切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15284阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 L3pNna  
    yp9vgUs  
    gd#+N]C_  
    !W^P|:Qt  
    然后添加了默认公差分析,基本没变 "w7wd5h  
    0QcC5y;  
    jI[Y< (F ;  
    Qv~lH&jG  
    然后运行分析的结果如下: y<|8OTT  
    +~Wg@   
    Analysis of Tolerances k nTCX  
    Tmjcc(  
    File : E:\光学设计资料\zemax练习\f500.ZMX fAYp\ k  
    Title: T uG%oV}   
    Date : TUE JUN 21 2011 +6-_9qRq  
    =jz [}5  
    Units are Millimeters. 21_sg f?  
    All changes are computed using linear differences. V(wm?Cc]  
    oR[-F+__  
    Paraxial Focus compensation only. '3R o`p{  
    ^Q,-4\ec  
    WARNING: Solves should be removed prior to tolerancing. #:[^T,YD0  
    m9Xauk$(  
    Mnemonics: t[}&*2"$/  
    TFRN: Tolerance on curvature in fringes. jJbS{1z  
    TTHI: Tolerance on thickness. &65I 6  
    TSDX: Tolerance on surface decentering in x. JP{Y Q:NF  
    TSDY: Tolerance on surface decentering in y. #7v=#Jco  
    TSTX: Tolerance on surface tilt in x (degrees). h\-3Y U  
    TSTY: Tolerance on surface tilt in y (degrees). zpgRK4p,I"  
    TIRR: Tolerance on irregularity (fringes). efN5(9*9R  
    TIND: Tolerance on Nd index of refraction. y8%QS*  
    TEDX: Tolerance on element decentering in x. l\t g.O~  
    TEDY: Tolerance on element decentering in y. Ndmki 7A  
    TETX: Tolerance on element tilt in x (degrees). rUn1*KWbE  
    TETY: Tolerance on element tilt in y (degrees). T$!Pkdh  
    H'a6] ]2  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. L5DeLF+  
    (! a;}V<7  
    WARNING: Boundary constraints on compensators will be ignored. $&Lw 2 c0  
    ~`yO@f;D  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm XmJ?oPr7  
    Mode                : Sensitivities _*w kTI+j  
    Sampling            : 2 ?uh%WN6nU]  
    Nominal Criterion   : 0.54403234 ,,8'29yEq  
    Test Wavelength     : 0.6328 o#uhPUZ  
    ;.+C  
    '+&!;Jj,  
    Fields: XY Symmetric Angle in degrees hm, H3pN  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY __%){j6  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 XcFu:B  
    z"\<GmvB  
    Sensitivity Analysis: dt5`UBvUg  
    ROi_k4Fj  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| +k;][VC[O  
    Type                      Value      Criterion        Change          Value      Criterion        Change 7<0oK|~c#  
    Fringe tolerance on surface 1 x~?|bnM#3  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 C23Gp3_0/  
    Change in Focus                :      -0.000000                            0.000000 `D $ "K1u  
    Fringe tolerance on surface 2 fA)4'7UT  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 OE/r0C<&  
    Change in Focus                :       0.000000                            0.000000 L'HO"EZFj  
    Fringe tolerance on surface 3 e'X"uH Xt.  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ?>Bt|[p:s)  
    Change in Focus                :      -0.000000                            0.000000 '$h0l-mQ  
    Thickness tolerance on surface 1 }hA)p:  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 a|-B#S  
    Change in Focus                :       0.000000                            0.000000 wBCBZs$H  
    Thickness tolerance on surface 2 C]a iu  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 eIcIl2  
    Change in Focus                :       0.000000                           -0.000000 R[W'LRh~:1  
    Decenter X tolerance on surfaces 1 through 3 F%I*m^7d  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Ask~  
    Change in Focus                :       0.000000                            0.000000 UYH&x:WEd  
    Decenter Y tolerance on surfaces 1 through 3 {# N,&?[  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 chu r(@Af  
    Change in Focus                :       0.000000                            0.000000 `svOPB4C'  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 0Wb3M"#9<  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 mW)C=X%  
    Change in Focus                :       0.000000                            0.000000 _SrkR7  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) u vyvy  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 &4m;9<8\  
    Change in Focus                :       0.000000                            0.000000 & &:ZY4`  
    Decenter X tolerance on surface 1 \ccCrDz  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 \|7Y"WEQ  
    Change in Focus                :       0.000000                            0.000000 qf*e2" ~v  
    Decenter Y tolerance on surface 1 ^.>XDUO F  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ub-vtRpm  
    Change in Focus                :       0.000000                            0.000000 &ER,;^H `6  
