切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16223阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Cxf K(F  
    2)}n"ibbT  
    _l d.Xmvd  
    0'^M}&zCi  
    然后添加了默认公差分析,基本没变 Kb~nC6yJc  
    |t,sK aL  
    iZGbNN  
    wNB?3v{n  
    然后运行分析的结果如下: |G j.E  
    P1#g{f  
    Analysis of Tolerances Vt`4u5HG  
    26V6Y2X  
    File : E:\光学设计资料\zemax练习\f500.ZMX SN6 QX!3  
    Title: E=NjWO  
    Date : TUE JUN 21 2011 6pt,]FlU  
    vYgJu-Sl  
    Units are Millimeters. B'Yx/c&n  
    All changes are computed using linear differences. >A Ep\ *  
    K\xz|Gq  
    Paraxial Focus compensation only. :~-:  
    /b+~BvTh  
    WARNING: Solves should be removed prior to tolerancing. xP8/1wd.  
    t]xz7VQ  
    Mnemonics: Gb')a/  
    TFRN: Tolerance on curvature in fringes. "x$@^  
    TTHI: Tolerance on thickness. dXyMRGR Uq  
    TSDX: Tolerance on surface decentering in x. c <TEA  
    TSDY: Tolerance on surface decentering in y. SKG U)Rn;  
    TSTX: Tolerance on surface tilt in x (degrees). LkbD='\=  
    TSTY: Tolerance on surface tilt in y (degrees). >+O0W)g{o  
    TIRR: Tolerance on irregularity (fringes). ~WrpJjI[  
    TIND: Tolerance on Nd index of refraction. l)r\SE1  
    TEDX: Tolerance on element decentering in x. +3,7 Apj  
    TEDY: Tolerance on element decentering in y. F|%PiC,,qO  
    TETX: Tolerance on element tilt in x (degrees). =?]`Xo,v~  
    TETY: Tolerance on element tilt in y (degrees). qlhc"}5x }  
    L*0YOE%=]  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. u#6s^ )W  
     ^B"LT>.[  
    WARNING: Boundary constraints on compensators will be ignored. g;l K34{  
    #}Qe{4L  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm #JUh"8N'  
    Mode                : Sensitivities l;-2hZ  
    Sampling            : 2 r CJ$Pl9R  
    Nominal Criterion   : 0.54403234 EU(e5vO  
    Test Wavelength     : 0.6328 PYQ0&;z  
    ?e%*q^~Cu  
    2Z; !N37U  
    Fields: XY Symmetric Angle in degrees enk`I$Xx  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY O>E}Lu;|  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 [I;C 6p  
    |s /)lA:9  
    Sensitivity Analysis: FQek+[ox  
    g0f4>m  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| gs<~)&x  
    Type                      Value      Criterion        Change          Value      Criterion        Change h-p}Qil,  
    Fringe tolerance on surface 1 XT/t\\Z`U  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 #( .G;e;w  
    Change in Focus                :      -0.000000                            0.000000 rB J`=oz  
    Fringe tolerance on surface 2 $YJ 1P  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 O 0}uY:B  
    Change in Focus                :       0.000000                            0.000000 GwO`@-}E  
    Fringe tolerance on surface 3 >p&"X 2 @  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 Sr+hB>{  
    Change in Focus                :      -0.000000                            0.000000 8kKL=  
    Thickness tolerance on surface 1 x@ X2r  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 5,xPB5pK  
    Change in Focus                :       0.000000                            0.000000 B9l~Y/3|  
    Thickness tolerance on surface 2 SY95s  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 _J*l,]}S  
    Change in Focus                :       0.000000                           -0.000000 A}"|_ &E  
    Decenter X tolerance on surfaces 1 through 3 nLL2/!'n  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 "%K'~"S#Q,  
    Change in Focus                :       0.000000                            0.000000 #-%D(=&I  
    Decenter Y tolerance on surfaces 1 through 3 -.Wwo(4  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 gpq ,rOIK  
    Change in Focus                :       0.000000                            0.000000 @de  ZZ  
    Tilt X tolerance on surfaces 1 through 3 (degrees) @Ez>?#z  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 >QDyG8*  
    Change in Focus                :       0.000000                            0.000000 V 2Xv)  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) M._h=wX{}  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 aj|3(2;Kp  
    Change in Focus                :       0.000000                            0.000000 S))B^).0-  
    Decenter X tolerance on surface 1 :TVo2Zm[@  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Qfp4}a=  
    Change in Focus                :       0.000000                            0.000000 `;Ui6{|  
    Decenter Y tolerance on surface 1 N75U.;U0  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 iK2f]h  
    Change in Focus                :       0.000000                            0.000000 :@p]~{m:G  
    Tilt X tolerance on surface (degrees) 1 <Z[Z&^  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 \[!{tbK`2  
    Change in Focus                :       0.000000                            0.000000 vJr,lBHEk  
    Tilt Y tolerance on surface (degrees) 1 JQLQS  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ju:}%'  
    Change in Focus                :       0.000000                            0.000000 <e&v[  
    Decenter X tolerance on surface 2 _W@sFv%sj  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 |`yU \  
    Change in Focus                :       0.000000                            0.000000 /.s L[X-G  
    Decenter Y tolerance on surface 2 p7+>]sqX  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 RJ'za1@z;b  
    Change in Focus                :       0.000000                            0.000000 <|'ETqP<+  
    Tilt X tolerance on surface (degrees) 2 ipG 0ie+  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @Y,t]  
    Change in Focus                :       0.000000                            0.000000 [cFD\"gJAr  
    Tilt Y tolerance on surface (degrees) 2 ;+DMv5A "  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Obu 6k[BE.  
