切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16109阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 s0]ZE\`H>  
    (^W :f{  
    )X," NJG  
    5FuV=Yuc  
    然后添加了默认公差分析,基本没变 w)* H&8h@  
    jl}!UG  
    +zbCYA  
    'hPW#*#W<  
    然后运行分析的结果如下: 0[fBP\H"Wr  
    !~RK2d  
    Analysis of Tolerances v FQ]>n X  
    E+EcXf  
    File : E:\光学设计资料\zemax练习\f500.ZMX Nt_sV7zzb  
    Title: KPDJ$,:  
    Date : TUE JUN 21 2011 @aN~97 H\  
    cAGM|%  
    Units are Millimeters. S&-F(#CF^  
    All changes are computed using linear differences. #g@4c3um|  
    9>0OpgvC(  
    Paraxial Focus compensation only. _-H,S)kI`  
    =jh^mD&'  
    WARNING: Solves should be removed prior to tolerancing. suIYfjh  
    >);M\,1\I  
    Mnemonics: p5OoDo  
    TFRN: Tolerance on curvature in fringes. ns~bz-n  
    TTHI: Tolerance on thickness. *2N0r2t&  
    TSDX: Tolerance on surface decentering in x. ]b>XN8y.  
    TSDY: Tolerance on surface decentering in y. ~|, "w90  
    TSTX: Tolerance on surface tilt in x (degrees). -IVWkA)7  
    TSTY: Tolerance on surface tilt in y (degrees). @:B}QxC  
    TIRR: Tolerance on irregularity (fringes). pYm#iz  
    TIND: Tolerance on Nd index of refraction. ">_|!B&wb^  
    TEDX: Tolerance on element decentering in x. ~`Vo0Z*S  
    TEDY: Tolerance on element decentering in y. _g9j_ x:=  
    TETX: Tolerance on element tilt in x (degrees). >'=9sCi  
    TETY: Tolerance on element tilt in y (degrees). Vv5T(~   
    wj0_X;L  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 8-H:5E 4Y  
    %XBTN  
    WARNING: Boundary constraints on compensators will be ignored. S&y${f  
    |H,WFw1%}  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ar 7.O;e  
    Mode                : Sensitivities 7LM&3mA<  
    Sampling            : 2 =aQlT*n%3  
    Nominal Criterion   : 0.54403234 :6%ivS  
    Test Wavelength     : 0.6328 *kZH~]  
    +t*I{X(  
    *' es(]W  
    Fields: XY Symmetric Angle in degrees -Vb5d!(  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY Isvb;VT9L  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 i"Hc(lg  
    |{-?OOKj  
    Sensitivity Analysis: w'_|X&@H  
    Z  eY *5m  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ki2 `gLK  
    Type                      Value      Criterion        Change          Value      Criterion        Change !2&)6SL/  
    Fringe tolerance on surface 1 +\dKe[j{g  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 5kWzD'!^  
    Change in Focus                :      -0.000000                            0.000000 P_mP ^L  
    Fringe tolerance on surface 2 fuCt9Kjo<  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 z{PPPFk4J  
    Change in Focus                :       0.000000                            0.000000 -$#2?/uqC  
    Fringe tolerance on surface 3 Sfc,F8$&N  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 EBk-qd a}  
    Change in Focus                :      -0.000000                            0.000000 <C;TGA  
    Thickness tolerance on surface 1 X7-[#} T  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ~,)D n  
    Change in Focus                :       0.000000                            0.000000 0wSy[z4V  
    Thickness tolerance on surface 2 g] ]6)nT  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 %[~g84@  
    Change in Focus                :       0.000000                           -0.000000 @}wa Z?'  
