我现在在初学zemax的
公差分析,找了一个双胶合
透镜 HR'F K[V#Pj9
o|s|Wmx>u *L<<S=g$2 然后添加了默认公差分析,基本没变
O+DYh=m*p /5>A 2y
a}k5[)et oBPm^ob4 然后运行分析的结果如下:
0w2<2grQ ]>+ teG:4 Analysis of Tolerances
p{0rHu[ JAmpU^(C File : E:\光学设计资料\zemax练习\f500.ZMX
){tTB Title:
-OgC. 6 Date : TUE JUN 21 2011
b u/GaE~ ;
jJ%< Units are Millimeters.
py/#h$eY All changes are computed using linear differences.
ln09_Lr 8hX/~-H Paraxial Focus compensation only.
\VAS<?3 ~NK|q5(I WARNING: Solves should be removed prior to tolerancing.
kKVNE hTp ph7]*W- Mnemonics:
DL '{
rK TFRN: Tolerance on curvature in fringes.
`y&2Bf TTHI: Tolerance on thickness.
EBUCG"e TSDX: Tolerance on surface decentering in x.
)c0 Dofhg TSDY: Tolerance on surface decentering in y.
&X}i%etp^2 TSTX: Tolerance on surface tilt in x (degrees).
.Ax]SNZ+:A TSTY: Tolerance on surface tilt in y (degrees).
cEPqcy
* TIRR: Tolerance on irregularity (fringes).
^K'XlM`a TIND: Tolerance on Nd index of refraction.
\q|<\~A TEDX: Tolerance on element decentering in x.
@PKY>58) TEDY: Tolerance on element decentering in y.
)3!z2f: e TETX: Tolerance on element tilt in x (degrees).
Gd[:&h TETY: Tolerance on element tilt in y (degrees).
mw${3j~& #t&L}=G{% WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
b;G#MjQp' `Y<FR WARNING: Boundary constraints on compensators will be ignored.
HhqNpU !ac,qj7spa Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
@aWd0e] Mode : Sensitivities
Dgz^s^fxU Sampling : 2
14 hE<u Nominal Criterion : 0.54403234
/V>yF&p
Test Wavelength : 0.6328
=?1B|hdo ;<K#h9#*7
oMb@)7 Fields: XY Symmetric Angle in degrees
WP?AQD # X-Field Y-Field Weight VDX VDY VCX VCY
P?`a{sl. 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
=zwn3L8 fL 3c[TPD_: Sensitivity Analysis:
pb|,rLNZ 6"U$H$i.G |----------------- Minimum ----------------| |----------------- Maximum ----------------|
iq`caoi Type Value Criterion Change Value Criterion Change
ys}I~MK - Fringe tolerance on surface 1
6tBe,'* TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
N?mQ50o~C Change in Focus :
-0.000000 0.000000
Ibu 5 Fringe tolerance on surface 2
>B+!fi'SS> TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
Uf\U~wM< Change in Focus : 0.000000 0.000000
y9Q.TL>=[ Fringe tolerance on surface 3
t$ 3/ZTx TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
M:.0]'[s5 Change in Focus : -0.000000 0.000000
,-5|qko= Thickness tolerance on surface 1
_G^Cc}X TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
;0:[X+"( Change in Focus : 0.000000 0.000000
X32{y973hT Thickness tolerance on surface 2
"|d# +C TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
]R]%c*tA Change in Focus : 0.000000 -0.000000
@*5(KIeeC> Decenter X tolerance on surfaces 1 through 3
%bgUU|CdA TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
~>>^7oq Change in Focus : 0.000000 0.000000
3V0^v Decenter Y tolerance on surfaces 1 through 3
yey]#M[y TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
}6 MoC0 Change in Focus : 0.000000 0.000000
eDS,}Z' Tilt X tolerance on surfaces 1 through 3 (degrees)