    Change in Focus                :       0.000000                            0.000000 37n2#E  
    Decenter X tolerance on surface 3 4]}d'x&  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 %-YWn`yEm  
    Change in Focus                :       0.000000                            0.000000 BZOl&G(  
    Decenter Y tolerance on surface 3 },<Y \  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 {%6 '|<`[  
    Change in Focus                :       0.000000                            0.000000 t<+>E_Xw  
    Tilt X tolerance on surface (degrees) 3 uD{^1c3x  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 [6\O <-?  
    Change in Focus                :       0.000000                            0.000000 |0^IX   
    Tilt Y tolerance on surface (degrees) 3 )EYs+7/t  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 HI1|~hOb'  
    Change in Focus                :       0.000000                            0.000000 p%Q{Rqc)  
    Irregularity of surface 1 in fringes N) jNvzm  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 .`*(#9(M9  
    Change in Focus                :       0.000000                            0.000000 + S5uxO  
    Irregularity of surface 2 in fringes ao7M(f  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 /_JR7BB^X,  
    Change in Focus                :       0.000000                            0.000000 d:Z|It  
    Irregularity of surface 3 in fringes N f?\O@  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 xn=mS!"1Zo  
    Change in Focus                :       0.000000                            0.000000 w3iX "w  
    Index tolerance on surface 1 .$f0!` t  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 +pUYFDwFx  
    Change in Focus                :       0.000000                            0.000000 od@!WjcM[8  
    Index tolerance on surface 2 7h. [eMLPB  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 mE+=H]`.p  
    Change in Focus                :       0.000000                           -0.000000 3]\'Q}  
    $Q|6W &?[;  
    Worst offenders: 8z-wdO\  
    Type                      Value      Criterion        Change 6."|m+D  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 <,*w$  
    TSTY   2             0.20000000     0.35349910    -0.19053324 NUBzc'qb  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 F&k<P>k  
    TSTX   2             0.20000000     0.35349910    -0.19053324 Y3V2}  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 rIyIZWkI  
    TSTY   1             0.20000000     0.42678383    -0.11724851 u9 *ic~Nh  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 %}  
    TSTX   1             0.20000000     0.42678383    -0.11724851 t}K8{ V  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 rWL&-AZQl  
    TSTY   3             0.20000000     0.42861670    -0.11541563 u#ocx[  
    ieOw&  
    Estimated Performance Changes based upon Root-Sum-Square method: ()Img.TIt  
    Nominal MTF                 :     0.54403234 .dc|?$XV  
    Estimated change            :    -0.36299231 Qc Xw -  
    Estimated MTF               :     0.18104003 pm}_\_  
    8`<3rj  
    Compensator Statistics: Kk% I N9  
    Change in back focus: 98|1K>C  
    Minimum            :        -0.000000 `)i4ZmE|  
    Maximum            :         0.000000 !}d_$U$  
    Mean               :        -0.000000 ;F2"gTQS  
    Standard Deviation :         0.000000 =EHKu|rX~  
    PTF|"^k+   
    Monte Carlo Analysis: Tn'o$J  
    Number of trials: 20 ;A?86o'?  
    tac_MtW?  
