切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16217阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 E%np-is{1  
    .j l|? o  
    :@c\a99Kx  
    >21f%Z  
    然后添加了默认公差分析,基本没变 u0?,CQPL  
    01&J7A2  
    N~0~1 WQn  
    9yWQ}h  
    然后运行分析的结果如下: ? 1 ~C`I;  
    {OGv1\ol&  
    Analysis of Tolerances W,-fnJk  
    ]zUvs6ksLG  
    File : E:\光学设计资料\zemax练习\f500.ZMX wzNGL{3  
    Title: G~FAChI8![  
    Date : TUE JUN 21 2011 T$vDw|KSVP  
    qpZR-O  
    Units are Millimeters. se ]q~<&  
    All changes are computed using linear differences. ?o883!&v  
    #z&@f  
    Paraxial Focus compensation only. fXfO9{E  
    )DwHLaLW  
    WARNING: Solves should be removed prior to tolerancing. IuN:*P  
    QsC6\Gt#  
    Mnemonics: JR^#NefJ  
    TFRN: Tolerance on curvature in fringes. :W*']8 M-  
    TTHI: Tolerance on thickness. S{7 R6,B5  
    TSDX: Tolerance on surface decentering in x. Lq cHsUFj  
    TSDY: Tolerance on surface decentering in y. Xn3 \a81  
    TSTX: Tolerance on surface tilt in x (degrees). qdY*y&}"J  
    TSTY: Tolerance on surface tilt in y (degrees). iW$f1=i  
    TIRR: Tolerance on irregularity (fringes). u~\I  
    TIND: Tolerance on Nd index of refraction. 5A`T}~"X  
    TEDX: Tolerance on element decentering in x. Yj#4{2A  
    TEDY: Tolerance on element decentering in y. SQ0t28N3h  
    TETX: Tolerance on element tilt in x (degrees). TL*8h7.(  
    TETY: Tolerance on element tilt in y (degrees). dWDM{t\}\  
    =lG/A[66  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. z(JDLd  
    *Iir/6myM  
    WARNING: Boundary constraints on compensators will be ignored. 6E0{(*  
    ,bnrVa(I  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm [)L)R`  
    Mode                : Sensitivities BMxe)izT;  
    Sampling            : 2 Ubf@"B  
    Nominal Criterion   : 0.54403234 ,p7W4;?4  
    Test Wavelength     : 0.6328 2Pz)vnV"  
    9:1[4o)~  
    MlmdfO%Y  
    Fields: XY Symmetric Angle in degrees jt,dr3|/n  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ),;O3:n  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ccm(r~lhJ  
    8P[aX3T7G  
    Sensitivity Analysis: RZrQ^tI3"  
    O=2SDuBZ  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| at5>h   
    Type                      Value      Criterion        Change          Value      Criterion        Change +:jx{*}jo  
    Fringe tolerance on surface 1 9zs!rlzQ  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 8 O% ?t  
    Change in Focus                :      -0.000000                            0.000000 X^c2  
    Fringe tolerance on surface 2 y L|'K}  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 \;F_QV  
    Change in Focus                :       0.000000                            0.000000 /lqVMlz\77  
    Fringe tolerance on surface 3 O[RivHCY  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 @M_p3[c\  
    Change in Focus                :      -0.000000                            0.000000 b<1+q{0r  
    Thickness tolerance on surface 1 y3{ F\K  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ~;uc@GGo  
    Change in Focus                :       0.000000                            0.000000 gt Vnn]Jh  
    Thickness tolerance on surface 2 T**v!Ls  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 `Eq~W@';Q0  
    Change in Focus                :       0.000000                           -0.000000 ~f5g\n;  
    Decenter X tolerance on surfaces 1 through 3 5kbbeO|0G  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;eQOBGX9  
    Change in Focus                :       0.000000                            0.000000 G}8Zkz@+  
    Decenter Y tolerance on surfaces 1 through 3 EnD }|9  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Vq>$ZlvS  
    Change in Focus                :       0.000000                            0.000000 5wgeA^HE2y  
    Tilt X tolerance on surfaces 1 through 3 (degrees) '7;b+Vbl#  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 guc[du  
    Change in Focus                :       0.000000                            0.000000 _Cnl|'  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) zC<k4[.  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 K#_x.: <J  
    Change in Focus                :       0.000000                            0.000000 PbpnjvVrM  
    Decenter X tolerance on surface 1 GX-V|hLaGX  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Z?"f#  
    Change in Focus                :       0.000000                            0.000000 (eEs0  
    Decenter Y tolerance on surface 1 W3aFao>!OZ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 /.m &rS  
    Change in Focus                :       0.000000                            0.000000 {.mP e|  
    Tilt X tolerance on surface (degrees) 1 q47:kB{d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 1 |T{RY5  
    Change in Focus                :       0.000000                            0.000000 !${7)=|=1  
    Tilt Y tolerance on surface (degrees) 1 14Y<-OO: k  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 & c V$`L  
