切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16407阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 7,|c  
    x&9hI  
    }L3oR  
    '0uh D.|G  
    然后添加了默认公差分析,基本没变 +~roU{& o  
    9@52Fg ;mj  
    2?,EzBeal  
    8` @G;o  
    然后运行分析的结果如下: ;A'Z4=*~  
    x~{;TZa[I  
    Analysis of Tolerances k RD%b[*d  
    2Sp=rI  
    File : E:\光学设计资料\zemax练习\f500.ZMX Eu-RNrYh#  
    Title: D <&X_  
    Date : TUE JUN 21 2011 {R61cD,n  
    T2Y,U {  
    Units are Millimeters. 1Q4}'0U4  
    All changes are computed using linear differences. ZAUQJS 91E  
    dd%h67J2<  
    Paraxial Focus compensation only. ~aOuG5 XK  
    bH2MdU  
    WARNING: Solves should be removed prior to tolerancing. AUNQA  
    z$GoaS(  
    Mnemonics: >O?U= OeD  
    TFRN: Tolerance on curvature in fringes. I_%a{$Gjl  
    TTHI: Tolerance on thickness. [],1lRYI9_  
    TSDX: Tolerance on surface decentering in x. * Y7jl#7  
    TSDY: Tolerance on surface decentering in y. 9D}/\jM  
    TSTX: Tolerance on surface tilt in x (degrees). P*@2.#oO  
    TSTY: Tolerance on surface tilt in y (degrees). t" 7yNs(I  
    TIRR: Tolerance on irregularity (fringes). Wg0g/  
    TIND: Tolerance on Nd index of refraction. =;|QZ"%E  
    TEDX: Tolerance on element decentering in x. @qjfZH@  
    TEDY: Tolerance on element decentering in y. Da:unVbU  
    TETX: Tolerance on element tilt in x (degrees). W4U@%b do  
    TETY: Tolerance on element tilt in y (degrees). 3a 1u  
    MJCzo |w  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 0}FOV`n  
    V$icWu  
    WARNING: Boundary constraints on compensators will be ignored. xIGfM>uq  
    E+tB&  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm <b?!jV7  
    Mode                : Sensitivities d]i(h~?_  
    Sampling            : 2 RZ7( J  
    Nominal Criterion   : 0.54403234 ;?~$h-9)  
    Test Wavelength     : 0.6328 >'xGp7}y  
    ND,Kldji  
    >,gvb5  
    Fields: XY Symmetric Angle in degrees `^Eae  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY >Clh] ;K  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ym/fFm6h  
    pD2<fP_  
    Sensitivity Analysis: ;k86"W  
    .R8 HZ}3  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| d90Z,nex  
    Type                      Value      Criterion        Change          Value      Criterion        Change fr}Eaa-{^  
    Fringe tolerance on surface 1 #9 fWAF  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 X!},8}~J~  
    Change in Focus                :      -0.000000                            0.000000 he-Ji  
    Fringe tolerance on surface 2 <zy,5IlD  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 5P+t^\  
    Change in Focus                :       0.000000                            0.000000 GK}'R=   
    Fringe tolerance on surface 3 qG/fE'(j&  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 9W>Y#V~|v!  
    Change in Focus                :      -0.000000                            0.000000 Enq|Y$qm  
    Thickness tolerance on surface 1 ~i_Tw#}  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 \WrFqm#  
    Change in Focus                :       0.000000                            0.000000 ).HDru-2  
    Thickness tolerance on surface 2 dg7=X{=9jv  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 $1zvgep  
    Change in Focus                :       0.000000                           -0.000000 <U9/InN0[  
    Decenter X tolerance on surfaces 1 through 3 %77p5ctW  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 X$b={]b  
    Change in Focus                :       0.000000                            0.000000 \zkw2*t  
    Decenter Y tolerance on surfaces 1 through 3 (zYy }g#n  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 $W42vjr4  
    Change in Focus                :       0.000000                            0.000000 Grz 3{U  
    Tilt X tolerance on surfaces 1 through 3 (degrees) (9mMkU=  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 F;!2(sPS  
    Change in Focus                :       0.000000                            0.000000 LsGiu9~S  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) FNQX7O52  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 desThnT w  
    Change in Focus                :       0.000000                            0.000000 +wk`;0sA  
    Decenter X tolerance on surface 1 RF!1oZ  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 eL.7#SIr}  
    Change in Focus                :       0.000000                            0.000000 pA#}-S%  
    Decenter Y tolerance on surface 1 Dli^2hD  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 O^I[ (8Y8  
    Change in Focus                :       0.000000                            0.000000 "4j:[9vR\  
    Tilt X tolerance on surface (degrees) 1 wVA|!>v  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 fKa\7{R  
    Change in Focus                :       0.000000                            0.000000 5[9 bWB{  
    Tilt Y tolerance on surface (degrees) 1 ]AS"z<  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ZDYJhJ.  
