我现在在初学zemax的
公差分析,找了一个双胶合
透镜 E%np-is{1 .j l|?o
:@c\a99Kx >21f%Z 然后添加了默认公差分析,基本没变
u0?,CQPL 01&J7A2
N~0~1
WQn 9yWQ}h 然后运行分析的结果如下:
? 1
~C`I; {OGv1\ol& Analysis of Tolerances
W, -fnJk ]zUvs6ksLG File : E:\光学设计资料\zemax练习\f500.ZMX
wzNGL{3 Title:
G~FAChI8![ Date : TUE JUN 21 2011
T$vDw|KSVP qpZR-O Units are Millimeters.
se]q~<& All changes are computed using linear differences.
?o883!&v #z&@f Paraxial Focus compensation only.
fXfO9{E )DwHLaLW WARNING: Solves should be removed prior to tolerancing.
IuN:*P QsC6\Gt# Mnemonics:
JR^#NefJ TFRN: Tolerance on curvature in fringes.
:W*']8 M- TTHI: Tolerance on thickness.
S{7 R6,B5 TSDX: Tolerance on surface decentering in x.
LqcHsUFj TSDY: Tolerance on surface decentering in y.
Xn3
\a81 TSTX: Tolerance on surface tilt in x (degrees).
qdY*y&}"J TSTY: Tolerance on surface tilt in y (degrees).
iW$f1=i TIRR: Tolerance on irregularity (fringes).
u~\I TIND: Tolerance on Nd index of refraction.
5A`T}~"X TEDX: Tolerance on element decentering in x.
Yj#4{2A TEDY: Tolerance on element decentering in y.
SQ0t28N3h TETX: Tolerance on element tilt in x (degrees).
TL*8h7.( TETY: Tolerance on element tilt in y (degrees).
dWDM{t\}\ =lG/A[66 WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
z(JDLd *Iir/6myM WARNING: Boundary constraints on compensators will be ignored.
6E0{(* ,bnrVa(I Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
[)L) R` Mode : Sensitivities
BMxe)izT; Sampling : 2
Ubf@"B Nominal Criterion : 0.54403234
,p7W4;?4 Test Wavelength : 0.6328
2Pz)vnV" 9:1[4o)~ Mlm dfO%Y Fields: XY Symmetric Angle in degrees
jt,dr3|/n # X-Field Y-Field Weight VDX VDY VCX VCY
),;O3:n 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
ccm(r~lhJ 8P[aX3T7G Sensitivity Analysis:
RZrQ^tI3" O=2SDuBZ |----------------- Minimum ----------------| |----------------- Maximum ----------------|
at5>h Type Value Criterion Change Value Criterion Change
+:jx{*}jo Fringe tolerance on surface 1
9zs!rlzQ TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
8 O% ?t Change in Focus :
-0.000000 0.000000
X^c2 Fringe tolerance on surface 2
y L|'K} TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
\;F_QV Change in Focus : 0.000000 0.000000
/lqVMlz\77 Fringe tolerance on surface 3
O[RivHCY TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
@M_p3[c\ Change in Focus : -0.000000 0.000000
b<1+q{0r Thickness tolerance on surface 1
y3{F\K TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
~;uc@GGo Change in Focus : 0.000000 0.000000
gtVnn]Jh Thickness tolerance on surface 2
T**v!Ls TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
`Eq~W@';Q0 Change in Focus : 0.000000 -0.000000
~f5g\n; Decenter X tolerance on surfaces 1 through 3
5kbbeO|0G TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
;eQOBGX9 Change in Focus : 0.000000 0.000000
G}8Zkz@+ Decenter Y tolerance on surfaces 1 through 3
EnD}|9
TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
Vq>$ZlvS Change in Focus : 0.000000 0.000000
5wgeA^HE2y Tilt X tolerance on surfaces 1 through 3 (degrees)
'7;b+Vbl# TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
