我现在在初学zemax的
公差分析,找了一个双胶合
透镜 % <
D 2cY7sE068
-h%;L5oJ2, <cW$
\P}hV 然后添加了默认公差分析,基本没变
E}sjl \Q7Nz2X
qRT1W re
3 3U9]&7^ 然后运行分析的结果如下:
Z;M]^? r+-KrO' Analysis of Tolerances
] S<y,d- ( >zXapb2 File : E:\光学设计资料\zemax练习\f500.ZMX
4vq,W_n.hQ Title:
s,XKl5'+8e Date : TUE JUN 21 2011
-} \g[| w-*$gk] Units are Millimeters.
>H?l[*9 All changes are computed using linear differences.
Sh( u;18s-NY Paraxial Focus compensation only.
;|Idg"2 [0U!Y/?6lA WARNING: Solves should be removed prior to tolerancing.
S'#KPzy. i$gm/ZO Mnemonics:
&;S.1tg TFRN: Tolerance on curvature in fringes.
xZZW*d_b TTHI: Tolerance on thickness.
N>!RKf:ir TSDX: Tolerance on surface decentering in x.
>MZWm6M8 TSDY: Tolerance on surface decentering in y.
teH $hd-q TSTX: Tolerance on surface tilt in x (degrees).
s1.YH?A; TSTY: Tolerance on surface tilt in y (degrees).
0i/l2&x*k] TIRR: Tolerance on irregularity (fringes).
iD+Q\l;% TIND: Tolerance on Nd index of refraction.
]`)50\pdw TEDX: Tolerance on element decentering in x.
m,NUNd#)\ TEDY: Tolerance on element decentering in y.
(dn(:<_$ TETX: Tolerance on element tilt in x (degrees).
5 fY\0 TETY: Tolerance on element tilt in y (degrees).
W8+Daw1Nr =$;i WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
W}p>jP} `p1szZD& WARNING: Boundary constraints on compensators will be ignored.
:bFCnV`Q v1%rlP Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
)/kkvI()l Mode : Sensitivities
i lk\&J~I Sampling : 2
awLN>KI]</ Nominal Criterion : 0.54403234
a]XQM$T$ Test Wavelength : 0.6328
tn!z^W @9~a3k| rM<|<6(L Fields: XY Symmetric Angle in degrees
P6V_cw$ # X-Field Y-Field Weight VDX VDY VCX VCY
r Z5vey 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
o5?f]Uq5 , aZEi|\VU Sensitivity Analysis:
+InAK>NZ' l6Wa~ E |----------------- Minimum ----------------| |----------------- Maximum ----------------|
fWie fv[& Type Value Criterion Change Value Criterion Change
*X- 6]C Fringe tolerance on surface 1
l]D?S]{a TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
!i=LQUi. Change in Focus :
-0.000000 0.000000
0;
GnR 0 Fringe tolerance on surface 2
!dQG 5v TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
\x?q!(;G2 Change in Focus : 0.000000 0.000000
|6/k2d{,( Fringe tolerance on surface 3
_1jd{?kt TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
B@g 0QgA Change in Focus : -0.000000 0.000000
Y^DS~CrM Thickness tolerance on surface 1
0Y[LzLn TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
(8DJf"} Change in Focus : 0.000000 0.000000
8sb<$M$c Thickness tolerance on surface 2
,>% 2`Z) TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
?oF+?l Change in Focus : 0.000000 -0.000000
;v%Fw!b032 Decenter X tolerance on surfaces 1 through 3
'F>eieO TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
&5>R>rnB Change in Focus : 0.000000 0.000000
5ZeE& vG2 Decenter Y tolerance on surfaces 1 through 3
Ojqbj0E9 TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
>xQgCOi Change in Focus : 0.000000 0.000000
iIWz\FM Tilt X tolerance on surfaces 1 through 3 (degrees)
[iVCorU TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
feM%- Change in Focus : 0.000000 0.000000
T\7z87Q Tilt Y tolerance on surfaces 1 through 3 (degrees)
6[fp e TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
IsjxD|u Change in Focus : 0.000000 0.000000
e0iE6:i Decenter X tolerance on surface 1
