切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16393阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 fq(5Lfe}  
    w, 7Cr  
    %M6 c0d[9-  
    +-P<CCvWz  
    然后添加了默认公差分析,基本没变 8t\}c6/3"  
    ?cxr%`E  
    B^m!t7/,  
    r=0j7^B#  
    然后运行分析的结果如下: $rTu6(i1  
    4k$0CbHx0  
    Analysis of Tolerances 0etwz3NuW  
    >{F!ntEj  
    File : E:\光学设计资料\zemax练习\f500.ZMX l $w/Fz  
    Title: .qinR 6=  
    Date : TUE JUN 21 2011 p z @km  
    sDAK\#z  
    Units are Millimeters. Gc^t%Ue-H)  
    All changes are computed using linear differences. /f]/8b g>  
    Um'Ro4  
    Paraxial Focus compensation only. tj0Qr-/  
    ?OO%5PSen  
    WARNING: Solves should be removed prior to tolerancing. B~rU1Y)  
    K=o:V&  
    Mnemonics: TZBVU&,{Z  
    TFRN: Tolerance on curvature in fringes. {\Ys@FF  
    TTHI: Tolerance on thickness. Z>h{` X\2  
    TSDX: Tolerance on surface decentering in x. \-d '9b?  
    TSDY: Tolerance on surface decentering in y.  z \^  
    TSTX: Tolerance on surface tilt in x (degrees). uAT/6@  
    TSTY: Tolerance on surface tilt in y (degrees). |Q6h /"2  
    TIRR: Tolerance on irregularity (fringes). % GVN4y&  
    TIND: Tolerance on Nd index of refraction.  `~h0?g  
    TEDX: Tolerance on element decentering in x. FH[#yq.Pr  
    TEDY: Tolerance on element decentering in y. _[%n ~6  
    TETX: Tolerance on element tilt in x (degrees). `Jqf**t  
    TETY: Tolerance on element tilt in y (degrees). I3An57YV].  
    l{QC}{Ejc2  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Kk>DYHZ6y  
    /]g>#J%b  
    WARNING: Boundary constraints on compensators will be ignored. lfRH`u  
    g+3Hwtl  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm /D8EI   
    Mode                : Sensitivities u9,=po=+7f  
    Sampling            : 2 G}q<{<+$  
    Nominal Criterion   : 0.54403234 FXxN>\76.  
    Test Wavelength     : 0.6328 LGXZx}4@;  
    IF e+ B"  
    Yu;9&b  
    Fields: XY Symmetric Angle in degrees _^-D _y  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY eN4t1 $  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 :U8k|,~f  
    &rcdr+'  
    Sensitivity Analysis: s*eyTm  
    w?i)/q  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| N-xnenci  
    Type                      Value      Criterion        Change          Value      Criterion        Change z :? :  
    Fringe tolerance on surface 1 Gj*SPU  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 L@+Z)# V  
    Change in Focus                :      -0.000000                            0.000000 Wy!uRzbBv  
    Fringe tolerance on surface 2 oLd:3,p}  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 C,(j$Id  
    Change in Focus                :       0.000000                            0.000000 1j+eD:d'  
    Fringe tolerance on surface 3 1NW>wo  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 \UhGGg%  
    Change in Focus                :      -0.000000                            0.000000 c|+y9(0|y  
    Thickness tolerance on surface 1 kM,@[V  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 fmBkB8  
    Change in Focus                :       0.000000                            0.000000 =8@RKG`>;  
    Thickness tolerance on surface 2 -&$%|cyThQ  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 $.;iu2iyo  
    Change in Focus                :       0.000000                           -0.000000 ]M uF9={  
    Decenter X tolerance on surfaces 1 through 3 ;tm3B2  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 +<z7ds{Z  
    Change in Focus                :       0.000000                            0.000000 "7:u0p!  