    Initial Statistics: Normal Distribution oC TSV  
    X-yS9E  
      Trial       Criterion        Change ,_'Z Jlx  
          1     0.42804416    -0.11598818 %8KbVjn  
    Change in Focus                :      -0.400171 JGlp7wro  
          2     0.54384387    -0.00018847 dY?>:ce  
    Change in Focus                :       1.018470 #%/0a  
          3     0.44510003    -0.09893230 V4<f4|IL  
    Change in Focus                :      -0.601922 T#YJ5Xw  
          4     0.18154684    -0.36248550 KpKZiUQm  
    Change in Focus                :       0.920681 K &G  
          5     0.28665820    -0.25737414 2 o5u02x  
    Change in Focus                :       1.253875 |Mnc0Fgvy,  
          6     0.21263372    -0.33139862 ib(4Y%U6~  
    Change in Focus                :      -0.903878 _y9NDLRs8  
          7     0.40051424    -0.14351809 `9DW}  
    Change in Focus                :      -1.354815 ZGS4P0$  
          8     0.48754161    -0.05649072 y#J8Yv8  
    Change in Focus                :       0.215922 NV18~5#</  
          9     0.40357468    -0.14045766 d?[8VfAnh  
    Change in Focus                :       0.281783 Y-y}gc_L  
         10     0.26315315    -0.28087919 kybDw{(}gc  
    Change in Focus                :      -1.048393 qD(dAU  
         11     0.26120585    -0.28282649 k|rbh.Q  
    Change in Focus                :       1.017611 z| m-nIM  
         12     0.24033815    -0.30369419 YZc{\~d  
    Change in Focus                :      -0.109292 NHD`c)Q  
         13     0.37164046    -0.17239188  :D  
    Change in Focus                :      -0.692430 m>^#:JK  
         14     0.48597489    -0.05805744 !h+VbZ  
    Change in Focus                :      -0.662040 -pN'r/$3V  
         15     0.21462327    -0.32940907 o[k,{`M0  
    Change in Focus                :       1.611296 9t{Iv({6p  
         16     0.43378226    -0.11025008 NvJ}|w,Z  
    Change in Focus                :      -0.640081 u:}yE^8@  
         17     0.39321881    -0.15081353 q} p (p( N  
    Change in Focus                :       0.914906 hx!hI1   
         18     0.20692530    -0.33710703 9{R88f?;  
    Change in Focus                :       0.801607 !@f!4n.e|I  
         19     0.51374068    -0.03029165 7HQ|3rt  
    Change in Focus                :       0.947293 *qw//W   
         20     0.38013374    -0.16389860  B"Ttr+  
    Change in Focus                :       0.667010 k mX:~KMb  
    >^adxXw.o  
    Number of traceable Monte Carlo files generated: 20 0?,%B?A8O  
    KiMEd373-  
    Nominal     0.54403234 6z1>(Za7>  
    Best        0.54384387    Trial     2 a(K^/BT  
    Worst       0.18154684    Trial     4 MMyJAGh ^G  
    Mean        0.35770970 ()EiBl(kWk  
    Std Dev     0.11156454 KqWt4{\8v`  
    T@on ue7  
    :cE~\B S&  
    Compensator Statistics: +#7)'c  
    Change in back focus: { VFr8F0*H  
    Minimum            :        -1.354815 Eh.NJI(  
    Maximum            :         1.611296 z 5IdYF?  
    Mean               :         0.161872 w7Vl,pN,  
    Standard Deviation :         0.869664 u\}"l2 r  
     kSU]~x  
    90% >       0.20977951               Qg gx:  
    80% >       0.22748071               8i?:aN[.1b  
    50% >       0.38667627               +IbQVU~/  
    20% >       0.46553746               mI3 \n  
    10% >       0.50064115                G>j4b}e  
    @x/D8HK2  
    End of Run. kTS #>uS  
    3W"l}.&ZJ"  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 qku!Mg  
    7\ kixfEg  
    >jg"y  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Et+WLQ6)  
    O" ,*N  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 6PdLJ#LS  
    80% >       0.22748071                 yHjuT+/wM,  
    50% >       0.38667627                 m9 D' yXZ  
    20% >       0.46553746                 vvmG46IgZ  
    10% >       0.50064115 #f-pkeaeq  
    d@e2+3<  
    最后这个数值是MTF值呢,还是MTF的公差? +X|^ ~)tMJ  
    \ICc?8oL  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   $Z[W}7{pt#  
    'jj|bN  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : xO&qo8*  
    90% >       0.20977951                 c<,R,D R  
    80% >       0.22748071                 \![ p-mW{  
    50% >       0.38667627                 Y49&EQ  
    20% >       0.46553746                 +t%1FkI\  
    10% >       0.50064115 Xm3r)Bm'3  
    ....... M;9s  
    otbr8&?-  
    o3JSh=  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   RsYMw3)G  
    Mode                : Sensitivities }N&? 8s=  
    Sampling            : 2 vXm'ARj  
    Nominal Criterion   : 0.54403234 G*_qqb{B  
    Test Wavelength     : 0.6328 0S96x}]J B  
    sI.p( -K Q  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 1tLEKSo+  
     AGm=0Om  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试