切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16529阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 z'k@$@:0XD  
    T K Ec ^  
    z?C& ,mv  
    zj#8@gbh+  
    然后添加了默认公差分析,基本没变 7JLjA\k  
    BPypjS0?8  
    JZoH -  
    cGv`%  
    然后运行分析的结果如下: p+xjYU4^C  
    j\uPOn8k  
    Analysis of Tolerances g6;a2  
    *orP{p -U  
    File : E:\光学设计资料\zemax练习\f500.ZMX c(lG_"q6  
    Title: ~s) `y2Y  
    Date : TUE JUN 21 2011 &MP +  
    WC wM+D  
    Units are Millimeters. * o#P)H  
    All changes are computed using linear differences. 91}kBj  
    B3@\Ua)  
    Paraxial Focus compensation only. ac/<N%  
    /jd.<r=_I  
    WARNING: Solves should be removed prior to tolerancing. 7DW HADr  
    T1YbF/M'  
    Mnemonics: hixG/%aO  
    TFRN: Tolerance on curvature in fringes. je5GZFQw  
    TTHI: Tolerance on thickness. dC 8,  
    TSDX: Tolerance on surface decentering in x. ITBa ^P  
    TSDY: Tolerance on surface decentering in y. =.t3|5U8  
    TSTX: Tolerance on surface tilt in x (degrees). pLsWy&G  
    TSTY: Tolerance on surface tilt in y (degrees). [Qn$i/ ` J  
    TIRR: Tolerance on irregularity (fringes). Ydh+iLjhx  
    TIND: Tolerance on Nd index of refraction. h0zv @,u  
    TEDX: Tolerance on element decentering in x. ]Jx_bs~g  
    TEDY: Tolerance on element decentering in y. M I R))j;  
    TETX: Tolerance on element tilt in x (degrees). kZ<"hsh,Y'  
    TETY: Tolerance on element tilt in y (degrees). V})b.\"F  
    p JM&R<i:  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ]"VxEpqhM  
    ZRj&k9D^U  
    WARNING: Boundary constraints on compensators will be ignored. :o}LJc)|  
    rFG_CC2  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm }"6 PM)s  
    Mode                : Sensitivities 9=p/'d8  
    Sampling            : 2 ,2`FSL%J  
    Nominal Criterion   : 0.54403234 1t<  nm)  
    Test Wavelength     : 0.6328 #A9rI;"XI  
    9"b  =W@  
    s=83a{#K  
    Fields: XY Symmetric Angle in degrees xA]}/*  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY k/2TvEV3=  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 2#`9OLu8X  
    n>?eTlO3  
    Sensitivity Analysis: %p8#pt\$7  
    !A&>Eeai  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 9?4:},FRmE  
    Type                      Value      Criterion        Change          Value      Criterion        Change _REAzxe S  
    Fringe tolerance on surface 1 P,={ C6*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Y3?)*kz%  
    Change in Focus                :      -0.000000                            0.000000 xw~3x*{  
    Fringe tolerance on surface 2 L_Lhmtm}m  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 I9O%/^5^[w  
    Change in Focus                :       0.000000                            0.000000 -~WDv[ [  
    Fringe tolerance on surface 3 (Kb_/  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 p{oc}dWin  
    Change in Focus                :      -0.000000                            0.000000 wlw`%z-B2  
    Thickness tolerance on surface 1 YzeNr*  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 + vO; J  
    Change in Focus                :       0.000000                            0.000000 ((mR' A|`  
    Thickness tolerance on surface 2 1Y(NxC0P=g  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 *8I &|)x  
    Change in Focus                :       0.000000                           -0.000000 (KnU-E]L  
    Decenter X tolerance on surfaces 1 through 3 r Zg(%6@  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 f7oJ6'K  
    Change in Focus                :       0.000000                            0.000000 l$g \t]  
    Decenter Y tolerance on surfaces 1 through 3  -wQ@z6R  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 {Xv0=P  
    Change in Focus                :       0.000000                            0.000000 5LJ0V  
    Tilt X tolerance on surfaces 1 through 3 (degrees) /xw}]Fa5  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 u{%dm5  
    Change in Focus                :       0.000000                            0.000000 >h{)7Hv  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) /<T3^/ '  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 (e _l1O?  
    Change in Focus                :       0.000000                            0.000000 !YENJJ  
    Decenter X tolerance on surface 1 w,eW?b  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 );=0cnr3  
    Change in Focus                :       0.000000                            0.000000 ^:Fj+d  
    Decenter Y tolerance on surface 1 H_>9'(  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ,C}s8|@k  
    Change in Focus                :       0.000000                            0.000000 h8hyQd$!  
