我现在在初学zemax的
公差分析,找了一个双胶合
透镜 K84VeAe -OPJB:7Z
)mF;^3 8s#2Zv 然后添加了默认公差分析,基本没变
}*s%|!{H |H7f@b]Sk
;u
"BCW TDo!yQ 然后运行分析的结果如下:
B+8B<xZ oz[:
T3oE> Analysis of Tolerances
%
A8dO+W E+xC1U
3 File : E:\光学设计资料\zemax练习\f500.ZMX
J52- qR/ Title:
vRn"0Mzl8 Date : TUE JUN 21 2011
JXA!l?% >p;cbp[ht Units are Millimeters.
`rLy7\@; All changes are computed using linear differences.
k-N`
h "ABg,^jf Paraxial Focus compensation only.
xpjv@P @+P7BE} WARNING: Solves should be removed prior to tolerancing.
3}lT"K c. ;}e:)s Mnemonics:
yE4X6 TFRN: Tolerance on curvature in fringes.
_bm8m4Lk TTHI: Tolerance on thickness.
Bc^MZ~+ip TSDX: Tolerance on surface decentering in x.
Y3RaR
9 TSDY: Tolerance on surface decentering in y.
\Q m1+tg TSTX: Tolerance on surface tilt in x (degrees).
<+\
w .! TSTY: Tolerance on surface tilt in y (degrees).
PH]/*LEj TIRR: Tolerance on irregularity (fringes).
qZz?i TIND: Tolerance on Nd index of refraction.
oYn|>`+6:y TEDX: Tolerance on element decentering in x.
AYnk.H-v TEDY: Tolerance on element decentering in y.
h~R= ?%H[ TETX: Tolerance on element tilt in x (degrees).
N=[# "4I TETY: Tolerance on element tilt in y (degrees).
{i09e1 *[SOz) WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
k9Xv@v dNg5#?mzT5 WARNING: Boundary constraints on compensators will be ignored.
N& 683z GjD^\d/ Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
4gkaCk{] Mode : Sensitivities
}cPH}[$zF Sampling : 2
7)U08" Nominal Criterion : 0.54403234
-mur`tC Test Wavelength : 0.6328
lUJ~_`D ;Or]x?- H;.${u^lhd Fields: XY Symmetric Angle in degrees
w#Di # X-Field Y-Field Weight VDX VDY VCX VCY
R@[gkj 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
#o/ MaS"V`NI Sensitivity Analysis:
R$Or&:E ^ )=]u]7p} |----------------- Minimum ----------------| |----------------- Maximum ----------------|
Q6lC :cB< Type Value Criterion Change Value Criterion Change
gXP)YN Fringe tolerance on surface 1
(SnrYO`# TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
$9%UAqk9 Change in Focus :
-0.000000 0.000000
Z|
f~
Fringe tolerance on surface 2
@3_[NI% TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
A`nw(f_/ Change in Focus : 0.000000 0.000000
de<T5/ Fringe tolerance on surface 3
#i1z&b#@ TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
zZ*\v Change in Focus : -0.000000 0.000000
t<DZW# Thickness tolerance on surface 1
N" =$S|Gs TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
r]<?,xx[ Change in Focus : 0.000000 0.000000
]XS[\qo Thickness tolerance on surface 2
2C59fXfd TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
!x@3U^${ Change in Focus : 0.000000 -0.000000
Fk*C8 Decenter X tolerance on surfaces 1 through 3
u>y/<9]q8 TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
M?QK4Zxb6U Change in Focus : 0.000000 0.000000
=(cfo_B@K Decenter Y tolerance on surfaces 1 through 3
Ht_7:5v& TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
,}jey72/k Change in Focus : 0.000000 0.000000
$FM:8^ Tilt X tolerance on surfaces 1 through 3 (degrees)
ZtofDp5B TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
