切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16237阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 HR'F  
    K[V#Pj9  
    o|s|Wm x>u  
    *L<<S=g$2  
    然后添加了默认公差分析,基本没变 O+DYh=m*p  
    /5>A 2y  
    a}k5[)et  
    oBPm^ob4  
    然后运行分析的结果如下: 0w2<2grQ  
    ]>+ teG:4  
    Analysis of Tolerances p{0rHu[  
    JAmpU^(C  
    File : E:\光学设计资料\zemax练习\f500.ZMX ){tT B  
    Title: -OgC.6  
    Date : TUE JUN 21 2011 b u/GaE~  
    ; jJ%<  
    Units are Millimeters. py/#h$eY  
    All changes are computed using linear differences. l n09_Lr  
    8hX /~-H  
    Paraxial Focus compensation only. \VAS<?3  
    ~NK|q5(I  
    WARNING: Solves should be removed prior to tolerancing. kKVNE h Tp  
    ph7]*W-  
    Mnemonics: DL '{ rK  
    TFRN: Tolerance on curvature in fringes. `y&2Bf  
    TTHI: Tolerance on thickness. EBUCG"e  
    TSDX: Tolerance on surface decentering in x. )c0Dofhg  
    TSDY: Tolerance on surface decentering in y. &X}i%etp^2  
    TSTX: Tolerance on surface tilt in x (degrees). .Ax]SNZ+:A  
    TSTY: Tolerance on surface tilt in y (degrees). cEPqcy *  
    TIRR: Tolerance on irregularity (fringes). ^K'XlM`a  
    TIND: Tolerance on Nd index of refraction. \q|<\~A  
    TEDX: Tolerance on element decentering in x. @PKY>58)  
    TEDY: Tolerance on element decentering in y. )3!z2f:e  
    TETX: Tolerance on element tilt in x (degrees). Gd[: &h  
    TETY: Tolerance on element tilt in y (degrees). mw${3j~&  
    #t&L}=G{%  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. b;G#MjQp'  
    `Y<FR  
    WARNING: Boundary constraints on compensators will be ignored. Hh qNp U  
    !ac,qj7spa  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm @aWd0e]  
    Mode                : Sensitivities Dgz^s^fxU  
    Sampling            : 2 14 hE<u  
    Nominal Criterion   : 0.54403234 /V>yF&p  
    Test Wavelength     : 0.6328 =?1B|hdo  
    ;<K#h9#*7  
    oMb@)7  
    Fields: XY Symmetric Angle in degrees WP? AQD  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY P?`a{sl.  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 =zwn3L8fL  
    3c[TPD_:  
    Sensitivity Analysis: pb|,rLNZ  
    6"U$H$i.G  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| iq`caoi  
    Type                      Value      Criterion        Change          Value      Criterion        Change ys} I~MK-  
    Fringe tolerance on surface 1 6tBe,'*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 N?mQ50o~C  
    Change in Focus                :      -0.000000                            0.000000 Ibu  5  
    Fringe tolerance on surface 2 >B+!fi'SS>  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Uf\U~wM<  
    Change in Focus                :       0.000000                            0.000000 y9Q.TL>=[  
    Fringe tolerance on surface 3 t$ 3/ZTx  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 M:.0]'[s5  
    Change in Focus                :      -0.000000                            0.000000 ,-5|qko=  
    Thickness tolerance on surface 1 _G ^Cc}X  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ;0:[X+"(  
    Change in Focus                :       0.000000                            0.000000 X32{y973hT  
    Thickness tolerance on surface 2 "|d# +C  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ]R]%c*tA  
    Change in Focus                :       0.000000                           -0.000000 @*5(KIeeC>  
    Decenter X tolerance on surfaces 1 through 3 %bgUU|CdA  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ~>>^7oq  
    Change in Focus                :       0.000000                            0.000000 3 V0^v  
    Decenter Y tolerance on surfaces 1 through 3 yey]#M[y  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }6 Mo C0  
    Change in Focus                :       0.000000                            0.000000 eDS,}Z'  
    Tilt X tolerance on surfaces 1 through 3 (degrees) C"g bol^  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 h~u|v[@{J  
    Change in Focus                :       0.000000                            0.000000 $VUX?ii$7=  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) !4(QeV-=  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ix_&<?8  
    Change in Focus                :       0.000000                            0.000000 _'Hw` 0}s  
    Decenter X tolerance on surface 1 Q?{^8?7  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 YaAOP'p  
    Change in Focus                :       0.000000                            0.000000 jF0>w  m  
    Decenter Y tolerance on surface 1 =nE^zY2m%  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 e# z#bz2<  
    Change in Focus                :       0.000000                            0.000000 4~z-&>%  
    Tilt X tolerance on surface (degrees) 1 ! +XreCw  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 N<T@GQwkS  
    Change in Focus                :       0.000000                            0.000000 Z6IWQo,)Rh  
    Tilt Y tolerance on surface (degrees) 1 0K^?QM|S  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ^W ,~   
