切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16253阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ome>Jbdhe  
    ^al SyJ`  
    ePY K^D  
    ?41| e+p  
    然后添加了默认公差分析,基本没变 H{$yy)@F  
    0WPxzmY  
    -OW$  
    {Y/  
    然后运行分析的结果如下: 6/n;u{|  
    _j2`#|oG  
    Analysis of Tolerances SMy&K[hJ[  
    V('b|gsEo  
    File : E:\光学设计资料\zemax练习\f500.ZMX [a Z)*L ;  
    Title: \C6m.%%={R  
    Date : TUE JUN 21 2011 v m$v[  
    M<L<mP}  
    Units are Millimeters. xAO ]u[J  
    All changes are computed using linear differences. r\1*N.O3|O  
    {38aaf|'/  
    Paraxial Focus compensation only. *>#cs#)  
    z&:[.B   
    WARNING: Solves should be removed prior to tolerancing. ynd}w G'  
    wb?hfe  
    Mnemonics: D|BN_ai9  
    TFRN: Tolerance on curvature in fringes. ZN1p>+oY!  
    TTHI: Tolerance on thickness. g[n8N{s  
    TSDX: Tolerance on surface decentering in x. ;K_B,@:'  
    TSDY: Tolerance on surface decentering in y. m6 gr!aT  
    TSTX: Tolerance on surface tilt in x (degrees). 7/yd@#$X  
    TSTY: Tolerance on surface tilt in y (degrees). ;|%r!!#-t  
    TIRR: Tolerance on irregularity (fringes). Qp54(`  
    TIND: Tolerance on Nd index of refraction. {!S/8o"]  
    TEDX: Tolerance on element decentering in x. )}aF=%  
    TEDY: Tolerance on element decentering in y. -,tYfQ;:  
    TETX: Tolerance on element tilt in x (degrees). :tgTYIF  
    TETY: Tolerance on element tilt in y (degrees). ][mc^eI0s|  
    {+EPE2X=C  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 2=|IOkY  
    n" ~*9'  
    WARNING: Boundary constraints on compensators will be ignored. gdT_kb5HL8  
     %!S  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm SrtmpQ  
    Mode                : Sensitivities y{sA["   
    Sampling            : 2 {?iqO?  
    Nominal Criterion   : 0.54403234 buFtLPe  
    Test Wavelength     : 0.6328 :6 fQE#(s&  
    ,+RO 5n  
    L_r & 'B  
    Fields: XY Symmetric Angle in degrees )-{~7@yqZ  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY S#9SAX [  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 6. jZy~  
    O+$70   
    Sensitivity Analysis: LA+MX 0*  
    1`t?5|s>  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| dNobvK  
    Type                      Value      Criterion        Change          Value      Criterion        Change a3 x~B=E  
    Fringe tolerance on surface 1 <7^~r(DP  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 bij?q\  
    Change in Focus                :      -0.000000                            0.000000 Kd)m"9Cc  
    Fringe tolerance on surface 2 QFPx4F7(e  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230  R'/wOE2  
    Change in Focus                :       0.000000                            0.000000 NjxW A&[ng  
    Fringe tolerance on surface 3 SS~Q;9o  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 sdWl5 "  
    Change in Focus                :      -0.000000                            0.000000 xNkY'4%  
    Thickness tolerance on surface 1 S+G)&<a^  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Z]f2&  
    Change in Focus                :       0.000000                            0.000000 >B  
    Thickness tolerance on surface 2  aC: l;  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 H~i],WD  
    Change in Focus                :       0.000000                           -0.000000 AF$o >f  
    Decenter X tolerance on surfaces 1 through 3 j%;)CV G"  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 zf~zYZSr  
    Change in Focus                :       0.000000                            0.000000 5KR|p Fq  
    Decenter Y tolerance on surfaces 1 through 3 O:)IRB3  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 &*aU2{,s,;  
    Change in Focus                :       0.000000                            0.000000 >G2-kL_  
    Tilt X tolerance on surfaces 1 through 3 (degrees) P{eRDQ=  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 EC'bgFe  
    Change in Focus                :       0.000000                            0.000000 8 36m5/kH[  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) [{F7Pc  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 z-5#bOABW  
    Change in Focus                :       0.000000                            0.000000 6sl<Z=E#  
    Decenter X tolerance on surface 1 )y W_O:  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ]F;]<_  
    Change in Focus                :       0.000000                            0.000000 2H[a Y%1T  
    Decenter Y tolerance on surface 1 Z!reX6  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 >` QX xTn  
    Change in Focus                :       0.000000                            0.000000 %}X MhWn{  
    Tilt X tolerance on surface (degrees) 1 #ya|{K  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 x 5Dt5Yp"o  
    Change in Focus                :       0.000000                            0.000000 L0b] ^_ tI  
    Tilt Y tolerance on surface (degrees) 1 >-lL -%N_  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ~4MjJKzA  
    Change in Focus                :       0.000000                            0.000000 7RE6y(V1  
    Decenter X tolerance on surface 2 vw] D{OBv*  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ,jsx]U/^  
    Change in Focus                :       0.000000                            0.000000 JK"uj%  
    Decenter Y tolerance on surface 2 -Y?(Zz_w  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 T1HiHvJ  