x3L0;:Fx8P Change in Focus : 0.000000 0.000000
;T,`m^@zf Tilt Y tolerance on surfaces 1 through 3 (degrees)
N}rc3d# TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
oT}-i [=} Change in Focus : 0.000000 0.000000
|ycN)zuE Decenter X tolerance on surface 1
lK yeG( TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
p.@_3^#| Change in Focus : 0.000000 0.000000
Y-fDYMm Decenter Y tolerance on surface 1
+F@ZVMp TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
:|PI_
$4H Change in Focus : 0.000000 0.000000
u`~,`z^{n Tilt X tolerance on surface (degrees) 1
mi&mQQ TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
tB/'3#o Change in Focus : 0.000000 0.000000
2[QyH'"^E Tilt Y tolerance on surface (degrees) 1
NS3qNj
TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
FNy-&{P2 Change in Focus : 0.000000 0.000000
U3OXO1 Decenter X tolerance on surface 2
dm`:']? TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
<[Y@< Change in Focus : 0.000000 0.000000
$_orxu0W Decenter Y tolerance on surface 2
WN6%%*w TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
bb}$7v`G Change in Focus : 0.000000 0.000000
gH<A.5 xy Tilt X tolerance on surface (degrees) 2
`Dp_c&9] TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
qtYVX:M@, Change in Focus : 0.000000 0.000000
y D:}&!\} Tilt Y tolerance on surface (degrees) 2
[Zj6v a TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
*h)|Ks Change in Focus : 0.000000 0.000000
j3&tXZ;F Decenter X tolerance on surface 3
}F=lG -x TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
oF {u Change in Focus : 0.000000 0.000000
4khc*fh Decenter Y tolerance on surface 3
g7@.Fa.u'! TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
ay`A Gr Change in Focus : 0.000000 0.000000
k+;XQEH Tilt X tolerance on surface (degrees) 3
gt|:K)[,6 TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
MG(qQ#;j/ Change in Focus : 0.000000 0.000000
d*tn&d~k, Tilt Y tolerance on surface (degrees) 3
/P
koqA, TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Q8?:L<A Change in Focus : 0.000000 0.000000
gBd@4{y6C. Irregularity of surface 1 in fringes
['JIMcD TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
|Q*OA Change in Focus : 0.000000 0.000000
* G0I2 Irregularity of surface 2 in fringes
ka?EXF: TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
`Ti?hQm/ Change in Focus : 0.000000 0.000000
Su*f`~G]; Irregularity of surface 3 in fringes
fA" VLQE TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
07#e{ Change in Focus : 0.000000 0.000000
cZl/8?dj} Index tolerance on surface 1
ZMGthI}~- TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
y\@INA^ Change in Focus : 0.000000 0.000000
#2*6esP Index tolerance on surface 2
H%G|8,4 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
Dg'BlrwbR Change in Focus : 0.000000 -0.000000
Xn
#v! 45U!\mG Worst offenders:
t~kh?u].j Type Value Criterion Change
W+`T:Mgh TSTY 2 -0.20000000 0.35349910 -0.19053324
Un^3%=; TSTY 2 0.20000000 0.35349910 -0.19053324
:`<ME/"YE TSTX 2 -0.20000000 0.35349910 -0.19053324
rPUk%S TSTX 2 0.20000000 0.35349910 -0.19053324
