切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16348阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 zvKypx  
    3gz4c1 s^:  
    ,a\pdEPj  
    bkL5srH  
    然后添加了默认公差分析,基本没变 yG:Pg MrB  
    V3[>^ZCA  
    bX`VIFc  
    3M[5_OK   
    然后运行分析的结果如下: {3G2-$yb  
    Wa'm]J  
    Analysis of Tolerances p 4Y 2AQ9  
    fHacVj J  
    File : E:\光学设计资料\zemax练习\f500.ZMX =aRE  
    Title: vL Qh r&I  
    Date : TUE JUN 21 2011 9 [wR/8Xm  
    J0yo@O  
    Units are Millimeters. F}4jm,w  
    All changes are computed using linear differences. $-lP"m@}  
    2@a]x(  
    Paraxial Focus compensation only. oT[8Iu  
    T0lbMp  
    WARNING: Solves should be removed prior to tolerancing. ~ MW_=6U  
    r&D&xsbQ  
    Mnemonics: [ FNA:  
    TFRN: Tolerance on curvature in fringes. B#K2?Et!t  
    TTHI: Tolerance on thickness. "hXB_73)V  
    TSDX: Tolerance on surface decentering in x. usOIbrQ  
    TSDY: Tolerance on surface decentering in y. ^?gs<-)B  
    TSTX: Tolerance on surface tilt in x (degrees). QVQ?a&HYS  
    TSTY: Tolerance on surface tilt in y (degrees). v`9n'+h-c6  
    TIRR: Tolerance on irregularity (fringes). `+EjmY  
    TIND: Tolerance on Nd index of refraction. dS"%( ?o  
    TEDX: Tolerance on element decentering in x. UU 2 =W  
    TEDY: Tolerance on element decentering in y. 5:~BGK&{Y  
    TETX: Tolerance on element tilt in x (degrees). @G0j/@v  
    TETY: Tolerance on element tilt in y (degrees). 9`v[Jm% $m  
    F<N{ x^  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 3NC-)S  
    VH5Vg We  
    WARNING: Boundary constraints on compensators will be ignored. %)G]rta#  
    O;~d ao  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm $_NP4V8|z/  
    Mode                : Sensitivities 4O'X+dv^I  
    Sampling            : 2 pTk1iGfB  
    Nominal Criterion   : 0.54403234 "+:~#&r  
    Test Wavelength     : 0.6328 #F!'B|n  
    Z}4 `y"By  
    y}!}*Qj+/  
    Fields: XY Symmetric Angle in degrees '}$$o1R  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ( mKuFz7  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 s7}46\/U  
    f S(IN~  
    Sensitivity Analysis: l-RwCw4f  
    L/n?1'he  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| x"QZ}28(t  
    Type                      Value      Criterion        Change          Value      Criterion        Change &ZUV=q%g9n  
    Fringe tolerance on surface 1 %#,EqN  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 a'2^kds  
    Change in Focus                :      -0.000000                            0.000000 sZ9VXnz24  
    Fringe tolerance on surface 2 QL_9a,R'r  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 cN\Fgbt  
    Change in Focus                :       0.000000                            0.000000 =g+Rk+jn  
    Fringe tolerance on surface 3  ]7yr.4?a  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 \,5OPSB  
    Change in Focus                :      -0.000000                            0.000000 1O,<JrE+-  
    Thickness tolerance on surface 1 wA;Cj  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 zVU{jmS  
    Change in Focus                :       0.000000                            0.000000 jjrhl  
    Thickness tolerance on surface 2 2[qlEtvQ  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 _]# ^2S  
    Change in Focus                :       0.000000                           -0.000000 y}t1r |p  
    Decenter X tolerance on surfaces 1 through 3 ~E tW B  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005  }L.&@P<  
    Change in Focus                :       0.000000                            0.000000 J"Z=`I)KON  
    Decenter Y tolerance on surfaces 1 through 3 b qNM  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 >=Pn\" j  
    Change in Focus                :       0.000000                            0.000000 ]1(G:h\  
    Tilt X tolerance on surfaces 1 through 3 (degrees) nVt,= ?_ U  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ^yo~C3 r~  
    Change in Focus                :       0.000000                            0.000000 5p7?e3  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 1$#{om9  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 96FS-`  
    Change in Focus                :       0.000000                            0.000000 X|w[:[P  
    Decenter X tolerance on surface 1 swh8-_[c/  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 yhpeP  
    Change in Focus                :       0.000000                            0.000000 .sOEqwO}>  
    Decenter Y tolerance on surface 1 hPB^|#}  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 t5Oeb<REz  
    Change in Focus                :       0.000000                            0.000000 FELDz7DYya  
    Tilt X tolerance on surface (degrees) 1 9Oe~e  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ]F4 .m  
    Change in Focus                :       0.000000                            0.000000 kED1s's  
    Tilt Y tolerance on surface (degrees) 1 shAoib?Kw:  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 U$,W/G}m  
    Change in Focus                :       0.000000                            0.000000 _^5OoE"}!  
