切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16264阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 o~~_>V)W  
    w0.#/6  
    k'{lo _  
    R)H@'X  
    然后添加了默认公差分析,基本没变 ^{bP#f   
     l[ L{m7  
    |GMK@Q'0:  
    ^RY_j>i  
    然后运行分析的结果如下: "\B Li C  
    aWit^dp  
    Analysis of Tolerances ZJx:?*0a  
    :>cJ[K?0  
    File : E:\光学设计资料\zemax练习\f500.ZMX ";GLX%C!{@  
    Title: u!F3Rh8D  
    Date : TUE JUN 21 2011 Pukq{/27  
    *d%m.:)N  
    Units are Millimeters. Fa;CWyt  
    All changes are computed using linear differences. & MAIm56~  
    s*S@} l  
    Paraxial Focus compensation only. >si<VCO  
    $1w8GI\J  
    WARNING: Solves should be removed prior to tolerancing. KLoHjBq  
    j\W+wnAgk  
    Mnemonics: &)wQ|{P~k  
    TFRN: Tolerance on curvature in fringes. fc M~4yP?  
    TTHI: Tolerance on thickness. Sd{>(YWx~  
    TSDX: Tolerance on surface decentering in x. 6#.R'O  
    TSDY: Tolerance on surface decentering in y. > sUk6Z~  
    TSTX: Tolerance on surface tilt in x (degrees). ,,i;6q_f  
    TSTY: Tolerance on surface tilt in y (degrees). `]fY9ZDKs  
    TIRR: Tolerance on irregularity (fringes). 0z,c6MjM+  
    TIND: Tolerance on Nd index of refraction. lD{9o2  
    TEDX: Tolerance on element decentering in x. k1]?d7g$w  
    TEDY: Tolerance on element decentering in y. 44n^21k  
    TETX: Tolerance on element tilt in x (degrees). HC$_p,9OV  
    TETY: Tolerance on element tilt in y (degrees). H >RGX#|  
    lfCoL@$6D  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. QK;A>]  
    wD*_S}]  
    WARNING: Boundary constraints on compensators will be ignored. `B^?Za,xN  
    xOS4J+'s@  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm T,;6q!s=  
    Mode                : Sensitivities M T{^=F ]  
    Sampling            : 2 >SccoI  
    Nominal Criterion   : 0.54403234 Qs~;?BH&  
    Test Wavelength     : 0.6328 hmks\eb~  
    ZZ4W?);;  
    Ha;^U/0|  
    Fields: XY Symmetric Angle in degrees >bmL;)mc&  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY bZ0r/f,n$  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 MF=@PE][  
    ZY {,//  
    Sensitivity Analysis: n#m )]YQC  
    `m3C\\9;  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| |JrG?:n  
    Type                      Value      Criterion        Change          Value      Criterion        Change lS}5bcjR=k  
    Fringe tolerance on surface 1 u0N1+-6kr+  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 WM9QC59  
    Change in Focus                :      -0.000000                            0.000000 Ll&Y_Ry  
    Fringe tolerance on surface 2 lQ@ 2s[  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 uI+h9j$vS  
    Change in Focus                :       0.000000                            0.000000 .\i9}ye  
    Fringe tolerance on surface 3 "bRck88V  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 )=8X[<^i  
    Change in Focus                :      -0.000000                            0.000000 i9+V<'h  
    Thickness tolerance on surface 1 84|Hn|4t  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 tR*J M$T  
    Change in Focus                :       0.000000                            0.000000 Rh~<#"G]  
    Thickness tolerance on surface 2 1 aIJ0#nE  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 -<qci3Ba}  
    Change in Focus                :       0.000000                           -0.000000 o^gqpQv  
    Decenter X tolerance on surfaces 1 through 3 1)M3*h3  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 :h?Zg(l  
    Change in Focus                :       0.000000                            0.000000 ,p0R 4gi  
    Decenter Y tolerance on surfaces 1 through 3 ck-wMd  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 lO)p  
    Change in Focus                :       0.000000                            0.000000 O+c@B}[!  
