切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16258阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 H:`[$ ^  
    A!p70km2  
    3QD##Wr^  
    >TwL&la  
    然后添加了默认公差分析,基本没变 ^ ,yh384  
    ns9a+QQ  
    J2Eb"y>/;  
    nnBl:p>< k  
    然后运行分析的结果如下: S`&YY89{&  
    X5wYfN  
    Analysis of Tolerances @G0j/@v  
    r$z0C&5  
    File : E:\光学设计资料\zemax练习\f500.ZMX jl~?I*Gr  
    Title: x)!NB99(tC  
    Date : TUE JUN 21 2011 |k=L&vs  
    "ju0S&  
    Units are Millimeters. yf7$m_$C'  
    All changes are computed using linear differences. exL<cN  
     XV*uu "F  
    Paraxial Focus compensation only. b+ J)  
    mqb6MnK -  
    WARNING: Solves should be removed prior to tolerancing. V-%Am  
    5b-: e? |  
    Mnemonics: ET}Dh3A  
    TFRN: Tolerance on curvature in fringes. Hm55R  
    TTHI: Tolerance on thickness. Rjz~n38.  
    TSDX: Tolerance on surface decentering in x. d}RR!i`<N  
    TSDY: Tolerance on surface decentering in y. q$ 6Tb  
    TSTX: Tolerance on surface tilt in x (degrees). i& ybvTl  
    TSTY: Tolerance on surface tilt in y (degrees). 1VC:o]$  
    TIRR: Tolerance on irregularity (fringes). "8h7"WR  
    TIND: Tolerance on Nd index of refraction. U> s$}Y:+Z  
    TEDX: Tolerance on element decentering in x. nnPY8pdjSD  
    TEDY: Tolerance on element decentering in y. Ff @Cs0R  
    TETX: Tolerance on element tilt in x (degrees). ?\NWKp  
    TETY: Tolerance on element tilt in y (degrees). ULIpb  
    6_h'0~3?`  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. [Oy5Td7[  
    %wuD4PRK  
    WARNING: Boundary constraints on compensators will be ignored. uRfFPOYH  
    }Pn]j7u!  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm aZ{]t:]  
    Mode                : Sensitivities O$,MdhyXC  
    Sampling            : 2 9k[>(LC  
    Nominal Criterion   : 0.54403234 PhOtSml0  
    Test Wavelength     : 0.6328 q2C._{ 0'  
    a@&P\"k  
    d~U}IMj  
    Fields: XY Symmetric Angle in degrees zwa%$U  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY &KS*rHgt?  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 u+Q<> >lU  
    ).b,KSi  
    Sensitivity Analysis: 5g(`U+ ,*(  
    ]1(G:h\  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ht 1d[  
    Type                      Value      Criterion        Change          Value      Criterion        Change HM(S}>  
    Fringe tolerance on surface 1 M$0-!$RY  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 A%$ZB9#zQ  
    Change in Focus                :      -0.000000                            0.000000 _rU%DL?  
    Fringe tolerance on surface 2 W dNOE;R  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 3EN(Pz L  
    Change in Focus                :       0.000000                            0.000000 o6[aP[~F  
    Fringe tolerance on surface 3  nW*D  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 J@vL,C)E6  
    Change in Focus                :      -0.000000                            0.000000 FELDz7DYya  
    Thickness tolerance on surface 1 q/lQEfR  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 qXw^y  
    Change in Focus                :       0.000000                            0.000000 TppuEC>  
    Thickness tolerance on surface 2 gx',~  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 \6)]!$F6:  
    Change in Focus                :       0.000000                           -0.000000 <+mYC'p  
    Decenter X tolerance on surfaces 1 through 3 88l\8k4r  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 t.`&Q|a  
    Change in Focus                :       0.000000                            0.000000 L" GQ Q  
    Decenter Y tolerance on surfaces 1 through 3 ?8GggJC  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 v{[:7]b_=  
    Change in Focus                :       0.000000                            0.000000 4Lb!Au|Y  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Jb (CH4|7  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 >3Mzs AH\  
    Change in Focus                :       0.000000                            0.000000 %qYiE!%&  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 5u89?-UD  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 !\ 6<kQg#  
    Change in Focus                :       0.000000                            0.000000 miTySY6 ^  
    Decenter X tolerance on surface 1 w 4fz!l]  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 W:gpcR]>  
    Change in Focus                :       0.000000                            0.000000 Ump$N#  
    Decenter Y tolerance on surface 1 Ap<kK0#h  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ~stJO])a  
    Change in Focus                :       0.000000                            0.000000 S 4hv7.A  
    Tilt X tolerance on surface (degrees) 1  h/*q +H  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ls*bCe  
    Change in Focus                :       0.000000                            0.000000 L HW\A8  
    Tilt Y tolerance on surface (degrees) 1 b?kY`LC  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ,ut-Di=6  