    Change in Focus                :       0.000000                            0.000000 y%bqeo L~  
    Tilt X tolerance on surface (degrees) 2 Q 02??W  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 }#>d2 =T$  
    Change in Focus                :       0.000000                            0.000000 /%9p9$kFot  
    Tilt Y tolerance on surface (degrees) 2 FR^wDm$  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 |~LjH|*M  
    Change in Focus                :       0.000000                            0.000000 s4`*0_n  
    Decenter X tolerance on surface 3 !9LAXM  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ]#q7}Sd  
    Change in Focus                :       0.000000                            0.000000 L_ qv<iM$  
    Decenter Y tolerance on surface 3 Z?c=t-yqp  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Qfu*F}  
    Change in Focus                :       0.000000                            0.000000 e=;@L3f  
    Tilt X tolerance on surface (degrees) 3 ":#x\;  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 dzNaow*0&V  
    Change in Focus                :       0.000000                            0.000000 Z?v6pjZ?  
    Tilt Y tolerance on surface (degrees) 3 e=)* O  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 n;^k   
    Change in Focus                :       0.000000                            0.000000 JvJ!\6Q@  
    Irregularity of surface 1 in fringes ilcy/  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 | ,l=v`/  
    Change in Focus                :       0.000000                            0.000000 Qn)[1v  
    Irregularity of surface 2 in fringes TgE.=`"7  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 YZ:'8<  
    Change in Focus                :       0.000000                            0.000000 2a(yR >#  
    Irregularity of surface 3 in fringes VE"0 VB.  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 `) !2E6 =  
    Change in Focus                :       0.000000                            0.000000 9g5{3N3  
    Index tolerance on surface 1 ySK Yqt z  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 7U )qC}(  
    Change in Focus                :       0.000000                            0.000000 LOUKUReE  
    Index tolerance on surface 2 k&_u\D"^"%  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 -kri3?Y,  
    Change in Focus                :       0.000000                           -0.000000 (VI* c!N  
    V<NsmC=g  
    Worst offenders: l^y?L4hg)  
    Type                      Value      Criterion        Change )tI2?YIR  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 (:bCOEZ  
    TSTY   2             0.20000000     0.35349910    -0.19053324 "ko?att~  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ]G o~]7(5|  
    TSTX   2             0.20000000     0.35349910    -0.19053324 tTh;.88Z{  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ;/^]|  
    TSTY   1             0.20000000     0.42678383    -0.11724851 k#:@fH4{PA  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 b}*@=X=4o  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Y=Ar3O*F  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 yZ~eLWz  
    TSTY   3             0.20000000     0.42861670    -0.11541563 I%Po/+|+  
    ':2*+  
    Estimated Performance Changes based upon Root-Sum-Square method: pT;-1c%:  
    Nominal MTF                 :     0.54403234 o`T<}z26  
    Estimated change            :    -0.36299231 GKsL~;8"  
    Estimated MTF               :     0.18104003 B/9<b{6  
    0jJ28.kOp  
    Compensator Statistics: 0@e}hv;  
    Change in back focus: XG\a-dq[  
    Minimum            :        -0.000000 b^l -*4  
    Maximum            :         0.000000 6v2RS  
    Mean               :        -0.000000 2*FWIHyf  
    Standard Deviation :         0.000000 EBDC'^  
    vu'!-K=0  
    Monte Carlo Analysis: +?5Uy*$  
    Number of trials: 20 q%kj[ZOY$]  
    i h$@:^\  
    Initial Statistics: Normal Distribution hKzBq*cV  
    G0; EbJ/&  
      Trial       Criterion        Change wp]7Lx?F  
          1     0.42804416    -0.11598818 Yr"!&\[oz  
    Change in Focus                :      -0.400171 J.e8UQ@=5  
          2     0.54384387    -0.00018847 ^2;(2s  
    Change in Focus                :       1.018470 6|9g4@Hy  
          3     0.44510003    -0.09893230 X v7U<q  
    Change in Focus                :      -0.601922 hNq8 uyKx  
          4     0.18154684    -0.36248550 $kD`$L@U  
    Change in Focus                :       0.920681 L4/TI(MP  
          5     0.28665820    -0.25737414 ox\B3U%`p}  
    Change in Focus                :       1.253875 8NAWA3^B  
          6     0.21263372    -0.33139862 jY#(A23  
    Change in Focus                :      -0.903878 mcz(,u}  
          7     0.40051424    -0.14351809 =6Kv`  
    Change in Focus                :      -1.354815 4<3?al&  
          8     0.48754161    -0.05649072 Z*vpQBbu  
    Change in Focus                :       0.215922 +Sdx8 Z5  
          9     0.40357468    -0.14045766 (4{ C7  
    Change in Focus                :       0.281783 2NA rE@  
         10     0.26315315    -0.28087919  $`XN  
    Change in Focus                :      -1.048393 Lr24bv\  
         11     0.26120585    -0.28282649 %+7T9>+  
    Change in Focus                :       1.017611 @cS1w'=  
         12     0.24033815    -0.30369419 Fyh?4!/.  
