切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16391阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 |;wc8;  
    g}D)MlXRq  
    NF6xKwRU]_  
    lsOv#X-b E  
    然后添加了默认公差分析,基本没变 %N<5ST>(  
    CMW4Zqau*  
    _Ik?WA_;  
    tSJ#  
    然后运行分析的结果如下: #[{{&sN  
    QTi@yT:  
    Analysis of Tolerances pS ](Emn`.  
    =IsmPQKi  
    File : E:\光学设计资料\zemax练习\f500.ZMX 06f%{mAZS  
    Title: ?`Yu~a{  
    Date : TUE JUN 21 2011 w_Slg&S  
    z0<E3t  
    Units are Millimeters. s"`~Xnf  
    All changes are computed using linear differences. K_)~&Cu*'  
    F8?2+w@P  
    Paraxial Focus compensation only. Mu[lk=jC  
    ;kk[x8$  
    WARNING: Solves should be removed prior to tolerancing. ,X^3.ILz  
    1#,4P1"  
    Mnemonics: s;OGb{H7  
    TFRN: Tolerance on curvature in fringes. ITw *m3  
    TTHI: Tolerance on thickness. Zpkd8@g@  
    TSDX: Tolerance on surface decentering in x. lK=Is v+  
    TSDY: Tolerance on surface decentering in y. iF^qbh%%E  
    TSTX: Tolerance on surface tilt in x (degrees). /f1]U LmC:  
    TSTY: Tolerance on surface tilt in y (degrees). H%vfRl3rB  
    TIRR: Tolerance on irregularity (fringes). l[$GOLeS  
    TIND: Tolerance on Nd index of refraction. ]i.N'O<p  
    TEDX: Tolerance on element decentering in x. l&+O*=#Hh  
    TEDY: Tolerance on element decentering in y. z!3=.D  
    TETX: Tolerance on element tilt in x (degrees). 0>BxS9?w  
    TETY: Tolerance on element tilt in y (degrees). .t1:;H b  
    `CS\"|z  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. }S u j=oFp  
    eavn.I8J  
    WARNING: Boundary constraints on compensators will be ignored. H_RfIX)X  
    \s*UUODWK  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm #kM|!U=  
    Mode                : Sensitivities {k3ItGQ_  
    Sampling            : 2 mBErU6?X,A  
    Nominal Criterion   : 0.54403234 i#*[, P~  
    Test Wavelength     : 0.6328 :lB`K>)iB}  
    o(SPT?ao~  
    r&4Xf# QD6  
    Fields: XY Symmetric Angle in degrees ] H !ru  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY uMw6b=/U  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 }( F:U#  
    ;Yee0O!d4  
    Sensitivity Analysis: #s~;ss ,  
    I:TbZ*vi~  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| aG }oI!  
    Type                      Value      Criterion        Change          Value      Criterion        Change ruGJZAhIA^  
    Fringe tolerance on surface 1 A,_O=hA2I  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 fY&TI}Y  
    Change in Focus                :      -0.000000                            0.000000 n\((#<&  
    Fringe tolerance on surface 2 =6dAF"b)  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 IQO|)53)  
    Change in Focus                :       0.000000                            0.000000 bs"J]">(N  
    Fringe tolerance on surface 3 ^5E9p@d"J  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 kku<0<(N  
    Change in Focus                :      -0.000000                            0.000000 v ^h:E  
    Thickness tolerance on surface 1 g9" wX?*  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 [ *Dj:A)V^  
    Change in Focus                :       0.000000                            0.000000 \lQ3j8 U  
    Thickness tolerance on surface 2 !ddyJJ^a  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 X3}eq|r9  
    Change in Focus                :       0.000000                           -0.000000 k 3m_L-  
    Decenter X tolerance on surfaces 1 through 3 rgVRF44X{  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 x9 Z89Gwi  
    Change in Focus                :       0.000000                            0.000000 lk 1\|Q I  
    Decenter Y tolerance on surfaces 1 through 3 /Ot3[B  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 =\.*CY|;N  
    Change in Focus                :       0.000000                            0.000000 Np+PUu>  
    Tilt X tolerance on surfaces 1 through 3 (degrees) X=#us7W}  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 |)!f".`  
    Change in Focus                :       0.000000                            0.000000 o+Jnn"8  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) %!nI]|  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 >O\+9T@  
    Change in Focus                :       0.000000                            0.000000 v](Y n) #  
    Decenter X tolerance on surface 1 vQ*[tp#qU  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 F^gTID  
    Change in Focus                :       0.000000                            0.000000 ! eZls  
    Decenter Y tolerance on surface 1 ni2#20L  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 /8e}c`  
    Change in Focus                :       0.000000                            0.000000  "M5  