    Tilt X tolerance on surface (degrees) 1 Ff&kK5} q  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 *~Sv\L  
    Change in Focus                :       0.000000                            0.000000 }0AoV&75  
    Tilt Y tolerance on surface (degrees) 1 \%|%C  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 g<g$c<sm  
    Change in Focus                :       0.000000                            0.000000 3#N`n |UgC  
    Decenter X tolerance on surface 2 PpezWo)9  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 aI_[h v  
    Change in Focus                :       0.000000                            0.000000 *NCkC ~4  
    Decenter Y tolerance on surface 2 dry>TXG*  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 KtD XB>  
    Change in Focus                :       0.000000                            0.000000 qijQRxS  
    Tilt X tolerance on surface (degrees) 2 #MUY!  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7\[)5j  
    Change in Focus                :       0.000000                            0.000000 xv~Sk2Z+d  
    Tilt Y tolerance on surface (degrees) 2 *> E_lWW.  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 6 l7iX]  
    Change in Focus                :       0.000000                            0.000000 tP4z#0r2  
    Decenter X tolerance on surface 3 G>,43S!<  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 !p!^[/9"c  
    Change in Focus                :       0.000000                            0.000000 [,sm]/Xlc  
    Decenter Y tolerance on surface 3 6o&ZS @  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 }h1y^fuGi  
    Change in Focus                :       0.000000                            0.000000 $V,ZH* g  
    Tilt X tolerance on surface (degrees) 3 ]DjnzClx  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 <RuLIu  
    Change in Focus                :       0.000000                            0.000000 SA%uGkm:e  
    Tilt Y tolerance on surface (degrees) 3 m2[]`Ir^@  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 L [&|<<c  
    Change in Focus                :       0.000000                            0.000000 jwmPy)X|s\  
    Irregularity of surface 1 in fringes w_#C8}2  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 >!bw8lVV  
    Change in Focus                :       0.000000                            0.000000 SvQ!n4 $  
    Irregularity of surface 2 in fringes :QIf0*.O  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Vp&"[rC_z  
    Change in Focus                :       0.000000                            0.000000 _6-N+FI  
    Irregularity of surface 3 in fringes S4VM(~,o  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 wizLA0W  
    Change in Focus                :       0.000000                            0.000000 X}g"_wN,g>  
    Index tolerance on surface 1 X3'd~!a)  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 >?[?W|k7V  
    Change in Focus                :       0.000000                            0.000000 [*1:?mD$  
    Index tolerance on surface 2 ;:/C.%d  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Zi{vEI]  
    Change in Focus                :       0.000000                           -0.000000 y+h/jEbM</  
    sKC(xO@L;`  
    Worst offenders: }kSP p  
    Type                      Value      Criterion        Change 80K"u[  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 %k @4}M>  
    TSTY   2             0.20000000     0.35349910    -0.19053324 JqV}$E"M2  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 {01^xn.  
    TSTX   2             0.20000000     0.35349910    -0.19053324 !m8T< LtMl  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 kn+@)3W:*  
    TSTY   1             0.20000000     0.42678383    -0.11724851 'EC0|IT)c  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 |lN=q44I  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ? (M$r\\  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Y>x3`f]  
    TSTY   3             0.20000000     0.42861670    -0.11541563 oiOu169]  
    vI]V@i l  
    Estimated Performance Changes based upon Root-Sum-Square method: Vi#[k n'  
    Nominal MTF                 :     0.54403234 poy_?7G  
    Estimated change            :    -0.36299231 A<IV"bo  
    Estimated MTF               :     0.18104003 WO$8j2!~#  
    a:KL{e[   
    Compensator Statistics: g){gF(   
    Change in back focus: 4lI&y<F  
    Minimum            :        -0.000000 NR"C@3kD]o  
    Maximum            :         0.000000 A@Cvx7X  
    Mean               :        -0.000000 r`i.h ^2De  
    Standard Deviation :         0.000000 A4 /gVi|  
    3zv0Nwb,  
    Monte Carlo Analysis: Z/q'^PB p  
    Number of trials: 20 >M^:x-mib  
    Fb ~h{  
    Initial Statistics: Normal Distribution {vk%&{D0)  
    S<z8  
      Trial       Criterion        Change eQ,VK`7X  
          1     0.42804416    -0.11598818 oJ|m/i)  
    Change in Focus                :      -0.400171 WR_B:%W.  
