切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16614阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 CXoiA"P  
    h~ _i::vg  
    `fEzE\\!*  
    Q!IqvmO  
    然后添加了默认公差分析,基本没变 ;rL1[qwk  
    X!z-J>  
    MNe/H\  
    xV14Y9  
    然后运行分析的结果如下: r]\[G6mE%  
    "u~` ZV(  
    Analysis of Tolerances Q Rr9|p{  
    S#p_Y^A  
    File : E:\光学设计资料\zemax练习\f500.ZMX S m=ln)G=  
    Title:  }+/Vk  
    Date : TUE JUN 21 2011 Nes|4Z<  
    ynMYf  
    Units are Millimeters. 8lqmd1v  
    All changes are computed using linear differences. 8b 7I\J`  
    k3B_M9>!  
    Paraxial Focus compensation only. 5X];?(VTsb  
    NkGtZ.!pk  
    WARNING: Solves should be removed prior to tolerancing. 1qn/*9W}=  
    5 8;OTDR!  
    Mnemonics: X{!,j}  
    TFRN: Tolerance on curvature in fringes. =m (u=|N3  
    TTHI: Tolerance on thickness. rf+}J_  
    TSDX: Tolerance on surface decentering in x. E,?IIRg&  
    TSDY: Tolerance on surface decentering in y. 'NjeF&#6  
    TSTX: Tolerance on surface tilt in x (degrees). 5GJkvZtFY  
    TSTY: Tolerance on surface tilt in y (degrees). l> H'PP~  
    TIRR: Tolerance on irregularity (fringes). ckP AH E@  
    TIND: Tolerance on Nd index of refraction. SbL7e#!!  
    TEDX: Tolerance on element decentering in x. %K\B )HR  
    TEDY: Tolerance on element decentering in y. o M@%2M_O(  
    TETX: Tolerance on element tilt in x (degrees). X_ Lt{mf  
    TETY: Tolerance on element tilt in y (degrees). a|t{1]^w`  
    c1_Zi  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. e"sv_$*  
    sEw ?349Bz  
    WARNING: Boundary constraints on compensators will be ignored. }8"i~>>a  
    (?,jnnub  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm xp3^,x;\X  
    Mode                : Sensitivities ]QHZ [C  
    Sampling            : 2 TZ n2,N  
    Nominal Criterion   : 0.54403234 ^e]O >CJ  
    Test Wavelength     : 0.6328 Moi RAO  
    Bmt8yR2  
    ?@MY+r_G  
    Fields: XY Symmetric Angle in degrees Z{#3-O<a+n  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY k{X+Y6'ku  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ^P [#YO  
    #] Do_Z  
    Sensitivity Analysis: *&_A4)  
    D2 o|.e<r  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| {s6#h#U  
    Type                      Value      Criterion        Change          Value      Criterion        Change u0?TMy.%  
    Fringe tolerance on surface 1 r0&LjH&R  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 dn42'(p@G  
    Change in Focus                :      -0.000000                            0.000000 Q-G8Fo%#,E  
    Fringe tolerance on surface 2 2|RxowXZ"  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Eoo[H2=^H  
    Change in Focus                :       0.000000                            0.000000 ,_7m<(/f  
    Fringe tolerance on surface 3 '_K`1&#U  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 _m a;b<I/<  
    Change in Focus                :      -0.000000                            0.000000 g?j^d:  
    Thickness tolerance on surface 1 w*@9:+  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 %M^Q{` :5  
    Change in Focus                :       0.000000                            0.000000 ~% ]V,-4  
    Thickness tolerance on surface 2 i6;rh-M?.  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 p!Tac%D+k  
    Change in Focus                :       0.000000                           -0.000000 ojj T  
    Decenter X tolerance on surfaces 1 through 3 e+2lus,u6t  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 :=q9ay   
    Change in Focus                :       0.000000                            0.000000 hOIg 7=v  
    Decenter Y tolerance on surfaces 1 through 3 =q"0GUei3  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 T I ZkN6  
    Change in Focus                :       0.000000                            0.000000 l9y%@7  
    Tilt X tolerance on surfaces 1 through 3 (degrees) slr>6o%W`  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 FO]f 4@  
    Change in Focus                :       0.000000                            0.000000 y^{ 4}^u-^  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) >: @\SU  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 !#olG}#[  
    Change in Focus                :       0.000000                            0.000000 EjEXev<]  
    Decenter X tolerance on surface 1 ^ 6t"A  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ~7\`qH  
    Change in Focus                :       0.000000                            0.000000 lY |]  
    Decenter Y tolerance on surface 1 &s\,+d0  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 t[b(erO'  
    Change in Focus                :       0.000000                            0.000000 rX`fjS*C  
    Tilt X tolerance on surface (degrees) 1 ^:O*Sx.CA  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 J04R,B  
    Change in Focus                :       0.000000                            0.000000 geqx":gpx9  
    Tilt Y tolerance on surface (degrees) 1 $'a]lR  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 `"iPJw14  