    Tilt X tolerance on surface (degrees) 1 8Ij<t{Lps  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 @[J6JT*E  
    Change in Focus                :       0.000000                            0.000000 d/9YtG%q  
    Tilt Y tolerance on surface (degrees) 1 rByth,|  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Z}$sY>E  
    Change in Focus                :       0.000000                            0.000000 ? #rXc%F  
    Decenter X tolerance on surface 2 Eto"B"  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 a5#G48'X  
    Change in Focus                :       0.000000                            0.000000 -0CBMoe  
    Decenter Y tolerance on surface 2 jcqUY+T$  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 qt@/  
    Change in Focus                :       0.000000                            0.000000 ym{@w3"S  
    Tilt X tolerance on surface (degrees) 2 O(W"QY  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 R/v|ZvI  
    Change in Focus                :       0.000000                            0.000000 #1haq[Uv7  
    Tilt Y tolerance on surface (degrees) 2 ;F258/J  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 &AJ bx  
    Change in Focus                :       0.000000                            0.000000 8S#$'2sT  
    Decenter X tolerance on surface 3 UH>~Y N  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 H*N<7#  
    Change in Focus                :       0.000000                            0.000000 u"qu!EY2  
    Decenter Y tolerance on surface 3 i6V$mhL  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 DYf2V6'  
    Change in Focus                :       0.000000                            0.000000 3`reXms*{  
    Tilt X tolerance on surface (degrees) 3 &b#d4p6&l  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Sqn>L`Lz  
    Change in Focus                :       0.000000                            0.000000 "yw{A%J  
    Tilt Y tolerance on surface (degrees) 3 DD=X{{;D\"  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 r[V%DU$dj  
    Change in Focus                :       0.000000                            0.000000 uNn1qV  
    Irregularity of surface 1 in fringes ysOf=~ 1  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ^rJTlh 9  
    Change in Focus                :       0.000000                            0.000000 n' mrLZw  
    Irregularity of surface 2 in fringes Ij(<(y{?Q1  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 IaeO0\ 4E  
    Change in Focus                :       0.000000                            0.000000 9wR D=a  
    Irregularity of surface 3 in fringes LKvX~68  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 _\d|`3RM  
    Change in Focus                :       0.000000                            0.000000 1!^BcrG.  
    Index tolerance on surface 1 6 EqN>.  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 fSbLkd 9  
    Change in Focus                :       0.000000                            0.000000 &$|~",  
    Index tolerance on surface 2 2B$dT=G  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ?-c|c_|$  
    Change in Focus                :       0.000000                           -0.000000 b~&cYk'  
    %EU_OS(u.{  
    Worst offenders: 8)8~c@  
    Type                      Value      Criterion        Change R_G2C@y*  
    TSTY   2            -0.20000000     0.35349910    -0.19053324  {8K  
    TSTY   2             0.20000000     0.35349910    -0.19053324 bji#ID2]%  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 /rZk^/'  
    TSTX   2             0.20000000     0.35349910    -0.19053324 u;9iuc` *  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 PJZ;wqTD_  
    TSTY   1             0.20000000     0.42678383    -0.11724851 0 8L;u7u  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 "}_ J"%  
    TSTX   1             0.20000000     0.42678383    -0.11724851 5 b rM..  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 liYsUmjZ=  
    TSTY   3             0.20000000     0.42861670    -0.11541563 3Y#  
    H&ek"nP_  
    Estimated Performance Changes based upon Root-Sum-Square method: 'G65zz  
    Nominal MTF                 :     0.54403234 kKF=%J?X  
    Estimated change            :    -0.36299231 Kv* 1=HES  
    Estimated MTF               :     0.18104003 wm#(\dj  
    #"6l+}  
    Compensator Statistics: )*}\fmOv{  
    Change in back focus: m)6 6g]F+  
    Minimum            :        -0.000000 ?:/J8s [O  
    Maximum            :         0.000000 iWeUsS%zpV  
    Mean               :        -0.000000 b&!}SZ  
    Standard Deviation :         0.000000 7a9">:~  
    9K}DmS  
    Monte Carlo Analysis: vVtkB$]L  
    Number of trials: 20 KLM6#6`  
    kq=Htbv7  