    Tilt X tolerance on surface (degrees) 1 ,-)ww:  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 vPsf{[Kr  
    Change in Focus                :       0.000000                            0.000000 :@,UPc-+  
    Tilt Y tolerance on surface (degrees) 1 ]4[^S.T=  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ?Lem|zo  
    Change in Focus                :       0.000000                            0.000000 A}CpyRVCn  
    Decenter X tolerance on surface 2 y^:6D(SR  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 KV|ywcGhT  
    Change in Focus                :       0.000000                            0.000000 $+n5l@W  
    Decenter Y tolerance on surface 2 +IM6 GeH  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 $ItPUYi";  
    Change in Focus                :       0.000000                            0.000000 q;<Q-jr&O  
    Tilt X tolerance on surface (degrees) 2 J1d|L|M  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ?j$*a7[w  
    Change in Focus                :       0.000000                            0.000000 89fl\18%  
    Tilt Y tolerance on surface (degrees) 2 { \5-b:#_  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 nE"0?VNW$  
    Change in Focus                :       0.000000                            0.000000 W C3b_ia  
    Decenter X tolerance on surface 3 |dqvv  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 +zzS  
    Change in Focus                :       0.000000                            0.000000 x=3+@'  
    Decenter Y tolerance on surface 3 ^ =RSoR  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 nEh^{6  
    Change in Focus                :       0.000000                            0.000000 :snn-e0l  
    Tilt X tolerance on surface (degrees) 3 l`vr({A  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 y:dwx*Q9I  
    Change in Focus                :       0.000000                            0.000000 Cz#3W8jV  
    Tilt Y tolerance on surface (degrees) 3 eo'C)j# U  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 hP=z<&zb/  
    Change in Focus                :       0.000000                            0.000000 v QL)I  
    Irregularity of surface 1 in fringes kA(q-Re$B*  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 %M;{+90p>t  
    Change in Focus                :       0.000000                            0.000000 J9`[Qy\  
    Irregularity of surface 2 in fringes ?p!+s96  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ii]'XBSVd  
    Change in Focus                :       0.000000                            0.000000 ZUUfn~ORc  
    Irregularity of surface 3 in fringes z,/y2H2  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 nwAx47>{  
    Change in Focus                :       0.000000                            0.000000 +hd1|qa4  
    Index tolerance on surface 1 V39)[FH}  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 -g)*v<Fb5  
    Change in Focus                :       0.000000                            0.000000 5A*'@Fr'G  
    Index tolerance on surface 2 ^p!bteA>  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 a3oSSkT  
    Change in Focus                :       0.000000                           -0.000000 /'0,cJnm  
    Id'@!U:NA  
    Worst offenders: Is !DiB  
    Type                      Value      Criterion        Change od~`q4p1(-  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 DwC8?s*2H  
    TSTY   2             0.20000000     0.35349910    -0.19053324 =v]eQIp  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 "rI By  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ,JmA e6  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 9 ulr6  
    TSTY   1             0.20000000     0.42678383    -0.11724851 JPTVZ  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 "227 U)Q  
    TSTX   1             0.20000000     0.42678383    -0.11724851 zVs|go>F  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 7w=%aW|  
    TSTY   3             0.20000000     0.42861670    -0.11541563 JTg0T+  
    "RJf2~(ZX  
    Estimated Performance Changes based upon Root-Sum-Square method: ICgyCsZ,  
    Nominal MTF                 :     0.54403234 ^NTOZ0x~#  
    Estimated change            :    -0.36299231 a4M`Bk;mb  
    Estimated MTF               :     0.18104003 VClw!bm  
    GQ8r5V4:  
    Compensator Statistics: .o5r;KD  
    Change in back focus: D;Jb' Be  
    Minimum            :        -0.000000 g1`/xJz|  
    Maximum            :         0.000000 #Rdq^TGMi;  
    Mean               :        -0.000000 N:@C% UW}  
    Standard Deviation :         0.000000 #UH7z 4u  
    '3@WF2a  
    Monte Carlo Analysis: d/OIc){tD  
    Number of trials: 20 ;DKwv}  
    A fctycQ-  