    Change in Focus                :       0.000000                            0.000000 zMK](o1Vj  
    Decenter X tolerance on surface 2 zN_:nY>  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 oXt,e   
    Change in Focus                :       0.000000                            0.000000 6`"M  
    Decenter Y tolerance on surface 2 QI[}(O7#6  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 A?"h@-~2  
    Change in Focus                :       0.000000                            0.000000 Q1&P@Io$  
    Tilt X tolerance on surface (degrees) 2 & Rz, J]  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 =vh8T\  
    Change in Focus                :       0.000000                            0.000000 hvt@XZT  
    Tilt Y tolerance on surface (degrees) 2 agOk*wH5  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 "x&C5l}n  
    Change in Focus                :       0.000000                            0.000000 ;;gK@?hJ  
    Decenter X tolerance on surface 3 iY/KSX^~O  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 bT!($?GNdg  
    Change in Focus                :       0.000000                            0.000000 2$zU&p7sV  
    Decenter Y tolerance on surface 3 j%*7feSNC  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 fd8#Ng"1  
    Change in Focus                :       0.000000                            0.000000 8C.!V =@\  
    Tilt X tolerance on surface (degrees) 3 SHqyvF  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 +MO E  
    Change in Focus                :       0.000000                            0.000000 TQ1WVq }*  
    Tilt Y tolerance on surface (degrees) 3 nyT[^n  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 xQlT%X;'  
    Change in Focus                :       0.000000                            0.000000 |AH@ EI>  
    Irregularity of surface 1 in fringes -lRhz!E]  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 _NdLcpBT?  
    Change in Focus                :       0.000000                            0.000000 9 K  
    Irregularity of surface 2 in fringes vh>{_ #  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 C@HD(..#  
    Change in Focus                :       0.000000                            0.000000 NyI ;v =  
    Irregularity of surface 3 in fringes ZAg;q#z j  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 L]2< &%N2  
    Change in Focus                :       0.000000                            0.000000 KLt %[$CTi  
    Index tolerance on surface 1 "gNK><  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 {%']w  
    Change in Focus                :       0.000000                            0.000000 VZA3IbK}  
    Index tolerance on surface 2 ]~a_d)  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Wc#:f 8dr  
    Change in Focus                :       0.000000                           -0.000000 f@:CyB GQ  
    {B yn{?w  
    Worst offenders: {.#zHL ;  
    Type                      Value      Criterion        Change %N~C vN@T  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 jgvh[@uB?  
    TSTY   2             0.20000000     0.35349910    -0.19053324 A1,4kqmE  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 liNON  
    TSTX   2             0.20000000     0.35349910    -0.19053324 Wm6dQQ;Bj  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ?'~;Q)  
    TSTY   1             0.20000000     0.42678383    -0.11724851 t,vTAq.))  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 sdF3cX  
    TSTX   1             0.20000000     0.42678383    -0.11724851 :+kUkb-/  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 8g5V,3_6  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ^)cM&Bx t%  
    U \Dca&=  
    Estimated Performance Changes based upon Root-Sum-Square method: T~Yg5J  
    Nominal MTF                 :     0.54403234 y-`I) w%  
    Estimated change            :    -0.36299231 @&/\r 7 '  
    Estimated MTF               :     0.18104003 *=^[VV!  
    ,eELRzjl  
    Compensator Statistics: (4)3W^/kk?  
    Change in back focus: ^L~ [+|  
    Minimum            :        -0.000000 AZ8UXq  
    Maximum            :         0.000000 I>m;G `  
    Mean               :        -0.000000 KHJ=$5r)  
    Standard Deviation :         0.000000 ^~I @ spR4  
    VA]ZR+m  
    Monte Carlo Analysis: rZ866\0  
    Number of trials: 20 *Pb.f  
    >1XL;)IL>  
    Initial Statistics: Normal Distribution )b9I@)C  
    px&=((Z7>  
      Trial       Criterion        Change $u,G Vq~  
          1     0.42804416    -0.11598818 |,fh)vO  
    Change in Focus                :      -0.400171 ]]V^:"ne  
          2     0.54384387    -0.00018847 3Bd4 C]E  
    Change in Focus                :       1.018470 rAatJc"0  
          3     0.44510003    -0.09893230 {dZ8;Fy4  
    Change in Focus                :      -0.601922 U5wTGv4S|  
          4     0.18154684    -0.36248550 vadM1c*z  
    Change in Focus                :       0.920681 Gt.*_E  
          5     0.28665820    -0.25737414 pFH?/D/q  
    Change in Focus                :       1.253875 c20|Cx2m  
          6     0.21263372    -0.33139862 fbL!=]A*3  
    Change in Focus                :      -0.903878 [xS5z1;  
          7     0.40051424    -0.14351809 }@4| 7  
    Change in Focus                :      -1.354815 '?L%F{g/9  
          8     0.48754161    -0.05649072 F0: &>'}  
    Change in Focus                :       0.215922 4O Zy&,  
          9     0.40357468    -0.14045766 o(SuUGW  
    Change in Focus                :       0.281783 &1$8q0  
         10     0.26315315    -0.28087919 AuM:2N2  
    Change in Focus                :      -1.048393 '!j(u@&!  
