切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16194阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Q 1[E iM3  
    R7 ^f|/l  
    dr^MW?{a\  
    Fr)6<9%xVm  
    然后添加了默认公差分析,基本没变 21 N!?DR  
    L-VisZ-FK  
    rHJtNN8$k  
    [BuAJ930#5  
    然后运行分析的结果如下: tqzr +  
    @f`s%o  
    Analysis of Tolerances YWhp4`m  
    sjG@4Or  
    File : E:\光学设计资料\zemax练习\f500.ZMX Hk@LHC  
    Title: ?$~5ti#\  
    Date : TUE JUN 21 2011 + ;_0:+//  
    *  \%b1  
    Units are Millimeters. w 3$9  
    All changes are computed using linear differences. A}G>JL  
    a}V<CBi  
    Paraxial Focus compensation only. a 3C\?5  
    'DTq<`~?  
    WARNING: Solves should be removed prior to tolerancing. yt#~n _  
    "HtaJVp//  
    Mnemonics: {C5-M!D{<  
    TFRN: Tolerance on curvature in fringes. "Zu>cbE  
    TTHI: Tolerance on thickness. tb;u%{S  
    TSDX: Tolerance on surface decentering in x. 1-}M5]Y  
    TSDY: Tolerance on surface decentering in y. O7z5,-  
    TSTX: Tolerance on surface tilt in x (degrees). )uC5  
    TSTY: Tolerance on surface tilt in y (degrees). y;=/S?L.:  
    TIRR: Tolerance on irregularity (fringes). Y{OnW98  
    TIND: Tolerance on Nd index of refraction. HiSNEp$-4$  
    TEDX: Tolerance on element decentering in x. hFMT@Gy  
    TEDY: Tolerance on element decentering in y. E{]PfUfFY  
    TETX: Tolerance on element tilt in x (degrees). Jp-6]uW  
    TETY: Tolerance on element tilt in y (degrees). BQL](Y "  
    %s ">:  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. }TRVCF1  
    ?6//'bO:%  
    WARNING: Boundary constraints on compensators will be ignored. z9JZV`dNgz  
    zszx~LSvIT  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm =O>E>Q  
    Mode                : Sensitivities XvIY=~  
    Sampling            : 2 qL~|bfN  
    Nominal Criterion   : 0.54403234 TnJJ& "~3b  
    Test Wavelength     : 0.6328 2q ~y\fe  
    E(Zm6~  
    =i>i,>bv  
    Fields: XY Symmetric Angle in degrees EM!9_8 f  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY +Sak_*fq  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Yz ? 8n  
    \-CL}Z}S  
    Sensitivity Analysis: F?XiP.`DR  
    0N):8`dY  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| o "1X8v  
    Type                      Value      Criterion        Change          Value      Criterion        Change F.-:4m(Z  
    Fringe tolerance on surface 1 B~2M/&rM\  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 5G l:jRu  
    Change in Focus                :      -0.000000                            0.000000 r>g5_"FL  
    Fringe tolerance on surface 2 0ni/!}YP_  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 KN".0WU  
    Change in Focus                :       0.000000                            0.000000 nx@,oC4  
    Fringe tolerance on surface 3 <ToRPx&E  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 oW3|b2D  
    Change in Focus                :      -0.000000                            0.000000 Dr5AJ`y9A  
    Thickness tolerance on surface 1  =h|xlT  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 v0KJKrliGO  
    Change in Focus                :       0.000000                            0.000000 lQ#='Jqfp  
    Thickness tolerance on surface 2 Zw_'u=r >  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 d0 ;<Cw~Tl  
    Change in Focus                :       0.000000                           -0.000000 v$#l]A_D  
    Decenter X tolerance on surfaces 1 through 3 lH/7m;M  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 - *v)sP"@  
    Change in Focus                :       0.000000                            0.000000 G$VE o8Blb  
    Decenter Y tolerance on surfaces 1 through 3 q``:[Sz  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 YR u#JYti  
    Change in Focus                :       0.000000                            0.000000 P.- `[  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Q:8t1ZDo  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 WkDXWv\{,{  
    Change in Focus                :       0.000000                            0.000000 dz1kQzOU*  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 6mV^a kapv  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 #3_ @aq*  
    Change in Focus                :       0.000000                            0.000000 6UM1>xq9A  
    Decenter X tolerance on surface 1 Pxf/*z  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 q_Z6s5O  
    Change in Focus                :       0.000000                            0.000000 f0 kz:sZ9  
    Decenter Y tolerance on surface 1 75;g|+  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 6 tl#AJ-  
    Change in Focus                :       0.000000                            0.000000 dP=,<H#]m  
    Tilt X tolerance on surface (degrees) 1 GQDW}b8  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 sBLOrbo  
    Change in Focus                :       0.000000                            0.000000 ;Q0H7)t:  
    Tilt Y tolerance on surface (degrees) 1 RaOLy \  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 wY"BPl]b  
    Change in Focus                :       0.000000                            0.000000 7sU,<Z/D  
    Decenter X tolerance on surface 2 @.L/HXu-P  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 a"^rOiXR{  
    Change in Focus                :       0.000000                            0.000000 #wp~lW9!s9  
    Decenter Y tolerance on surface 2 R p0^Gwa  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 =3EjD;2  
    Change in Focus                :       0.000000                            0.000000  rp=Y }  
    Tilt X tolerance on surface (degrees) 2 v {) 8QF]  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 )j. .)o  
    Change in Focus                :       0.000000                            0.000000 Bo8NY!  
