切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16278阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 XCB?ll*^  
    #$S}3 o  
    lYf+V8{  
    ~ <0Z>qr  
    然后添加了默认公差分析,基本没变 oR+-+-? ?$  
    {B$2"q/~  
     R)Q 4  
    P sjbR  
    然后运行分析的结果如下: Df07y<>7Q  
    ClW'W#*(Y  
    Analysis of Tolerances 6@;ha=[+  
    F SMj  
    File : E:\光学设计资料\zemax练习\f500.ZMX ZU'!iU|8  
    Title: UyYfpL"$A"  
    Date : TUE JUN 21 2011 l'4AF| p  
    yT /EHmJ  
    Units are Millimeters. r2*<\ax  
    All changes are computed using linear differences. 4Wel[]  
    dLh6:Gh8_I  
    Paraxial Focus compensation only. `qpc*enf0  
    ";3*?/uM  
    WARNING: Solves should be removed prior to tolerancing. UgHf*m  
    d<p2/aA  
    Mnemonics: Y8s;w!/  
    TFRN: Tolerance on curvature in fringes. 4 (?MUc  
    TTHI: Tolerance on thickness. j28_Hh T  
    TSDX: Tolerance on surface decentering in x. OTvROJP  
    TSDY: Tolerance on surface decentering in y. cH`^D?#se  
    TSTX: Tolerance on surface tilt in x (degrees). Aw ^yH+ae  
    TSTY: Tolerance on surface tilt in y (degrees). Os),;W0w4  
    TIRR: Tolerance on irregularity (fringes). jrJR1npB  
    TIND: Tolerance on Nd index of refraction. s PYX~G&T  
    TEDX: Tolerance on element decentering in x. <zfe }0  
    TEDY: Tolerance on element decentering in y. %Tcf6cK"  
    TETX: Tolerance on element tilt in x (degrees). S 4vbN  
    TETY: Tolerance on element tilt in y (degrees). % n$^-Vc&  
    SQ(apc}N4  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. <)m%*9{  
    Dk)}|GJ()"  
    WARNING: Boundary constraints on compensators will be ignored. B:oF;~d/,  
    N{a kg90  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm MOz}Q1`a  
    Mode                : Sensitivities GKtS6$1d#  
    Sampling            : 2 `"y`AY/N  
    Nominal Criterion   : 0.54403234 9w ~cvlv[  
    Test Wavelength     : 0.6328 zok D:c  
     y).P=z  
    ``4wX-y  
    Fields: XY Symmetric Angle in degrees 9/TY\?U  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY a% ,fXp>  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 DQ6jT@ZDH  
    Ub)I66  
    Sensitivity Analysis: jp<VK<s]  
    OD9 yxN>P  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 9BON.` |_  
    Type                      Value      Criterion        Change          Value      Criterion        Change cy3ww})  
    Fringe tolerance on surface 1 D&{ *AH%Q  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 tB6k|cPC  
    Change in Focus                :      -0.000000                            0.000000 %]4-{%v  
    Fringe tolerance on surface 2 3{J.xWB@:  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 aiftlY  
    Change in Focus                :       0.000000                            0.000000 /A(NuB<Pq  
    Fringe tolerance on surface 3 mN1Ssq"B  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 "n?<2 wso  
    Change in Focus                :      -0.000000                            0.000000 *3Nn +T  
    Thickness tolerance on surface 1 H~9=&p[Q  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 =Sxol>?t  
    Change in Focus                :       0.000000                            0.000000 %xg"Q |  
    Thickness tolerance on surface 2 cdp0!W4Gi  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 i^|@"+  
    Change in Focus                :       0.000000                           -0.000000 X , ZeD  
    Decenter X tolerance on surfaces 1 through 3 tHI*,  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 D s-`  
    Change in Focus                :       0.000000                            0.000000 J/Q|uRpmqr  
    Decenter Y tolerance on surfaces 1 through 3 {yq8<?  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 f'{>AKi=C  
    Change in Focus                :       0.000000                            0.000000 K3ukYR  
    Tilt X tolerance on surfaces 1 through 3 (degrees) #)74X% 4(  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 %g^" ]  
    Change in Focus                :       0.000000                            0.000000 +WF.wP?y  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) B=zMYi  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Pz473d  
    Change in Focus                :       0.000000                            0.000000 -<oZ)OfU  
    Decenter X tolerance on surface 1 b=LF%P  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 vjTwv+B"  
    Change in Focus                :       0.000000                            0.000000 6E+=Xi  
    Decenter Y tolerance on surface 1 .hN3`>*V  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 4 X`^{~  
    Change in Focus                :       0.000000                            0.000000 JSjYC0e  
    Tilt X tolerance on surface (degrees) 1 lgT?{,>RkW  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 =lrN'$z?%  
    Change in Focus                :       0.000000                            0.000000 OV|Z=EwJ  
    Tilt Y tolerance on surface (degrees) 1 79tJV  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 E~He~wHWe  
    Change in Focus                :       0.000000                            0.000000 && C~@WY,r  
    Decenter X tolerance on surface 2 "6V_/u5M;=  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ay[+2"  
    Change in Focus                :       0.000000                            0.000000 w-: D  
