切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16414阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 #oEq)Vq>g|  
    a}7P:e*u  
    ;Yn_*M/*  
    Ct}rj-L<i  
    然后添加了默认公差分析,基本没变 `}*jjnr"  
    7kQ,D,c'  
    fh@/fd  
    zM<yd#`yt8  
    然后运行分析的结果如下: rvBKJ!b0  
    Q?-uJ1J  
    Analysis of Tolerances P%Wl`NA P  
    %)j^>W5  
    File : E:\光学设计资料\zemax练习\f500.ZMX +g8uV hC  
    Title: H9rZWc"*  
    Date : TUE JUN 21 2011 l[{Ci|4  
    j'&a)-Wx_  
    Units are Millimeters. RX\@fmK&  
    All changes are computed using linear differences. ;%xG bg!lg  
    Aq{7WA  
    Paraxial Focus compensation only. -.hH,zm  
    D}EH9d  
    WARNING: Solves should be removed prior to tolerancing. nF{>RD  
    (JeRJ4  
    Mnemonics: 7' TXR[   
    TFRN: Tolerance on curvature in fringes. +ZeK,Y+Xy  
    TTHI: Tolerance on thickness. {m 5R=22^  
    TSDX: Tolerance on surface decentering in x. b ;t b&o  
    TSDY: Tolerance on surface decentering in y. ?1lx8+  
    TSTX: Tolerance on surface tilt in x (degrees). M@O<b-  
    TSTY: Tolerance on surface tilt in y (degrees). BZ@v8y _TA  
    TIRR: Tolerance on irregularity (fringes). He)dm5#fg  
    TIND: Tolerance on Nd index of refraction. Gm'Ch}E  
    TEDX: Tolerance on element decentering in x. _CXXgF[OCA  
    TEDY: Tolerance on element decentering in y. s&Qil07 Vl  
    TETX: Tolerance on element tilt in x (degrees). K2t|d[r  
    TETY: Tolerance on element tilt in y (degrees). ?&r >`H E  
    _JXb|FIp  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ($:JI3e[;  
    o$bD?Zn  
    WARNING: Boundary constraints on compensators will be ignored. R3} Z"  
    nv"D  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm XX'Rv]T  
    Mode                : Sensitivities VWcR@/3  
    Sampling            : 2 Cr%6c3aQ  
    Nominal Criterion   : 0.54403234 {t&+abY  
    Test Wavelength     : 0.6328 2[$` ]{U  
    MA5BTq<&  
    SZ"^>}zl=  
    Fields: XY Symmetric Angle in degrees { w:9w  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY j8#B  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ~yuj;9m3  
    jRzQ`*KC#  
    Sensitivity Analysis: gSu3\keF  
    {"w4+m~+te  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| Vch!&8xii  
    Type                      Value      Criterion        Change          Value      Criterion        Change Z  )dz  
    Fringe tolerance on surface 1 p3(&9~ s  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 t= oTU,<  
    Change in Focus                :      -0.000000                            0.000000 B%d2tsDw  
    Fringe tolerance on surface 2 $2\k| @)s  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ce P1mO  
    Change in Focus                :       0.000000                            0.000000 ij~023$DTt  
    Fringe tolerance on surface 3 #y%?A;  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 dsJHhsu6  
    Change in Focus                :      -0.000000                            0.000000 UHW;e}O5  
    Thickness tolerance on surface 1 :ift{XR'  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 3Q"4-pd  
    Change in Focus                :       0.000000                            0.000000 d ;W(Vm6  
    Thickness tolerance on surface 2 2KC~; 5  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 &MsBcP[  
    Change in Focus                :       0.000000                           -0.000000 ^atBf![  
    Decenter X tolerance on surfaces 1 through 3 xlWTHn!j  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 O<v9i4*  
    Change in Focus                :       0.000000                            0.000000 =!%+ sem  
    Decenter Y tolerance on surfaces 1 through 3 y~\K~qjd  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 (j;6}@  
    Change in Focus                :       0.000000                            0.000000 ?krgZ;Jj  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ~ -hH#5  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 W8 m*co  
    Change in Focus                :       0.000000                            0.000000 .5x+FHu7  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) *m[ow s  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 bqDHLoB\1  
    Change in Focus                :       0.000000                            0.000000 -dn\*n5  
    Decenter X tolerance on surface 1 D>Qc/+  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 X%b.]A  
    Change in Focus                :       0.000000                            0.000000 e-#!3j!'  