    Decenter Y tolerance on surfaces 1 through 3 mcCB7<. e  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 u6f4yQ  
    Change in Focus                :       0.000000                            0.000000 @::lJDGVv  
    Tilt X tolerance on surfaces 1 through 3 (degrees) :bI,rEW#_  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 TX&[;jsj  
    Change in Focus                :       0.000000                            0.000000 BL7>dZOa  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) mqubXS;J|P  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Kjv2J;Xuh  
    Change in Focus                :       0.000000                            0.000000 @PKAz&0  
    Decenter X tolerance on surface 1 Zi ma^IL  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 80dSQ"y  
    Change in Focus                :       0.000000                            0.000000 z"9aAytd  
    Decenter Y tolerance on surface 1 =%xIjxYl  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 nM=2"`@$  
    Change in Focus                :       0.000000                            0.000000 V, E9Uds  
    Tilt X tolerance on surface (degrees) 1 haN"/C^  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ]!q }|bP  
    Change in Focus                :       0.000000                            0.000000 Q:kwQg:~  
    Tilt Y tolerance on surface (degrees) 1 0= 2H9v  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 g~eJ YS,  
    Change in Focus                :       0.000000                            0.000000 pz.Y=V\t  
    Decenter X tolerance on surface 2 w' .'Yu6  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Hi$#!OU  
    Change in Focus                :       0.000000                            0.000000 -?[O"D"c  
    Decenter Y tolerance on surface 2 /@6E3lh S  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 <1TlW ~q<  
    Change in Focus                :       0.000000                            0.000000 p!C_:Z5i  
    Tilt X tolerance on surface (degrees) 2 e og\pMv  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Oib[\O7[z  
    Change in Focus                :       0.000000                            0.000000 'W}~)+zK  
    Tilt Y tolerance on surface (degrees) 2 pHigxeV2  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 w{RNv%hJ$=  
    Change in Focus                :       0.000000                            0.000000 8moUK3w  
    Decenter X tolerance on surface 3 Pv^(Q ]  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 v`@5enr  
    Change in Focus                :       0.000000                            0.000000 ;OQ#@|D  
    Decenter Y tolerance on surface 3  <WO&$&  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 f34_?F<h  
    Change in Focus                :       0.000000                            0.000000 zuK/(qZ  
    Tilt X tolerance on surface (degrees) 3 d&O'r[S  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 =PI^X\if88  
    Change in Focus                :       0.000000                            0.000000 [8 {_i?wY  
    Tilt Y tolerance on surface (degrees) 3 pK-_R#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 [c,|Lw4  
    Change in Focus                :       0.000000                            0.000000 2,rY\Nu_  
    Irregularity of surface 1 in fringes @$2`DI{_^  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 +8MW$ m$  
    Change in Focus                :       0.000000                            0.000000 #9URVq,  
    Irregularity of surface 2 in fringes AN|jFSQ'  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 R>Z,TQU  
    Change in Focus                :       0.000000                            0.000000 ORUWsl Mt  
    Irregularity of surface 3 in fringes em f0sL  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 &*Q|d*CP  
    Change in Focus                :       0.000000                            0.000000 WZfk}To1#  
    Index tolerance on surface 1 9:bh3@r/  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 $q4XcIX 7  
    Change in Focus                :       0.000000                            0.000000 QC$=Fs5+  
    Index tolerance on surface 2 ykErt%k<n  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Ukk-(gjX  
    Change in Focus                :       0.000000                           -0.000000 )$2%&9b  
    G1`mn$`kq  
    Worst offenders: [Q2S3szbt6  
    Type                      Value      Criterion        Change @2x0V]AI  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 s!8J.hD'I  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ?^+#pcX]t|  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ">0/>>Ry  
    TSTX   2             0.20000000     0.35349910    -0.19053324 , mAB)at  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 GC5#1+fQ  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ~9`^72  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 |G`4"``]k  
    TSTX   1             0.20000000     0.42678383    -0.11724851 9,Crmbw8  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 7I2a*4}  
    TSTY   3             0.20000000     0.42861670    -0.11541563 MEdIw#P.}{  
    M"$jpBN*  
    Estimated Performance Changes based upon Root-Sum-Square method: 7Va#{Y;Zy  
    Nominal MTF                 :     0.54403234 N"q+UCRC  
    Estimated change            :    -0.36299231 J4Q)`Y\~  
    Estimated MTF               :     0.18104003 ~:P8g<w  
    2n-Tpay0  
    Compensator Statistics: :IP;Frc MP  
    Change in back focus: !`O_VV`/@  
    Minimum            :        -0.000000 Nqo#sBS  
    Maximum            :         0.000000 .N-'; %8  
    Mean               :        -0.000000 E.7AbHph0  
    Standard Deviation :         0.000000 o{S}e!Vb  
    s +y'<88  
    Monte Carlo Analysis: X:xC>4]gG'  
    Number of trials: 20 9TbS>o  
    q/d5P  
    Initial Statistics: Normal Distribution dy8In%  
    n)1  
      Trial       Criterion        Change bJG!)3cx  
          1     0.42804416    -0.11598818  *pS7/ Qe  
    Change in Focus                :      -0.400171 zd6Qw-D7x  
          2     0.54384387    -0.00018847 1?e>x91  
    Change in Focus                :       1.018470 c'TiWZP~  
          3     0.44510003    -0.09893230 %%-U .   