    Tilt X tolerance on surfaces 1 through 3 (degrees) spgY &OI;  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 NNSn]LP  
    Change in Focus                :       0.000000                            0.000000 ~[l2"@  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) / [:@j+n\  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 +d]}  
    Change in Focus                :       0.000000                            0.000000 &yWl8O  
    Decenter X tolerance on surface 1 `[7&tOvSk  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 w#]%I+  
    Change in Focus                :       0.000000                            0.000000 |fq1Mn8  
    Decenter Y tolerance on surface 1 fq _6xs  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 s +^YGB  
    Change in Focus                :       0.000000                            0.000000 hG; NJx-=R  
    Tilt X tolerance on surface (degrees) 1 }kGJ)zh  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ^[lg1uMW  
    Change in Focus                :       0.000000                            0.000000 61b,+'-  
    Tilt Y tolerance on surface (degrees) 1 ME{i-E4  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 pT:CvJ  
    Change in Focus                :       0.000000                            0.000000 X 1^f0\k  
    Decenter X tolerance on surface 2 i$$\}2m{L  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 lzw3 x  
    Change in Focus                :       0.000000                            0.000000 'GS1"rkW<5  
    Decenter Y tolerance on surface 2 ^pAqe8u_  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 j<4J_wE  
    Change in Focus                :       0.000000                            0.000000 ct fKxGH  
    Tilt X tolerance on surface (degrees) 2 SO3WOR`3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 vD^^0-Pk6  
    Change in Focus                :       0.000000                            0.000000 WSKG8JT^|  
    Tilt Y tolerance on surface (degrees) 2 ok2$ p  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 DTsc&.29^  
    Change in Focus                :       0.000000                            0.000000 ey@y?X=  
    Decenter X tolerance on surface 3 t&eY+3y,T  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 No!P?  
    Change in Focus                :       0.000000                            0.000000 a|  
    Decenter Y tolerance on surface 3 }|&M@Up  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 l&^9<th  
    Change in Focus                :       0.000000                            0.000000 F;}?O==H;  
    Tilt X tolerance on surface (degrees) 3 /%=p-By<V  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 0q>f x  
    Change in Focus                :       0.000000                            0.000000 k-Le)8+b  
    Tilt Y tolerance on surface (degrees) 3 s=u0M;A0Q  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ^7vh ize  
    Change in Focus                :       0.000000                            0.000000 #c./<<P5}  
    Irregularity of surface 1 in fringes -;_NdL@  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 l3)(aay!  
    Change in Focus                :       0.000000                            0.000000 kT[]^Jtc  
    Irregularity of surface 2 in fringes i=#r JK=  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 3q{H=6  
    Change in Focus                :       0.000000                            0.000000 (<=qW_iW  
    Irregularity of surface 3 in fringes !s9<%bp3  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 QaUh+k<6  
    Change in Focus                :       0.000000                            0.000000 LdDkd(k  
    Index tolerance on surface 1 'h([Y8p{  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 p$0;~1vH  
    Change in Focus                :       0.000000                            0.000000 M%1-fd  
    Index tolerance on surface 2 rX{QgyY&  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 T<mk98CdE  
    Change in Focus                :       0.000000                           -0.000000 mv)M9c,`  
    RT F9;]Ti  
    Worst offenders: mAX]m1s  
    Type                      Value      Criterion        Change #B &D  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 7Z93`A-=  
    TSTY   2             0.20000000     0.35349910    -0.19053324 JU1U=Lu."  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ;yx+BaG~?  
    TSTX   2             0.20000000     0.35349910    -0.19053324 )jn|+M  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 l)Q,*i  
    TSTY   1             0.20000000     0.42678383    -0.11724851 8n,i5>!d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 cs8bRXjHa  
    TSTX   1             0.20000000     0.42678383    -0.11724851 t9zPJQlT}  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 VQ$=F8ivG  
    TSTY   3             0.20000000     0.42861670    -0.11541563 7'xT)~*$4  
    <YUc?NF  
    Estimated Performance Changes based upon Root-Sum-Square method: _2<|0lvh  
    Nominal MTF                 :     0.54403234 iePpJ>(  
    Estimated change            :    -0.36299231 F C2oP,  
    Estimated MTF               :     0.18104003 LyS139P$  