    Initial Statistics: Normal Distribution *ad"3>  
    :1wMGk  
      Trial       Criterion        Change B1A5b=6G<  
          1     0.42804416    -0.11598818 -zVa[ &  
    Change in Focus                :      -0.400171 2;`"B|-T  
          2     0.54384387    -0.00018847 ;pNHT*>u,  
    Change in Focus                :       1.018470 0R2 AhA#  
          3     0.44510003    -0.09893230 [y T4n.f  
    Change in Focus                :      -0.601922 1XO*yZF  
          4     0.18154684    -0.36248550 ^eEj 5Rh  
    Change in Focus                :       0.920681 +mT}};-TS  
          5     0.28665820    -0.25737414 S!n 9A  
    Change in Focus                :       1.253875 f.=4p^  
          6     0.21263372    -0.33139862 c])b?dJ*  
    Change in Focus                :      -0.903878  G?]E6R  
          7     0.40051424    -0.14351809 <nj[=C4v  
    Change in Focus                :      -1.354815 Sn/~R|3XA7  
          8     0.48754161    -0.05649072 $E4W{ad2jW  
    Change in Focus                :       0.215922 QW f)5S  
          9     0.40357468    -0.14045766 h tn2`  
    Change in Focus                :       0.281783 >M^ 1m(  
         10     0.26315315    -0.28087919 VmkYl$WZo  
    Change in Focus                :      -1.048393 [j0I}+@4H  
         11     0.26120585    -0.28282649 LxVd7r VY6  
    Change in Focus                :       1.017611 Wx/!My u  
         12     0.24033815    -0.30369419 <5(8LMF  
    Change in Focus                :      -0.109292 :u{0M&  
         13     0.37164046    -0.17239188 iEki<e/  
    Change in Focus                :      -0.692430 y+?tUSPP  
         14     0.48597489    -0.05805744 2`vCQV  
    Change in Focus                :      -0.662040 *ma/_rjK  
         15     0.21462327    -0.32940907 9VN@M  
    Change in Focus                :       1.611296 fT8Id\6js  
         16     0.43378226    -0.11025008 [JVI@1T  
    Change in Focus                :      -0.640081 KW&&AuPb}  
         17     0.39321881    -0.15081353 $YSD%/c  
    Change in Focus                :       0.914906 $#@4i4TN-  
         18     0.20692530    -0.33710703 R\:C|/6f  
    Change in Focus                :       0.801607 A0rdQmrOL  
         19     0.51374068    -0.03029165 NI(`o8fN  
    Change in Focus                :       0.947293 J6 [x(T  
         20     0.38013374    -0.16389860 4 _N)1u !  
    Change in Focus                :       0.667010 Whd4-pR8  
    MQY1he2M  
    Number of traceable Monte Carlo files generated: 20 9$Mi/eLG2N  
    *!9/`zW  
    Nominal     0.54403234 +ZE&]BO{  
    Best        0.54384387    Trial     2 d=qpTb;(  
    Worst       0.18154684    Trial     4 e^XijId.  
    Mean        0.35770970 ;*W]]4fy  
    Std Dev     0.11156454 qW7"qw=   
    4&ea*w  
    HxY,R ^  
    Compensator Statistics: L''0`a. +S  
    Change in back focus: q qzQKN  
    Minimum            :        -1.354815 r$v?[x>+K  
    Maximum            :         1.611296 Lf0Hz")  
    Mean               :         0.161872 1wc -v@E  
    Standard Deviation :         0.869664 P1) 80<t  
    DAu|`pyC%  
    90% >       0.20977951               4E |6l  
    80% >       0.22748071               xk|$Oa  
    50% >       0.38667627               Rc6 )v  
    20% >       0.46553746               f6L_u k`{  
    10% >       0.50064115                LDBR4@V  
    Km <Wh=  
    End of Run. J82{PfQ"  
    %&_(IY$d  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 0='DDy  
    u=E?N:I~F  
    TLSy+x_gX  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ;2@sn+@  
    @i{JqHU"  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 %f-<ol  
    80% >       0.22748071                 Nb#7&_f=  
    50% >       0.38667627                 6g"<i}_|  
    20% >       0.46553746                 5HbTgNI  
    10% >       0.50064115 Qwa"AY 5pW  
    [;=ky<K0E  
    最后这个数值是MTF值呢,还是MTF的公差? V[I<9xaE  
    d>`(.qvxR  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   =_dd4`G&<  
    68c;Vb  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ]az} n(B,  
    90% >       0.20977951                 b#;N!VX  
    80% >       0.22748071                 X_({};mz  
    50% >       0.38667627                 T:S{3  
    20% >       0.46553746                 _Q}RElA  
    10% >       0.50064115 ~<aeA'>OA  
    ....... ) .-(-6=R  
    ;k&k#>L!K  
    (bFWT_CChz  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   .FbZVYc]  
    Mode                : Sensitivities %QsSR'`  
    Sampling            : 2 (_&V9vat=  
    Nominal Criterion   : 0.54403234 4}8+)Pd  
    Test Wavelength     : 0.6328 M`C~6Mf+  
    P$6f+{  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? -M1~iOb  
    !7kLFW  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试