切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16579阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 IvQuxs&a  
    `RURC"  
    B2_fCSlg  
    5BLBcw\;  
    然后添加了默认公差分析,基本没变 gth_Sz5!#  
    "5N$u(: b  
    &"Cy&[  
    )`W|J%w+  
    然后运行分析的结果如下:  =mcQe^M  
    +Qzl-eN/+  
    Analysis of Tolerances 4v5qK  
    vs$. i  
    File : E:\光学设计资料\zemax练习\f500.ZMX /Gb)BJk!  
    Title: p R`nQM-D  
    Date : TUE JUN 21 2011 )N3/;U;  
    j2:9ahW  
    Units are Millimeters. v-!Spf  
    All changes are computed using linear differences. td$RDtW[3  
    r@'~cF]m  
    Paraxial Focus compensation only. /a-s9<  
    $kR%G{j 4  
    WARNING: Solves should be removed prior to tolerancing. &!'R'{/?X  
    @l_rB~  
    Mnemonics: mL;oR4{  
    TFRN: Tolerance on curvature in fringes. `tKs|GQf  
    TTHI: Tolerance on thickness. Rf=-Q %  
    TSDX: Tolerance on surface decentering in x. -J]N &[  
    TSDY: Tolerance on surface decentering in y. SD:Bw0gzrI  
    TSTX: Tolerance on surface tilt in x (degrees). fL'Ci;.;+  
    TSTY: Tolerance on surface tilt in y (degrees). @K#}nKN'  
    TIRR: Tolerance on irregularity (fringes). mpIR: Im  
    TIND: Tolerance on Nd index of refraction. 7o*~zDh@fH  
    TEDX: Tolerance on element decentering in x. ~ `{{Z&  
    TEDY: Tolerance on element decentering in y. ?g *.7Wc  
    TETX: Tolerance on element tilt in x (degrees). wYv++< z  
    TETY: Tolerance on element tilt in y (degrees). 4VsttT  
    pVjOp~=U  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. =6fJUy^M\  
    *J4 \KU  
    WARNING: Boundary constraints on compensators will be ignored. =|^R<#%/  
    ?c fFJl  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 0NvicZ7VR  
    Mode                : Sensitivities vr kj4J f  
    Sampling            : 2 bQ0+Y?,+/  
    Nominal Criterion   : 0.54403234 ^ Vc(oa&;  
    Test Wavelength     : 0.6328 a?W<<9]  
    +J42pSxzoo  
    z<. 6jx@  
    Fields: XY Symmetric Angle in degrees J~ z00p`E  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY uXG$YDKqC  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 HMKogGTTo  
    S[&yO-=p6  
    Sensitivity Analysis: b'`C<Rk  
    w,!N{hv(  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| q((%sWp  
    Type                      Value      Criterion        Change          Value      Criterion        Change ehMpo BL  
    Fringe tolerance on surface 1 %wJ?+D/  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 /(}YjeS  
    Change in Focus                :      -0.000000                            0.000000 2jP(D%n  
    Fringe tolerance on surface 2 G/1V4-@  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ]0}NF  
    Change in Focus                :       0.000000                            0.000000 r|953e  
    Fringe tolerance on surface 3 `Q>qmf_Fi  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 .SWn/Kk  
    Change in Focus                :      -0.000000                            0.000000 ,LU|WXRB  
    Thickness tolerance on surface 1 a3 t||@v!  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 2>^jMln  
    Change in Focus                :       0.000000                            0.000000 ]4 \6_J&  
    Thickness tolerance on surface 2 3X`N~_+  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 +\cG{n*  
    Change in Focus                :       0.000000                           -0.000000 '|yBz1uL  
    Decenter X tolerance on surfaces 1 through 3 G98fBw  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 `4qtmbj  
    Change in Focus                :       0.000000                            0.000000 PiNf;b^9  
    Decenter Y tolerance on surfaces 1 through 3 ?y[i6yN9  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ng[LSB*57Y  
    Change in Focus                :       0.000000                            0.000000 o4B%TW  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ipRH.1=  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 *Oh]I|?  
    Change in Focus                :       0.000000                            0.000000 z&.F YGq}  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) <M,=( p{  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 +3R/g@n  
    Change in Focus                :       0.000000                            0.000000 [ofZ1hB4  
    Decenter X tolerance on surface 1 yV) 9KGV+:  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 {>X2\.Rl  
    Change in Focus                :       0.000000                            0.000000 !WD^To  
    Decenter Y tolerance on surface 1 mr XmM<  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ^`9O$.'@  
    Change in Focus                :       0.000000                            0.000000 I-/-k.  