    Decenter Y tolerance on surface 2 jOl1_  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 1URsHV!xcM  
    Change in Focus                :       0.000000                            0.000000 4(m3c<'P  
    Tilt X tolerance on surface (degrees) 2 ?UK:sF| (O  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 d| \#?W&  
    Change in Focus                :       0.000000                            0.000000 tc/jY]'32  
    Tilt Y tolerance on surface (degrees) 2 M(S{1|,V  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7SHo%b A  
    Change in Focus                :       0.000000                            0.000000 7.|S>+Q  
    Decenter X tolerance on surface 3 \UQ],+H  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Qa?Q bHc  
    Change in Focus                :       0.000000                            0.000000 tJ>d4A;8x  
    Decenter Y tolerance on surface 3 rqC1  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 $K=z  
    Change in Focus                :       0.000000                            0.000000 {G.{a d  
    Tilt X tolerance on surface (degrees) 3 J~2 CD*v  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 APuu_!ez1  
    Change in Focus                :       0.000000                            0.000000 6SAQDE  
    Tilt Y tolerance on surface (degrees) 3  * D3  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 =+Tsknq  
    Change in Focus                :       0.000000                            0.000000 Ja=N@&Z#  
    Irregularity of surface 1 in fringes :wCC^Y]  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ]}_,U!`8  
    Change in Focus                :       0.000000                            0.000000 =0Y'f](2eW  
    Irregularity of surface 2 in fringes zf")|9j  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 +}]wLM}\UF  
    Change in Focus                :       0.000000                            0.000000 I)uASfT$  
    Irregularity of surface 3 in fringes KqY>4tb  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Px#4pmz  
    Change in Focus                :       0.000000                            0.000000 -(  ER4#  
    Index tolerance on surface 1 {lKEZirO  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 @f'AWeJ2  
    Change in Focus                :       0.000000                            0.000000 s @3 zx  
    Index tolerance on surface 2 {r X5  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 lc-*8eS  
    Change in Focus                :       0.000000                           -0.000000 pb= HVjW<  
    <v-92?  
    Worst offenders: 'Sk6U]E~  
    Type                      Value      Criterion        Change 4w2L?PDMi  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 )xbqQW7%0+  
    TSTY   2             0.20000000     0.35349910    -0.19053324  A8`orMo2  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 '.xkn{c  
    TSTX   2             0.20000000     0.35349910    -0.19053324 `}n0=E  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ^:$j:w?j  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ~l@%=/m  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 0MhxFoFO  
    TSTX   1             0.20000000     0.42678383    -0.11724851 P:vX }V |[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 kfIbgya   
    TSTY   3             0.20000000     0.42861670    -0.11541563 6UtG-WHHt  
     2fbvU  
    Estimated Performance Changes based upon Root-Sum-Square method: r6/<&1[  
    Nominal MTF                 :     0.54403234 J]_)gb'1BR  
    Estimated change            :    -0.36299231 $M%}Oz3*  
    Estimated MTF               :     0.18104003 A'w2GC{.  
    uFa-QG^Y{  
    Compensator Statistics: %k~C-+  
    Change in back focus: |O'Hh7  
    Minimum            :        -0.000000 l$qmn$Uc  
    Maximum            :         0.000000 aw;{<?*  
    Mean               :        -0.000000  &s_}u%iC  
    Standard Deviation :         0.000000 ~n)]dFy  
    a:wJ/ p  
    Monte Carlo Analysis: I\)N\mov e  
    Number of trials: 20 9 ?[4i'  
    P/HHWiD`D  
    Initial Statistics: Normal Distribution r{c5dQ  
    + 4++Z  
      Trial       Criterion        Change :  ,|=Q}  
          1     0.42804416    -0.11598818 _LLW{^V  
    Change in Focus                :      -0.400171 ggzAU6J  
          2     0.54384387    -0.00018847 P[r}(@0rJ  
    Change in Focus                :       1.018470 !$4Q]@ }  
          3     0.44510003    -0.09893230 pPU2ar  
    Change in Focus                :      -0.601922 oTZo[T@zRx  
          4     0.18154684    -0.36248550 \Gv-sA  
    Change in Focus                :       0.920681 4h[2C6 \+`  
          5     0.28665820    -0.25737414 F\I5fNs@  
    Change in Focus                :       1.253875 i] V F'tG  
          6     0.21263372    -0.33139862 pyGFDB5_P  
    Change in Focus                :      -0.903878 75' Ua$  
          7     0.40051424    -0.14351809 BNF++<s  
    Change in Focus                :      -1.354815 YeR7*[l  
          8     0.48754161    -0.05649072 Iht mD@H}  
    Change in Focus                :       0.215922 m3x!*9h  
          9     0.40357468    -0.14045766 |8b$x| B  
    Change in Focus                :       0.281783 xow6@M,  
         10     0.26315315    -0.28087919 %l0_PhAB  
    Change in Focus                :      -1.048393 fLf#2EA  
         11     0.26120585    -0.28282649 EVby 9!  