wS @-EcCB TSTY 1 -0.20000000 0.42678383 -0.11724851
:O/QgGZN$ TSTY 1 0.20000000 0.42678383 -0.11724851
H}PZJf_E TSTX 1 -0.20000000 0.42678383 -0.11724851
T))F
r: TSTX 1 0.20000000 0.42678383 -0.11724851
qj:\)#I TSTY 3 -0.20000000 0.42861670 -0.11541563
{jOV8SVL TSTY 3 0.20000000 0.42861670 -0.11541563
=BroH\ ..;ep2jSs Estimated Performance Changes based upon Root-Sum-Square method:
9six]T Nominal MTF : 0.54403234
#iVr @|, Estimated change : -0.36299231
_0h)O Estimated MTF : 0.18104003
v/[*Pze,C Rg\D-F6: Compensator Statistics: Y0xn}:%K Change in back focus: 0}qnq" Minimum : -0.000000 u}eLf'^ZCe Maximum : 0.000000 N-YCOSUu Mean : -0.000000 -W.bOr Standard Deviation : 0.000000 S:{`eDk\A_ DW>|'w % Monte Carlo Analysis:
YES-,;ZQ' Number of trials: 20
6YF<GF{ rq![a};~ Initial Statistics: Normal Distribution
5j>olz=n} f?W" ^6Df Trial Criterion Change
(,;4f7\ 1 0.42804416 -0.11598818
gtRVXgI Change in Focus : -0.400171
ykD-L^} 2 0.54384387 -0.00018847
6L, "gF<n Change in Focus : 1.018470
!eA6Ejf 3 0.44510003 -0.09893230
Kdr}7#c Change in Focus : -0.601922
o[B"J96b 4 0.18154684 -0.36248550
a+,zXJQYq Change in Focus : 0.920681
%6cbHH 5 0.28665820 -0.25737414
tJ9gwx7Pg Change in Focus : 1.253875
-fT}Nj\ 6 0.21263372 -0.33139862
X3R:^ff\ Change in Focus : -0.903878
}dpE> 7 0.40051424 -0.14351809
eZMfn$McJv Change in Focus : -1.354815
q$7/X;A 8 0.48754161 -0.05649072
FJ{6_=@D Change in Focus : 0.215922
I]6,hygs 9 0.40357468 -0.14045766
gVI T6"/ Change in Focus : 0.281783
@j'GcN vs 10 0.26315315 -0.28087919
(7w95xI Change in Focus : -1.048393
j5MUP&/g3 11 0.26120585 -0.28282649
<|1Kh ygv Change in Focus : 1.017611
NuR3]Ja\0 12 0.24033815 -0.30369419
Z=9gok\ Change in Focus : -0.109292
EqF>=5* 13 0.37164046 -0.17239188
`i)Pf WdBN Change in Focus : -0.692430
lQ!(lPh 14 0.48597489 -0.05805744
O PJ(ub Change in Focus : -0.662040
?yKG\tPhM 15 0.21462327 -0.32940907
xwa@h}\# Change in Focus : 1.611296
`*y%[J,I# 16 0.43378226 -0.11025008
x{9$4d Change in Focus : -0.640081
,*Wp$ 17 0.39321881 -0.15081353
/5y _ < Change in Focus : 0.914906
9yWSlbPr] 18 0.20692530 -0.33710703
hr`,s!0Y Change in Focus : 0.801607
b]g#mQ 19 0.51374068 -0.03029165
hQwUwfoe@ Change in Focus : 0.947293
Q& S 7_ 20 0.38013374 -0.16389860
8f>v[SQ" Change in Focus : 0.667010
jKb4d9aX 3hfv^H Number of traceable Monte Carlo files generated: 20
BMItHn]. [BKOK7QK| Nominal 0.54403234
K)GpQ|4:< Best 0.54384387 Trial 2
aEn*vun Worst 0.18154684 Trial 4
5#mHWBGd7 Mean 0.35770970
*0x!C8*`Xe Std Dev 0.11156454
~T!D:2G ;jh.\a_\ G6p R?K+ Compensator Statistics:
ufo\p=pGG Change in back focus:
\d-9Ndp
nf Minimum : -1.354815
J~)JsAXAI Maximum : 1.611296
=Y*zF>#lP Mean : 0.161872
TecWv@. Standard Deviation : 0.869664
xtK}XEhG! &n]]OPo 90% > 0.20977951 TGuCIc0B{ 80% > 0.22748071 L'O=;C"f 50% > 0.38667627 }c=YiH,o 20% > 0.46553746 zQoJ8i> 10% > 0.50064115 /$^SiE+N R0e!b+MZ. End of Run.
)}@Z*.HZL )i[K1$x2 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
X0 ]Se(
SK5__Ix r=# v@]zB 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
K0Lc~n/ #g~]2x 不吝赐教