    Change in Focus                :       0.000000                            0.000000 i&\ c DQ 3  
    Decenter X tolerance on surface 2 ?CE&F<?#@  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 E{{Kz r2$  
    Change in Focus                :       0.000000                            0.000000 C,VvbB  
    Decenter Y tolerance on surface 2 jUd)|v+t  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 jAy 0k  
    Change in Focus                :       0.000000                            0.000000 IRT0   
    Tilt X tolerance on surface (degrees) 2 1SSS0&  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 80 ckh  
    Change in Focus                :       0.000000                            0.000000 q:u,)6  
    Tilt Y tolerance on surface (degrees) 2 7(C:ty9  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 "43F.!P  
    Change in Focus                :       0.000000                            0.000000 ZMO ym=  
    Decenter X tolerance on surface 3 W?D-&X^ny  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 F $1f8U8  
    Change in Focus                :       0.000000                            0.000000 1EA#c>I$  
    Decenter Y tolerance on surface 3 p;.M .  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 5Tq*]Z E  
    Change in Focus                :       0.000000                            0.000000 K#xL-   
    Tilt X tolerance on surface (degrees) 3 %`}nP3  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 DIx.a^LR  
    Change in Focus                :       0.000000                            0.000000 % !Ih=DZ  
    Tilt Y tolerance on surface (degrees) 3 S9d Xkd  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 t {H{xd  
    Change in Focus                :       0.000000                            0.000000 du_~P"[  
    Irregularity of surface 1 in fringes Y]bS=*q  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 LpN3cy>U  
    Change in Focus                :       0.000000                            0.000000 2 :wgt  
    Irregularity of surface 2 in fringes U;t1 K  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Ik-E_U2  
    Change in Focus                :       0.000000                            0.000000 T}59m;I  
    Irregularity of surface 3 in fringes ) (0=w4  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 bL/DjsZ@  
    Change in Focus                :       0.000000                            0.000000 ;2[),k  
    Index tolerance on surface 1 OxN[w|2\4  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Ty}Y/jW  
    Change in Focus                :       0.000000                            0.000000 yf/i)  
    Index tolerance on surface 2 @W-0ybv  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 _fS4a134R  
    Change in Focus                :       0.000000                           -0.000000 i(> WeC+  
    &pW2R}  
    Worst offenders: *auT_*  
    Type                      Value      Criterion        Change jcHyRR1R  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 &cwN&XBY  
    TSTY   2             0.20000000     0.35349910    -0.19053324 KkCsQ~po  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 gFl@A}  
    TSTX   2             0.20000000     0.35349910    -0.19053324 "EwzuM8 f  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 /h8100  
    TSTY   1             0.20000000     0.42678383    -0.11724851 b>Ea_3T/  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Hb0_QT~  
    TSTX   1             0.20000000     0.42678383    -0.11724851 N9 h|_ax  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 7[I +1  
    TSTY   3             0.20000000     0.42861670    -0.11541563 JJ9R, 8n6  
    ~ +h4i'  
    Estimated Performance Changes based upon Root-Sum-Square method: v2k@yxt(  
    Nominal MTF                 :     0.54403234 |5jrl|  
    Estimated change            :    -0.36299231 vIf-TQw  
    Estimated MTF               :     0.18104003 wHh6y?g\  
    `\GR Y @cg  
    Compensator Statistics: 6q^\pJY%&7  
    Change in back focus: (__$YQ-  
    Minimum            :        -0.000000 }42Hhu7j  
    Maximum            :         0.000000 aW9\h_$  
    Mean               :        -0.000000 oU se~  
    Standard Deviation :         0.000000 \i+Ad@)  
    9sI&d  
    Monte Carlo Analysis: 3)I]bui  
    Number of trials: 20 F}=_"IkZ  
    Mfnfp{.)  
    Initial Statistics: Normal Distribution gegM&Xo  
    >Y(JC#M;  
      Trial       Criterion        Change uh`5:V  
          1     0.42804416    -0.11598818 .5);W;`X  
    Change in Focus                :      -0.400171 70 Ph^e)  
          2     0.54384387    -0.00018847 k(o(:-+x  
    Change in Focus                :       1.018470 uIBN !\j  
          3     0.44510003    -0.09893230 [5tvdW6Z &  
    Change in Focus                :      -0.601922 ;YSe:m*  
          4     0.18154684    -0.36248550 _]-8gr-T  
    Change in Focus                :       0.920681 HJBGxy w  
          5     0.28665820    -0.25737414 Kp^"<%RT  
    Change in Focus                :       1.253875 41P0)o  
          6     0.21263372    -0.33139862 Kwi+}B!  