guc[du Change in Focus : 0.000000 0.000000
_C nl|' Tilt Y tolerance on surfaces 1 through 3 (degrees)
zC<k4[ . TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
K#_x.:<J Change in Focus : 0.000000 0.000000
PbpnjvVrM Decenter X tolerance on surface 1
GX-V|hLaGX TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
Z?"f# Change in Focus : 0.000000 0.000000
(eEs0 Decenter Y tolerance on surface 1
W3aFao>!OZ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
/.m&rS Change in Focus : 0.000000 0.000000
{.mPe| Tilt X tolerance on surface (degrees) 1
q47:kB{d TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
1
|T{RY5 Change in Focus : 0.000000 0.000000
!${7 )=|=1 Tilt Y tolerance on surface (degrees) 1
14Y<-OO:
k TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
& cV$`L Change in Focus : 0.000000 0.000000
M|DVFC Decenter X tolerance on surface 2
+$y%H TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
BWG*UjP
M Change in Focus : 0.000000 0.000000
qGVf!R Decenter Y tolerance on surface 2
%!X9>i> TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
X" m0|| Change in Focus : 0.000000 0.000000
97 eEqI$# Tilt X tolerance on surface (degrees) 2
0tb%h[%,M TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
RJhafUJ zH Change in Focus : 0.000000 0.000000
:plN<8 Tilt Y tolerance on surface (degrees) 2
=R6IW,* TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
7G]v(ay Change in Focus : 0.000000 0.000000
R q
|,@ Decenter X tolerance on surface 3
1~aP)q TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
HY!R | Change in Focus : 0.000000 0.000000
!9p;%Ny` Decenter Y tolerance on surface 3
d":GsI?3 TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
OAw- -rl Change in Focus : 0.000000 0.000000
z}z 6Vg Tilt X tolerance on surface (degrees) 3
[Zxv&$SQ TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
DElrY)3O. Change in Focus : 0.000000 0.000000
$s.:H4:I Tilt Y tolerance on surface (degrees) 3
(<KFA, TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
5x? YFq6k Change in Focus : 0.000000 0.000000
dYxX%"J Irregularity of surface 1 in fringes
-g\ ;B TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
"&Rt&S Change in Focus : 0.000000 0.000000
sFbN)Cx Irregularity of surface 2 in fringes
ZULnS*V;5 TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
!%X#;{ Change in Focus : 0.000000 0.000000
A}3dx!?7j Irregularity of surface 3 in fringes
zN3b`K. i TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
Nbvs_>N Change in Focus : 0.000000 0.000000
j[Q9_0R~lR Index tolerance on surface 1
r?2EJE2{V TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
{$xt.< Change in Focus : 0.000000 0.000000
N5d)&a
7? Index tolerance on surface 2
SE<?l TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
s~'"&0Gz Change in Focus : 0.000000 -0.000000
4^(aG7 FKBI.}A?!' Worst offenders:
VSjt|F)t Type Value Criterion Change
f"RS,] TSTY 2 -0.20000000 0.35349910 -0.19053324
H ]z83:Z TSTY 2 0.20000000 0.35349910 -0.19053324
O;lGh1. TSTX 2 -0.20000000 0.35349910 -0.19053324