    Tilt X tolerance on surface (degrees) 1 qI2&a$Zb$  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 wJWofFz  
    Change in Focus                :       0.000000                            0.000000 *MXE>   
    Tilt Y tolerance on surface (degrees) 1 Y0o{@)Y:  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 90a!_8o  
    Change in Focus                :       0.000000                            0.000000 -9q3]nmT(  
    Decenter X tolerance on surface 2 W ;P8'_2Y  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ^ `[T0X  
    Change in Focus                :       0.000000                            0.000000 sN/8OLc  
    Decenter Y tolerance on surface 2 ~<3J9\z1  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Es1T{<G|w  
    Change in Focus                :       0.000000                            0.000000 p!`S]\XEB  
    Tilt X tolerance on surface (degrees) 2 iz6+jHu'l  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 mf gUf  
    Change in Focus                :       0.000000                            0.000000 B5#>ieM*  
    Tilt Y tolerance on surface (degrees) 2 i#Z#(D `m  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 JuR x>F4  
    Change in Focus                :       0.000000                            0.000000 4 :M}Vz-  
    Decenter X tolerance on surface 3 3'tq`t:SQ  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 E qt\It9  
    Change in Focus                :       0.000000                            0.000000 yO J|t#  
    Decenter Y tolerance on surface 3 {$_Gjv  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Q.l3F3;  
    Change in Focus                :       0.000000                            0.000000 W!b'nRkq  
    Tilt X tolerance on surface (degrees) 3 tAS[T9B  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 rCdTn+O2  
    Change in Focus                :       0.000000                            0.000000 ?#/~ BZR!  
    Tilt Y tolerance on surface (degrees) 3 I=4G+h5p  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 XWUi_{zn  
    Change in Focus                :       0.000000                            0.000000 LP//\E_]  
    Irregularity of surface 1 in fringes b}m@2DR'|m  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 RnUud\T/  
    Change in Focus                :       0.000000                            0.000000 249DAjn+  
    Irregularity of surface 2 in fringes d+IN-lR(  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 _#6*C%ax  
    Change in Focus                :       0.000000                            0.000000 ,o6,(jJU  
    Irregularity of surface 3 in fringes HurF4IsHk  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 l\{r-F N  
    Change in Focus                :       0.000000                            0.000000 VJ-To}  
    Index tolerance on surface 1 iY3TB|tMt  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 X GDJCN  
    Change in Focus                :       0.000000                            0.000000 "V<7X%LIX  
    Index tolerance on surface 2 S+-V16{i  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 'M% uw85  
    Change in Focus                :       0.000000                           -0.000000 g"X!&$ &  
    Q6%Pp_$k  
    Worst offenders: &B} ,xcNO  
    Type                      Value      Criterion        Change LOe l6Ui  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ~{{@m]P  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Ihx[S!:  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Gs(;&fw  
    TSTX   2             0.20000000     0.35349910    -0.19053324 (*V:{_r  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 xnC5WF7  
    TSTY   1             0.20000000     0.42678383    -0.11724851 \_t[\&.a}  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 CjmF2[|  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ~.J{yrJ&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 @BI;H V%k  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ]?0]K!7Ea  
    E[>A# l53  
    Estimated Performance Changes based upon Root-Sum-Square method: |:LklpdYe  
    Nominal MTF                 :     0.54403234 G$6mtw6[M  
    Estimated change            :    -0.36299231 x{$/|_  
    Estimated MTF               :     0.18104003 N=c{@h  
    7J5Yzu)D  
    Compensator Statistics: \kC'y9k  
    Change in back focus: lLNI5C  
    Minimum            :        -0.000000 9mB] \{^  
    Maximum            :         0.000000 He}"e&K  
    Mean               :        -0.000000 v=x)]<E" _  
    Standard Deviation :         0.000000 muIJeQ.C  
    ZtX \E+mC  
    Monte Carlo Analysis: (iY2d_FQ[  
    Number of trials: 20 ]1|OQYG  
    B1z7r0Rm,  
    Initial Statistics: Normal Distribution eY3<LVAX  