    Decenter Y tolerance on surface 1 7!E?(3$#"  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 8?r RLM4  
    Change in Focus                :       0.000000                            0.000000 $xf{m9 8  
    Tilt X tolerance on surface (degrees) 1 'M#'BQQ5  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 q0hg0 DC[;  
    Change in Focus                :       0.000000                            0.000000 C,xM) V^a  
    Tilt Y tolerance on surface (degrees) 1 0FV?By  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 f}c z_"o4  
    Change in Focus                :       0.000000                            0.000000 d?/?VooU  
    Decenter X tolerance on surface 2 75V?K  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 2$O @T]  
    Change in Focus                :       0.000000                            0.000000 V3u[{^^f  
    Decenter Y tolerance on surface 2 zU9G: jH  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 0#rv.rJ{  
    Change in Focus                :       0.000000                            0.000000 1wa zJj=v  
    Tilt X tolerance on surface (degrees) 2 ![BQ;X  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 yw%5W=<  
    Change in Focus                :       0.000000                            0.000000 |&t 2jD(  
    Tilt Y tolerance on surface (degrees) 2 xNh#=6__9  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Z;{3RWV  
    Change in Focus                :       0.000000                            0.000000 I~$LIdzw  
    Decenter X tolerance on surface 3 {g>k-.  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 {<HL}m@kQ  
    Change in Focus                :       0.000000                            0.000000 t1)b26;  
    Decenter Y tolerance on surface 3 Jn>7MuG  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 >k?/'R  
    Change in Focus                :       0.000000                            0.000000 btK| U  
    Tilt X tolerance on surface (degrees) 3 .f V-puE  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jy] hP?QG  
    Change in Focus                :       0.000000                            0.000000 i~dW)7  
    Tilt Y tolerance on surface (degrees) 3 l0 H,TT~2  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 L$GhM!c  
    Change in Focus                :       0.000000                            0.000000 $GyO+xF  
    Irregularity of surface 1 in fringes T7AFL=  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 e4V4%Qw  
    Change in Focus                :       0.000000                            0.000000 bqXCe\#  
    Irregularity of surface 2 in fringes V6,D~7  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 nz|;6?LCLY  
    Change in Focus                :       0.000000                            0.000000 BHE((3  
    Irregularity of surface 3 in fringes ,R1`/aRy  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 bc"E=z  
    Change in Focus                :       0.000000                            0.000000 &rX..l  
    Index tolerance on surface 1 -}m#uUqI  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 UlHRA[SCv  
    Change in Focus                :       0.000000                            0.000000 Hut au^l  
    Index tolerance on surface 2 .[hQ#3)W  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ~EIY(^|py  
    Change in Focus                :       0.000000                           -0.000000 oQC*d}_E}  
    K2TO,J3 E  
    Worst offenders: hv'~S  
    Type                      Value      Criterion        Change ,#1ke  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 /(w:XTO<  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ,P ?TYk  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 "3{xa;c  
    TSTX   2             0.20000000     0.35349910    -0.19053324 z[DUktZl  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 PXcpROg56  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ]],6Fi+  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Wiqy".YY  
    TSTX   1             0.20000000     0.42678383    -0.11724851 JEX{jf  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 C|Bk'<MI  
    TSTY   3             0.20000000     0.42861670    -0.11541563 >wjWX{&?  
    )^uLZMNaI  
    Estimated Performance Changes based upon Root-Sum-Square method: c h<Fi%)  
    Nominal MTF                 :     0.54403234 cve(pkl  
    Estimated change            :    -0.36299231 e0HG"z4  
    Estimated MTF               :     0.18104003 R0;c'W)  
    $EbxV"b+  
    Compensator Statistics: 36JVnW;  
    Change in back focus: f)q\RJA)X  
    Minimum            :        -0.000000 )#MKOsOct  
    Maximum            :         0.000000 ,~FyC_%*  
    Mean               :        -0.000000 (| Am  
    Standard Deviation :         0.000000 !arcQ:T@G  
    -[s*R%w  
