切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16349阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Uy:.m  
    -tdG} Gu  
    QAwj]_  
    6hq)yUvo4  
    然后添加了默认公差分析,基本没变 nSiNSLv  
    %R>S"  
    <hbbFL}|%  
    >>D i  
    然后运行分析的结果如下: sCl,]g0{  
    t@n (a  
    Analysis of Tolerances <k6xScy$}  
    bYc qscW  
    File : E:\光学设计资料\zemax练习\f500.ZMX xn8B|axB  
    Title: 8|GpfW3p 2  
    Date : TUE JUN 21 2011 ;I'/.gW;{  
    zY+Et.lg]^  
    Units are Millimeters. V1`| j  
    All changes are computed using linear differences. 88j ;7  
    Gf\_WNrSE+  
    Paraxial Focus compensation only. du,-]fF  
    }0RFo96) v  
    WARNING: Solves should be removed prior to tolerancing. &:*+p-!2<  
    T7~v40jn|  
    Mnemonics: QO/7p]$_  
    TFRN: Tolerance on curvature in fringes. xk8p,>/  
    TTHI: Tolerance on thickness. |lwN!KVQ,  
    TSDX: Tolerance on surface decentering in x. >}*jsqaVU  
    TSDY: Tolerance on surface decentering in y. OvG0UXRU  
    TSTX: Tolerance on surface tilt in x (degrees).  F`.7_D  
    TSTY: Tolerance on surface tilt in y (degrees). Wp3l>:  
    TIRR: Tolerance on irregularity (fringes). @\8gzvkt  
    TIND: Tolerance on Nd index of refraction. 8-ssiiJ}gh  
    TEDX: Tolerance on element decentering in x. jt--w"|-r  
    TEDY: Tolerance on element decentering in y. %Qz`SO8x?  
    TETX: Tolerance on element tilt in x (degrees). EIQy?ig86  
    TETY: Tolerance on element tilt in y (degrees). sLp LY1X  
    ;@ X   
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 1I_q3{  
    ]#.&f]6l  
    WARNING: Boundary constraints on compensators will be ignored. t|QMS M?s  
    (Nb1R"J `  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm b.*4RL  
    Mode                : Sensitivities E}/|Lja  
    Sampling            : 2 [frD L)  
    Nominal Criterion   : 0.54403234 ix@rq#  
    Test Wavelength     : 0.6328 UO<claV  
    2(/ /slP  
    0\nhg5]?  
    Fields: XY Symmetric Angle in degrees F$ p*G][  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ^3o8F  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 m (:qZW  
    K0=E4>z,`q  
    Sensitivity Analysis: <9tG_  
    \<x_96jt!\  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| xH#a|iT?(  
    Type                      Value      Criterion        Change          Value      Criterion        Change VDjIs UUX  
    Fringe tolerance on surface 1 nY-9 1q?Y  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ,ri--<  
    Change in Focus                :      -0.000000                            0.000000 q.[[ c  
    Fringe tolerance on surface 2 QfWu~[  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 )}\@BtcjA]  
    Change in Focus                :       0.000000                            0.000000 aEdJri  
    Fringe tolerance on surface 3 YPDsE&,J)  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 59BHGvaF  
    Change in Focus                :      -0.000000                            0.000000 +u:O AsR  
    Thickness tolerance on surface 1 Lj-&TO}OZ  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 oe|<xWu  
    Change in Focus                :       0.000000                            0.000000 g4SYG)'R+  
    Thickness tolerance on surface 2 Y6? mY!  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 [HiTR!o*  
    Change in Focus                :       0.000000                           -0.000000 ixHZX<6zYT  
    Decenter X tolerance on surfaces 1 through 3 vP)~j1  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 gJ8 c]2c  
    Change in Focus                :       0.000000                            0.000000 LNxE-Dp  
    Decenter Y tolerance on surfaces 1 through 3 :fKz^@mY4  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Zi@+T  
    Change in Focus                :       0.000000                            0.000000 xj q7%R_,  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ~2DV{dyj  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Q <-%jBP  
    Change in Focus                :       0.000000                            0.000000 y&=19 A#  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 8Pr7aT:,  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 l%U_iqL&  
    Change in Focus                :       0.000000                            0.000000 jP.b oj_u*  
    Decenter X tolerance on surface 1 a:^ Gr%  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 f3>6:(  
    Change in Focus                :       0.000000                            0.000000 -Dq:Y,%q  
    Decenter Y tolerance on surface 1 6 %k+0\d  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 4|41^B5Y  
    Change in Focus                :       0.000000                            0.000000 ! }?jCpp  