    Decenter X tolerance on surfaces 1 through 3 ,CPAS}kS  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 r~7}w4U  
    Change in Focus                :       0.000000                            0.000000 `HYj:4v'  
    Decenter Y tolerance on surfaces 1 through 3 @x A^F%(  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 "+`u ]  
    Change in Focus                :       0.000000                            0.000000 I1s= =  
    Tilt X tolerance on surfaces 1 through 3 (degrees) <tsexsw  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 t;PG  
    Change in Focus                :       0.000000                            0.000000 Pk(%=P ,  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 3fX _XH1Q  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 eTw9 c }[  
    Change in Focus                :       0.000000                            0.000000 ]B~ (yh  
    Decenter X tolerance on surface 1 /CKnXU;  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 CK|AXz+EN  
    Change in Focus                :       0.000000                            0.000000 z%JN|5  
    Decenter Y tolerance on surface 1 9AQ,@xP|  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 L *|P'  
    Change in Focus                :       0.000000                            0.000000 zLg$|@E&  
    Tilt X tolerance on surface (degrees) 1 *<[\|L:#]Z  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 =WZ9|e  
    Change in Focus                :       0.000000                            0.000000 nUX3a'R  
    Tilt Y tolerance on surface (degrees) 1 MF*4E9Ue.  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 d ( ru5*p  
    Change in Focus                :       0.000000                            0.000000 9H:J&'Xi7  
    Decenter X tolerance on surface 2 "H@I~X=  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 0yMHU[):~  
    Change in Focus                :       0.000000                            0.000000 i-p,x0th  
    Decenter Y tolerance on surface 2 ZWjje6  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 r~oUln<[  
    Change in Focus                :       0.000000                            0.000000 M$>Nd6,@N  
    Tilt X tolerance on surface (degrees) 2 08k  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 pEN`6*  
    Change in Focus                :       0.000000                            0.000000 %1{O  
    Tilt Y tolerance on surface (degrees) 2 vflC{,{=k>  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7(C)vtEO:  
    Change in Focus                :       0.000000                            0.000000 N:#$S$  
    Decenter X tolerance on surface 3 aCIz(3^  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 U#w0E G  
    Change in Focus                :       0.000000                            0.000000 U#PgkP[4  
    Decenter Y tolerance on surface 3 O*]}0*CT  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 $83Qd  
    Change in Focus                :       0.000000                            0.000000 u}_x   
    Tilt X tolerance on surface (degrees) 3 28+{  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 -*ZQ=nomN  
    Change in Focus                :       0.000000                            0.000000 -{z[.v.p  
    Tilt Y tolerance on surface (degrees) 3 $3ZQ|X[|+  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 HB*BL+S06  
    Change in Focus                :       0.000000                            0.000000 'dzbeTJ D5  
    Irregularity of surface 1 in fringes Q?([#  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 >){}nlQf  
    Change in Focus                :       0.000000                            0.000000 z-"P raP  
    Irregularity of surface 2 in fringes 9asA-'fZ  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Al *yx_j  
    Change in Focus                :       0.000000                            0.000000 g1y@z8Z{  
    Irregularity of surface 3 in fringes Yb[)ETf^  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 #hu`X6s"  
    Change in Focus                :       0.000000                            0.000000 K)Z~ iBRM  
    Index tolerance on surface 1 Ro<5c_k  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 maQxU(  
    Change in Focus                :       0.000000                            0.000000 [ws;|n h  
    Index tolerance on surface 2 gA1j'!\6l9  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ^HT vw~]5  
    Change in Focus                :       0.000000                           -0.000000 ~-%z:Re'_  
    8-kR {9r  
    Worst offenders: a?Y>hvI  
    Type                      Value      Criterion        Change MAX?,- x  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 *g:Dg I 2  
    TSTY   2             0.20000000     0.35349910    -0.19053324 pV 8U`T  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 +R{~%ZTK  
    TSTX   2             0.20000000     0.35349910    -0.19053324 [{& OcEf  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ajM\\a?  
    TSTY   1             0.20000000     0.42678383    -0.11724851 9j-;-`$S  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 YbZ?["S&  
    TSTX   1             0.20000000     0.42678383    -0.11724851 d}Y#l}!E6  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 <RH%FhT  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ka(3ONbG  
    W&I:z-VH  
    Estimated Performance Changes based upon Root-Sum-Square method: ,LLx&jS  
    Nominal MTF                 :     0.54403234 #BH]`A J  
    Estimated change            :    -0.36299231 I?\P^f  
    Estimated MTF               :     0.18104003 AxO.adQE%  
    2sEG# /Y=  
    Compensator Statistics: !g|[A7<|  
    Change in back focus: c3<H272\  
    Minimum            :        -0.000000 X%;4G^%ZI  
    Maximum            :         0.000000 >*+n`"6  
    Mean               :        -0.000000 c2s73i z  
    Standard Deviation :         0.000000 ,#0#1k<Dm  
    [3tU0BU"  
    Monte Carlo Analysis: cmd7-2  
    Number of trials: 20 8LuU2Lo  
    ds{)p<LpT  
    Initial Statistics: Normal Distribution :r:x|[3.  
    m5P@F@  
      Trial       Criterion        Change !# xi^I  
          1     0.42804416    -0.11598818  91fZ r  
    Change in Focus                :      -0.400171 R.GDCGAL  
          2     0.54384387    -0.00018847 E=,fdyj.  
    Change in Focus                :       1.018470 *N6sxFs  
          3     0.44510003    -0.09893230 (Bpn9}F-V.  
