我现在在初学zemax的
公差分析,找了一个双胶合
透镜 5PcN$r"P FX->_}kL=
:rdw0EROy 9s.x%m, 然后添加了默认公差分析,基本没变
T?DX|?2X Yn~N;VUA
.uoQ@3 @)\{u$ 然后运行分析的结果如下:
un&Z'
.
&'mq).I2 Analysis of Tolerances
K3; lst>4 I6.!0.G File : E:\光学设计资料\zemax练习\f500.ZMX
AZHZUd4 Title:
#W]4aZ1 Date : TUE JUN 21 2011
@W|N1,sp
eZck$]P(6H Units are Millimeters.
aFbIJm=! All changes are computed using linear differences.
+Cf x!i(M>P Paraxial Focus compensation only.
|e%o (C&Lpt_ WARNING: Solves should be removed prior to tolerancing.
IAlX^6s* 2!Gb4V Mnemonics:
Cj +{%^# TFRN: Tolerance on curvature in fringes.
@[=K`n:n_ TTHI: Tolerance on thickness.
Eq\PSa=gz TSDX: Tolerance on surface decentering in x.
D,c53B6M TSDY: Tolerance on surface decentering in y.
`w;8xD( TSTX: Tolerance on surface tilt in x (degrees).
v90)G8|q TSTY: Tolerance on surface tilt in y (degrees).
K:cZq3F TIRR: Tolerance on irregularity (fringes).
y$Y*%D^w TIND: Tolerance on Nd index of refraction.
Twi7g3}/jB TEDX: Tolerance on element decentering in x.
$Ith8p~ TEDY: Tolerance on element decentering in y.
&yabxl_ TETX: Tolerance on element tilt in x (degrees).
Ld9YbL: TETY: Tolerance on element tilt in y (degrees).
A><q-`bw p-S&Wq WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
: g+5cs c97?+Y^ WARNING: Boundary constraints on compensators will be ignored.
CD"D^\z U?[_ d Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
rZi\ Mode : Sensitivities
)*CDufRFz Sampling : 2
Rt6(y #dF Nominal Criterion : 0.54403234
6!;eJYj, Test Wavelength : 0.6328
N}/|B} d'okXCG xl]1{$1M Fields: XY Symmetric Angle in degrees
^{m&2l&87 # X-Field Y-Field Weight VDX VDY VCX VCY
oLh2:c 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
z5_#]:o& -"9&YkN Sensitivity Analysis:
zF([{5r[!) ?r}'0dW |----------------- Minimum ----------------| |----------------- Maximum ----------------|
gAPD
y/wM Type Value Criterion Change Value Criterion Change
~M!9E]) Fringe tolerance on surface 1
|RS(QU<QE TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
$.0l% $ 7 Change in Focus :
-0.000000 0.000000
S!r,p}; Fringe tolerance on surface 2
4]P5k6nV TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
VHbQLJ0 Change in Focus : 0.000000 0.000000
d7
W[.M$] Fringe tolerance on surface 3
#=81`u TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
ulAOQGZ Change in Focus : -0.000000 0.000000
`Jv~.EF% Thickness tolerance on surface 1
R?E< }\! TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
iKVJ
c=C Change in Focus : 0.000000 0.000000
[WXa]d5Y Thickness tolerance on surface 2
5nA
*'($j TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
v&]k8Hc- Change in Focus : 0.000000 -0.000000
Gp.XTz#= Decenter X tolerance on surfaces 1 through 3
0g{`Qd TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
Mcfqo0T- Change in Focus : 0.000000 0.000000
N0POyd/rL Decenter Y tolerance on surfaces 1 through 3
p\).zuEf. TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
-
fx?@ Change in Focus : 0.000000 0.000000
^OZ*L e Tilt X tolerance on surfaces 1 through 3 (degrees)
d H ; TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