    Change in Focus                :       0.000000                            0.000000 NtfzAz/  
    Decenter X tolerance on surface 2 (& UQ^  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 MOia] 5  
    Change in Focus                :       0.000000                            0.000000 bQlvb  
    Decenter Y tolerance on surface 2 Oe~x,=X)  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 y<5RV>"Vg  
    Change in Focus                :       0.000000                            0.000000 3HEm-pok  
    Tilt X tolerance on surface (degrees) 2 / :z<+SCh  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 `]7==c #Y  
    Change in Focus                :       0.000000                            0.000000 pv[Gg^  
    Tilt Y tolerance on surface (degrees) 2 Kt#_Ln_6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 iLC.?v2=  
    Change in Focus                :       0.000000                            0.000000 d2a*xDkv  
    Decenter X tolerance on surface 3 n(h9I'V8)F  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 xMs!FMn[  
    Change in Focus                :       0.000000                            0.000000 h4#y'E!,Z  
    Decenter Y tolerance on surface 3 v6 C$Y+5~  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 |ns B'Q  
    Change in Focus                :       0.000000                            0.000000 1 ]A$  
    Tilt X tolerance on surface (degrees) 3 C==yl"w  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 .mbqsb]&Y  
    Change in Focus                :       0.000000                            0.000000 -^aJ}[uaI  
    Tilt Y tolerance on surface (degrees) 3 Cvp!(<<gK  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 q S qS@+p  
    Change in Focus                :       0.000000                            0.000000 SNJSRqWL/  
    Irregularity of surface 1 in fringes &.l^>#  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ?:42jp3  
    Change in Focus                :       0.000000                            0.000000 7,lnfCm H  
    Irregularity of surface 2 in fringes 8g0VTY4$jP  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 4`GOBX1b.y  
    Change in Focus                :       0.000000                            0.000000 7 'q *(v  
    Irregularity of surface 3 in fringes 0MI4"<  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 /rIyW?& f  
    Change in Focus                :       0.000000                            0.000000 m{;j r<  
    Index tolerance on surface 1 uc>":V  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 L</k+a?H!  
    Change in Focus                :       0.000000                            0.000000 X- ZZLl#  
    Index tolerance on surface 2 u*T( n s l  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ; ,}Dh/&E  
    Change in Focus                :       0.000000                           -0.000000 Fq$r>tmV  
    J%u,qF}h  
    Worst offenders: v YJ9G"E  
    Type                      Value      Criterion        Change Zz1nXUZ  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ]9N&I/-  
    TSTY   2             0.20000000     0.35349910    -0.19053324 jF}-dfe  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 E<l/o5<nC  
    TSTX   2             0.20000000     0.35349910    -0.19053324 iInWw"VbKe  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 F8S>Ld  
    TSTY   1             0.20000000     0.42678383    -0.11724851 e }Mf  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 eaC%& k  
    TSTX   1             0.20000000     0.42678383    -0.11724851 q6,z 1A"  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 bksv2@ar  
    TSTY   3             0.20000000     0.42861670    -0.11541563 )bWopc  
    uGv|!UQw  
    Estimated Performance Changes based upon Root-Sum-Square method: P)l_ :;&  
    Nominal MTF                 :     0.54403234 !:PiQ19 'u  
    Estimated change            :    -0.36299231 rz0)S py6  
    Estimated MTF               :     0.18104003 hvGD`  
    ?P}bl_  
    Compensator Statistics: u"uL,w 1-  
    Change in back focus: 35Yf,@VO  
    Minimum            :        -0.000000 \_  V*Cs  
    Maximum            :         0.000000 D4b-Y[/"  
    Mean               :        -0.000000 &7i&"TNptP  
    Standard Deviation :         0.000000 Z5E; FGPb  
    P6&%`$  
    Monte Carlo Analysis: 1uO2I&B  
    Number of trials: 20 ! ,bQ;p3g|  
    $AT@r"  
    Initial Statistics: Normal Distribution q)mG6Su d  
    @c-  
      Trial       Criterion        Change |r*)U(c`  
          1     0.42804416    -0.11598818 "M, 1ElQ  
    Change in Focus                :      -0.400171 D#AqZS>B  
          2     0.54384387    -0.00018847 [~u&#!*W  
    Change in Focus                :       1.018470 ruQt0q,W3%  
          3     0.44510003    -0.09893230 - V:HT j  
    Change in Focus                :      -0.601922 (6.uNLr  
          4     0.18154684    -0.36248550 1~'jC8&J  
    Change in Focus                :       0.920681 AN:yL a!  
