切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16294阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 5PcN$r"P  
    FX->_}kL=  
    :rdw0EROy  
    9s.x%m,  
    然后添加了默认公差分析,基本没变 T?DX|?2X  
    Yn~N;VUA  
    .uoQ@3  
    @) \{u$  
    然后运行分析的结果如下: un&Z' .   
    &'mq).I2  
    Analysis of Tolerances K3;lst>4  
    I6.!0.G  
    File : E:\光学设计资料\zemax练习\f500.ZMX AZHZUd4  
    Title: #W]4aZ1  
    Date : TUE JUN 21 2011 @W|N1,sp  
    eZck$]P(6H  
    Units are Millimeters. aFbIJm=!  
    All changes are computed using linear differences. + Cf  
    x!i(M>P  
    Paraxial Focus compensation only. |e%o  
    (C&Lpt_  
    WARNING: Solves should be removed prior to tolerancing. IAl X^6s*  
    2!Gb4V  
    Mnemonics: Cj +{%^#  
    TFRN: Tolerance on curvature in fringes. @[=K`n:n_  
    TTHI: Tolerance on thickness. Eq\PSa=gz  
    TSDX: Tolerance on surface decentering in x. D,c53B6M  
    TSDY: Tolerance on surface decentering in y. `w;8xD(  
    TSTX: Tolerance on surface tilt in x (degrees). v90)G8|q  
    TSTY: Tolerance on surface tilt in y (degrees). K:cZ q3F  
    TIRR: Tolerance on irregularity (fringes). y$Y*%D^w  
    TIND: Tolerance on Nd index of refraction. Twi7g3}/jB  
    TEDX: Tolerance on element decentering in x. $ Ith8p~  
    TEDY: Tolerance on element decentering in y. &yabxl_  
    TETX: Tolerance on element tilt in x (degrees). Ld9YbL:  
    TETY: Tolerance on element tilt in y (degrees). A><q-`bw  
    p-S&Wq  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. :g+5cs  
    c9 7?+Y^  
    WARNING: Boundary constraints on compensators will be ignored. CD"D^\z  
    U?[_ d  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm rZi\  
    Mode                : Sensitivities )*CDufRFz  
    Sampling            : 2 Rt6(y #dF  
    Nominal Criterion   : 0.54403234 6!;eJYj,  
    Test Wavelength     : 0.6328 N}/|B}  
    d'okXCG  
    xl]1{$1M  
    Fields: XY Symmetric Angle in degrees ^{m&2l&87  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY oLh 2:c  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 z5_#]:o&  
    -"9&YkN  
    Sensitivity Analysis: zF([{5r[!)  
    ?r}'0dW  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| gAPD y/wM  
    Type                      Value      Criterion        Change          Value      Criterion        Change ~M !9E])  
    Fringe tolerance on surface 1 |RS(QU<QE  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 $.0l% $7  
    Change in Focus                :      -0.000000                            0.000000 S!r,p};  
    Fringe tolerance on surface 2 4]P5k6 nV  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 VHbQLJ0  
    Change in Focus                :       0.000000                            0.000000 d7 W[.M$]  
    Fringe tolerance on surface 3 #=81`u  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ulAOQGZ  
    Change in Focus                :      -0.000000                            0.000000 `J v~.EF%  
    Thickness tolerance on surface 1 R?E< }\!  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 iKVJ c=C  
    Change in Focus                :       0.000000                            0.000000 [WXa]d5Y  
    Thickness tolerance on surface 2 5nA *'($j  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 v&]k8Hc-  
    Change in Focus                :       0.000000                           -0.000000 Gp.XTz#=  
    Decenter X tolerance on surfaces 1 through 3 0g{`Qd  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Mcfqo0T-  
    Change in Focus                :       0.000000                            0.000000 N0POyd/rL  
    Decenter Y tolerance on surfaces 1 through 3 p\).zuEf.  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 - fx?@  
    Change in Focus                :       0.000000                            0.000000 ^OZ*Le  
    Tilt X tolerance on surfaces 1 through 3 (degrees)  d  H ;  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 /T\'&s3D+  
    Change in Focus                :       0.000000                            0.000000  z:p;Wm  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 1. S?(1e"  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ^lP;JT?  