    Change in Focus                :       0.000000                            0.000000 M|DVFC  
    Decenter X tolerance on surface 2 +$y%H  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 BWG*UjP M  
    Change in Focus                :       0.000000                            0.000000 qGVf! R  
    Decenter Y tolerance on surface 2 %!X9>i>  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 X" m0||  
    Change in Focus                :       0.000000                            0.000000 97 eEqI$#  
    Tilt X tolerance on surface (degrees) 2 0tb%h[%,M  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 RJhafUJ zH  
    Change in Focus                :       0.000000                            0.000000 :plN<8  
    Tilt Y tolerance on surface (degrees) 2 =R6IW,*  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7G]v(ay  
    Change in Focus                :       0.000000                            0.000000 R q |,@  
    Decenter X tolerance on surface 3 1~aP)q  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 HY!R|  
    Change in Focus                :       0.000000                            0.000000 !9p;%Ny`  
    Decenter Y tolerance on surface 3 d":GsI?3  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 OAw- -rl  
    Change in Focus                :       0.000000                            0.000000 z}z 6Vg  
    Tilt X tolerance on surface (degrees) 3 [Zxv&$SQ  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 DElrY)3O.  
    Change in Focus                :       0.000000                            0.000000 $s.:H4:I  
    Tilt Y tolerance on surface (degrees) 3 (<KFA,  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 5x?YFq6k  
    Change in Focus                :       0.000000                            0.000000 dYxX%"J  
    Irregularity of surface 1 in fringes -g\;B  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 "&Rt&S  
    Change in Focus                :       0.000000                            0.000000 sFbN)Cx  
    Irregularity of surface 2 in fringes ZULnS*V;5  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ! %X#;{  
    Change in Focus                :       0.000000                            0.000000 A}3dx!?7j  
    Irregularity of surface 3 in fringes zN3b`K. i  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Nbvs_>N   
    Change in Focus                :       0.000000                            0.000000 j[Q9_0R~lR  
    Index tolerance on surface 1 r?2EJE2{V  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 {$xt.<  
    Change in Focus                :       0.000000                            0.000000 N5d)&a 7?  
    Index tolerance on surface 2 SE<?l  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 s~'"&0Gz  
    Change in Focus                :       0.000000                           -0.000000 4^(aG7  
    FKBI.}A?!'  
    Worst offenders: VS jt|F)t  
    Type                      Value      Criterion        Change f"RS,]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 H ]z83:Z  
    TSTY   2             0.20000000     0.35349910    -0.19053324 O;lGh1.  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 qd<-{  
    TSTX   2             0.20000000     0.35349910    -0.19053324 lx\9Y8  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 c]%~X&Tg`  
    TSTY   1             0.20000000     0.42678383    -0.11724851 q>rDxmP<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ?Gqq]ozm  
    TSTX   1             0.20000000     0.42678383    -0.11724851 :Xi&H.k)p  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 NH'Dz6K5  
    TSTY   3             0.20000000     0.42861670    -0.11541563 uL{CUt  
    B",;z)(%  
    Estimated Performance Changes based upon Root-Sum-Square method: 6o d^+>U  
    Nominal MTF                 :     0.54403234 + l hJ8&  
    Estimated change            :    -0.36299231 LU $=j  
    Estimated MTF               :     0.18104003 p?2^JJpUb  
    = 6'Fm$R  
    Compensator Statistics: 8I[=iU7]l  
    Change in back focus: ]?%S0DO*  
    Minimum            :        -0.000000 UQ#t &  
    Maximum            :         0.000000 @1N .;]|  
    Mean               :        -0.000000 ?DGg.2f  
    Standard Deviation :         0.000000 H <9_BA?  
    ub;:"ns}  
    Monte Carlo Analysis: &u2H^ j  
    Number of trials: 20 Z`<5SHQd  
    X;]I jha<*  
    Initial Statistics: Normal Distribution B~B,L*kC2  
    _#K?yP?  
      Trial       Criterion        Change R-YNg  
          1     0.42804416    -0.11598818 wxo*\WLe  
    Change in Focus                :      -0.400171 UC_o;  
          2     0.54384387    -0.00018847 =P%?{7  
    Change in Focus                :       1.018470 {l"(EeW6)  
          3     0.44510003    -0.09893230 +ib&6IU  
    Change in Focus                :      -0.601922 K7X*N  
          4     0.18154684    -0.36248550 Ae\:{[c_D  
    Change in Focus                :       0.920681 h~lps?.#b  
          5     0.28665820    -0.25737414 Z!-V&H.  