          5     0.28665820    -0.25737414 @ 5^nrB  
    Change in Focus                :       1.253875 !b"?l"C+u  
          6     0.21263372    -0.33139862 qVKdc*R-  
    Change in Focus                :      -0.903878 %@Z;;5L  
          7     0.40051424    -0.14351809 1X[^^p~^  
    Change in Focus                :      -1.354815 ,sIC=V +  
          8     0.48754161    -0.05649072 <sw@P":F  
    Change in Focus                :       0.215922 <|3%}?  
          9     0.40357468    -0.14045766 {O9(<g  
    Change in Focus                :       0.281783 <^\rv42'(2  
         10     0.26315315    -0.28087919 tEL9hZzI  
    Change in Focus                :      -1.048393 4Wp5[(bg  
         11     0.26120585    -0.28282649 R0}1:1}$Sn  
    Change in Focus                :       1.017611 K Ax=C}9  
         12     0.24033815    -0.30369419 ni&|;"Nt-  
    Change in Focus                :      -0.109292 +i!5<nn  
         13     0.37164046    -0.17239188 p"#\E0GM  
    Change in Focus                :      -0.692430 =KUmvV*\  
         14     0.48597489    -0.05805744 HT6 [Z1  
    Change in Focus                :      -0.662040 ov,|`FdU^T  
         15     0.21462327    -0.32940907 : oXSh;\  
    Change in Focus                :       1.611296 >;^/B R=  
         16     0.43378226    -0.11025008 Y@`uBB[  
    Change in Focus                :      -0.640081 |82q|@e  
         17     0.39321881    -0.15081353 &yvvea]  
    Change in Focus                :       0.914906 *m}8L%<HT  
         18     0.20692530    -0.33710703 J7* o%W*V  
    Change in Focus                :       0.801607  <@<bX  
         19     0.51374068    -0.03029165 `R$i|,9 )  
    Change in Focus                :       0.947293 a(|6)w-  
         20     0.38013374    -0.16389860 7-``J#9=  
    Change in Focus                :       0.667010 \y5lYb,*c_  
    l[Z o,4*  
    Number of traceable Monte Carlo files generated: 20 Z^ :_,aJ?  
    $G-<kC}8:  
    Nominal     0.54403234 >!t3~q1Cn  
    Best        0.54384387    Trial     2 9F>`M  
    Worst       0.18154684    Trial     4 T@tsM|pI  
    Mean        0.35770970 4AS%^&ah  
    Std Dev     0.11156454 l!f_ +lv  
    +Yc^w5 !(  
    /[<F f  
    Compensator Statistics: v-tI`Qpb  
    Change in back focus: SO=gG 2E  
    Minimum            :        -1.354815 `9co7[Z  
    Maximum            :         1.611296 T82 `-bZ  
    Mean               :         0.161872 V 9Qt;]mQ  
    Standard Deviation :         0.869664 !?nO0Ao-$  
    } Bf@69  
    90% >       0.20977951               \ZZ6r^99  
    80% >       0.22748071               sfyLG3$/  
    50% >       0.38667627               ]>1Mq,!  
    20% >       0.46553746               mol,iM*l  
    10% >       0.50064115                Nvgi&iBh8  
    y>EW,%leC  
    End of Run. `(FjOd K  
    Z)s !p  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 In1W/ ?  
    &VGV0K3 Dp  
    ]p`y  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 :C*}Yg  
    DK74s  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 ';3>rv_  
    80% >       0.22748071                 KR ( apO  
    50% >       0.38667627                 lwQ!sH[M  
    20% >       0.46553746                 h>`[p,o  
    10% >       0.50064115 *|y'%y  
    P8YnKyI,.  
    最后这个数值是MTF值呢,还是MTF的公差? hl:Ba2_E +  
    ^aB;Oo  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   gX{j$]^6G8  
    U2A-ub>7  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : .P8m%$'N  
    90% >       0.20977951                 xRZ K&vkKE  
    80% >       0.22748071                 \ $TM=Ykj  
    50% >       0.38667627                 xz`0V}dPl  
    20% >       0.46553746                 #F/W_G7v  
    10% >       0.50064115 [ !~8TF  
    ....... ~&,S xQT  
    uaD+G:{ [  
    c @lF*"4  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   {_>XsB  
    Mode                : Sensitivities  v?d`fd  
    Sampling            : 2 "SuG6!k3  
    Nominal Criterion   : 0.54403234 ga'G)d3oS  
    Test Wavelength     : 0.6328 bz1`f>%l  
    (R s;+S  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? c r18`xU  
     >YdLB@  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试