切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16151阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 N`<4:v[P  
    gJ3OK!/  
    :\+{;;a@  
    ~i }+P71  
    然后添加了默认公差分析,基本没变 MzR1<W{ O  
    YF! &*6m  
    UGmuX:@y76  
    juCG?}di;  
    然后运行分析的结果如下: h-La'}>?  
    i'Y'HI  
    Analysis of Tolerances 50`iCD  
    OJ35En  
    File : E:\光学设计资料\zemax练习\f500.ZMX sArje(5Eo  
    Title: C '-zh\a  
    Date : TUE JUN 21 2011 &8]#RQy{f  
    9'n))%CZ.  
    Units are Millimeters. S~k 0@  
    All changes are computed using linear differences. r}oURy,5  
    -OrY{^F  
    Paraxial Focus compensation only. vr{'FMc  
    N4a`8dS|  
    WARNING: Solves should be removed prior to tolerancing. B0)`wsb_  
    [arTx ^  
    Mnemonics: H ~[LJ5x  
    TFRN: Tolerance on curvature in fringes. aJ6#=G61l  
    TTHI: Tolerance on thickness. dNUR)X#e  
    TSDX: Tolerance on surface decentering in x. >P\h,1  
    TSDY: Tolerance on surface decentering in y. 7`b lGzP_  
    TSTX: Tolerance on surface tilt in x (degrees). 9u ?)vR[@e  
    TSTY: Tolerance on surface tilt in y (degrees). &r'{(O8$N  
    TIRR: Tolerance on irregularity (fringes). CJ9cCtA  
    TIND: Tolerance on Nd index of refraction. 1KTabj/C  
    TEDX: Tolerance on element decentering in x. &gGs) $f[  
    TEDY: Tolerance on element decentering in y. "[jhaUAK  
    TETX: Tolerance on element tilt in x (degrees). *?_qE  
    TETY: Tolerance on element tilt in y (degrees). YVB% kKv{  
    3z,v#2  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. N>d|A]zH  
    &GdL 9!hH  
    WARNING: Boundary constraints on compensators will be ignored. c q*p9c  
    ~~C6)N~1  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm G;(onJz  
    Mode                : Sensitivities "_K}rI6(t  
    Sampling            : 2 ^uyNv-'F  
    Nominal Criterion   : 0.54403234 y#S1c)vU  
    Test Wavelength     : 0.6328 45x,|h[F{5  
    ;".z[l*  
    Qm.z@DwFM{  
    Fields: XY Symmetric Angle in degrees 8To7c  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY :O9P(X*  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 >vlQ|/C  
    |x &Z~y  
    Sensitivity Analysis: V~OUE]]Q  
    0jR){G9+  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| sA/,+aM  
    Type                      Value      Criterion        Change          Value      Criterion        Change ~TYbP  
    Fringe tolerance on surface 1 =m`l%V[  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 uuu\f*<  
    Change in Focus                :      -0.000000                            0.000000 f5@.^hi[  
    Fringe tolerance on surface 2 ;"1/#CY773  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 L~*u4  
    Change in Focus                :       0.000000                            0.000000 EVR! @6@  
    Fringe tolerance on surface 3 ]{YN{  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 |vv]Z(_  
    Change in Focus                :      -0.000000                            0.000000 mT96 ]V \  
    Thickness tolerance on surface 1 8NnhT E  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 }%eDEM  
    Change in Focus                :       0.000000                            0.000000 @. "q  
    Thickness tolerance on surface 2 o g_Ri$x8  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 lZ}P{d'f.  
    Change in Focus                :       0.000000                           -0.000000 43KaL(  
    Decenter X tolerance on surfaces 1 through 3 Ll,I-BQ 9  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 T`uDlo  
    Change in Focus                :       0.000000                            0.000000 {3_Gjb5\\4  
    Decenter Y tolerance on surfaces 1 through 3 S#,+Z7  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 /x$}D=(CZ  
    Change in Focus                :       0.000000                            0.000000 J;S-+  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ]de\i=?|  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 d>Un J)V}  
    Change in Focus                :       0.000000                            0.000000 O{~KR/  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) A*hZv|$0  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 vruD U#  
    Change in Focus                :       0.000000                            0.000000 '}_=kp'X  
    Decenter X tolerance on surface 1 5\WUoSgy  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 \fTTkpM  
    Change in Focus                :       0.000000                            0.000000 6VC-KY  
    Decenter Y tolerance on surface 1 *\D}eBd|  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 C?/r;  
    Change in Focus                :       0.000000                            0.000000 {t&*>ma6)  
    Tilt X tolerance on surface (degrees) 1 byafb+x  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 >E, Q  
    Change in Focus                :       0.000000                            0.000000 f_rp<R>Uu  
    Tilt Y tolerance on surface (degrees) 1 ((qGh>*  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 F'1k<V?  