    Decenter X tolerance on surface 2 g VPtd[r  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 GF=rGn@,)`  
    Change in Focus                :       0.000000                            0.000000 R ]! [h  
    Decenter Y tolerance on surface 2 (6Tvu5*4U  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 _sGmkJi]  
    Change in Focus                :       0.000000                            0.000000 @z-%:J/$  
    Tilt X tolerance on surface (degrees) 2 NM{/rvM  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 F?B`rw@xr  
    Change in Focus                :       0.000000                            0.000000 XDdF7i}  
    Tilt Y tolerance on surface (degrees) 2 %HAforH  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 /5$;W 'I  
    Change in Focus                :       0.000000                            0.000000 W#.+C6/  
    Decenter X tolerance on surface 3 G)G 257K"~  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ;qN;oSK  
    Change in Focus                :       0.000000                            0.000000 !\ 6<kQg#  
    Decenter Y tolerance on surface 3 miTySY6 ^  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 c&GVIrJ  
    Change in Focus                :       0.000000                            0.000000 +M=`3jioL  
    Tilt X tolerance on surface (degrees) 3 gZHuyp(B  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ^.HvuG},O  
    Change in Focus                :       0.000000                            0.000000 6B=: P3Y  
    Tilt Y tolerance on surface (degrees) 3 nR(v~_y[V  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 [Ep%9(SgA'  
    Change in Focus                :       0.000000                            0.000000 45aUz@  
    Irregularity of surface 1 in fringes iX|K4.Pz{  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 .;$Ub[  
    Change in Focus                :       0.000000                            0.000000 CVt:tV  
    Irregularity of surface 2 in fringes S<Os\/*  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 js..k*j  
    Change in Focus                :       0.000000                            0.000000 =G,wR'M  
    Irregularity of surface 3 in fringes R ~ZcTY[8  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 BtA_1RO  
    Change in Focus                :       0.000000                            0.000000 LGdM40  
    Index tolerance on surface 1 2Pm[ kD4E=  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 }nUq=@ej  
    Change in Focus                :       0.000000                            0.000000 2t[P-on  
    Index tolerance on surface 2 srCpgs]h  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 xMs!FMn[  
    Change in Focus                :       0.000000                           -0.000000 TKe\Bi  
    ,` 64t'g  
    Worst offenders: !*1 $j7`tP  
    Type                      Value      Criterion        Change v8} vk]b  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 @u @~gEt  
    TSTY   2             0.20000000     0.35349910    -0.19053324 [o"<DP6w  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ('k9XcTPP  
    TSTX   2             0.20000000     0.35349910    -0.19053324 !sG# 3sUe[  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Iz^vt#b  
    TSTY   1             0.20000000     0.42678383    -0.11724851 "P9(k>  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 &"r /&7:  
    TSTX   1             0.20000000     0.42678383    -0.11724851 kz\Ss|jl  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 2Onp{,'}  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ?Gl]O3@3  
    5MCnGg@  
    Estimated Performance Changes based upon Root-Sum-Square method: Lc#GBaJ  
    Nominal MTF                 :     0.54403234 " vka7r  
    Estimated change            :    -0.36299231 x:K~?c3  
    Estimated MTF               :     0.18104003 jQrj3*V  
    Yu$QL@  
    Compensator Statistics: 4iI4+  
    Change in back focus: l+a1`O  
    Minimum            :        -0.000000 \i'Z(1  
    Maximum            :         0.000000 $<QrV,T  
    Mean               :        -0.000000 u*T( n s l  
    Standard Deviation :         0.000000 ~].?8C.>*  
    [=BccT:b  
    Monte Carlo Analysis: o(k{Ed  
    Number of trials: 20 J= [D'h  
    } J[Z)u  
    Initial Statistics: Normal Distribution @ry/zG#  
    apOa E7|  
      Trial       Criterion        Change O9C&1A|lA  
          1     0.42804416    -0.11598818 %s! |,Cu  
    Change in Focus                :      -0.400171 6_s(Kx>j  
          2     0.54384387    -0.00018847 BsU}HuQZQ  
    Change in Focus                :       1.018470 ]|-sZ<?<i  
          3     0.44510003    -0.09893230 .* )e24`  
    Change in Focus                :      -0.601922 H$+@O-  
          4     0.18154684    -0.36248550 4*ZY#7h  
    Change in Focus                :       0.920681 E<jW; trt_  
          5     0.28665820    -0.25737414 &|<f|B MX  
    Change in Focus                :       1.253875 h 8xcq#  
          6     0.21263372    -0.33139862 wRvh/{xB  
    Change in Focus                :      -0.903878 >%ovL8F  
          7     0.40051424    -0.14351809 [l3ys  
    Change in Focus                :      -1.354815 v\[+  
          8     0.48754161    -0.05649072 w_f.\\1r  
    Change in Focus                :       0.215922 XEnu0 gr  
          9     0.40357468    -0.14045766 1ysQvz  
    Change in Focus                :       0.281783 * bd3^mP  
         10     0.26315315    -0.28087919 <.mH-Y5i  
    Change in Focus                :      -1.048393 :KgH7s}  
         11     0.26120585    -0.28282649 \BuyJskE  
    Change in Focus                :       1.017611 u0GHcpOm  
         12     0.24033815    -0.30369419 O%3Hp.|!  