    Tilt Y tolerance on surface (degrees) 2 NRazI_Z  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 K9ek  
    Change in Focus                :       0.000000                            0.000000 hG >kx8h  
    Decenter X tolerance on surface 3 X'j9l4Ph7  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 myF/_o&Ty  
    Change in Focus                :       0.000000                            0.000000 A45!hhf  
    Decenter Y tolerance on surface 3 *d9RD~Ee  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ~l]g4iEp  
    Change in Focus                :       0.000000                            0.000000 G\K!7k`)!  
    Tilt X tolerance on surface (degrees) 3 ]I\9S{?  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 cp6I]#X  
    Change in Focus                :       0.000000                            0.000000 d6)+d9?<  
    Tilt Y tolerance on surface (degrees) 3 t \-|J SZ  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 sfk;c#K  
    Change in Focus                :       0.000000                            0.000000 9-!GYa'Z  
    Irregularity of surface 1 in fringes bu{dT8g'U  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 9I(00t_  
    Change in Focus                :       0.000000                            0.000000 ~SS3gLv  
    Irregularity of surface 2 in fringes L~C:1VG5  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 iXL?ic  
    Change in Focus                :       0.000000                            0.000000 ?C']R(fQ\  
    Irregularity of surface 3 in fringes y-{?0mLq  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ZS[Ut  
    Change in Focus                :       0.000000                            0.000000 HSVl$66  
    Index tolerance on surface 1 lIPz "  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 7&u$^c S(  
    Change in Focus                :       0.000000                            0.000000 k"6&&  
    Index tolerance on surface 2 hii#kB2  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Hwcmt!y  
    Change in Focus                :       0.000000                           -0.000000 :*s@L2D6  
    @2;cv?i)  
    Worst offenders: z\$(@:{A  
    Type                      Value      Criterion        Change )iFXa<5h  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 a'A<'(yv  
    TSTY   2             0.20000000     0.35349910    -0.19053324 45&Rl,2  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 / }*}r  
    TSTX   2             0.20000000     0.35349910    -0.19053324 sKk+^.K}|  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ^PUB~P/  
    TSTY   1             0.20000000     0.42678383    -0.11724851 _fSBb<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 j4u ["O3  
    TSTX   1             0.20000000     0.42678383    -0.11724851 .y lvJ$  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 $9@AwS@Uu  
    TSTY   3             0.20000000     0.42861670    -0.11541563 mtdy@=?1Y  
    s+(@UUl  
    Estimated Performance Changes based upon Root-Sum-Square method: Jt0U`_  
    Nominal MTF                 :     0.54403234 '8[; m_S  
    Estimated change            :    -0.36299231 L|B! ]}  
    Estimated MTF               :     0.18104003 a ,"   
    S&QXf<v  
    Compensator Statistics: $ Ggnn#  
    Change in back focus: 1jO%\uR/  
    Minimum            :        -0.000000 )?pnV":2Y  
    Maximum            :         0.000000 6b9J3~d\E  
    Mean               :        -0.000000 1}Y3|QxF  
    Standard Deviation :         0.000000 *f_A :`:  
    (][-()YV  
    Monte Carlo Analysis: \0vs93>?  
    Number of trials: 20 T#wG]DH;  
    \+=`o .2  
    Initial Statistics: Normal Distribution \>G}DGz  
    "YW Z&_n**  
      Trial       Criterion        Change _3< P(w{  
          1     0.42804416    -0.11598818 $/|vbe,  
    Change in Focus                :      -0.400171 E(vO^)#  
          2     0.54384387    -0.00018847 #Ge_3^'  
    Change in Focus                :       1.018470 FBbaLqgVF{  
          3     0.44510003    -0.09893230 crN*eFeW  
    Change in Focus                :      -0.601922 x,zYNNx5g  
          4     0.18154684    -0.36248550 H:XPl$;  
    Change in Focus                :       0.920681 '#=0q  
          5     0.28665820    -0.25737414 &FuL {YL  
    Change in Focus                :       1.253875 ;FW <%  
          6     0.21263372    -0.33139862 -*i_8`  
    Change in Focus                :      -0.903878 (m6V)y  
          7     0.40051424    -0.14351809 o8|qT)O@U  
    Change in Focus                :      -1.354815 ifu!6_b.  