    Change in Focus                :       0.000000                            0.000000 xpAok]  
    Decenter X tolerance on surface 2 M;qBDT~)  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 E30Ln_^o  
    Change in Focus                :       0.000000                            0.000000 0*/kGvw`i  
    Decenter Y tolerance on surface 2 [P{a_(  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 " CM ucK  
    Change in Focus                :       0.000000                            0.000000 7#ofNH J  
    Tilt X tolerance on surface (degrees) 2 \0nlPXk?G  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 %yfE7UPS]  
    Change in Focus                :       0.000000                            0.000000 :<H8'4>  
    Tilt Y tolerance on surface (degrees) 2 =5?.'XMk  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 k=`$6(>Fz  
    Change in Focus                :       0.000000                            0.000000 _B3zRO  
    Decenter X tolerance on surface 3 b:1 L@8s;  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 }-74 f  
    Change in Focus                :       0.000000                            0.000000 X &D{5~qC  
    Decenter Y tolerance on surface 3 ~q 7;8<U  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 6lsEGe  
    Change in Focus                :       0.000000                            0.000000 ytiyF2Kp  
    Tilt X tolerance on surface (degrees) 3 eQ;Q4  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 /D'M24  
    Change in Focus                :       0.000000                            0.000000 ;g+]klR!  
    Tilt Y tolerance on surface (degrees) 3 J1X~vQAe  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Z5$fE7ba+  
    Change in Focus                :       0.000000                            0.000000 DHv2&zH  
    Irregularity of surface 1 in fringes *GJ:+U&m[  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 q*bt4,D&Es  
    Change in Focus                :       0.000000                            0.000000 -%,"iaO  
    Irregularity of surface 2 in fringes w^Ag]HZN  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 9,scH65x  
    Change in Focus                :       0.000000                            0.000000 >I^9:Q  
    Irregularity of surface 3 in fringes f}iU& 3S  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 +Ofa#^5);K  
    Change in Focus                :       0.000000                            0.000000 h)cY])tGtK  
    Index tolerance on surface 1 [pL*@9Sa&  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 /P:EWUf'  
    Change in Focus                :       0.000000                            0.000000 Zj!Abji=O  
    Index tolerance on surface 2 y^R4I_* z  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 )c+k_;t'+  
    Change in Focus                :       0.000000                           -0.000000 DZk1ZLz  
    bq NP#C  
    Worst offenders: JYJU&u  
    Type                      Value      Criterion        Change Vm,,u F  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 e)b%`ntF  
    TSTY   2             0.20000000     0.35349910    -0.19053324 JNi=`X&A  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 psUE!~9,  
    TSTX   2             0.20000000     0.35349910    -0.19053324 KmmQ,e%  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 $gvr -~  
    TSTY   1             0.20000000     0.42678383    -0.11724851 o2naVxetE  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 C?o6(p"b  
    TSTX   1             0.20000000     0.42678383    -0.11724851 lP3h<j  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 y' [LNp V  
    TSTY   3             0.20000000     0.42861670    -0.11541563 50$W0L$  
    Ee)xnY%(  
    Estimated Performance Changes based upon Root-Sum-Square method: S&wzB)#'  
    Nominal MTF                 :     0.54403234 U\vY/6;JI  
    Estimated change            :    -0.36299231 =wrP:wYF  
    Estimated MTF               :     0.18104003 >;9NtoE  
    l'"'o~MC  
    Compensator Statistics: -[heV|$;  
    Change in back focus: y vI<4F  
    Minimum            :        -0.000000 wxdyF&U n  
    Maximum            :         0.000000 !OAvD#  
    Mean               :        -0.000000 :m ZYS4L~  
    Standard Deviation :         0.000000 `q_<Im%I  
    gKi{Y1  
    Monte Carlo Analysis: i=rH7k  
    Number of trials: 20 [Y/:@t"2y  
    T1bd:mC}n  
    Initial Statistics: Normal Distribution g7n "  
    eV2mMSY  
      Trial       Criterion        Change rQr!R$t/[  
          1     0.42804416    -0.11598818 GLUUY0  
    Change in Focus                :      -0.400171 (MLhaux-  
          2     0.54384387    -0.00018847 z9 ($.  
    Change in Focus                :       1.018470 #fDs[  
          3     0.44510003    -0.09893230 *9 D!A  
    Change in Focus                :      -0.601922 y{=>$C[  
          4     0.18154684    -0.36248550 )(TAT<  
    Change in Focus                :       0.920681 '*T]fND4  
          5     0.28665820    -0.25737414 7x k|+!  