    POtDge  
    Compensator Statistics: 44 o5I:  
    Change in back focus: ;_F iiBk7(  
    Minimum            :        -0.000000 R5H UgI  
    Maximum            :         0.000000 KQNSYI7a  
    Mean               :        -0.000000 vpMNulXb,  
    Standard Deviation :         0.000000 (t&P. N/  
    .[+8D=  
    Monte Carlo Analysis: >6@*%LM  
    Number of trials: 20 CDO _A\  
    >hRYsWbmg  
    Initial Statistics: Normal Distribution uY5f mM9  
    VVYQIR]!yk  
      Trial       Criterion        Change SrN0f0  
          1     0.42804416    -0.11598818 13}=;4O  
    Change in Focus                :      -0.400171 3r%I *  
          2     0.54384387    -0.00018847 'N,x=1R5  
    Change in Focus                :       1.018470 \I/l6H>o3  
          3     0.44510003    -0.09893230 Rqa#;wb!(  
    Change in Focus                :      -0.601922 C.C\(2- Rr  
          4     0.18154684    -0.36248550 '4L i  
    Change in Focus                :       0.920681 +`mJh \*  
          5     0.28665820    -0.25737414 R =mawmQ2  
    Change in Focus                :       1.253875 c_kxjzA#  
          6     0.21263372    -0.33139862 Y=vA ;BE]R  
    Change in Focus                :      -0.903878 Z@t).$  
          7     0.40051424    -0.14351809 s><RL]+{G+  
    Change in Focus                :      -1.354815 >M[rOu (d  
          8     0.48754161    -0.05649072 "sUe:F;  
    Change in Focus                :       0.215922 )d>"K`3  
          9     0.40357468    -0.14045766 A:cc @ku  
    Change in Focus                :       0.281783 ]Q6,,/nn  
         10     0.26315315    -0.28087919 JLT':e~PX  
    Change in Focus                :      -1.048393 w44{~[0d4  
         11     0.26120585    -0.28282649 qdAz3iye  
    Change in Focus                :       1.017611 KG4~t=J`  
         12     0.24033815    -0.30369419 aS'G&(_  
    Change in Focus                :      -0.109292 vJtQ&,zG  
         13     0.37164046    -0.17239188 Nr|.]=K)5n  
    Change in Focus                :      -0.692430 shYcfLJ  
         14     0.48597489    -0.05805744 G"O %u|7  
    Change in Focus                :      -0.662040 &.K8c phj  
         15     0.21462327    -0.32940907 {SqY77  
    Change in Focus                :       1.611296 Lyt6DvAp"  
         16     0.43378226    -0.11025008 ,HUs MCXQ  
    Change in Focus                :      -0.640081 S]K^wj[  
         17     0.39321881    -0.15081353 B5=L</Aj  
    Change in Focus                :       0.914906 |b'tf:l  
         18     0.20692530    -0.33710703 O >n L;I  
    Change in Focus                :       0.801607 ]^8:"Ky'  
         19     0.51374068    -0.03029165 4w*F!E2H\}  
    Change in Focus                :       0.947293 E{wVf_K  
         20     0.38013374    -0.16389860 L((z;y>q|  
    Change in Focus                :       0.667010 !CPv{c`|qg  
    !D7\$ g6g  
    Number of traceable Monte Carlo files generated: 20 ( J\D"4q  
    l1gAm#  
    Nominal     0.54403234 O<L /m[]  
    Best        0.54384387    Trial     2 TG{=~2  
    Worst       0.18154684    Trial     4 6Ck?O/^  
    Mean        0.35770970 t=xO12Z  
    Std Dev     0.11156454 NO`LSF  
    u32wS$*8  
    dm8veKW'l  
    Compensator Statistics: L6r&Y~+/  
    Change in back focus: 87YT;Z;U&  
    Minimum            :        -1.354815 ENA8o}n  
    Maximum            :         1.611296 Q\m"n^XN  
    Mean               :         0.161872 ` *$^rQS  
    Standard Deviation :         0.869664 &{Uaa  
    Y0&w;P  
    90% >       0.20977951               Q]{DhDz ?+  
    80% >       0.22748071               RNl%n}   
    50% >       0.38667627               }b)?o@9}:  
    20% >       0.46553746               S8.nM}x  
    10% >       0.50064115                ,(OA5%A9zK  
    YRW<n9=3  
    End of Run. @#*B|lHE  
    B?#@<2*=L  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 S4~^HvMG[Y  
    \<i#Jn+)  
    ln3x1^!  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 a[lE9JA;|  
    z<: 9,wtbP  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 xCoQ>.4p  
    80% >       0.22748071                 9FcCq*D  
    50% >       0.38667627                 R%7k<1d'`  
    20% >       0.46553746                 !. q*bY  
    10% >       0.50064115 R^%7|  
    Bk?MF6  
    最后这个数值是MTF值呢,还是MTF的公差? OM}:1He  
    PuUqWW'^  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   UL"Jwq D  
    }6^(  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : s+Ln>c'|o  
    90% >       0.20977951                 ?ew^%1!W.  
    80% >       0.22748071                 /Hx%gKU  
    50% >       0.38667627                 dtm_~r7~  
    20% >       0.46553746                 M(?|$$   
    10% >       0.50064115 /c__{?go  
    ....... 6mMJ$FY+  
    `=%[  
    * C's7O{O  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   +S0A`rL  
    Mode                : Sensitivities k= nfo-h  
    Sampling            : 2 dpJi5fN  
    Nominal Criterion   : 0.54403234 q)<5&|V  
    Test Wavelength     : 0.6328 |FPx8b;#  
    3=sA]j-+(  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? [h8F)  
    z-$?.?d  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试