          2     0.54384387    -0.00018847 _&[-< cu  
    Change in Focus                :       1.018470 }!"Cvu  
          3     0.44510003    -0.09893230 Oj8D+sC{  
    Change in Focus                :      -0.601922 Gp=V%w\FDW  
          4     0.18154684    -0.36248550 8! /ue.T  
    Change in Focus                :       0.920681 ^4xl4nbx  
          5     0.28665820    -0.25737414 0}M'>  
    Change in Focus                :       1.253875 2InM(p7j~K  
          6     0.21263372    -0.33139862 fKO@Qx]  
    Change in Focus                :      -0.903878 ?Zb3M  
          7     0.40051424    -0.14351809 S5r.so  
    Change in Focus                :      -1.354815 js!C`]1  
          8     0.48754161    -0.05649072 BU|)lU5)z  
    Change in Focus                :       0.215922 MRT<hB  
          9     0.40357468    -0.14045766 J+wnrGoK  
    Change in Focus                :       0.281783 b5? kgY  
         10     0.26315315    -0.28087919 fcy4?SQ.<i  
    Change in Focus                :      -1.048393 ;zd.KaS  
         11     0.26120585    -0.28282649 \+&)9 !K  
    Change in Focus                :       1.017611 5mZwg(si  
         12     0.24033815    -0.30369419 'j!n   
    Change in Focus                :      -0.109292 s[VYd:}se  
         13     0.37164046    -0.17239188 !_oR/)  
    Change in Focus                :      -0.692430 J&B5Ll  
         14     0.48597489    -0.05805744 @z:E]O}  
    Change in Focus                :      -0.662040 &8I*N6p:%/  
         15     0.21462327    -0.32940907 ,$U~<Zd  
    Change in Focus                :       1.611296 uo ;m  
         16     0.43378226    -0.11025008 W$W w/mcl+  
    Change in Focus                :      -0.640081 Tl#2w=  
         17     0.39321881    -0.15081353 wk'&n^_br  
    Change in Focus                :       0.914906 U }I#;*F  
         18     0.20692530    -0.33710703 2B5Ez,'#x  
    Change in Focus                :       0.801607 }}bMq.Q'  
         19     0.51374068    -0.03029165 u|k_OUTq  
    Change in Focus                :       0.947293 B ]sVlbt  
         20     0.38013374    -0.16389860 oE2VJKs<B  
    Change in Focus                :       0.667010 gSf >+|  
    74&{GCL  
    Number of traceable Monte Carlo files generated: 20 4~8-^^  
    r]]:/pw?t  
    Nominal     0.54403234 HVzkS|^F  
    Best        0.54384387    Trial     2 F{_,IQ]U  
    Worst       0.18154684    Trial     4 [.w`r>kZI  
    Mean        0.35770970 F!w|5,)  
    Std Dev     0.11156454 ^/#8 "  
    0uIBaW3s  
    3{$>-d  
    Compensator Statistics: 7]~|dc(  
    Change in back focus: y\[q2M<  
    Minimum            :        -1.354815 m"6K_4r]  
    Maximum            :         1.611296 @ZrNV*&<  
    Mean               :         0.161872 Wtp=1  
    Standard Deviation :         0.869664 `$FB[Z} &  
    j`K0D65  
    90% >       0.20977951               w,_LC)9  
    80% >       0.22748071               }:QoYNq  
    50% >       0.38667627               ",#Ug"|2  
    20% >       0.46553746               F&B E+b/#  
    10% >       0.50064115                W|(<z'S  
    }*O8]lG  
    End of Run. =k;X}/  
    lR mVeq:  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 /LtbmV  
    p["pGsf  
    A PrrUo  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 3#GIZ L}!x  
    nZG zez  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 n</Rd=  
    80% >       0.22748071                 gv i!|!M=  
    50% >       0.38667627                 "v0SvV<7  
    20% >       0.46553746                  ':DL  
    10% >       0.50064115 :"b:uQ  
    Eb CK9  
    最后这个数值是MTF值呢,还是MTF的公差? 2Uu!_n}tNF  
    :@@m'zF<;  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   mX?t|:[b  
    < 'BsQHI  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 4Tx.|   
    90% >       0.20977951                 .~q>e*8AH  
    80% >       0.22748071                 Np+pJc1  
    50% >       0.38667627                 475g-t2"@  
    20% >       0.46553746                 V?p`rrj@  
    10% >       0.50064115 ?[Ma" l>  
    ....... \=&Z_6Mu  
    rR#wbDr5  
    >J)4e~9EJ2  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   `VDvxl@1  
    Mode                : Sensitivities nNnfcA&W  
    Sampling            : 2 eX!yIqAR  
    Nominal Criterion   : 0.54403234 wrK@1F9!  
    Test Wavelength     : 0.6328 zqZ/z>Gf  
    ~C3Ada@4  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? HMmVfGp]  
    W`TSR?4~t?  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试