/Y$UJt TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
W"
>[sn| Change in Focus : 0.000000 0.000000
BoQLjS{kN Decenter Y tolerance on surface 1
GPBp.$q+B TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
+-tvNX%IJ Change in Focus : 0.000000 0.000000
)yvI { Tilt X tolerance on surface (degrees) 1
cojtQD6 TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
jo 0
d# Change in Focus : 0.000000 0.000000
M^^5JNY Tilt Y tolerance on surface (degrees) 1
'.Iz*%" TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
>i^8K U Change in Focus : 0.000000 0.000000
):"Z7~j= Decenter X tolerance on surface 2
S o>P)d$8+ TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
>iD&n4TK Change in Focus : 0.000000 0.000000
d%1Tv1={ Decenter Y tolerance on surface 2
*J[3f]PBmR TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
l&3f<e Change in Focus : 0.000000 0.000000
0/{$5gy& Tilt X tolerance on surface (degrees) 2
AX6z4G TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
7|4t;F! Change in Focus : 0.000000 0.000000
E"d\N-I Tilt Y tolerance on surface (degrees) 2
~aKM+KmtPH TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Z*&y8;vUQ Change in Focus : 0.000000 0.000000
K@av32{ Decenter X tolerance on surface 3
%04N"^mT'~ TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
fik*-$V` Change in Focus : 0.000000 0.000000
v4M1uJ8 Decenter Y tolerance on surface 3
05=
$Dnv TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
B \?We\y Change in Focus : 0.000000 0.000000
^s*j<fH Tilt X tolerance on surface (degrees) 3
*sNZ.Y:. TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
R@*mMWW, Change in Focus : 0.000000 0.000000
0($@9k4!/ Tilt Y tolerance on surface (degrees) 3
lmmB =F TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Gk~QgD/Pix Change in Focus : 0.000000 0.000000
q\+khy,k Irregularity of surface 1 in fringes
M"cB6{st[ TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
qm RdO
R Change in Focus : 0.000000 0.000000
n~~0iU) Irregularity of surface 2 in fringes
5=<
y%VF TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
@tv3\eD Change in Focus : 0.000000 0.000000
b{T". @b Irregularity of surface 3 in fringes
PL+r*M%ll TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
>K]s)VuWR Change in Focus : 0.000000 0.000000
b|
e7mis@ Index tolerance on surface 1
WhPwD6l> TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
7G,{BBB Change in Focus : 0.000000 0.000000
{NmpTb Index tolerance on surface 2
uu08q<B5b) TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
b*C\0D Change in Focus : 0.000000 -0.000000
:|j,x7&/{ w[`2t{^j Worst offenders:
O>8|Lc Type Value Criterion Change
|Z\?nZ~ TSTY 2 -0.20000000 0.35349910 -0.19053324
i%~^3/K TSTY 2 0.20000000 0.35349910 -0.19053324
D@jG+k-Lm TSTX 2 -0.20000000 0.35349910 -0.19053324
DeqTr: TSTX 2 0.20000000 0.35349910 -0.19053324
}^T7S2_Qy TSTY 1 -0.20000000 0.42678383 -0.11724851
w8MQA!=l TSTY 1 0.20000000 0.42678383 -0.11724851
2|="!c8K TSTX 1 -0.20000000 0.42678383 -0.11724851
8:W,"" TSTX 1 0.20000000 0.42678383 -0.11724851
*g0} pD;r TSTY 3 -0.20000000 0.42861670 -0.11541563
AH*{Bi[vX TSTY 3 0.20000000 0.42861670 -0.11541563
4k}3^.# BGk>:Z` Estimated Performance Changes based upon Root-Sum-Square method:
/-Saz29f^Q Nominal MTF : 0.54403234
[V vTR#^ Estimated change : -0.36299231
+y%"[6c| Estimated MTF : 0.18104003
NO(^P+s q.