          8     0.48754161    -0.05649072 dfKGO$}V  
    Change in Focus                :       0.215922 vbd)L$$20+  
          9     0.40357468    -0.14045766 ;8dffsyq  
    Change in Focus                :       0.281783 >^GV #z  
         10     0.26315315    -0.28087919 V)l:fUm2  
    Change in Focus                :      -1.048393 JgA{1@h  
         11     0.26120585    -0.28282649 w%8y5v5  
    Change in Focus                :       1.017611 @0]WMI9B"B  
         12     0.24033815    -0.30369419 AI Kz]J0;  
    Change in Focus                :      -0.109292 9[;da  
         13     0.37164046    -0.17239188 p$qk\efv*4  
    Change in Focus                :      -0.692430 >3@3~F%xAX  
         14     0.48597489    -0.05805744 J7^ UQ  
    Change in Focus                :      -0.662040 EmR82^_:  
         15     0.21462327    -0.32940907 :8hI3]9  
    Change in Focus                :       1.611296 GZ,MC?W  
         16     0.43378226    -0.11025008 _> x}MW+  
    Change in Focus                :      -0.640081 #o7)eKeQ  
         17     0.39321881    -0.15081353 Mgi~j.[  
    Change in Focus                :       0.914906 d9BFeq8  
         18     0.20692530    -0.33710703 /t`\b [  
    Change in Focus                :       0.801607 ;{L[1OP%e  
         19     0.51374068    -0.03029165 ?|+e*{4k  
    Change in Focus                :       0.947293 Z\xnPhV  
         20     0.38013374    -0.16389860 n6+h;+8;]  
    Change in Focus                :       0.667010 Wbei{3~$Y"  
    8V 4e\q  
    Number of traceable Monte Carlo files generated: 20 /e|Lw4$@S  
    d}':7Np  
    Nominal     0.54403234 W/hzo*o'g  
    Best        0.54384387    Trial     2 u}|v;:|j  
    Worst       0.18154684    Trial     4 [DH4iG5  
    Mean        0.35770970 ;?tH8jf>  
    Std Dev     0.11156454 {59 >U~  
    \Ta5c31S+  
    Z,e|L4&  
    Compensator Statistics: v/9ZTd  
    Change in back focus: 4\u`M R  
    Minimum            :        -1.354815 peBHZJ``RX  
    Maximum            :         1.611296 $!MP0f\q g  
    Mean               :         0.161872 Qn.dL@W  
    Standard Deviation :         0.869664 7Q9Hk(Z9  
    GDSXBa*7  
    90% >       0.20977951               " nCK%w=  
    80% >       0.22748071               *$BUow/>  
    50% >       0.38667627               G}g;<,g~  
    20% >       0.46553746               'ia-h7QWS  
    10% >       0.50064115                GEF's#YWK  
    Eu'E;*- f  
    End of Run. 3*~`z9-z  
    {$hWz(  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 O- QT+]  
    @Kz,TP!%A  
    @n?"*B  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ch]Qz[d  
    yuBRYy#E|%  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 \#]%S/_ A  
    80% >       0.22748071                 8(Te^] v#  
    50% >       0.38667627                 oQ r.cKD ?  
    20% >       0.46553746                 r4/b~n+*  
    10% >       0.50064115 ^6kl4:{idE  
    Yc]k<tQ  
    最后这个数值是MTF值呢,还是MTF的公差? 36(qe"s  
    2~f*o^%l  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   hzr, %r  
    #rX ^)2  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : {f4jE#a>v  
    90% >       0.20977951                 [^a7l$fmi  
    80% >       0.22748071                 Mj>Q V(L8t  
    50% >       0.38667627                 >?JUGXAi'{  
    20% >       0.46553746                 C3=0 st$  
    10% >       0.50064115 8SroA$^n  
    ....... mvpcRe <  
    #lMIs4i.  
    \25EI]  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   M).CyY;bm  
    Mode                : Sensitivities *@@dO_%6  
    Sampling            : 2 mg._c  
    Nominal Criterion   : 0.54403234 =s.0 f:(  
    Test Wavelength     : 0.6328 vY4}vHH2  
    LrdED[Z  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? <f)T*E^5%  
    "85)2*+  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试