C "g bol^ TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
h~u|v[@{J Change in Focus : 0.000000 0.000000
$VUX?ii$7= Tilt Y tolerance on surfaces 1 through 3 (degrees)
!4(QeV-= TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
ix_&<?8 Change in Focus : 0.000000 0.000000
_'Hw`0}s Decenter X tolerance on surface 1
Q?{^8?7 TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
YaAOP'p Change in Focus : 0.000000 0.000000
jF0>wm Decenter Y tolerance on surface 1
=nE^zY2m% TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
e#z#bz2< Change in Focus : 0.000000 0.000000
4~z-&>% Tilt X tolerance on surface (degrees) 1
! +XreCw TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
N<T@GQwkS Change in Focus : 0.000000 0.000000
Z6IWQo,)Rh Tilt Y tolerance on surface (degrees) 1
0K^?QM|S TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
^W,~ Change in Focus : 0.000000 0.000000
i&\cDQ 3 Decenter X tolerance on surface 2
?CE&F<?#@ TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
E{{Kzr2$ Change in Focus : 0.000000 0.000000
C,VvbB Decenter Y tolerance on surface 2
jUd)|v+t TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
jAy0k
Change in Focus : 0.000000 0.000000
IRT0
Tilt X tolerance on surface (degrees) 2
1SSS0 & TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
80 ckh Change in Focus : 0.000000 0.000000
q:u,)6 Tilt Y tolerance on surface (degrees) 2
7(C:ty9 TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
"43F.!P Change in Focus : 0.000000 0.000000
ZMO ym= Decenter X tolerance on surface 3
W?D-&X^ny TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
F $1f8U8 Change in Focus : 0.000000 0.000000
1EA#c>I$ Decenter Y tolerance on surface 3
p;.M. TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
5Tq*]ZE Change in Focus : 0.000000 0.000000
K#xL- Tilt X tolerance on surface (degrees) 3
%`}nP3 TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
DIx.a^LR Change in Focus : 0.000000 0.000000
% !Ih=DZ Tilt Y tolerance on surface (degrees) 3
S9dXkd TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
t
{H{xd Change in Focus : 0.000000 0.000000
du_~P"[ Irregularity of surface 1 in fringes
Y]bS=*q TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
LpN3cy>U Change in Focus : 0.000000 0.000000
2 :wgt Irregularity of surface 2 in fringes
U;t1 K TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
Ik-E_U2 Change in Focus : 0.000000 0.000000
T}59m;I Irregularity of surface 3 in fringes
)
(0=w4 TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
bL/DjsZ@ Change in Focus : 0.000000 0.000000
;2[),k Index tolerance on surface 1
OxN[w|2\4 TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
Ty} Y/jW Change in Focus : 0.000000 0.000000
yf/i) Index tolerance on surface 2
@W-0ybv TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
_fS4a134R Change in Focus : 0.000000 -0.000000
i(>
WeC+ &pW2R} Worst offenders:
*auT_* Type Value Criterion Change
jc HyRR1R TSTY 2 -0.20000000 0.35349910 -0.19053324
&cwN&XBY TSTY 2 0.20000000 0.35349910 -0.19053324
KkCsQ~po TSTX 2 -0.20000000 0.35349910 -0.19053324