    Change in Focus                :       1.017611 @*AYm-k  
         12     0.24033815    -0.30369419 + ;{rU&  
    Change in Focus                :      -0.109292  'lSnyW{  
         13     0.37164046    -0.17239188 *=r@vQ  
    Change in Focus                :      -0.692430 pRb+'v&_k  
         14     0.48597489    -0.05805744 $u(M 4(}  
    Change in Focus                :      -0.662040 y?rK5Yos  
         15     0.21462327    -0.32940907 exGhkt~  
    Change in Focus                :       1.611296 F=' jmiVJ  
         16     0.43378226    -0.11025008 c9>8IW  
    Change in Focus                :      -0.640081 7cJO)cm0'  
         17     0.39321881    -0.15081353 Ix%"4/z>  
    Change in Focus                :       0.914906 w%!k?t,*]  
         18     0.20692530    -0.33710703 @Wlwt+;fT  
    Change in Focus                :       0.801607 yAZ.L/jyr  
         19     0.51374068    -0.03029165 Z)b)v  
    Change in Focus                :       0.947293 T% jjs  
         20     0.38013374    -0.16389860 Il tg0`  
    Change in Focus                :       0.667010 F5om-tzy  
    ; +#za?w  
    Number of traceable Monte Carlo files generated: 20 ~`W6O>  
    |R:v<  
    Nominal     0.54403234 xP|%rl4  
    Best        0.54384387    Trial     2 ]-+.lR%vd9  
    Worst       0.18154684    Trial     4 o>QFd x  
    Mean        0.35770970 N23+1h  
    Std Dev     0.11156454 ^+Y-=2u:  
    rA>A=,  
     `i_L?C7  
    Compensator Statistics: (PE8H~d  
    Change in back focus: x1BDvTqW  
    Minimum            :        -1.354815 ;Fwm1ezx0  
    Maximum            :         1.611296 >V ]*mS %K  
    Mean               :         0.161872 P*nT\B  
    Standard Deviation :         0.869664 l%Fse&4\  
    6O[wVaC1u  
    90% >       0.20977951               Oujlm|  
    80% >       0.22748071               <LOx.}fv  
    50% >       0.38667627               o 0cc+  
    20% >       0.46553746               E?;T:7.%  
    10% >       0.50064115                G Yy!`E  
    .,BD DPFB  
    End of Run. Xk$l-Zfse  
    ,EGD8$RA]  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 +h9l %Pz  
    m}'t'l4 c  
    8=zM~v)   
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 `mHOgS>|  
    olQ8s *  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 GO GXM4I  
    80% >       0.22748071                 :`"T Eif  
    50% >       0.38667627                 pQ-^T.'  
    20% >       0.46553746                 zt>_)&b  
    10% >       0.50064115 }.|5S+J?[  
    U"Ob@$ROFy  
    最后这个数值是MTF值呢,还是MTF的公差? L) nVpqm   
    V1fvQ=9  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ]ieA?:0Hi  
    j'Q-*-3  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  :  y] r~v  
    90% >       0.20977951                 'R5l =Wf  
    80% >       0.22748071                 'n.9qxY;  
    50% >       0.38667627                 I[IQFka}  
    20% >       0.46553746                 1L qJ@v0  
    10% >       0.50064115 J` --O(8Ml  
    ....... I2!HXMrp  
    q8v!{Os+#  
    kV9NFo22  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   w~?eX/;  
    Mode                : Sensitivities r(CL=[  
    Sampling            : 2 #T`+~tW'|  
    Nominal Criterion   : 0.54403234 ,IATJs$E  
    Test Wavelength     : 0.6328 TBYL~QQD\C  
    y~1php>2f1  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧?  ?C\9lLX  
    PyE<`E  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试