         11     0.26120585    -0.28282649 { ;' :h  
    Change in Focus                :       1.017611 EreAn  
         12     0.24033815    -0.30369419 D;yd{]<  
    Change in Focus                :      -0.109292 _9qEZV  
         13     0.37164046    -0.17239188 L3' \r  
    Change in Focus                :      -0.692430 "] 9_Fv  
         14     0.48597489    -0.05805744 H.;yLL=  
    Change in Focus                :      -0.662040 z5I^0'  
         15     0.21462327    -0.32940907 ;W4:#/~14  
    Change in Focus                :       1.611296 `i{4cT8:  
         16     0.43378226    -0.11025008 z7$}#)Z7  
    Change in Focus                :      -0.640081 I]UA0[8X  
         17     0.39321881    -0.15081353 0 wYiu  
    Change in Focus                :       0.914906 n K0hTQ  
         18     0.20692530    -0.33710703 iqlVlm>E  
    Change in Focus                :       0.801607 a#6,#Q"  
         19     0.51374068    -0.03029165 9M19 UP&  
    Change in Focus                :       0.947293 |7Yvq%E  
         20     0.38013374    -0.16389860 kt5YgW  
    Change in Focus                :       0.667010 |<7i|J  
    .k|-Ks|d|  
    Number of traceable Monte Carlo files generated: 20 iPJ9Gh7  
    d<)s@Ntgm  
    Nominal     0.54403234 -<12~HKK::  
    Best        0.54384387    Trial     2 CYMM*4#  
    Worst       0.18154684    Trial     4 AzW%+ LUD  
    Mean        0.35770970 {K6Kx36  
    Std Dev     0.11156454 k.h^ $f  
    ^w ]1qjGw  
    aq$62>[  
    Compensator Statistics: 2@OBeR  
    Change in back focus: E{?L= ^cU  
    Minimum            :        -1.354815 S@;&U1@h  
    Maximum            :         1.611296 FW5*_%J  
    Mean               :         0.161872 ]r]+yM|  
    Standard Deviation :         0.869664 [cY?!Qd 0  
    " -<}C%C  
    90% >       0.20977951               {m>~`   
    80% >       0.22748071               re2Fv:4{  
    50% >       0.38667627               @ICejB<  
    20% >       0.46553746               fjF!>Dy  
    10% >       0.50064115                aslNlH6  
    '&1  
    End of Run. QJniM"8v  
    FDZeIj9uF  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 dW:w<{a!R  
    4/ 0/#G#j  
    &P{o{  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 O>kXysMv>  
    {: Am9B  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 mgJ]@s}9  
    80% >       0.22748071                 UeutFNp  
    50% >       0.38667627                 P'F Pe55F  
    20% >       0.46553746                 Y`E {E|J  
    10% >       0.50064115 >llwNT  
    S|O%h}AH;  
    最后这个数值是MTF值呢,还是MTF的公差? ySPlyhGF  
    GgZEg ?@  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   D]LFX/hlH  
    ~jgN_jz  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : =+sIX3  
    90% >       0.20977951                 Ws}kb@5  
    80% >       0.22748071                 zLIa! -C  
    50% >       0.38667627                 \Kzt*C-ZH  
    20% >       0.46553746                 88+\mX;A#  
    10% >       0.50064115 N6m*xxI{  
    ....... b6E8ase:F  
    X0r#,u  
    ~%!U,)-  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   p(b1I+!  
    Mode                : Sensitivities 'I01F:`  
    Sampling            : 2 JV6U0$g_S  
    Nominal Criterion   : 0.54403234 m^u&g&^  
    Test Wavelength     : 0.6328 $\J9F=<a  
    \5pAG mgD  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? JX,#W!d  
    N(/<qv  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试