    Change in Focus                :       1.253875 <Ef[c@3  
          6     0.21263372    -0.33139862 %l !xkCKA  
    Change in Focus                :      -0.903878 ;rR/5d1!  
          7     0.40051424    -0.14351809 r:g9Z_  
    Change in Focus                :      -1.354815 |"Z{I3Umg  
          8     0.48754161    -0.05649072 $k%Z$NSN=  
    Change in Focus                :       0.215922 $[ z y  
          9     0.40357468    -0.14045766 i$uN4tVKT  
    Change in Focus                :       0.281783 eUBrzoCO  
         10     0.26315315    -0.28087919 =.Tv)/ea  
    Change in Focus                :      -1.048393 n7! H:{L  
         11     0.26120585    -0.28282649 tef^ShF]  
    Change in Focus                :       1.017611 Nneo{j  
         12     0.24033815    -0.30369419 A)NkT`<)  
    Change in Focus                :      -0.109292 |yY`s6Uq  
         13     0.37164046    -0.17239188 L%h/OD  
    Change in Focus                :      -0.692430 VaLs`q&3>  
         14     0.48597489    -0.05805744 ?Bx./t><  
    Change in Focus                :      -0.662040 >)**khuP7  
         15     0.21462327    -0.32940907 o\=n4;S  
    Change in Focus                :       1.611296 5V5w:U>_z  
         16     0.43378226    -0.11025008 Zv!{{XO2;  
    Change in Focus                :      -0.640081 K=\O5#F?3  
         17     0.39321881    -0.15081353 TqAPAHg  
    Change in Focus                :       0.914906 7Y( 5]A9=  
         18     0.20692530    -0.33710703 Da1aI]{I  
    Change in Focus                :       0.801607 Xm!-~n@-m7  
         19     0.51374068    -0.03029165 Wf26  
    Change in Focus                :       0.947293 V5mTu)tp5  
         20     0.38013374    -0.16389860 tWPO]3hW  
    Change in Focus                :       0.667010 TzG]WsY_  
    #x@eDnb_  
    Number of traceable Monte Carlo files generated: 20 5iX! lAFJ  
    =o7}]k7  
    Nominal     0.54403234 lB;FUck9  
    Best        0.54384387    Trial     2 .*/Fucr  
    Worst       0.18154684    Trial     4 9 c3E+  
    Mean        0.35770970 #JW+~FU`  
    Std Dev     0.11156454 +j/~Af p5f  
    CA s>AXbs  
    h2q/mi5{  
    Compensator Statistics: !CY&{LEYn0  
    Change in back focus: Gc,_v3\  
    Minimum            :        -1.354815 Y] g?2N=E  
    Maximum            :         1.611296 5Fw - d  
    Mean               :         0.161872 (p)!Mq "^  
    Standard Deviation :         0.869664 \XzM^K3  
    \2v"YVWw  
    90% >       0.20977951               dp5cDF}l  
    80% >       0.22748071               _lxco=qd=%  
    50% >       0.38667627                iThSt72  
    20% >       0.46553746               q6d~V] 4:  
    10% >       0.50064115                ,. EBOUW^  
    K7)kS  
    End of Run. 1NLg _UBOK  
    L"(4R^]  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 V!/:53  
    zTm]AG|0  
    y/_XgPfWU  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 B4H!5b  
    nHXX\i  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 0ezYdS~o  
    80% >       0.22748071                 E2wz(,@  
    50% >       0.38667627                 HfNDD| Zz  
    20% >       0.46553746                 vG41Ck1  
    10% >       0.50064115 (=x"Y{%  
    rJyCw+N0  
    最后这个数值是MTF值呢,还是MTF的公差? &dB-r&4;+  
    :3h{ A`u  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Av J4\  
    I3b"|%  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 8ip7^  
    90% >       0.20977951                 nt1CTWKM8^  
    80% >       0.22748071                 *O$CaAr\s  
    50% >       0.38667627                 D>L2o88  
    20% >       0.46553746                 8^^[XbH  
    10% >       0.50064115 q z&+=d@  
    ....... . 9G<y 4  
    !cW[G/W8  
    v5ur&egVs  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   )vB2!H/  
    Mode                : Sensitivities ^nK7i[yF.k  
    Sampling            : 2 Bvjl-$m!v  
    Nominal Criterion   : 0.54403234 \(UKd v  
    Test Wavelength     : 0.6328 +#J,BKul  
    Vn=qV3OE]  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? p4u5mM  
    S*)1|~pRvQ  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试