    Tilt X tolerance on surface (degrees) 1 {r2|fgi  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 JrWBcp:Y  
    Change in Focus                :       0.000000                            0.000000 FO>(QLlH  
    Tilt Y tolerance on surface (degrees) 1 4J 51i*`  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 zM r!WoW  
    Change in Focus                :       0.000000                            0.000000 KW7? : x  
    Decenter X tolerance on surface 2 [gns8F#H\  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 b hr E  
    Change in Focus                :       0.000000                            0.000000 ytV)!xe  
    Decenter Y tolerance on surface 2 QUZQY`' @  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 S O:V|Tfj  
    Change in Focus                :       0.000000                            0.000000 eGSp(o56  
    Tilt X tolerance on surface (degrees) 2 zvb} p  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 DEQE7.]3q  
    Change in Focus                :       0.000000                            0.000000 1LId_vJtJ  
    Tilt Y tolerance on surface (degrees) 2 =Pb5b6Y@6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @?7{%j*  
    Change in Focus                :       0.000000                            0.000000 [+MX$y  
    Decenter X tolerance on surface 3 C| L^Ds0  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 SM /ykk  
    Change in Focus                :       0.000000                            0.000000 fxoi<!|iGY  
    Decenter Y tolerance on surface 3 kAB+28A  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 |*c\6 :  
    Change in Focus                :       0.000000                            0.000000 7kX$wQZ_  
    Tilt X tolerance on surface (degrees) 3 Am4^v?q  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 zIm_7\e  
    Change in Focus                :       0.000000                            0.000000 vG<pc_ak  
    Tilt Y tolerance on surface (degrees) 3 7Cd_zZ  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 g;!@DVF$  
    Change in Focus                :       0.000000                            0.000000 mhi90Jc  
    Irregularity of surface 1 in fringes ~'NpM#A  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 \aVY>1`  
    Change in Focus                :       0.000000                            0.000000 w0j/\XN 2s  
    Irregularity of surface 2 in fringes (YYj3#|  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 :9F''f$AP  
    Change in Focus                :       0.000000                            0.000000 ey\m)6A$  
    Irregularity of surface 3 in fringes 95^i/6Gl!P  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 8 ih;#I=q  
    Change in Focus                :       0.000000                            0.000000 << ;HY}s  
    Index tolerance on surface 1 m UWkb  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 %`?;V;{=  
    Change in Focus                :       0.000000                            0.000000 .-KtB(t  
    Index tolerance on surface 2 I!@s6tG  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 phgexAq  
    Change in Focus                :       0.000000                           -0.000000 `e $n$Bh  
    @ <OO  
    Worst offenders: EY)Gi`lK  
    Type                      Value      Criterion        Change )jlP cO-  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 4g7ja   
    TSTY   2             0.20000000     0.35349910    -0.19053324 .;HIEj zq  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 %h"qMs S  
    TSTX   2             0.20000000     0.35349910    -0.19053324 R>d@tr  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 1X::0;3  
    TSTY   1             0.20000000     0.42678383    -0.11724851 &whX*IZ{  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 4N~+G `  
    TSTX   1             0.20000000     0.42678383    -0.11724851 N~):c2Kp<9  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 iIsEQh  
    TSTY   3             0.20000000     0.42861670    -0.11541563 JYwyR++uo  
    +%Lt".o  
    Estimated Performance Changes based upon Root-Sum-Square method: j1puB  
    Nominal MTF                 :     0.54403234 {4: -0itG  
    Estimated change            :    -0.36299231 4O`6h)!NQ  
    Estimated MTF               :     0.18104003 bR`rT4.F  
    LZM,QQ  
    Compensator Statistics: )d +hZ'  
    Change in back focus: pd4cg?K  
    Minimum            :        -0.000000 G[3k  
    Maximum            :         0.000000 tx0Go'{  
    Mean               :        -0.000000 Mny'9hsl  
    Standard Deviation :         0.000000 F&QTL-pQW  
    )RwBg8  
    Monte Carlo Analysis: <t{?7_ 8  
    Number of trials: 20 >*dQqJI  
    K8 b+   
    Initial Statistics: Normal Distribution {J~(#i k   
