切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15477阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    958
    光币
    1062
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 wO%:WL$5  
    x@}Fn:c!5  
    ,4,c-   
    I!O S&8:u  
    然后添加了默认公差分析,基本没变 !l^AKn|  
    <J`xCm K  
    .Y.# d7TA  
    nHrCSfK  
    然后运行分析的结果如下: mh]$g<*m  
    LTct0Gh  
    Analysis of Tolerances /D+$|k mW]  
    N|S xAg  
    File : E:\光学设计资料\zemax练习\f500.ZMX - S-1<xR  
    Title: Th^#H  
    Date : TUE JUN 21 2011 %MNV 5UA[w  
    ;# j 82  
    Units are Millimeters. i`'^ zR(`i  
    All changes are computed using linear differences. Ti'kn{ Zv  
    Fo~v.+^?  
    Paraxial Focus compensation only. ^W'[l al.  
    ]L^M7SKE6  
    WARNING: Solves should be removed prior to tolerancing. %T\x~)  
    F k;su,]_  
    Mnemonics: }C.{+U  
    TFRN: Tolerance on curvature in fringes. o hlVc%a  
    TTHI: Tolerance on thickness. R?s\0  
    TSDX: Tolerance on surface decentering in x. >t(@?*ZFT  
    TSDY: Tolerance on surface decentering in y. ~\,6 C1M  
    TSTX: Tolerance on surface tilt in x (degrees). ![^h<Om  
    TSTY: Tolerance on surface tilt in y (degrees). {Z.@-Tl_  
    TIRR: Tolerance on irregularity (fringes). Am4(WXVQ  
    TIND: Tolerance on Nd index of refraction. +r_[Tj|Er  
    TEDX: Tolerance on element decentering in x. 7d)' y  
    TEDY: Tolerance on element decentering in y. {[ *_HAy7  
    TETX: Tolerance on element tilt in x (degrees). zK?[dO  
    TETY: Tolerance on element tilt in y (degrees). ]E^f8s0#V  
    DA~ELje^j  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. y@_?3m7B=  
    RiG!TTa b  
    WARNING: Boundary constraints on compensators will be ignored. w-Fk&dC69  
    A!yLwkc:5  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm lJ#>Y5Qg  
    Mode                : Sensitivities 8$Yf#;m[  
    Sampling            : 2 ze N!*VG  
    Nominal Criterion   : 0.54403234 /|AuI qW  
    Test Wavelength     : 0.6328 J7o?h9  
    4V8wB}y7e  
    ,c l<74d  
    Fields: XY Symmetric Angle in degrees k5(yf~!c  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY _<Yo2,1^  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 |pSoBA9U  
    MGDv4cFE.  
    Sensitivity Analysis: b%j:-^0V  
    ulJYJ+CC!  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ZQA C &:  
    Type                      Value      Criterion        Change          Value      Criterion        Change ] i2\2MTW8  
    Fringe tolerance on surface 1 5AU3s  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 n4y6Ua9m{  
    Change in Focus                :      -0.000000                            0.000000 b0 `9wn  
    Fringe tolerance on surface 2 |Eu~= J7@  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 K9'*q3z  
    Change in Focus                :       0.000000                            0.000000 I3Xh[% -!  
    Fringe tolerance on surface 3 'U$VO q?!  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 :G/]rDtd  
    Change in Focus                :      -0.000000                            0.000000 ,>v9 Y#U  
    Thickness tolerance on surface 1 v*'\w#  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ,5*xE\9G  
    Change in Focus                :       0.000000                            0.000000 :exuTn  
    Thickness tolerance on surface 2 E,yK` mPp^  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 (OQ @!R&  
    Change in Focus                :       0.000000                           -0.000000 Z"Ni Y  
    Decenter X tolerance on surfaces 1 through 3 #)}bUNc'  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 m]q!y3  
    Change in Focus                :       0.000000                            0.000000 2tm-:CPG  
    Decenter Y tolerance on surfaces 1 through 3 'PYqp&gJ  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 N\p]+[6  
    Change in Focus                :       0.000000                            0.000000 v=-3 ,C  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ,s&~U<Z  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Uy|=A7Ad c  
    Change in Focus                :       0.000000                            0.000000 #q.G_-H4J@  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) { BL1j  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 '$-,;vnP0  
    Change in Focus                :       0.000000                            0.000000 ? 4Juw?  
