切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16570阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 QAh6!<.;@  
    5A=FEg  
    KN9e""  
    O* 7` Waag  
    然后添加了默认公差分析,基本没变 q%A.)1<'_  
    C!}9[X!7@:  
    Ro|%pT  
    S^4T#/  
    然后运行分析的结果如下: |v%xOl  
    )$e_CJ}9e  
    Analysis of Tolerances IF$*6 ,v.z  
    $'>h7].  
    File : E:\光学设计资料\zemax练习\f500.ZMX vtVc^j4  
    Title: g}=opw6z  
    Date : TUE JUN 21 2011 &*wc` U  
    Z>zW83a  
    Units are Millimeters. J  4OgV?  
    All changes are computed using linear differences. B)4>:j:{?W  
    COf>H0^%Q  
    Paraxial Focus compensation only. L H`z '7&/  
    Xi!`+N4  
    WARNING: Solves should be removed prior to tolerancing. '+ cPx\4  
    :F`yAB3  
    Mnemonics: =Wj{J.7mf]  
    TFRN: Tolerance on curvature in fringes. jVtRn.qh  
    TTHI: Tolerance on thickness. g x~fZOF_  
    TSDX: Tolerance on surface decentering in x. Fb{kql=  
    TSDY: Tolerance on surface decentering in y. MKN],l N  
    TSTX: Tolerance on surface tilt in x (degrees). <^(g<B`>  
    TSTY: Tolerance on surface tilt in y (degrees). eDPmUlC+-  
    TIRR: Tolerance on irregularity (fringes). )2jBhT  
    TIND: Tolerance on Nd index of refraction. {g(-C&  
    TEDX: Tolerance on element decentering in x. %VD>S  
    TEDY: Tolerance on element decentering in y. 1Xi.OGl  
    TETX: Tolerance on element tilt in x (degrees). Iq[Z5k(K  
    TETY: Tolerance on element tilt in y (degrees). ;,yjkD[mWE  
    9(;I+.;8k  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. u:0M,Ye  
    %IbG@ }54  
    WARNING: Boundary constraints on compensators will be ignored. (\M&Q-xZ  
    ,[{)4J$MV  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm psZAO,p  
    Mode                : Sensitivities 9cm9;  
    Sampling            : 2 "2'pS<|  
    Nominal Criterion   : 0.54403234 !w9w{dtW=  
    Test Wavelength     : 0.6328 ^ |^Q(  
    <) ` ?s  
    41[1_p(  
    Fields: XY Symmetric Angle in degrees Uj[E_4h  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY (yx9ox@rL  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 V@"Y"}4n4  
    cKKl\g@}  
    Sensitivity Analysis: |4@su"OA  
    Mh+ym]6\(k  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| #AJo75E%  
    Type                      Value      Criterion        Change          Value      Criterion        Change Cd"iaiTD0  
    Fringe tolerance on surface 1 *l[;g  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 >[ox|_o  
    Change in Focus                :      -0.000000                            0.000000 PnKgUJoa0  
    Fringe tolerance on surface 2 9a*}&fL[  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ?U`~,oI0  
    Change in Focus                :       0.000000                            0.000000 6HW8mXQh<h  
    Fringe tolerance on surface 3 /bd1Bi  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 +W6QtB6  
    Change in Focus                :      -0.000000                            0.000000 j}CZ*  
    Thickness tolerance on surface 1 ;x=k J@  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 JP t=~e(  
    Change in Focus                :       0.000000                            0.000000 a\Ond#1p  
    Thickness tolerance on surface 2 0;kp`hB  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 }sm PP*  
    Change in Focus                :       0.000000                           -0.000000 A#y,B  
    Decenter X tolerance on surfaces 1 through 3 4{s3S2f =  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 d/k70Ybk  
    Change in Focus                :       0.000000                            0.000000 |aT&rpt   
    Decenter Y tolerance on surfaces 1 through 3 .cV<(J 5o  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ,/=Fm  
    Change in Focus                :       0.000000                            0.000000 d,_Ky#K5b  
    Tilt X tolerance on surfaces 1 through 3 (degrees) b5MCOW1+  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 x dT1jI  
    Change in Focus                :       0.000000                            0.000000 ;ss,x  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 'w8k*@cQ  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 %`cP|k  
    Change in Focus                :       0.000000                            0.000000 E26zw9d  
    Decenter X tolerance on surface 1 J\BTrN7  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 0 2lI-xHe  
    Change in Focus                :       0.000000                            0.000000 9"=1 O  
    Decenter Y tolerance on surface 1 6Ch [!=p{  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :q.g#:1s  
    Change in Focus                :       0.000000                            0.000000 Wy[Ua#Dd  
    Tilt X tolerance on surface (degrees) 1 R3;,EL{H&  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ._uXK[c7P  
    Change in Focus                :       0.000000                            0.000000 W?n)IBj8  
    Tilt Y tolerance on surface (degrees) 1 b6FC  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 q;^Q1[Ari  
    Change in Focus                :       0.000000                            0.000000 +ti_?gfx  
    Decenter X tolerance on surface 2 Eu4-=2!4  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 <@DF0x!  