    Change in Focus                :       1.253875 "5204I  
          6     0.21263372    -0.33139862 K0~=9/  
    Change in Focus                :      -0.903878 3rBID  
          7     0.40051424    -0.14351809 2HO2  
    Change in Focus                :      -1.354815 6 2#@Y-5  
          8     0.48754161    -0.05649072 xXlx}C  
    Change in Focus                :       0.215922 K@%gvLa\  
          9     0.40357468    -0.14045766 (8baa.ge  
    Change in Focus                :       0.281783 +Sc2'z>R  
         10     0.26315315    -0.28087919 ,xg-H6Xfa{  
    Change in Focus                :      -1.048393 xR8y"CpE  
         11     0.26120585    -0.28282649 + }$(j#h  
    Change in Focus                :       1.017611 &NOCRabc  
         12     0.24033815    -0.30369419 n&,X ']z.  
    Change in Focus                :      -0.109292 P?^%i  
         13     0.37164046    -0.17239188 osc A\r  
    Change in Focus                :      -0.692430 pk`5RDBu  
         14     0.48597489    -0.05805744 X .sOZb?$  
    Change in Focus                :      -0.662040 \l%##7DRp]  
         15     0.21462327    -0.32940907 Z;S)GUG^  
    Change in Focus                :       1.611296 d3\KUR^  
         16     0.43378226    -0.11025008 # [ +n(  
    Change in Focus                :      -0.640081 #"8'y  
         17     0.39321881    -0.15081353 j\"d/{7Q  
    Change in Focus                :       0.914906 yuC|_nL  
         18     0.20692530    -0.33710703 M3Qi]jO98  
    Change in Focus                :       0.801607 l$[,V:N  
         19     0.51374068    -0.03029165 m%'T90mi  
    Change in Focus                :       0.947293 hXvC>ie(i  
         20     0.38013374    -0.16389860 L1WvX6  
    Change in Focus                :       0.667010 Xvk+1:D  
    \r9E6LL X'  
    Number of traceable Monte Carlo files generated: 20 ii&ckg>]z  
    -BSO$'{7  
    Nominal     0.54403234 f:t j   
    Best        0.54384387    Trial     2 cY Qm8TR<  
    Worst       0.18154684    Trial     4 c>3j $D+  
    Mean        0.35770970 }u8g7Nj  
    Std Dev     0.11156454 q6b&b^r+H  
    8 &v)Vi-  
    'Fc$?$c\  
    Compensator Statistics: p"7[heExw  
    Change in back focus: P,b&F  
    Minimum            :        -1.354815 !@*= b1  
    Maximum            :         1.611296 jcjl q-x  
    Mean               :         0.161872 Q+/P>5O/  
    Standard Deviation :         0.869664 R T~oJ~t;  
    A2p%Y},  
    90% >       0.20977951               f]mVM(XZN  
    80% >       0.22748071               9-vQn/O^D  
    50% >       0.38667627               oIQ$98M  
    20% >       0.46553746               6y "]2UgQk  
    10% >       0.50064115                >^IUS8v  
    I-=Ieq"R9  
    End of Run. !]5V{3  
    3[m2F O,Z  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 LM 1Vsh<  
    U(Bmffn4Z  
    x6$3 KDQm  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 bR1Q77<G\  
    Z$r7Hi  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 FFe{=H,=  
    80% >       0.22748071                 #/8 Na v  
    50% >       0.38667627                 ZR"qrCSw`  
    20% >       0.46553746                 e\f\CMb  
    10% >       0.50064115 o*"Q{Xh#Qd  
    M _lLP8W}  
    最后这个数值是MTF值呢,还是MTF的公差? !4<A|$mQ  
    cM4{ e^  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   E1`_[=8a9  
    ,H<nNBv 3M  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Ad>@8^  
    90% >       0.20977951                 xgM\6e  
    80% >       0.22748071                 3O _O5  
    50% >       0.38667627                 ]=/?Ooh  
    20% >       0.46553746                 m6 Y0,9  
    10% >       0.50064115 g:p` .KuB  
    ....... hw)z]  
    osLEH?iKW  
    CP$,fj  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   qDfhR`1k  
    Mode                : Sensitivities km`";gUp>  
    Sampling            : 2 at2)%V)  
    Nominal Criterion   : 0.54403234 ]XL=S|tIq  
    Test Wavelength     : 0.6328 x8wsx F  
    e ]2GAJLI  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ^(BE_<~  
    B&EUvY '  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试