    Decenter X tolerance on surface 1 Q.dy $`\  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 >I~z7 JS  
    Change in Focus                :       0.000000                            0.000000 ^T6!z^g1h  
    Decenter Y tolerance on surface 1 8w?\_P7QA  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 i9U_r._qj;  
    Change in Focus                :       0.000000                            0.000000 wN hR(M7  
    Tilt X tolerance on surface (degrees) 1 D#}Yx]Q1  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 /C2f;h(1  
    Change in Focus                :       0.000000                            0.000000 ,GP4I3D  
    Tilt Y tolerance on surface (degrees) 1 yUwgRj  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Ltd?#HP  
    Change in Focus                :       0.000000                            0.000000 L#q9_-(#  
    Decenter X tolerance on surface 2 utJVuJw:t  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 u;qMo`-  
    Change in Focus                :       0.000000                            0.000000 \+Ln~\Sv  
    Decenter Y tolerance on surface 2 ptni'W3  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 2BA9T nxC  
    Change in Focus                :       0.000000                            0.000000 ^6y4!='ci  
    Tilt X tolerance on surface (degrees) 2 M 8j(1&(:  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 <`UG#6z8  
    Change in Focus                :       0.000000                            0.000000 @Qjl`SL%O^  
    Tilt Y tolerance on surface (degrees) 2  )\\V s>9  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ,T*_mDVY  
    Change in Focus                :       0.000000                            0.000000 TM}'XZ&  
    Decenter X tolerance on surface 3 gLMea:  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 G_N-}J>EP  
    Change in Focus                :       0.000000                            0.000000 yx w27~  
    Decenter Y tolerance on surface 3 $"{3yLg  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 B~g05`s  
    Change in Focus                :       0.000000                            0.000000 #Y>%Dr&  
    Tilt X tolerance on surface (degrees) 3 'Mx K}9  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 bNpIC/#0K  
    Change in Focus                :       0.000000                            0.000000 39aCwhh7v  
    Tilt Y tolerance on surface (degrees) 3 Q>a7Ps@~  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 n!eqzr{  
    Change in Focus                :       0.000000                            0.000000 <*Kh=v  
    Irregularity of surface 1 in fringes 'BdmFKy1  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 eGe[sv"k  
    Change in Focus                :       0.000000                            0.000000  QXxLe*  
    Irregularity of surface 2 in fringes Q] yT  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 lH@E%  
    Change in Focus                :       0.000000                            0.000000 _Z66[T+M  
    Irregularity of surface 3 in fringes kbp( a+5  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 avt>saR  
    Change in Focus                :       0.000000                            0.000000 &*]{"^  
    Index tolerance on surface 1 _[vdY|_  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Tb0;Mbr  
    Change in Focus                :       0.000000                            0.000000 H(G^O&ppdB  
    Index tolerance on surface 2 oD#< ?h)(  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 u ?G\b{$m  
    Change in Focus                :       0.000000                           -0.000000 y.*=Ww+  
    %6IlE.*,  
    Worst offenders: ,*nZf|  
    Type                      Value      Criterion        Change "^ 6lvZP(  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 DR yESi  
    TSTY   2             0.20000000     0.35349910    -0.19053324 XL7;^AE^Wl  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 Ns!3- Y  
    TSTX   2             0.20000000     0.35349910    -0.19053324 }L$Xb2^l  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 _{c|o{2sj  
    TSTY   1             0.20000000     0.42678383    -0.11724851 0gOrW=  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Ng'ZAG;O  
    TSTX   1             0.20000000     0.42678383    -0.11724851 lKV\1(`  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 `zzKD2y  
    TSTY   3             0.20000000     0.42861670    -0.11541563 h/ X5w4  
    U.hERe ~X  
    Estimated Performance Changes based upon Root-Sum-Square method: Vy% :\p+  
    Nominal MTF                 :     0.54403234 U%^eIXV|  
    Estimated change            :    -0.36299231 b%[ nB  
    Estimated MTF               :     0.18104003 fZ6 fV=HEF  
    7edPH3  
    Compensator Statistics: &8Jg9#  
    Change in back focus: /K,|k EE'n  
    Minimum            :        -0.000000 n-hvh-ZO  
    Maximum            :         0.000000 ;naq-%'Sg  
    Mean               :        -0.000000 Wm$`ae   
    Standard Deviation :         0.000000 P!FEh'.  