/T\'&s3D+ Change in Focus : 0.000000 0.000000
z:p;Wm Tilt Y tolerance on surfaces 1 through 3 (degrees)
1.S?(1e" TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
^lP;JT? Change in Focus : 0.000000 0.000000
X?gH(mn Decenter X tolerance on surface 1
/9o
gg TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
B(t`$mC Change in Focus : 0.000000 0.000000
gZ W(z Decenter Y tolerance on surface 1
=g3o@WD/G TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
pj9*$.{ Change in Focus : 0.000000 0.000000
{Yc#XP Tilt X tolerance on surface (degrees) 1
|J^}BXW'^) TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
aJ3.D Change in Focus : 0.000000 0.000000
q?0&&"T} Tilt Y tolerance on surface (degrees) 1
0YA TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
Q| _e= Change in Focus : 0.000000 0.000000
5fjL Decenter X tolerance on surface 2
|]UR&* TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
U'oFW@Y;h Change in Focus : 0.000000 0.000000
J`d_=C?J Decenter Y tolerance on surface 2
Muay6b? TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
: pkOZ+t Change in Focus : 0.000000 0.000000
4 >`2vb Tilt X tolerance on surface (degrees) 2
u_ *DS- TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
Vm]xV_FOd Change in Focus : 0.000000 0.000000
j#rj_ uP Tilt Y tolerance on surface (degrees) 2
QJ^'Uyfdn TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
b
sM]5^ Change in Focus : 0.000000 0.000000
*u ^m f~ Decenter X tolerance on surface 3
.EB'n{zxd TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
\3XG8J Change in Focus : 0.000000 0.000000
|)[I$]L Decenter Y tolerance on surface 3
VOkSR6 TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
{Lg]chJq? Change in Focus : 0.000000 0.000000
Usl963A#'F Tilt X tolerance on surface (degrees) 3
Y2d(HD@ TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
5i1E
5@~ Change in Focus : 0.000000 0.000000
Q^ }Ib[ Tilt Y tolerance on surface (degrees) 3
AO~f=GW TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
={G0p=~+,p Change in Focus : 0.000000 0.000000
,ui=Wi1 Irregularity of surface 1 in fringes
MG-#p8 TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
!L3\B_# Change in Focus : 0.000000 0.000000
J>dIEW%u Irregularity of surface 2 in fringes
7wz9x8 \t TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
$,
vXyZ Change in Focus : 0.000000 0.000000
~kp,;!^vr Irregularity of surface 3 in fringes
FByA4VxB TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
S>;+zVF] Change in Focus : 0.000000 0.000000
T?k!%5,Kj Index tolerance on surface 1
5MHcgzyp TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
Yow Change in Focus : 0.000000 0.000000
JuD&121N* Index tolerance on surface 2
]S+KH
\2 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
9$s~ `z) Change in Focus : 0.000000 -0.000000
wB+X@AA zFm:=,9 Worst offenders:
rGmxK|R Type Value Criterion Change
A/TCJ#>l TSTY 2 -0.20000000 0.35349910 -0.19053324
C0gO^A.d TSTY 2 0.20000000 0.35349910 -0.19053324
*n x$r[Mqj TSTX 2 -0.20000000 0.35349910 -0.19053324