    LY-lTr@A^  
      Trial       Criterion        Change M[aT2A  
          1     0.42804416    -0.11598818 2wx!Lpr<i_  
    Change in Focus                :      -0.400171 B(j02<-  
          2     0.54384387    -0.00018847 )Fqy%uR8  
    Change in Focus                :       1.018470 {~"7vkc+  
          3     0.44510003    -0.09893230 tu\mFHvlg  
    Change in Focus                :      -0.601922 iOT)0@f'  
          4     0.18154684    -0.36248550 r^$\t0h(U8  
    Change in Focus                :       0.920681 Ue(r} *  
          5     0.28665820    -0.25737414 E'5Ajtw;  
    Change in Focus                :       1.253875 2Co@+I[,4&  
          6     0.21263372    -0.33139862 3{N\A5 ~  
    Change in Focus                :      -0.903878 "~u_\STn <  
          7     0.40051424    -0.14351809 ?ork^4 $s  
    Change in Focus                :      -1.354815 [6D>f?z  
          8     0.48754161    -0.05649072 TH|?X0b  
    Change in Focus                :       0.215922 u8Y~_)\MA  
          9     0.40357468    -0.14045766 dQ:?<zZ  
    Change in Focus                :       0.281783 L@w0N)P<!{  
         10     0.26315315    -0.28087919 l8z%\p5cR  
    Change in Focus                :      -1.048393 GDF{Lf)/v  
         11     0.26120585    -0.28282649 NQ? x8h3  
    Change in Focus                :       1.017611 z|ves&lRa  
         12     0.24033815    -0.30369419 (NX)o P  
    Change in Focus                :      -0.109292 R0%?:! F  
         13     0.37164046    -0.17239188 ]Ap`   
    Change in Focus                :      -0.692430 Bi]D{m9  
         14     0.48597489    -0.05805744 U.: sK*  
    Change in Focus                :      -0.662040 Fse['O~  
         15     0.21462327    -0.32940907 osl=[pm  
    Change in Focus                :       1.611296 0pD W _  
         16     0.43378226    -0.11025008 )8;{nqoC  
    Change in Focus                :      -0.640081 X E 9)c   
         17     0.39321881    -0.15081353 |U#DUqw  
    Change in Focus                :       0.914906 R1}IeeZO?&  
         18     0.20692530    -0.33710703 M Hg6PQIB  
    Change in Focus                :       0.801607 d7* CwY9"  
         19     0.51374068    -0.03029165 )o{VmXe@@  
    Change in Focus                :       0.947293 Zvxp%dES  
         20     0.38013374    -0.16389860 HOfF"QAR$  
    Change in Focus                :       0.667010 zLP],wB  
    NS@{~;#R  
    Number of traceable Monte Carlo files generated: 20 MEEAQd<*  
    <P1rqM9^  
    Nominal     0.54403234 U R}kB&t  
    Best        0.54384387    Trial     2 l]H0g[  
    Worst       0.18154684    Trial     4 4IZlUJ?j+c  
    Mean        0.35770970 AM'gnP>  
    Std Dev     0.11156454 ?w*yW;V`  
    wxj>W[V  
    1]j^d  
    Compensator Statistics: \<ZLoy_  
    Change in back focus: m%pBXXfGYj  
    Minimum            :        -1.354815 >V(zJ  
    Maximum            :         1.611296 ibXe"X/_  
    Mean               :         0.161872 :j@8L.<U  
    Standard Deviation :         0.869664 [ByQ;s5tY  
    [(|^O>k8c  
    90% >       0.20977951               \^&   
    80% >       0.22748071               $Z ]z  
    50% >       0.38667627               lyyX<=E{)  
    20% >       0.46553746               CZY7S*fL  
    10% >       0.50064115                4}i*cB `  
    Q[uAIyv0  
    End of Run. 'seyD  
    "mOI!x f@a  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 7S<UFj   
    nLj&Uf&  
    $o.Kn9\  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Cp^g'&  
    P? (vW&B  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 {q3:Z{#>7  
    80% >       0.22748071                 uP@\#/4u  
    50% >       0.38667627                 S&(^<gwl  
    20% >       0.46553746                 \NK-L."[  
    10% >       0.50064115 0 [8=c&F  
    (K :]7  
    最后这个数值是MTF值呢,还是MTF的公差? _M t Qi  
    {2 %aCCV  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   y3eHF^K+$  
    WKl+{e  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : zDTv\3rZ4X  
    90% >       0.20977951                 &>g'$a<[  
    80% >       0.22748071                 .;7> y7$*  
    50% >       0.38667627                 5ETip'<KT6  
    20% >       0.46553746                 {a(&J6$VE  
    10% >       0.50064115 _aWl]I){5  
    ....... LOy0hN-$b  
    5ExDB6Bx@y  
    SQ*k =4*r  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   5q9s,r_  
    Mode                : Sensitivities gKz(=  
    Sampling            : 2 {--0 z3n>  
    Nominal Criterion   : 0.54403234 Z/;Xl~  
    Test Wavelength     : 0.6328 5irwz4.4  
    fA/m1bYxg  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ,Ys"W x  
    <fCKUc  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试