    Monte Carlo Analysis: j-ugsV`2=*  
    Number of trials: 20 [UquI "  
    Z~8Xp  
    Initial Statistics: Normal Distribution R:B-4  
    1 ,oC:N  
      Trial       Criterion        Change ]DdD FLM  
          1     0.42804416    -0.11598818 MC/$:PV  
    Change in Focus                :      -0.400171 {o7ibw=E)  
          2     0.54384387    -0.00018847 A6}M F  
    Change in Focus                :       1.018470 0\wMlV`F  
          3     0.44510003    -0.09893230 /`0*!sN*5  
    Change in Focus                :      -0.601922 P"_x/C(]@J  
          4     0.18154684    -0.36248550 BD,JBu]  
    Change in Focus                :       0.920681 "OFYVK\]i  
          5     0.28665820    -0.25737414 JGSeu =)  
    Change in Focus                :       1.253875 kR6rf_-[  
          6     0.21263372    -0.33139862 4QK([q  
    Change in Focus                :      -0.903878 o(>!T=f  
          7     0.40051424    -0.14351809 '/SMqmi  
    Change in Focus                :      -1.354815 h$~ NPX  
          8     0.48754161    -0.05649072 $}l0Nh'Eu  
    Change in Focus                :       0.215922 bXc7$5(!VB  
          9     0.40357468    -0.14045766 z7MJxjH  
    Change in Focus                :       0.281783 p*W4^2(d  
         10     0.26315315    -0.28087919 P$2J`b[H$  
    Change in Focus                :      -1.048393 @\Sa)  
         11     0.26120585    -0.28282649 J$&!Y[0  
    Change in Focus                :       1.017611 iBxCk^  
         12     0.24033815    -0.30369419 S D] d/|y  
    Change in Focus                :      -0.109292 QY-P!JD  
         13     0.37164046    -0.17239188 XcaY'k#  
    Change in Focus                :      -0.692430 Q5r cPU>A  
         14     0.48597489    -0.05805744 v*QobI  
    Change in Focus                :      -0.662040 Iqe4O~)  
         15     0.21462327    -0.32940907 /J3e[?78u  
    Change in Focus                :       1.611296 dnNC = siY  
         16     0.43378226    -0.11025008 Tx0/3^\>8A  
    Change in Focus                :      -0.640081 jN 5Hku[?  
         17     0.39321881    -0.15081353 q+dY&4&u  
    Change in Focus                :       0.914906 6YrkS;_HS  
         18     0.20692530    -0.33710703 6*kY7  
    Change in Focus                :       0.801607 }0?642 =-  
         19     0.51374068    -0.03029165 =]\,I'  
    Change in Focus                :       0.947293 sL~TV([6/  
         20     0.38013374    -0.16389860 }{:H0)H*  
    Change in Focus                :       0.667010 J^pL_  
    c>!>D7:7  
    Number of traceable Monte Carlo files generated: 20 `f*?|)  
    B!! xu  
    Nominal     0.54403234 W )q^@6[d  
    Best        0.54384387    Trial     2 aT(Pf7 O  
    Worst       0.18154684    Trial     4 +kH*BhSj  
    Mean        0.35770970 f'aUo|^?  
    Std Dev     0.11156454 0^]E-Zf  
    N|z-s  
    :De}5BMy  
    Compensator Statistics: vC$[Zm  
    Change in back focus: fa/ '4  
    Minimum            :        -1.354815 E0>4Q\n{  
    Maximum            :         1.611296 -#Yg B5  
    Mean               :         0.161872 zbx,qctYo$  
    Standard Deviation :         0.869664 !a ~>;+  
    D^04b< O<x  
    90% >       0.20977951               QT9(s\u  
    80% >       0.22748071               ^g~Asz5]  
    50% >       0.38667627               p44d&9  
    20% >       0.46553746               aIRCz=N  
    10% >       0.50064115                aoco'BR F  
    %$Wt"~WE"O  
    End of Run. :!N 5daK  
    [}9R9G>"  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 PsEm(.z  
    J Q%e'  
    WA8Qt\Q  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 7cr+a4T33  
    lK9us  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 E O52 E|  
    80% >       0.22748071                 DFwkd/3"  
    50% >       0.38667627                 iJZqAfG{m?  
    20% >       0.46553746                 zob^z@2  
    10% >       0.50064115 /wljb b/s  
    w[uK3Av  
    最后这个数值是MTF值呢,还是MTF的公差? ' 6Ybf  
    y"]?TEd  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   6$4G&'J  
    @r%[e1.  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ( MWh|kp  
    90% >       0.20977951                 ^ b{0|:  
    80% >       0.22748071                 f>k]{W Y  
    50% >       0.38667627                 e%uPZ >'q  
    20% >       0.46553746                 %"r3{Hs  
    10% >       0.50064115 -|\V'  
    ....... ^q-]."W]t~  
    dT4?8:  
    OCnQSkj  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   i2j_=X-  
    Mode                : Sensitivities vnwS &;-k~  
    Sampling            : 2 48vKUAzx`  
    Nominal Criterion   : 0.54403234 u&z5)iU  
    Test Wavelength     : 0.6328 Aj((tMJNOw  
    lK;|ciq"c7  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? d+[GMIxg  
    wXI6KN-  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试