qd<-{ TSTX 2 0.20000000 0.35349910 -0.19053324
lx\9 Y 8 TSTY 1 -0.20000000 0.42678383 -0.11724851
c]%~X&Tg` TSTY 1 0.20000000 0.42678383 -0.11724851
q>rDxmP< TSTX 1 -0.20000000 0.42678383 -0.11724851
?Gqq]ozm TSTX 1 0.20000000 0.42678383 -0.11724851
:Xi&H.k)p TSTY 3 -0.20000000 0.42861670 -0.11541563
NH'Dz6K5 TSTY 3 0.20000000 0.42861670 -0.11541563
uL{CUt
B",;z)(% Estimated Performance Changes based upon Root-Sum-Square method:
6o
d^+>U Nominal MTF : 0.54403234
+l hJ8& Estimated change : -0.36299231
LU $=j Estimated MTF : 0.18104003
p?2^JJpUb =6'Fm$R Compensator Statistics: 8I[=iU7]l Change in back focus: ]?%S0DO* Minimum : -0.000000 UQ#t & Maximum : 0.000000 @1N.;]| Mean : -0.000000 ?DGg.2f Standard Deviation : 0.000000 H<9_BA? ub;:"ns} Monte Carlo Analysis:
&u2H^ j Number of trials: 20
Z`<5SHQd X;]Ijha<* Initial Statistics: Normal Distribution
B~B, L*kC2 _#K?yP? Trial Criterion Change
R-YNg 1 0.42804416 -0.11598818
wxo*\WLe Change in Focus : -0.400171
UC_o; 2 0.54384387 -0.00018847
=P%?{7 Change in Focus : 1.018470
{l"(EeW6) 3 0.44510003 -0.09893230
+ib&6IU Change in Focus : -0.601922
K7X*N 4 0.18154684 -0.36248550
Ae\:{[c_D Change in Focus : 0.920681
h~lps?.#b 5 0.28665820 -0.25737414
Z!-V&H. Change in Focus : 1.253875
"5204I 6 0.21263372 -0.33139862
K0~=9/ Change in Focus : -0.903878
3rBID 7 0.40051424 -0.14351809
2HO2 Change in Focus : -1.354815
6 2#@Y-5 8 0.48754161 -0.05649072
xXlx}C Change in Focus : 0.215922
K@%gvLa\ 9 0.40357468 -0.14045766
(8baa.ge Change in Focus : 0.281783
+Sc2'z>R 10 0.26315315 -0.28087919
,xg-H6Xfa{ Change in Focus : -1.048393
xR8y"CpE 11 0.26120585 -0.28282649
+
}$(j#h Change in Focus : 1.017611
&NOCRabc 12 0.24033815 -0.30369419
n&,X']z. Change in Focus : -0.109292
P?^%i 13 0.37164046 -0.17239188
osc A\r Change in Focus : -0.692430
pk`5RDBu 14 0.48597489 -0.05805744
X.sOZb?$ Change in Focus : -0.662040
\l%##7DRp] 15 0.21462327 -0.32940907
Z;S)GUG^ Change in Focus : 1.611296
d3\KUR^ 16 0.43378226 -0.11025008
# [
+n( Change in Focus : -0.640081
#"8'y 17 0.39321881 -0.15081353
j\"d/{7Q Change in Focus : 0.914906
yuC|_nL 18 0.20692530 -0.33710703
M3Qi]jO98 Change in Focus : 0.801607
l$[,V:N 19 0.51374068 -0.03029165
m%'T90mi Change in Focus : 0.947293
hXvC>ie(i 20 0.38013374 -0.16389860
L1WvX6 Change in Focus : 0.667010
Xvk+1:D \r9E6LLX' Number of traceable Monte Carlo files generated: 20
ii&ckg>]z -BSO$'{7 Nominal 0.54403234
f:t j
Best 0.54384387 Trial 2
cY Qm8TR< Worst 0.18154684 Trial 4
c>3j$D+ Mean 0.35770970
}u8g7Nj Std Dev 0.11156454
q6b&b^r+H 8
&v)Vi- 'Fc$?$c\ Compensator Statistics:
p"7[heExw Change in back focus:
P,b&F Minimum : -1.354815
!@*= b1 Maximum : 1.611296
jcjl q-x Mean : 0.161872
Q+/P>5O/ Standard Deviation : 0.869664
R T~oJ~t; A2p% Y}, 90% > 0.20977951 f]mVM(XZN 80% > 0.22748071 9-vQn/O^D 50% > 0.38667627 oIQ$98 M 20% > 0.46553746 6y "]2UgQk 10% > 0.50064115 >^IUS8v I-=Ieq"R9 End of Run.
!]5V{3 3[m2F O,Z 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
LM 1Vsh<
U(Bmffn4Z x6$3KDQm 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
bR1Q77<G\ Z$r7Hi 不吝赐教