    %H=^U8WB  
      Trial       Criterion        Change ,? V YrL  
          1     0.42804416    -0.11598818 Ej$oRo{ IG  
    Change in Focus                :      -0.400171 k~=P0";  
          2     0.54384387    -0.00018847 X@%4N<  
    Change in Focus                :       1.018470 qDjH^f  
          3     0.44510003    -0.09893230 G( #EW+  
    Change in Focus                :      -0.601922 sxPvi0>  
          4     0.18154684    -0.36248550 ` 6pz9j]  
    Change in Focus                :       0.920681 @4P_Yfn  
          5     0.28665820    -0.25737414 a#+;BH 1  
    Change in Focus                :       1.253875 .8]=yPm  
          6     0.21263372    -0.33139862 e J:#vX86  
    Change in Focus                :      -0.903878 8hZc#b;  
          7     0.40051424    -0.14351809 <|VV8r93  
    Change in Focus                :      -1.354815 5$/Me=g<  
          8     0.48754161    -0.05649072 @Qd5a(5WM  
    Change in Focus                :       0.215922 -z>m]YDH  
          9     0.40357468    -0.14045766 cp4~`X  
    Change in Focus                :       0.281783 ,-1d2y  
         10     0.26315315    -0.28087919 ^[1Xl7)`  
    Change in Focus                :      -1.048393 A}sdi4[`  
         11     0.26120585    -0.28282649 G+K`FUNA  
    Change in Focus                :       1.017611 bJFqyK:6  
         12     0.24033815    -0.30369419 gTg[!}_;\N  
    Change in Focus                :      -0.109292 5 $. az  
         13     0.37164046    -0.17239188 [m9=e-KS$Q  
    Change in Focus                :      -0.692430 2\G[U#~bi  
         14     0.48597489    -0.05805744 L}>ts(!q&  
    Change in Focus                :      -0.662040 "_ON0._(/  
         15     0.21462327    -0.32940907 ._`?ZJ  
    Change in Focus                :       1.611296 &8hW~G>(m  
         16     0.43378226    -0.11025008 +(oExp(!  
    Change in Focus                :      -0.640081 }XRRM:B|)(  
         17     0.39321881    -0.15081353 QX+&[G!DZH  
    Change in Focus                :       0.914906 [`bA,)y"  
         18     0.20692530    -0.33710703 CA ,2&v"  
    Change in Focus                :       0.801607 ^fti<Lw5  
         19     0.51374068    -0.03029165 %`]fZr A]#  
    Change in Focus                :       0.947293 h]k1vp)Q y  
         20     0.38013374    -0.16389860 +e&Q<q!,q  
    Change in Focus                :       0.667010 >S:+&VN`M  
    'HvJ]}p  
    Number of traceable Monte Carlo files generated: 20 >;~ia3  
    <Mf(2`T  
    Nominal     0.54403234 k~qZ^9QB~  
    Best        0.54384387    Trial     2 +xBM\Dz8  
    Worst       0.18154684    Trial     4 /mnV$+BE  
    Mean        0.35770970 nT@FS t  
    Std Dev     0.11156454 mWH;-F*%  
    Ol*|J  
    Zu/1:8x  
    Compensator Statistics: &e5,\TQ  
    Change in back focus: V#V<Kz  
    Minimum            :        -1.354815 @|@6pXR.  
    Maximum            :         1.611296 g HKA:j`c  
    Mean               :         0.161872 me@EKspX  
    Standard Deviation :         0.869664 ?wMS[Kj  
    3y*dBw  
    90% >       0.20977951               A "~Oi  
    80% >       0.22748071               M/jdMfU  
    50% >       0.38667627               &5 R-bYGW  
    20% >       0.46553746               l1]'3]P(  
    10% >       0.50064115                %DhLU~VX  
    PfJfa/#pA  
    End of Run. p i\SRDP  
    iU4Z9z!  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 p.!p6ve){  
    5} 1qo7;  
    tj[-|h  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 CMHg]la  
    0]l9x}  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 ()yOK$"  
    80% >       0.22748071                 H]>7IhJ  
    50% >       0.38667627                 +!<{80w  
    20% >       0.46553746                 mp17d$R-  
    10% >       0.50064115 U<U?&hB\@  
    l ?gh7m_ej  
    最后这个数值是MTF值呢,还是MTF的公差? 5 OF*PBZ  
    luV_  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   rvBKJ!b0  
    Q?-uJ1J  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : OX/}j_8E^(  
    90% >       0.20977951                 Oz_|pu  
    80% >       0.22748071                 J0"<}"  
    50% >       0.38667627                 'aW<C>  
    20% >       0.46553746                 oFUP`p%[  
    10% >       0.50064115 h` $2/%?  
    ....... <y5f[HjLy  
    B$cx '_zF  
    p&ml$N9fd  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   y*5bF 0  
    Mode                : Sensitivities oZ(T`5  
    Sampling            : 2 u2xb^vu  
    Nominal Criterion   : 0.54403234 \aG:l.IM0  
    Test Wavelength     : 0.6328 Qv@Z#  
    +k4 SN  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? Lh5d2}tcO  
    ?#LbhO*   
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试