    Change in Focus                :       0.000000                            0.000000 X?gH(mn  
    Decenter X tolerance on surface 1 /9o gg  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 B(t`$mC  
    Change in Focus                :       0.000000                            0.000000 gZW(z  
    Decenter Y tolerance on surface 1 =g3o@WD/G  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 pj9*$.{  
    Change in Focus                :       0.000000                            0.000000  {Yc#XP  
    Tilt X tolerance on surface (degrees) 1 |J^}BXW'^)  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 aJ3.D  
    Change in Focus                :       0.000000                            0.000000 q?0&&"T}  
    Tilt Y tolerance on surface (degrees) 1 0 YA  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Q| _e=  
    Change in Focus                :       0.000000                            0.000000 5fjL  
    Decenter X tolerance on surface 2 |]UR&*  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 U'oFW@Y;h  
    Change in Focus                :       0.000000                            0.000000 J`d_=C?J  
    Decenter Y tolerance on surface 2 Muay6b?  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 : pkOZ+t  
    Change in Focus                :       0.000000                            0.000000 4 >`2vb  
    Tilt X tolerance on surface (degrees) 2 u_*DS-  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Vm]xV_FOd  
    Change in Focus                :       0.000000                            0.000000 j#rj_uP  
    Tilt Y tolerance on surface (degrees) 2 QJ^'Uyfdn  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 b sM ]5^  
    Change in Focus                :       0.000000                            0.000000 *u ^mf~  
    Decenter X tolerance on surface 3 .EB'n{zxd  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 \ 3XG8J  
    Change in Focus                :       0.000000                            0.000000 |)[I$]L  
    Decenter Y tolerance on surface 3 VOkSR6  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 {Lg]chJq?  
    Change in Focus                :       0.000000                            0.000000 Usl963A#'F  
    Tilt X tolerance on surface (degrees) 3 Y2d(HD@  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 5i1E 5@~  
    Change in Focus                :       0.000000                            0.000000 Q^} Ib[  
    Tilt Y tolerance on surface (degrees) 3 AO~f=GW  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ={G0p=~+,p  
    Change in Focus                :       0.000000                            0.000000 ,ui=Wi1  
    Irregularity of surface 1 in fringes MG-#p8  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !L3\B_#  
    Change in Focus                :       0.000000                            0.000000 J>dIEW%u  
    Irregularity of surface 2 in fringes 7wz9x8\t  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 $, vX yZ  
    Change in Focus                :       0.000000                            0.000000 ~kp,;!^vr  
    Irregularity of surface 3 in fringes FByA4VxB  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 S>;+zVF]  
    Change in Focus                :       0.000000                            0.000000 T?k!%5,Kj  
    Index tolerance on surface 1 5MHc gzyp  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Y ow  
    Change in Focus                :       0.000000                            0.000000 JuD&121N*  
    Index tolerance on surface 2 ]S+KH \2  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 9$s~ `z)  
    Change in Focus                :       0.000000                           -0.000000 wB+X@AA  
    zFm:=,9  
    Worst offenders: rGm xK|R  
    Type                      Value      Criterion        Change A/TCJ#>l  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 C0gO^A.d  
    TSTY   2             0.20000000     0.35349910    -0.19053324 *nx$r[Mqj  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 {v}BtZ  
    TSTX   2             0.20000000     0.35349910    -0.19053324 HAmAmEc,  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 @bF4'M  
    TSTY   1             0.20000000     0.42678383    -0.11724851 bc]SY =  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 7-VP)|L#G  
    TSTX   1             0.20000000     0.42678383    -0.11724851 [=]LR9c4  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 BFswqp:  
    TSTY   3             0.20000000     0.42861670    -0.11541563 T!X`"rI  
    2?nEHIUT  
    Estimated Performance Changes based upon Root-Sum-Square method: })umg8s  
    Nominal MTF                 :     0.54403234 S0w:R:q}L  
    Estimated change            :    -0.36299231 `5 Iaz  
    Estimated MTF               :     0.18104003 Q" G;L  
    L>&9+<-B  
    Compensator Statistics: Mhu|S)hn  
    Change in back focus: #<DS-^W!  
    Minimum            :        -0.000000 {F ',e~}s  
    Maximum            :         0.000000 !W/"Z!k  
    Mean               :        -0.000000 ^l{q{O7U$  
    Standard Deviation :         0.000000 x5R|,bY  
    KsQn%mxS  
    Monte Carlo Analysis: I~Q G  
    Number of trials: 20 2= zw !  