    Change in Focus                :       0.000000                            0.000000 j_zy"8Y{  
    Decenter X tolerance on surface 2 QYBLU7  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 7d_"4;K)  
    Change in Focus                :       0.000000                            0.000000 = j l( Q  
    Decenter Y tolerance on surface 2 ')fIa2dO/  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 HE2t0sAYX  
    Change in Focus                :       0.000000                            0.000000 Z\)P|#L$  
    Tilt X tolerance on surface (degrees) 2 ]HG> Og  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ~~ty9;KYL  
    Change in Focus                :       0.000000                            0.000000 c8cGIAOY)  
    Tilt Y tolerance on surface (degrees) 2 |ew:}e: k<  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 L#_QrR6Sny  
    Change in Focus                :       0.000000                            0.000000 "MOmJYH  
    Decenter X tolerance on surface 3 N,cj[6;T%  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 MF::At[4   
    Change in Focus                :       0.000000                            0.000000 1<M~ #  
    Decenter Y tolerance on surface 3 ;/^O7KM-  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 + k   
    Change in Focus                :       0.000000                            0.000000 f5nAD  
    Tilt X tolerance on surface (degrees) 3 qMBEJ<o  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 6<n+p'+n  
    Change in Focus                :       0.000000                            0.000000 i}5+\t[Q  
    Tilt Y tolerance on surface (degrees) 3 .Ag)/Xm(?  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Yd~Tzh  
    Change in Focus                :       0.000000                            0.000000 8O*O 5   
    Irregularity of surface 1 in fringes \FyHIs  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 J8`vk#5  
    Change in Focus                :       0.000000                            0.000000 gLg\W3TOi  
    Irregularity of surface 2 in fringes 00A2[gO9  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 V4%7Xj  
    Change in Focus                :       0.000000                            0.000000 %vrUk;<35  
    Irregularity of surface 3 in fringes 16N`xw+{  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 OgyHX>}bH  
    Change in Focus                :       0.000000                            0.000000 ! AL?bW  
    Index tolerance on surface 1 `+WQ^dP@  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Jz_`dLL^ w  
    Change in Focus                :       0.000000                            0.000000 tpKQ$) ed  
    Index tolerance on surface 2 ?eR^\-e  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 @,q<][q  
    Change in Focus                :       0.000000                           -0.000000 C5#$NV99p  
    }Ot2; T  
    Worst offenders: \,b_8^  
    Type                      Value      Criterion        Change Uw>g^[V;  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 qIgb;=V  
    TSTY   2             0.20000000     0.35349910    -0.19053324 7:S)J~s*O  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 |F>'7JJJ  
    TSTX   2             0.20000000     0.35349910    -0.19053324 T(eNK c2  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 l8!n!sC[,  
    TSTY   1             0.20000000     0.42678383    -0.11724851 W#<ZaGsq  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 J,wpY$93  
    TSTX   1             0.20000000     0.42678383    -0.11724851 If.hA}  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ]3yaIlpD1  
    TSTY   3             0.20000000     0.42861670    -0.11541563 [ Q20c<,  
    c< g{ &YJ  
    Estimated Performance Changes based upon Root-Sum-Square method: pS)/yMlVj  
    Nominal MTF                 :     0.54403234 ?|we.{  
    Estimated change            :    -0.36299231 fYZ)5xnj  
    Estimated MTF               :     0.18104003 & Pzr)W(  
    XiUae{j`  
    Compensator Statistics: ;jpsH?3g  
    Change in back focus:  jQ?6I1o  
    Minimum            :        -0.000000 nSV OS6  
    Maximum            :         0.000000 [,p[%Dza  
    Mean               :        -0.000000 vC!}%sxVw_  
    Standard Deviation :         0.000000 ~G`(=\_0  
    t[^68]  
    Monte Carlo Analysis: 5?4jD]Z  
    Number of trials: 20 Z&0*\.6S~  
    UPJ3YpK  
    Initial Statistics: Normal Distribution  |<1  
    '|l1-yD_  
      Trial       Criterion        Change c27A)`   
          1     0.42804416    -0.11598818 q:ZF6o`Z83  
    Change in Focus                :      -0.400171 o%=OBTh_   
          2     0.54384387    -0.00018847 wloQk(T<W  
    Change in Focus                :       1.018470 &p#.m"Oon  
          3     0.44510003    -0.09893230 YXhxzH hPd  
    Change in Focus                :      -0.601922 Q+'QJ7fw'|  
          4     0.18154684    -0.36248550 *J] }bX  
    Change in Focus                :       0.920681 q~:k[@`.  