{v}BtZ TSTX 2 0.20000000 0.35349910 -0.19053324
HAmAmEc, TSTY 1 -0.20000000 0.42678383 -0.11724851
@bF4'M TSTY 1 0.20000000 0.42678383 -0.11724851
bc]SY = TSTX 1 -0.20000000 0.42678383 -0.11724851
7-VP)|L#G TSTX 1 0.20000000 0.42678383 -0.11724851
[=]LR9c4 TSTY 3 -0.20000000 0.42861670 -0.11541563
BFswqp: TSTY 3 0.20000000 0.42861670 -0.11541563
T!X`"rI 2?nEHIUT Estimated Performance Changes based upon Root-Sum-Square method:
})umg8s Nominal MTF : 0.54403234
S0w:R:q}L Estimated change : -0.36299231
`5
Iaz Estimated MTF : 0.18104003
Q" G;L L>&9+<-B Compensator Statistics: Mhu|S)hn Change in back focus: #<DS-^W! Minimum : -0.000000 {F ',e~}s Maximum : 0.000000 !W/"Z!k Mean : -0.000000 ^l{q{O7U$ Standard Deviation : 0.000000 x5R|,bY KsQn %mxS Monte Carlo Analysis:
I~Q
G Number of trials: 20
2= zw! @tlWyUju Initial Statistics: Normal Distribution
zALtG<_t Slv91c&md, Trial Criterion Change
O,Ej m<nt 1 0.42804416 -0.11598818
lf\x`3Vd Change in Focus : -0.400171
-"6Z@8= 2 0.54384387 -0.00018847
heScIe
N^` Change in Focus : 1.018470
H,EGB8E2 3 0.44510003 -0.09893230
7O,!67+^~ Change in Focus : -0.601922
]Jo}F@\g 4 0.18154684 -0.36248550
&3 *#h Change in Focus : 0.920681
<UwYI_OX 5 0.28665820 -0.25737414
Gq-~zmg Change in Focus : 1.253875
M{g.x4M@W 6 0.21263372 -0.33139862
4q\&Mb3 Change in Focus : -0.903878
(_=R<: 7 0.40051424 -0.14351809
d:{}0hmxI Change in Focus : -1.354815
_&N}.y)+t 8 0.48754161 -0.05649072
fZb}- Change in Focus : 0.215922
uyvjo)T 9 0.40357468 -0.14045766
W<:x4gBa Change in Focus : 0.281783
Y|S>{$W 10 0.26315315 -0.28087919
Nx"|10gC Change in Focus : -1.048393
o ~M=o:^nH 11 0.26120585 -0.28282649
[l}H%S Change in Focus : 1.017611
$f=6>Kn|^] 12 0.24033815 -0.30369419
zEt!Pug Change in Focus : -0.109292
VIg6' 13 0.37164046 -0.17239188
3)y=}jw Change in Focus : -0.692430
/[A#iTe 14 0.48597489 -0.05805744
54#P Change in Focus : -0.662040
c7D{^$L9v 15 0.21462327 -0.32940907
h@dy}Id Change in Focus : 1.611296
JCci*F#r 16 0.43378226 -0.11025008
G5ShheZd Change in Focus : -0.640081
EHK+qrym 17 0.39321881 -0.15081353
gv){&=9/
Change in Focus : 0.914906
w?Pex]i{ 18 0.20692530 -0.33710703
J-qUJX~4c Change in Focus : 0.801607
qRHT~ta-? 19 0.51374068 -0.03029165
CSY-{ Change in Focus : 0.947293
n=?wX#rEC# 20 0.38013374 -0.16389860
10xza=a Change in Focus : 0.667010
R'8S)'l M 5$JB nN Number of traceable Monte Carlo files generated: 20
c
Qe3 ^SK!?M Nominal 0.54403234
jVh:Bw Best 0.54384387 Trial 2
\VWgF)_ Worst 0.18154684 Trial 4
+S WtHj7e Mean 0.35770970
L1f=90 Std Dev 0.11156454
gq@8Z
AWn nuVux5: #8~ygEa} Compensator Statistics:
iNc!zA4 Change in back focus:
8`6G_:&X Minimum : -1.354815
=R "LB}>h} Maximum : 1.611296
@$iZ9x6t Mean : 0.161872
m&s>Sn+ Standard Deviation : 0.869664
#M4LG; B 6)BPDfU, 90% > 0.20977951 aKE`nA0\B 80% > 0.22748071 `"hWbmQ 50% > 0.38667627 R x( yn 20% > 0.46553746 hy>0'$mU 10% > 0.50064115 {rK]Q! yj >TiEYMW End of Run.
+v$W$s&b-h Gpi_p 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
w=3
j'y{f
0
/9 C=v [4aw*M1z}. 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
:LlZ#V2 V.6pfL 不吝赐教