    @tlWyUju  
    Initial Statistics: Normal Distribution zALtG<_t  
    Slv91c&md,  
      Trial       Criterion        Change O,Ej m<nt  
          1     0.42804416    -0.11598818 lf\x`3Vd  
    Change in Focus                :      -0.400171 -"6Z@8=  
          2     0.54384387    -0.00018847 heScIe N^`  
    Change in Focus                :       1.018470 H,EGB8E2  
          3     0.44510003    -0.09893230 7O,!67+^~  
    Change in Focus                :      -0.601922 ]Jo}F@\g  
          4     0.18154684    -0.36248550 &3 *#h  
    Change in Focus                :       0.920681 <UwYI_OX  
          5     0.28665820    -0.25737414 Gq-~z mg  
    Change in Focus                :       1.253875 M{g.x4M@W  
          6     0.21263372    -0.33139862 4 q\&Mb3  
    Change in Focus                :      -0.903878 (_=R<:  
          7     0.40051424    -0.14351809 d:{}0hmxI  
    Change in Focus                :      -1.354815 _&N}.y)+t  
          8     0.48754161    -0.05649072 fZb}-  
    Change in Focus                :       0.215922 uyvjo)T  
          9     0.40357468    -0.14045766 W<:x4gBa  
    Change in Focus                :       0.281783 Y|S>{$W  
         10     0.26315315    -0.28087919 Nx"|10gC  
    Change in Focus                :      -1.048393 o~M=o:^nH  
         11     0.26120585    -0.28282649 [l}H%S   
    Change in Focus                :       1.017611 $f=6>Kn|^]  
         12     0.24033815    -0.30369419 zEt!Pug  
    Change in Focus                :      -0.109292 VIg6'  
         13     0.37164046    -0.17239188 3)y=}jw  
    Change in Focus                :      -0.692430 /[A#iTe  
         14     0.48597489    -0.05805744  54#P  
    Change in Focus                :      -0.662040 c7D{^$L9 v  
         15     0.21462327    -0.32940907 h@dy}Id  
    Change in Focus                :       1.611296 JCci*F#r  
         16     0.43378226    -0.11025008 G5ShheZd  
    Change in Focus                :      -0.640081 EHK+qrym  
         17     0.39321881    -0.15081353 gv){&=9/  
    Change in Focus                :       0.914906 w?P ex]i{  
         18     0.20692530    -0.33710703 J-qUJX~4c  
    Change in Focus                :       0.801607 qRHT~ta-?  
         19     0.51374068    -0.03029165 CSY-{  
    Change in Focus                :       0.947293 n=?wX#rEC#  
         20     0.38013374    -0.16389860 10xza=a  
    Change in Focus                :       0.667010 R '8S)'l  
    M 5$JBnN  
    Number of traceable Monte Carlo files generated: 20 c Qe3  
    ^SK!? M  
    Nominal     0.54403234 jVh:Bw  
    Best        0.54384387    Trial     2 \VWgF)_  
    Worst       0.18154684    Trial     4 +S WtHj7e  
    Mean        0.35770970 L1f=90  
    Std Dev     0.11156454 gq@8Z AWn  
    nu Vux5:  
    #8~ygEa}  
    Compensator Statistics: iNc!z A4  
    Change in back focus: 8`6G_:&X  
    Minimum            :        -1.354815 =R"LB}>h}  
    Maximum            :         1.611296 @$iZ9x6t  
    Mean               :         0.161872 m&s>Sn+  
    Standard Deviation :         0.869664 #M4LG; B  
    6)BPDfU,  
    90% >       0.20977951               aKE`nA0\B  
    80% >       0.22748071               `"hWbmQ  
    50% >       0.38667627               R x(yn  
    20% >       0.46553746               hy>0'$mU  
    10% >       0.50064115                {rK]Q! yj  
    >TiE Y MW  
    End of Run. +v$W$s&b-h  
    Gpi_p  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 w=3 j'y{f  
    0 /9 C=v  
    [4aw*M1z}.  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 :LlZ#V2  
    V.6pfL  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 k#u)+e.'  
    80% >       0.22748071                 F#M(#!)Y"  
    50% >       0.38667627                 biBMd(6  
    20% >       0.46553746                 1r_V$o$  
    10% >       0.50064115 9thG4T8  
    eV/oY1B]<  
    最后这个数值是MTF值呢,还是MTF的公差? u"m(a:jQ  
    |$e'y x6j  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   HZ2W`wo  
    T:Ee6I 3l  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : O^row1D_  
    90% >       0.20977951                 _W_< bI34  
    80% >       0.22748071                 dCTyfXou[=  
    50% >       0.38667627                 Yg3nT:K_Y&  
    20% >       0.46553746                 #0[^jJ3J  
    10% >       0.50064115 2wIJ;rh  
    ....... X_hDU~5{wC  
    (BeJ,K7  
    -|KZOea  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   m\0_1 #(  
    Mode                : Sensitivities +)"Rv%.  
    Sampling            : 2 ji1vLu4|t  
    Nominal Criterion   : 0.54403234 /z*Z+OT2  
    Test Wavelength     : 0.6328 4F6aPo2  
    >- \bLr  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? XAU%B-l:  
    i#`q<+/q  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试