i2BoOd Compensator Statistics: '.Ww*N Change in back focus: U`{'-L. Minimum : -0.000000 Cxn<#Kf\-< Maximum : 0.000000 ~|W0+ &): Mean : -0.000000 @UbH;m Standard Deviation : 0.000000 YH_mWN\Wu JCL+uEX4S Monte Carlo Analysis:
qG=?+em Number of trials: 20
{VBn@^'s N)F&c!anh Initial Statistics: Normal Distribution
KyQO>g{R .9":Ljs(L Trial Criterion Change
87QK&S\ 1 0.42804416 -0.11598818
z]/;? Change in Focus : -0.400171
zWN/>~}U\ 2 0.54384387 -0.00018847
x2q6y Change in Focus : 1.018470
bfjC: "!H 3 0.44510003 -0.09893230
v|\<N!g Change in Focus : -0.601922
B=EI&+F+ 4 0.18154684 -0.36248550
L5+X& Change in Focus : 0.920681
Iq76JJuCb 5 0.28665820 -0.25737414
'7lHWqN< Change in Focus : 1.253875
x,CTB 6 0.21263372 -0.33139862
Y]zy=8q Change in Focus : -0.903878
o'oA.'ul 7 0.40051424 -0.14351809
h=:*cqp4 Change in Focus : -1.354815
|E%i
t?3M 8 0.48754161 -0.05649072
d|P,e;m- Change in Focus : 0.215922
I:~KF/q 9 0.40357468 -0.14045766
cRR[ci34k Change in Focus : 0.281783
\a_75^2 10 0.26315315 -0.28087919
K;:_UJ>t Change in Focus : -1.048393
^M:Y$9r_s 11 0.26120585 -0.28282649
Dd: TFZo Change in Focus : 1.017611
iy<|<*s2D 12 0.24033815 -0.30369419
y4@zi "G Change in Focus : -0.109292
Y/%(4q*' 13 0.37164046 -0.17239188
{Xw6]d Change in Focus : -0.692430
L|?$F*bs 14 0.48597489 -0.05805744
JAQ y Change in Focus : -0.662040
_Q9 Mn-&qQ 15 0.21462327 -0.32940907
kp6{QKDj& Change in Focus : 1.611296
a Uy!(Y 16 0.43378226 -0.11025008
_1c0pQ ^}3 Change in Focus : -0.640081
W2$MH: j 17 0.39321881 -0.15081353
65% WjO Change in Focus : 0.914906
9\QeH'A 18 0.20692530 -0.33710703
Po)!vL"
Change in Focus : 0.801607
mp!S<m 19 0.51374068 -0.03029165
%>z4hH, Change in Focus : 0.947293
>/]`
f8^ 20 0.38013374 -0.16389860
p\'0m0*
Change in Focus : 0.667010
kFRl+,bi~ ifXGH>C Number of traceable Monte Carlo files generated: 20
pmWt7 } O(R1D/A[ Nominal 0.54403234
; ,vGw<|o Best 0.54384387 Trial 2
Q!91uNL Worst 0.18154684 Trial 4
c\Z.V*o Mean 0.35770970
wV604eO( Std Dev 0.11156454
X7bS{GT & t.G4 rIh"MQvi[ Compensator Statistics:
A_y]6~Mu?~ Change in back focus:
iBM;$0Y Minimum : -1.354815
?rJe"TOIy Maximum : 1.611296
d3[O!4<T Mean : 0.161872
#VvU8"u Standard Deviation : 0.869664
5LX%S .CW s3/iG37K 90% > 0.20977951 TQ,KPf$0U 80% > 0.22748071 FxFRrRRH@ 50% > 0.38667627 qk{+Y 20% > 0.46553746 O x),jc[/ 10% > 0.50064115 +W%3VV$ 9n#lDL O End of Run.
U.GRN)fL4 N^TE
;BM 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
6CV9ewr
^vY[d]R _\ \) FFV-k5 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
Q,m&XpZ W=S<DtG2 不吝赐教