    Change in Focus                :      -0.109292 vK%*5  
         13     0.37164046    -0.17239188 QtwQVOK  
    Change in Focus                :      -0.692430 &JXb) W  
         14     0.48597489    -0.05805744 64mg:ed&  
    Change in Focus                :      -0.662040 f4 qVUU  
         15     0.21462327    -0.32940907 pCDN9*0/  
    Change in Focus                :       1.611296 ,3!$mQL=  
         16     0.43378226    -0.11025008 ^?$,sS ;Q  
    Change in Focus                :      -0.640081 tYXE$ i  
         17     0.39321881    -0.15081353 X@"G1j >/  
    Change in Focus                :       0.914906 5f{P% x(  
         18     0.20692530    -0.33710703 D#G%WT/"  
    Change in Focus                :       0.801607 %@Z;;5L  
         19     0.51374068    -0.03029165 1X[^^p~^  
    Change in Focus                :       0.947293 ,sIC=V +  
         20     0.38013374    -0.16389860 <sw@P":F  
    Change in Focus                :       0.667010 <|3%}?  
    {O9(<g  
    Number of traceable Monte Carlo files generated: 20 a%e`  
    V ^+p:nP  
    Nominal     0.54403234 W&=OtN U!  
    Best        0.54384387    Trial     2 s/=%kCo  
    Worst       0.18154684    Trial     4 3*& Y'/!  
    Mean        0.35770970 o//h|fU@  
    Std Dev     0.11156454 >v%js!`f  
    *X(:vET  
    CVW T >M<  
    Compensator Statistics: g"Y _!)X  
    Change in back focus: +4.s4&f)  
    Minimum            :        -1.354815 !( rAI  
    Maximum            :         1.611296 4WJY+)  
    Mean               :         0.161872 >UMxlvTg&  
    Standard Deviation :         0.869664 _Z Sp$>)/  
    t|$ jgM  
    90% >       0.20977951               8 ECX[fw  
    80% >       0.22748071               +U2lwd!j  
    50% >       0.38667627               &yvvea]  
    20% >       0.46553746               *m}8L%<HT  
    10% >       0.50064115                +bS\iw+  
    \c -m\|  
    End of Run. R>* z8n  
    G;3%k.{  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 @^<odmM  
    O|V0WiY<  
    _Xt/U>N  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 `UTPX'Vz  
    mUa#sTm  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 rGP;0KtQ  
    80% >       0.22748071                 ,c&u\W=p  
    50% >       0.38667627                 iT}>a30]B  
    20% >       0.46553746                 a9-Mc5^'n  
    10% >       0.50064115 @3.Z>KONx  
    %J M$]  
    最后这个数值是MTF值呢,还是MTF的公差? EB}B75)x  
    l+9RPJD/:  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ubM1Qr  
    uO]D=Z\S(  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : xQZOGq  
    90% >       0.20977951                 q?j7bp]  
    80% >       0.22748071                 - k0a((?  
    50% >       0.38667627                 [\ku,yd%0  
    20% >       0.46553746                 0")_%  
    10% >       0.50064115 aUMiRm-   
    ....... (h wzA *(c  
    ikZYc ${  
    c\. )vH  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   -n@,r%`UK  
    Mode                : Sensitivities <1vogUDW  
    Sampling            : 2 v1$}[&/  
    Nominal Criterion   : 0.54403234 ."Pn[$'.  
    Test Wavelength     : 0.6328 x6aVNH=  
    )E",)}Nh  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? >uJu!+#  
    e<DcuF<ZS  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试