          5     0.28665820    -0.25737414 (y!<^ Q  
    Change in Focus                :       1.253875 ^iaG>rvA  
          6     0.21263372    -0.33139862 8!{F6DG  
    Change in Focus                :      -0.903878 Kr'5iFK7  
          7     0.40051424    -0.14351809 o72G oUfs  
    Change in Focus                :      -1.354815 =h9&`iwiu  
          8     0.48754161    -0.05649072 ht%:e?@i  
    Change in Focus                :       0.215922 n$}Cj}eju  
          9     0.40357468    -0.14045766 juQQ  
    Change in Focus                :       0.281783 p$ %D  
         10     0.26315315    -0.28087919 8(c,b  
    Change in Focus                :      -1.048393 X8(, ,>_  
         11     0.26120585    -0.28282649 w{; esU  
    Change in Focus                :       1.017611 !4B($]t  
         12     0.24033815    -0.30369419 t1)Qa(#]  
    Change in Focus                :      -0.109292 *^q%b /f  
         13     0.37164046    -0.17239188 P Yp<eo\  
    Change in Focus                :      -0.692430 4=E9$.3a  
         14     0.48597489    -0.05805744 (\<#fkeH  
    Change in Focus                :      -0.662040 0R%R2p'wG  
         15     0.21462327    -0.32940907  Lx:O Dd  
    Change in Focus                :       1.611296 WS?"OTH.^\  
         16     0.43378226    -0.11025008 y QxzFy  
    Change in Focus                :      -0.640081 Gn_rf"  
         17     0.39321881    -0.15081353 ,KHebv!  
    Change in Focus                :       0.914906 b-rgiR$cg  
         18     0.20692530    -0.33710703 ?|t9@r  
    Change in Focus                :       0.801607 t  Tky  
         19     0.51374068    -0.03029165 ({}JvSn1  
    Change in Focus                :       0.947293 pO.+hy  
         20     0.38013374    -0.16389860 fYuz39#*  
    Change in Focus                :       0.667010 #PpmR _IX  
    xu _:  
    Number of traceable Monte Carlo files generated: 20 prx)Cfv  
    w{1DwCLKq  
    Nominal     0.54403234 b]X c5Dp{  
    Best        0.54384387    Trial     2 3~7X2}qU  
    Worst       0.18154684    Trial     4 t_PAXj  
    Mean        0.35770970 @3hA\3ot^  
    Std Dev     0.11156454 ' ?3e1  
    IOx9".  
    &cEQ6('H  
    Compensator Statistics: P O,mg?JG(  
    Change in back focus: WML%yO\.;  
    Minimum            :        -1.354815 %\5d?;   
    Maximum            :         1.611296 O.%' 47A  
    Mean               :         0.161872 Jf-4Q!  
    Standard Deviation :         0.869664 6 ZutU ~HS  
    al9L+ruR  
    90% >       0.20977951               $s*\yam?|  
    80% >       0.22748071               %4/>7 aB]Y  
    50% >       0.38667627               E{m\LUd^ :  
    20% >       0.46553746               U=4tJb  
    10% >       0.50064115                [4u.*oL&  
    y3 vDKZ  
    End of Run. t<Iy `r7 1  
    u&HLdSHe  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 HD1+0<  
    f,ajo   
    aB6F<"L,  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 2nL [P#r  
    dVh*  a  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 f,Z* o  
    80% >       0.22748071                 `Bw>0%.  
    50% >       0.38667627                 ;L <D-=  
    20% >       0.46553746                 ) =KD   
    10% >       0.50064115 *] H8X=[x  
    I ,j,H z0  
    最后这个数值是MTF值呢,还是MTF的公差? ?AMn>v  
    KaEL*  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   v}vwk8  
    U3R;'80 f  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : {V7W!0;!  
    90% >       0.20977951                  l_2B  
    80% >       0.22748071                 rGn6S &-  
    50% >       0.38667627                 D\4pLm"!v  
    20% >       0.46553746                 ]jB`"to*}  
    10% >       0.50064115 ]B2%\}c  
    ....... 2FE13{+f  
    Jyz*W!kI  
    j*6>{_[  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   _kZ&t_]  
    Mode                : Sensitivities .gJv})Vi  
    Sampling            : 2  r .`&z  
    Nominal Criterion   : 0.54403234 U>-GM >  
    Test Wavelength     : 0.6328 N?{.}-Q  
    e#<A\?  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? b(Nxk2uv  
    }I"k=>Ycns  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试