    eg2U+g4  
    Monte Carlo Analysis: 2 ]V>J  
    Number of trials: 20 i[2bmd!H  
    k'@7ZH  
    Initial Statistics: Normal Distribution 0;FqX*  
    pM&]&Nk  
      Trial       Criterion        Change # cN_y  
          1     0.42804416    -0.11598818 H}sS4[z  
    Change in Focus                :      -0.400171 c/<Sa|'  
          2     0.54384387    -0.00018847 bB:r]*_ s]  
    Change in Focus                :       1.018470 -Wlp=#9  
          3     0.44510003    -0.09893230 =&q-[JW  
    Change in Focus                :      -0.601922 e8AjO$49  
          4     0.18154684    -0.36248550 Xq,UV  
    Change in Focus                :       0.920681 M[YTk=IM#  
          5     0.28665820    -0.25737414 JO2ZS6k[  
    Change in Focus                :       1.253875 =f4[=C$&`  
          6     0.21263372    -0.33139862 ':4}O#  
    Change in Focus                :      -0.903878 r=~WMDCz@  
          7     0.40051424    -0.14351809 la\zaKC;>  
    Change in Focus                :      -1.354815 %@lV-(5q  
          8     0.48754161    -0.05649072 Nm6Z|0S  
    Change in Focus                :       0.215922 v[{8G^Z}54  
          9     0.40357468    -0.14045766 D!bKm[T  
    Change in Focus                :       0.281783 *GbVMW[A>  
         10     0.26315315    -0.28087919 'yPCZ`5H(  
    Change in Focus                :      -1.048393 eVw\v#gd  
         11     0.26120585    -0.28282649 9Z,*h-o  
    Change in Focus                :       1.017611 E0"10Qbi  
         12     0.24033815    -0.30369419 lAdDu  
    Change in Focus                :      -0.109292 bA@ /B'  
         13     0.37164046    -0.17239188 9VoDhsKk  
    Change in Focus                :      -0.692430 ~L%Pz0Gg  
         14     0.48597489    -0.05805744 `fBG~NDw  
    Change in Focus                :      -0.662040 V_&GYXx(J  
         15     0.21462327    -0.32940907 7FmbV/&c  
    Change in Focus                :       1.611296 |SGgy|/a#  
         16     0.43378226    -0.11025008 nG"tO'J6  
    Change in Focus                :      -0.640081 ?EI'^xg  
         17     0.39321881    -0.15081353 b8J @K"  
    Change in Focus                :       0.914906 )uQ-YC('0  
         18     0.20692530    -0.33710703 (jU/Wj!q  
    Change in Focus                :       0.801607 1.# |QX  
         19     0.51374068    -0.03029165 #TMm#?lC  
    Change in Focus                :       0.947293 :tRf@bD#  
         20     0.38013374    -0.16389860 )Y3EQxXa  
    Change in Focus                :       0.667010 GWF/[%  
    9z5\*b s  
    Number of traceable Monte Carlo files generated: 20 k? 3S  
    TZ?Os4+  
    Nominal     0.54403234 }JRP,YNh  
    Best        0.54384387    Trial     2 01U *_\  
    Worst       0.18154684    Trial     4 A2m_q>> !  
    Mean        0.35770970 j*uXB^ 4  
    Std Dev     0.11156454 9 YP*f  
    `J72+RA  
    ?h/xAl  
    Compensator Statistics: 8YNu<   
    Change in back focus: >(hSW~i~  
    Minimum            :        -1.354815 Ne3R.g9;Z  
    Maximum            :         1.611296 i 3m3zXt  
    Mean               :         0.161872 v#  
    Standard Deviation :         0.869664 QL2Nz@|k  
    ;W]D ~X&  
    90% >       0.20977951               4L8z>9D  
    80% >       0.22748071               Lp_$?MCD.  
    50% >       0.38667627               0y)}.'  
    20% >       0.46553746               'eD J@4Xm  
    10% >       0.50064115                UQ/qBbn  
    rkkU"l$v  
    End of Run. 94\t1fE  
    &~RR&MdZ2  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 BR+nL6sU  
    g3Z:{@m  
    {3VZ3i  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 #Mh{<gk%ax  
    Ab/j(xr=  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 *5e+@rD`  
    80% >       0.22748071                 RsW9:*R  
    50% >       0.38667627                 YzAFC11,  
    20% >       0.46553746                 'Hw4j:pS  
    10% >       0.50064115 Q.+|xwz  
    m#f{]+6U  
    最后这个数值是MTF值呢,还是MTF的公差? - hzjV|  
    &-%X:~|:X  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   4,G w#@  
    Tv5g`/e=Ej  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ;8{cA_&  
    90% >       0.20977951                 $gpG%Qj  
    80% >       0.22748071                 KvPX=/&Zu  
    50% >       0.38667627                 jZoNi  
    20% >       0.46553746                 !0,Mp@ j/  
    10% >       0.50064115 5S{7En~zUE  
    ....... 8}e,%{q  
    kcie}Be  
    ,m=4@ofX  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   9`//^8G:=  
    Mode                : Sensitivities z+a%5J  
    Sampling            : 2 )u]9193  
    Nominal Criterion   : 0.54403234 YwY74w:  
    Test Wavelength     : 0.6328 P + "Y  
    b1XRC`Gy  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? rNjn~c  
    =0;}K@(J  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试