    Change in Focus                :      -0.601922 DwTVoCC  
          4     0.18154684    -0.36248550 Gsm.a  
    Change in Focus                :       0.920681 \,!Qo*vj  
          5     0.28665820    -0.25737414 VPVg \K{  
    Change in Focus                :       1.253875 X@A8~ kj1  
          6     0.21263372    -0.33139862 |a'$v4dCF  
    Change in Focus                :      -0.903878 gS|6,A9  
          7     0.40051424    -0.14351809 5pff}Ru`  
    Change in Focus                :      -1.354815 dn_l#$ U  
          8     0.48754161    -0.05649072 Q5 o0!w  
    Change in Focus                :       0.215922 YWk+}y}^d  
          9     0.40357468    -0.14045766 yhnPS4DC  
    Change in Focus                :       0.281783 ?+{_x^  
         10     0.26315315    -0.28087919 S]&aDg1y}  
    Change in Focus                :      -1.048393 ZF<$6"4N  
         11     0.26120585    -0.28282649 A9GSeW<  
    Change in Focus                :       1.017611 C_h$$G{S(  
         12     0.24033815    -0.30369419 ;j<#VS-]  
    Change in Focus                :      -0.109292 "5\6`\/  
         13     0.37164046    -0.17239188 = ^%*:iT  
    Change in Focus                :      -0.692430 -V'Y^Df  
         14     0.48597489    -0.05805744 vnlHUQLO  
    Change in Focus                :      -0.662040 eK\i={va  
         15     0.21462327    -0.32940907 %T}*DC$&S  
    Change in Focus                :       1.611296  |vBy=:  
         16     0.43378226    -0.11025008 YlZ&4   
    Change in Focus                :      -0.640081 # 3FsK  
         17     0.39321881    -0.15081353 |NWHZo  
    Change in Focus                :       0.914906 &hM7y7  
         18     0.20692530    -0.33710703 hSj@<#b>F  
    Change in Focus                :       0.801607 fUq #mkq}  
         19     0.51374068    -0.03029165 owA.P-4  
    Change in Focus                :       0.947293 $+U 6c~^^  
         20     0.38013374    -0.16389860 *3fhVl=8^*  
    Change in Focus                :       0.667010 {!1RlW  
    >YcaFnY  
    Number of traceable Monte Carlo files generated: 20 ahN8IV=+Gm  
    ;):E 8;B)  
    Nominal     0.54403234 Vf$$e)  
    Best        0.54384387    Trial     2 DX/oHkLD'  
    Worst       0.18154684    Trial     4 :=:m4UJb  
    Mean        0.35770970 wEU=R>j.  
    Std Dev     0.11156454 c? Mbyay  
    ]na$n[T/I  
    @oD2_D2  
    Compensator Statistics: zS`KJVm  
    Change in back focus: qv<^%7gq  
    Minimum            :        -1.354815 DjvPeX  
    Maximum            :         1.611296 ^SIA%S3  
    Mean               :         0.161872 (543`dqAmC  
    Standard Deviation :         0.869664 wVF qkJ  
    FA%V>&;`  
    90% >       0.20977951               P!XO8X 1F  
    80% >       0.22748071               MIqH%W.r u  
    50% >       0.38667627               [<wpH0lNoy  
    20% >       0.46553746               3sl6$NKo  
    10% >       0.50064115                nL]eGC  
    sg4(@>  
    End of Run. C;_00EQ=  
    Zlrbd  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 m!3D5z]n9  
    Ou+bce  
    _SMi`ie#  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 "1 UpoF'w  
    mRxeob  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 m[BpV.s  
    80% >       0.22748071                 D$E#:[  
    50% >       0.38667627                 R 83PHM  
    20% >       0.46553746                 OLoo#HW  
    10% >       0.50064115 }rF4M1+B\  
    f+\UVq?  
    最后这个数值是MTF值呢,还是MTF的公差? >;%LW} %  
    i`?yi-R&  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???    i(V  
    n'%cO]nSx  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : hqwsgJ  
    90% >       0.20977951                 YfNN&G4_  
    80% >       0.22748071                 "j.Q*Hazg  
    50% >       0.38667627                 Urksj:N  
    20% >       0.46553746                 t{B6W)q  
    10% >       0.50064115 H)y_[:[  
    ....... tA9Ew{3s  
    RusiCo!r  
    vY[ u;VU  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   LOgB_$9_3  
    Mode                : Sensitivities 8zwH^q[`r  
    Sampling            : 2 d Z+7S`{  
    Nominal Criterion   : 0.54403234 B E#pHg  
    Test Wavelength     : 0.6328 U)3?&9H  
    a &`^M  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? cL"Ral-qB  
    O [=W%2I!i  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试