gFl@A} TSTX 2 0.20000000 0.35349910 -0.19053324
"EwzuM8f TSTY 1 -0.20000000 0.42678383 -0.11724851
/h8100 TSTY 1 0.20000000 0.42678383 -0.11724851
b>Ea_3T/ TSTX 1 -0.20000000 0.42678383 -0.11724851
Hb0_QT~ TSTX 1 0.20000000 0.42678383 -0.11724851
N9 h|_ax TSTY 3 -0.20000000 0.42861670 -0.11541563
7[I +1 TSTY 3 0.20000000 0.42861670 -0.11541563
JJ9R,
8n6 ~ +h4i' Estimated Performance Changes based upon Root-Sum-Square method:
v2k@yxt( Nominal MTF : 0.54403234
|5jrl| Estimated change : -0.36299231
vIf-TQw Estimated MTF : 0.18104003
wHh6y? g\ `\GRY @cg Compensator Statistics: 6q^\pJY%&7 Change in back focus: (__$YQ- Minimum : -0.000000 }42Hhu7j Maximum : 0.000000 aW9\h_$ Mean : -0.000000 oU se~ Standard Deviation : 0.000000 \i+Ad@) 9sI&d Monte Carlo Analysis:
3)I]bui Number of trials: 20
F}=_"IkZ Mfnfp{.) Initial Statistics: Normal Distribution
gegM&Xo >Y(JC#M; Trial Criterion Change
uh`5:V 1 0.42804416 -0.11598818
.5);W;`X Change in Focus : -0.400171
70 Ph^e) 2 0.54384387 -0.00018847
k(o(:-+x Change in Focus : 1.018470
uIBN
!\j 3 0.44510003 -0.09893230
[5tvdW6Z& Change in Focus : -0.601922
;YSe:m* 4 0.18154684 -0.36248550
_]-8gr-T Change in Focus : 0.920681
HJBGxyw 5 0.28665820 -0.25737414
Kp^"<%RT Change in Focus : 1.253875
41P0)o 6 0.21263372 -0.33139862
Kwi+}B! Change in Focus : -0.903878
',/# | 7 0.40051424 -0.14351809
9MH;=88q Change in Focus : -1.354815
aRElk&M 8 0.48754161 -0.05649072
eK5~YM:o Change in Focus : 0.215922
:s\zk^h? 9 0.40357468 -0.14045766
-}PE(c1%?q Change in Focus : 0.281783
/GX>L) 10 0.26315315 -0.28087919
]=9 d'WL Change in Focus : -1.048393
ay|jq"a 11 0.26120585 -0.28282649
g9CedD%40 Change in Focus : 1.017611
pU'${Z~b 12 0.24033815 -0.30369419
W?"l6s Change in Focus : -0.109292
P&=YLL<W 13 0.37164046 -0.17239188
{ ^^5FE)% Change in Focus : -0.692430
[+QyKyhTO 14 0.48597489 -0.05805744
$-u c#57 Change in Focus : -0.662040
#-PMREgO 15 0.21462327 -0.32940907
7r^Cs#b+I Change in Focus : 1.611296
ZjY,k 16 0.43378226 -0.11025008
m.!LL]] Change in Focus : -0.640081
5D2mZ/ 17 0.39321881 -0.15081353
T+aNX/c|> Change in Focus : 0.914906
` &bF@$(( 18 0.20692530 -0.33710703
d3
i(UN] Change in Focus : 0.801607
yf!7
Q>_G^ 19 0.51374068 -0.03029165
> ;#Y0 Change in Focus : 0.947293
W -HOl!) 20 0.38013374 -0.16389860
_|W&tB* Change in Focus : 0.667010
t- TUP>_ K C"&3 Number of traceable Monte Carlo files generated: 20
K F_Uu &@'%0s9g Nominal 0.54403234
ij#v_~g3 Best 0.54384387 Trial 2
,X1M!' Worst 0.18154684 Trial 4
U;TS7A3 Mean 0.35770970
1L+hI=\O Std Dev 0.11156454
jMCd`Q]K *aC[Tv[-P ""
>Yw/' Compensator Statistics:
]n>9(Mp!M Change in back focus:
he/rt# Minimum : -1.354815
.ahY 1CO Maximum : 1.611296
pdER#7Tq Mean : 0.161872
e$P^},0/ Standard Deviation : 0.869664
4M> pHz4 f0Q! lMv 90% > 0.20977951 8t=O=l\ 80% > 0.22748071 7w" !"W# 50% > 0.38667627 ;?@Rq"* 20% > 0.46553746 ("ix!\1K@ 10% > 0.50064115 $GU s\ YgjW%q End of Run.
X@}7 #Vt QIU%!9Y 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
$[ S 33Q
\m}a%/ );AtFP0Y 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
=OtW!vx#R. Jk`Jv; 不吝赐教