    Change in Focus                :      -0.601922 <'o'H  
          4     0.18154684    -0.36248550 3[|:sa8?s  
    Change in Focus                :       0.920681 N%n1>!X)!  
          5     0.28665820    -0.25737414 LS2ek*FJO  
    Change in Focus                :       1.253875 _x,-d|9b d  
          6     0.21263372    -0.33139862 Ht=6P)  
    Change in Focus                :      -0.903878 rlUdAa3  
          7     0.40051424    -0.14351809 !S > |Qh  
    Change in Focus                :      -1.354815 :#Ex3H7  
          8     0.48754161    -0.05649072 dc\u$'F@S  
    Change in Focus                :       0.215922 =Nv= Q mO  
          9     0.40357468    -0.14045766 >H=Q$gI  
    Change in Focus                :       0.281783 "t%1@b*u  
         10     0.26315315    -0.28087919 ZB_16&2Ow  
    Change in Focus                :      -1.048393 d <|lLNS  
         11     0.26120585    -0.28282649 'WM~ bm+N  
    Change in Focus                :       1.017611 q. ,p6D  
         12     0.24033815    -0.30369419 ]\os`At  
    Change in Focus                :      -0.109292  Vgru, '  
         13     0.37164046    -0.17239188 M|Lw`?T  
    Change in Focus                :      -0.692430 p.TiTFu/  
         14     0.48597489    -0.05805744 "[".3V  
    Change in Focus                :      -0.662040 Fy(nu-W  
         15     0.21462327    -0.32940907 [-:<z?(n4  
    Change in Focus                :       1.611296 ^*?B)D=,  
         16     0.43378226    -0.11025008 kb}]sj  
    Change in Focus                :      -0.640081 nX.sh  
         17     0.39321881    -0.15081353 4MF}FS2)  
    Change in Focus                :       0.914906 oX:1 qJrC  
         18     0.20692530    -0.33710703  Z,8+@  
    Change in Focus                :       0.801607 VATXsD  
         19     0.51374068    -0.03029165 H>X>5_{}  
    Change in Focus                :       0.947293 @L>NN>?SGQ  
         20     0.38013374    -0.16389860 }JpslY*aS  
    Change in Focus                :       0.667010 (fk, 80  
    yZ(Nv $[5  
    Number of traceable Monte Carlo files generated: 20 9^ *ZH1  
    eM1;Nl  
    Nominal     0.54403234 ncw?;  
    Best        0.54384387    Trial     2 meM.?kk(  
    Worst       0.18154684    Trial     4 \Zz= 4 j  
    Mean        0.35770970 SU#P.y18%  
    Std Dev     0.11156454 !>kv.`|7~  
    FOUs= E[  
    O3w_vm'  
    Compensator Statistics: VqO<+~M,E  
    Change in back focus: Qdx`c^4m  
    Minimum            :        -1.354815 Dxa)7dA|  
    Maximum            :         1.611296 EBL,E:_)  
    Mean               :         0.161872 TLL[F;uZ  
    Standard Deviation :         0.869664 \,cKt_{ u  
    C+#;L+$Gi  
    90% >       0.20977951               M;TfD  
    80% >       0.22748071               84oW  
    50% >       0.38667627               |>o0d~s  
    20% >       0.46553746               "/K&qj  
    10% >       0.50064115                <}Wy;!L  
    'B<qG<>  
    End of Run. n XeK,C  
    tU2to V  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 6q uWO2x  
    t1{%FJ0F  
    8.3_Wb(c  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 []N$;~R7  
    g$-D?~(Z  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 n ua8y(W  
    80% >       0.22748071                 #`L}.  
    50% >       0.38667627                 _NqT8C4C  
    20% >       0.46553746                 5eSTT#[+R  
    10% >       0.50064115 ._8cJf.ae  
    ;pyJ O_R[  
    最后这个数值是MTF值呢,还是MTF的公差? |mE +f]7$  
    L(n~@ gq  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   R6$F<;nw  
    E!~2\qKT  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : w/W?/1P>q  
    90% >       0.20977951                 Q09~vFBg  
    80% >       0.22748071                  !Ocg  
    50% >       0.38667627                 @wJa33QT  
    20% >       0.46553746                 f8jz49C  
    10% >       0.50064115 I>~BkR+u%o  
    ....... J$*["y`+  
    L\CM);y  
    Dx*oSP.qX  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Eakjsk  
    Mode                : Sensitivities A_U0HVx_  
    Sampling            : 2 C)}LV  
    Nominal Criterion   : 0.54403234 jN>UW}?  
    Test Wavelength     : 0.6328 x+`3G.  
    1RHH<c%2n  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? aKr4E3`  
    a :AcCd)  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试