    Change in Focus                :       0.000000                            0.000000 xb2xl.2x!  
    Decenter Y tolerance on surface 2 {!lC$SlJ  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 P9Yw\   
    Change in Focus                :       0.000000                            0.000000 ,[ UqUEO  
    Tilt X tolerance on surface (degrees) 2 L*Gk1'  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 s7A3CY]->  
    Change in Focus                :       0.000000                            0.000000 dOm@cs  
    Tilt Y tolerance on surface (degrees) 2 Rd?8LLz  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 m+t<<5I[-  
    Change in Focus                :       0.000000                            0.000000 [O"9OW'2!B  
    Decenter X tolerance on surface 3 Md4hd#z  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 m zh8<w?ns  
    Change in Focus                :       0.000000                            0.000000 oTtJ]`T  
    Decenter Y tolerance on surface 3 1%v!8$  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ,eI2#6w|C  
    Change in Focus                :       0.000000                            0.000000 cN#c25S>  
    Tilt X tolerance on surface (degrees) 3 jvI!BZ  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 C#^V<:9  
    Change in Focus                :       0.000000                            0.000000 \F$Vm'f_  
    Tilt Y tolerance on surface (degrees) 3 &tNnW   
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 lo1<t<w`  
    Change in Focus                :       0.000000                            0.000000 xppl6v(  
    Irregularity of surface 1 in fringes X 5.%e&`  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !CBvFl/v  
    Change in Focus                :       0.000000                            0.000000 o =oXL2}  
    Irregularity of surface 2 in fringes FN$sST  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 EO&PabZWR  
    Change in Focus                :       0.000000                            0.000000 m W/6FC  
    Irregularity of surface 3 in fringes JE a~avyJ  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 m| /?((s  
    Change in Focus                :       0.000000                            0.000000  iI!MF1  
    Index tolerance on surface 1 5^,"Ve|  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 FZvh]ZX  
    Change in Focus                :       0.000000                            0.000000 \]j{  
    Index tolerance on surface 2 \E(Negt7  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 |61W-9;  
    Change in Focus                :       0.000000                           -0.000000 ,2|(UTv  
    MO_-7,.y  
    Worst offenders: qG]G0|f  
    Type                      Value      Criterion        Change X,] E {  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 *%3%Zj,{  
    TSTY   2             0.20000000     0.35349910    -0.19053324 M$jU-;hRH  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 F*}.0SQ  
    TSTX   2             0.20000000     0.35349910    -0.19053324 lU`}  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 b1*5#2rs.  
    TSTY   1             0.20000000     0.42678383    -0.11724851 dR9[K4`p/  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 m@Q%)sc)  
    TSTX   1             0.20000000     0.42678383    -0.11724851 !OCb^y  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 8\N`2mPt  
    TSTY   3             0.20000000     0.42861670    -0.11541563 1edeV48{:  
    !kTI@103Wd  
    Estimated Performance Changes based upon Root-Sum-Square method: R_vF$X'Ow  
    Nominal MTF                 :     0.54403234 j>}<FW-N  
    Estimated change            :    -0.36299231 e5s=@-[  
    Estimated MTF               :     0.18104003 {:63% j  
    tL#]G?0d  
    Compensator Statistics: `y^tCJ2u*  
    Change in back focus: N!{waPbPi  
    Minimum            :        -0.000000 6T qs6*  
    Maximum            :         0.000000 DjMhI_Yu  
    Mean               :        -0.000000 Fk-}2_=v i  
    Standard Deviation :         0.000000 +o4W8f=Ga  
    7m<;"e)  
    Monte Carlo Analysis: 38gHM9T xh  
    Number of trials: 20 F?!X<N{  
    ;X z fd  
    Initial Statistics: Normal Distribution X!AD]sK  
    [PhT zXt  
      Trial       Criterion        Change !eC]=PoY  
          1     0.42804416    -0.11598818 xoYaL  
    Change in Focus                :      -0.400171 Ec/-f `8  
          2     0.54384387    -0.00018847 aANzL  
    Change in Focus                :       1.018470 <5xlP:Cx  
          3     0.44510003    -0.09893230 O0~Qh0~l  
    Change in Focus                :      -0.601922 7`G FtX}  
          4     0.18154684    -0.36248550 ?xT ^9  
    Change in Focus                :       0.920681 a3Fe42G2c|  
          5     0.28665820    -0.25737414 7rZE7+%]  
    Change in Focus                :       1.253875 VGVb3@  
          6     0.21263372    -0.33139862 D-S"?aO-  
    Change in Focus                :      -0.903878 :&'[#%h8  
          7     0.40051424    -0.14351809 ~stG2^"[  
    Change in Focus                :      -1.354815 %8]~+ #]p  
          8     0.48754161    -0.05649072 B7u4e8(E*  
    Change in Focus                :       0.215922 =iFI@2  
          9     0.40357468    -0.14045766 yQ/E0>Uj!  