    Initial Statistics: Normal Distribution 4'D^>z!c  
    5(#z)T  
      Trial       Criterion        Change !jl^__ .DR  
          1     0.42804416    -0.11598818 3q/"4D  
    Change in Focus                :      -0.400171 O=U,x-Wl  
          2     0.54384387    -0.00018847 =55)|$hgD  
    Change in Focus                :       1.018470 a`yCPnB(  
          3     0.44510003    -0.09893230 qDG x (d  
    Change in Focus                :      -0.601922 M#2<|VUW,  
          4     0.18154684    -0.36248550 :@ &e~QP(  
    Change in Focus                :       0.920681 $o+@}B0)  
          5     0.28665820    -0.25737414 ;gEEdx'&T  
    Change in Focus                :       1.253875 Ke^/aGi}O  
          6     0.21263372    -0.33139862 EIzTbW{p  
    Change in Focus                :      -0.903878 ]z7pa^  
          7     0.40051424    -0.14351809 |b@`ykD  
    Change in Focus                :      -1.354815 Yw=@*CK'  
          8     0.48754161    -0.05649072 Z-t qSw8n  
    Change in Focus                :       0.215922 3U?gw!M>  
          9     0.40357468    -0.14045766 r9}(FL /)b  
    Change in Focus                :       0.281783 ?_{{iil  
         10     0.26315315    -0.28087919 w@WtW8 p^  
    Change in Focus                :      -1.048393 -d!84_d9  
         11     0.26120585    -0.28282649 IH*G7;  
    Change in Focus                :       1.017611 zLr:zfl  
         12     0.24033815    -0.30369419 l{rHXST|  
    Change in Focus                :      -0.109292 nUq@`G  
         13     0.37164046    -0.17239188 <AVWT+,  
    Change in Focus                :      -0.692430 6G4~-_  
         14     0.48597489    -0.05805744 D {E,XOi  
    Change in Focus                :      -0.662040 q\P{h ij  
         15     0.21462327    -0.32940907 ow (YgM>t  
    Change in Focus                :       1.611296 *W |  
         16     0.43378226    -0.11025008 4%v-)HGh  
    Change in Focus                :      -0.640081 4UL"f<7 T  
         17     0.39321881    -0.15081353 /FTP8XHwL)  
    Change in Focus                :       0.914906 \K2S.j  
         18     0.20692530    -0.33710703 3NwdE/x\  
    Change in Focus                :       0.801607 }cW8B"_"  
         19     0.51374068    -0.03029165 qzY:>>d'  
    Change in Focus                :       0.947293 p&XuNk  
         20     0.38013374    -0.16389860 p*$=EomY  
    Change in Focus                :       0.667010 @B+8' b$9  
    1iqgTi>  
    Number of traceable Monte Carlo files generated: 20 ~E DO< O>3  
    wMm+E "}W  
    Nominal     0.54403234 2MXg)GBcU>  
    Best        0.54384387    Trial     2 0^P9)<k'  
    Worst       0.18154684    Trial     4 &z\?A2Mw%  
    Mean        0.35770970 gv jy'Rm  
    Std Dev     0.11156454 *Q -uE  
    9Z2aFW9  
    sN[<{;K4  
    Compensator Statistics: 4[r:DM|8  
    Change in back focus: vKbGG   
    Minimum            :        -1.354815 4}Os>M{k  
    Maximum            :         1.611296 ayf;'1  
    Mean               :         0.161872 'Um\m  
    Standard Deviation :         0.869664 ;cv\v(0  
    !M6Km(>  
    90% >       0.20977951               A8nf"mRD:  
    80% >       0.22748071               p|>/Hz1v  
    50% >       0.38667627               c@O7,y:`I  
    20% >       0.46553746               \ o?  
    10% >       0.50064115                &~)1mnv.  
    <UwA5X`0e.  
    End of Run. rt! lc-g%/  
    [HRP&jr  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 OYfP!,+bn  
    ,-1taS  
    "X1{*  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 <~5$<L4  
    / vzwokH  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 0 Pa\:^/6  
    80% >       0.22748071                 `Df)wNN1  
    50% >       0.38667627                 bX]$S 5c_u  
    20% >       0.46553746                 yu62$ d  
    10% >       0.50064115 \c$! C8z  
    "^@0zy@x  
    最后这个数值是MTF值呢,还是MTF的公差? 9G}Crp  
    TL_8c][.4$  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   H`ZUI8-  
    `BHPj p>  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : kw>W5tNpf:  
    90% >       0.20977951                 0[JJ  
    80% >       0.22748071                 +KV`+zic+  
    50% >       0.38667627                  3%G>TB  
    20% >       0.46553746                 _>8ZL)NQQ  
    10% >       0.50064115 i[_WO2  
    ....... c|%.B2  
    6;g"`l51  
    Y9)uy 8c  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Wp" +\{@)  
    Mode                : Sensitivities Nv@SpV'  
    Sampling            : 2 B zmmE2~*  
    Nominal Criterion   : 0.54403234  x w8 e  
    Test Wavelength     : 0.6328 G=R`O1-3  
    roDE?7x1  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧?  X}@^$'W  
    zq 1je2DB  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试