    Change in Focus                :      -0.903878 ',/#|  
          7     0.40051424    -0.14351809 9MH;=88q  
    Change in Focus                :      -1.354815 aRElk&M  
          8     0.48754161    -0.05649072 eK5~YM:o  
    Change in Focus                :       0.215922 :s \zk^h?  
          9     0.40357468    -0.14045766 -}PE(c1%?q  
    Change in Focus                :       0.281783 /GX>L)  
         10     0.26315315    -0.28087919 ]=9 d'WL  
    Change in Focus                :      -1.048393 ay|jq "a  
         11     0.26120585    -0.28282649 g9CedD%40  
    Change in Focus                :       1.017611 pU'${Z~b  
         12     0.24033815    -0.30369419 W?"l6s  
    Change in Focus                :      -0.109292 P&=YLL<W  
         13     0.37164046    -0.17239188 { ^^5FE)%  
    Change in Focus                :      -0.692430 [+QyKyhTO  
         14     0.48597489    -0.05805744 $-u c#57  
    Change in Focus                :      -0.662040 #-PMREgO  
         15     0.21462327    -0.32940907 7r^Cs#b+I  
    Change in Focus                :       1.611296 ZjY,k  
         16     0.43378226    -0.11025008 m.!LL]]  
    Change in Focus                :      -0.640081 5D2mZ/  
         17     0.39321881    -0.15081353 T+aNX/c|>  
    Change in Focus                :       0.914906 ` &bF@$((  
         18     0.20692530    -0.33710703 d3 i(UN]  
    Change in Focus                :       0.801607 yf!7 Q>_G^  
         19     0.51374068    -0.03029165 > ;#Y0  
    Change in Focus                :       0.947293 W -HOl!)  
         20     0.38013374    -0.16389860 _|W&tB *  
    Change in Focus                :       0.667010 t- TUP>_  
    KC"&3  
    Number of traceable Monte Carlo files generated: 20 K F_Uu  
    &@'%0s9g  
    Nominal     0.54403234 ij#v_~g3  
    Best        0.54384387    Trial     2 ,X1M!'  
    Worst       0.18154684    Trial     4 U;TS7A3  
    Mean        0.35770970 1L+hI=\O  
    Std Dev     0.11156454 jMCd`Q]K  
    *aC[Tv[-P  
    "" >Yw/'  
    Compensator Statistics: ]n>9(Mp!M  
    Change in back focus: he/rt#  
    Minimum            :        -1.354815 .ahY 1CO  
    Maximum            :         1.611296 pdER#7Tq  
    Mean               :         0.161872 e$P^},0/  
    Standard Deviation :         0.869664 4M>pHz4  
    f0Q! lMv  
    90% >       0.20977951               8t=O=l\  
    80% >       0.22748071               7w" !"W#  
    50% >       0.38667627               ;?@Rq"*  
    20% >       0.46553746               ("ix!\1K@  
    10% >       0.50064115                $GU  s\  
    YgjW%q   
    End of Run. X@}7 # Vt  
    QI U%!9Y  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 $[ S 33Q  
    \m}a%/  
    );AtFP0Y  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 =OtW!vx#R.  
    J k`Jv;  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 bA Yp }  
    80% >       0.22748071                 1I'}Uh*  
    50% >       0.38667627                 g'T L`=O  
    20% >       0.46553746                 35AH|U7b  
    10% >       0.50064115 h(}#s1Fzq  
    H(- -hG5}  
    最后这个数值是MTF值呢,还是MTF的公差? SJO*g&duQ  
    dc~vQDNw[X  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   c[X6!_  
    k5tyOk  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : FuBUg _h  
    90% >       0.20977951                 H0.&~!,*  
    80% >       0.22748071                 <_bGV  
    50% >       0.38667627                 K~5(j{Kb8  
    20% >       0.46553746                 MI8c>5?  
    10% >       0.50064115 i~HS"n  
    ....... \jkDRR[  
    c1f`?i}.  
    D{[i_K  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   $:DhK  
    Mode                : Sensitivities L=<,+m[!  
    Sampling            : 2 k1FG$1.  
    Nominal Criterion   : 0.54403234 bqR0./V  
    Test Wavelength     : 0.6328 m%OX< T!  
    jRjQDK_"ka  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? s8kkf5bu  
    ds QGj&  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试