    Change in Focus                :       0.281783 ;+Mee ^E>!  
         10     0.26315315    -0.28087919 "Xz[|Xl  
    Change in Focus                :      -1.048393 5i eF8F%  
         11     0.26120585    -0.28282649 ,QZNH?Cp/  
    Change in Focus                :       1.017611 AB0>|.  
         12     0.24033815    -0.30369419 \Q~HL_fy|Y  
    Change in Focus                :      -0.109292 z7PmyU >  
         13     0.37164046    -0.17239188 3yXSv1  
    Change in Focus                :      -0.692430 DZ*m"Bi  
         14     0.48597489    -0.05805744 "/~KB~bB  
    Change in Focus                :      -0.662040 t91z<Y|  
         15     0.21462327    -0.32940907 ,mY3oyu  
    Change in Focus                :       1.611296 7K`Z<v&*  
         16     0.43378226    -0.11025008 b&_u+g  
    Change in Focus                :      -0.640081 $psPNJG  
         17     0.39321881    -0.15081353 Y *?hA'  
    Change in Focus                :       0.914906 r1R\cor  
         18     0.20692530    -0.33710703 }[O/u <Z  
    Change in Focus                :       0.801607 l(j._j~p  
         19     0.51374068    -0.03029165 *_,: &Ur  
    Change in Focus                :       0.947293 ^dP]3D1 @  
         20     0.38013374    -0.16389860 v*3tqT(%  
    Change in Focus                :       0.667010 a*3h|b<  
    QZ?%xN(4  
    Number of traceable Monte Carlo files generated: 20 loByT p ^  
    ` & {  
    Nominal     0.54403234 |k [hk  
    Best        0.54384387    Trial     2 OY'6~w9  
    Worst       0.18154684    Trial     4 ZBxV&.9/  
    Mean        0.35770970 pY"&=I79tb  
    Std Dev     0.11156454 C%T$l8$  
    mgL{t"$c  
    eZ`x[g%1  
    Compensator Statistics: #}8 x  
    Change in back focus: 9X ^D(  
    Minimum            :        -1.354815 _WB*ArR  
    Maximum            :         1.611296 Z-;I,\Y%  
    Mean               :         0.161872 Zf *DC~E_  
    Standard Deviation :         0.869664 .'Rz tBv  
    ZD`p$:pT  
    90% >       0.20977951               t}m"rMbt  
    80% >       0.22748071               YLkdT%  
    50% >       0.38667627               me`|i-   
    20% >       0.46553746               9|5>?'CqP  
    10% >       0.50064115                {+  @M!  
    ,Z aPY  
    End of Run. ;: 4PT~\*  
    hY}.2  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 &:}}T=@M1  
    wU(N<9  
    O tD!@GQ6  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 @mRda %qR  
    ?<h|Q~JH  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 -Ka0B={Z  
    80% >       0.22748071                 ,.PW qfb  
    50% >       0.38667627                 vddh 2G  
    20% >       0.46553746                 9G)q U  
    10% >       0.50064115 n3LCQ:]T f  
    Ey**j  
    最后这个数值是MTF值呢,还是MTF的公差? b{i7FRR>o4  
    dt=5 Pnf[y  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Q?"-[6[v  
    5p5S_%R$e  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ,\FJVS;NeJ  
    90% >       0.20977951                 9 OC!\' 8  
    80% >       0.22748071                 <R.5 Ma  
    50% >       0.38667627                 jI8qiZ);~  
    20% >       0.46553746                 3PEv.hGx  
    10% >       0.50064115 [8VB"{{&  
    ....... bw8~p%l?  
    JRm:hf'  
    W:7oGZ>4  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   n+M:0{Y|  
    Mode                : Sensitivities m"~^-mJ-  
    Sampling            : 2 () Z!u%j  
    Nominal Criterion   : 0.54403234 [lqwzW{(UN  
    Test Wavelength     : 0.6328 ^1vh5D  
    c]>s(/}T  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? Bf$YwoZov  
    U5]{`C0H?  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试