    Change in Focus                :      -0.109292 94'k 7_q  
         13     0.37164046    -0.17239188 7S dV%"  
    Change in Focus                :      -0.692430 kh>SrW]B%  
         14     0.48597489    -0.05805744 _8NEwwhc  
    Change in Focus                :      -0.662040 n$OE~YwP{  
         15     0.21462327    -0.32940907 ]4 K1%ZV  
    Change in Focus                :       1.611296 l#5~ t|\  
         16     0.43378226    -0.11025008 _,Rsl$Tk'  
    Change in Focus                :      -0.640081 =mi:<q  
         17     0.39321881    -0.15081353 S`W'G&bCj  
    Change in Focus                :       0.914906 2Pem%HE~P  
         18     0.20692530    -0.33710703 B.Zm$JZ:  
    Change in Focus                :       0.801607 iBtjd`V*  
         19     0.51374068    -0.03029165 tkdBlG]!  
    Change in Focus                :       0.947293 sx[&4 k[  
         20     0.38013374    -0.16389860 q2S!m6!  
    Change in Focus                :       0.667010 wzDk{4U  
    20.-;jK  
    Number of traceable Monte Carlo files generated: 20 :!+}XT7)/  
    } :RT,<  
    Nominal     0.54403234 EZ%w=  
    Best        0.54384387    Trial     2 Uxk[O  
    Worst       0.18154684    Trial     4 &sZ9$s:(^  
    Mean        0.35770970 OD?y  
    Std Dev     0.11156454 .0Iun+nUD  
    ,TKs/-_?  
     ^6)GS%R  
    Compensator Statistics: 't0+:o">:  
    Change in back focus: f.aB?\"f6  
    Minimum            :        -1.354815 Z#OhYm+y  
    Maximum            :         1.611296 B.}_],  
    Mean               :         0.161872 }XGMa?WR  
    Standard Deviation :         0.869664 96"yNqBf  
    !cEbz b  
    90% >       0.20977951               H{\.g=01  
    80% >       0.22748071               S' (cqO}=F  
    50% >       0.38667627               0kNe?Xi  
    20% >       0.46553746               Z>(r9 R3{  
    10% >       0.50064115                jb|mip@` <  
    *PSvHXNi  
    End of Run. sJ))<,e5I  
    kf%&d}2to  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 | ((1V^  
    w24{_ N  
    K0EY<Ltq  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 g.B%#bfg  
    ia%z+:G  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 :.*HQt9N  
    80% >       0.22748071                 ""co6qo#>  
    50% >       0.38667627                 QX[Djz0H8  
    20% >       0.46553746                 J,f/fPaf7  
    10% >       0.50064115 o^3FL||P#r  
    \)ip>{WG  
    最后这个数值是MTF值呢,还是MTF的公差? qE )Y}oN  
    bS>R5*Zp  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   8wr8:( Y$  
    \ht ?G n  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : r3qf[?3`6  
    90% >       0.20977951                 ]N^*tO  
    80% >       0.22748071                 }s_hD`'  
    50% >       0.38667627                 Dw_D+7>(v  
    20% >       0.46553746                 w\Mnu}<e$  
    10% >       0.50064115 er2cQS7R  
    ....... Dzl;-]S  
    d--'Rn5  
    (u hd "  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   -F\qnsZ2  
    Mode                : Sensitivities HfB@vw^  
    Sampling            : 2 /KCPpERk{  
    Nominal Criterion   : 0.54403234 J~#$J&iKh  
    Test Wavelength     : 0.6328 +9XQ[57  
    WG u%7e]  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? jS.g]k  
    e@#kRklV&  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试