        0.35770970 'KH+e#?Ar  
    Std Dev     0.11156454 _Q+c'q Zkl  
    L-9fo-  
    8&JB_%Gb  
    Compensator Statistics: l8G1N[  
    Change in back focus: lC($@sC%  
    Minimum            :        -1.354815 F!z ^0+H(  
    Maximum            :         1.611296 t?"(Zb  
    Mean               :         0.161872 @&?(XY 'M%  
    Standard Deviation :         0.869664 bTJ<8q  
    fXMY.X>f  
    90% >       0.20977951               .57p4{  
    80% >       0.22748071               f#z:ILG=  
    50% >       0.38667627               3)WfBvG  
    20% >       0.46553746               -Cyo2wk  
    10% >       0.50064115                '~Y@HRVL@|  
    BL&AZv/T  
    End of Run. C:J frg`  
    #LR4%}mg  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 ),yar9C  
    LK DfV  
    X):7#x@uy  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 >ZJ]yhbhK  
    Hs)Cf)8u  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 R `ViRJh  
    80% >       0.22748071                 R ABw( b  
    50% >       0.38667627                 <yipy[D  
    20% >       0.46553746                 (T*$4KGV  
    10% >       0.50064115 7_\F$bp`  
    O2>c|=#  
    最后这个数值是MTF值呢,还是MTF的公差? u{DEOhtI4  
    s $Vv  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   +51heuu[o  
    cTGd<  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 8Nzn%0(Q  
    90% >       0.20977951                 5 e+j51  
    80% >       0.22748071                 C{bxPILw  
    50% >       0.38667627                 /u$'=!<b;  
    20% >       0.46553746                 `2 <:$]  
    10% >       0.50064115 +fk*c[FG  
    ....... Jb"FY:/Qv+  
    A5Hx $.Z  
    x/O;8^b  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   6!]@ S|vDX  
    Mode                : Sensitivities &`qYe)1Eo  
    Sampling            : 2 \s#~ %l  
    Nominal Criterion   : 0.54403234 ]S%_&ZMCM  
    Test Wavelength     : 0.6328 iAH,f5T  
    9W=(D|,,  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ?>+uO0*S  
    W%+02_/)  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试