切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15216阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 [3qJUJM  
    R5 EC/@  
    [mF=<G"  
    ) urUa E  
    然后添加了默认公差分析,基本没变 2(GLc*B>  
    lg@q} ]1  
    W7 +Q&4Y  
    u@zT~\ h*  
    然后运行分析的结果如下: UYpln[S  
    j92+kq>Xd  
    Analysis of Tolerances $:?=A5ttuo  
    ON"V`_dq+M  
    File : E:\光学设计资料\zemax练习\f500.ZMX 2XeNE[  
    Title: Y1BxRd?D  
    Date : TUE JUN 21 2011 9y)}-TcSpY  
    5=!aq\ 5  
    Units are Millimeters. s ZokiFJ  
    All changes are computed using linear differences. 0JhUncx  
    DyQvk  
    Paraxial Focus compensation only. Tn$| Xa+:s  
    By<~h/uJ  
    WARNING: Solves should be removed prior to tolerancing. ; d}  
    h5))D!  
    Mnemonics: 24Htr/lPCT  
    TFRN: Tolerance on curvature in fringes. \BSPv]d  
    TTHI: Tolerance on thickness.  ur k@v  
    TSDX: Tolerance on surface decentering in x. 9(BB>o54r  
    TSDY: Tolerance on surface decentering in y. IZ]L.0,  
    TSTX: Tolerance on surface tilt in x (degrees). %5 <t3 H"  
    TSTY: Tolerance on surface tilt in y (degrees). nm<S#i*  
    TIRR: Tolerance on irregularity (fringes). ^ X<ytOd5  
    TIND: Tolerance on Nd index of refraction. opCQ=G1  
    TEDX: Tolerance on element decentering in x. !i=k=l=  
    TEDY: Tolerance on element decentering in y. ||4++84{  
    TETX: Tolerance on element tilt in x (degrees). Zr;(a;QKs  
    TETY: Tolerance on element tilt in y (degrees). cp+eh  
    n\YWWW[wf  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. xCm`g {  
    uC1v^!D  
    WARNING: Boundary constraints on compensators will be ignored. e#4 iue7U  
    Zg!E}B:z  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm om,=.,|Ld  
    Mode                : Sensitivities bJ6v5YA%  
    Sampling            : 2 *\[GfTL  
    Nominal Criterion   : 0.54403234 B 6,X)  
    Test Wavelength     : 0.6328 hfQ^C6yR  
    O[&G6+  
    [0n&?<<  
    Fields: XY Symmetric Angle in degrees 6z+*H7Qz  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 1Q9e S&  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ]b@:?DX8  
    %MN>b[z  
    Sensitivity Analysis: VW9BQs2w  
    o=do L{ #  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| LpSd/_^b  
    Type                      Value      Criterion        Change          Value      Criterion        Change j'FBt8P'  
    Fringe tolerance on surface 1 ?I#zcD)w  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 l@%7] 0!T  
    Change in Focus                :      -0.000000                            0.000000 iI%"]- 0@1  
    Fringe tolerance on surface 2 {\-IAuM  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 Q,xKi|$r  
    Change in Focus                :       0.000000                            0.000000 3 ?DM AV  
    Fringe tolerance on surface 3 Z9 tjo1X  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 |Ok1E  
    Change in Focus                :      -0.000000                            0.000000 3`m n#RM  
    Thickness tolerance on surface 1 \o,`@2H+'  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 las|ougLy  
    Change in Focus                :       0.000000                            0.000000 1)wzSEV@  
    Thickness tolerance on surface 2 D|!^8jHj  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 2qUC@d<K  
    Change in Focus                :       0.000000                           -0.000000 K)t+lJ  
    Decenter X tolerance on surfaces 1 through 3 B (dq$+4  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 p[-bu B]  
    Change in Focus                :       0.000000                            0.000000 D'+kzb@  
    Decenter Y tolerance on surfaces 1 through 3 lO0 PZnW9  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 c1p*}T  
    Change in Focus                :       0.000000                            0.000000 t5pf4M7  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ySwvjP7f  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 AW:WDNQh8n  
    Change in Focus                :       0.000000                            0.000000 {sL(PS.z  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 9l :Bum)9  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 l %{$CmG\  
    Change in Focus                :       0.000000                            0.000000 ,~- dZs  
    Decenter X tolerance on surface 1 *.9.BD9  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 nr<&j#!L  
    Change in Focus                :       0.000000                            0.000000 9:tKRN_D  
    Decenter Y tolerance on surface 1 c B9`U4<  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 }x1*4+Y1  
    Change in Focus                :       0.000000                            0.000000 ?Y#0Je  
    Tilt X tolerance on surface (degrees) 1 M&iA^Wrs  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 L7tC?F]}SK  
    Change in Focus                :       0.000000                            0.000000 s9Aq-N  
    Tilt Y tolerance on surface (degrees) 1 +kKfx!  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 g^DPb pWxu  
    Change in Focus                :       0.000000                            0.000000 P=V=\T<4_  
    Decenter X tolerance on surface 2 %maLo RJ  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 RWi~34r  
    Change in Focus                :       0.000000                            0.000000 @OlV6M;qJ  
    Decenter Y tolerance on surface 2 2*K _RMr~  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 +[ 944n  
    Change in Focus                :       0.000000                            0.000000 v/BMzVi  
    Tilt X tolerance on surface (degrees) 2 lT3, G#(  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 L{\au5-4  
    Change in Focus                :       0.000000                            0.000000 @^$Xy<x  
    Tilt Y tolerance on surface (degrees) 2 *a7&v3X  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 S 5Q$dAL  
    Change in Focus                :       0.000000                            0.000000 tc@([XqH  
    Decenter X tolerance on surface 3 T.zU erbO  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ` AA[k  
    Change in Focus                :       0.000000                            0.000000 9ci=]C5o3K  
    Decenter Y tolerance on surface 3 T&=1IoOg  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 1e>,QX  
    Change in Focus                :       0.000000                            0.000000 'o2x7~C@  
    Tilt X tolerance on surface (degrees) 3 Ncu\;K\N  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 W|@/<K$V  
    Change in Focus                :       0.000000                            0.000000 el*C8TWlw  
    Tilt Y tolerance on surface (degrees) 3 S/|'ggC  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 +_ HPZo  
    Change in Focus                :       0.000000                            0.000000  ajayj|h  
    Irregularity of surface 1 in fringes . 4"9o%  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 $gN1&K  
    Change in Focus                :       0.000000                            0.000000 0FF x  
    Irregularity of surface 2 in fringes X'Dg= |  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047  Yq.Cz:>b  
    Change in Focus                :       0.000000                            0.000000 >*v^E9Y  
    Irregularity of surface 3 in fringes 7  Znr2I  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 vb-L "S?kC  
    Change in Focus                :       0.000000                            0.000000 99}n %(V  
    Index tolerance on surface 1 j1)HIQE|5f  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 sV/#P<9  
    Change in Focus                :       0.000000                            0.000000 5Y 4W:S  
    Index tolerance on surface 2 ~B%=g)w  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 aU3 m{pE  
    Change in Focus                :       0.000000                           -0.000000 \5$N> 2kO  
    e}?#vTRI}  
    Worst offenders: Z_Ox'  
    Type                      Value      Criterion        Change n_%JXm#\  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 m?G}%u  
    TSTY   2             0.20000000     0.35349910    -0.19053324 9qe6hF/29  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 HPAd@5d(  
    TSTX   2             0.20000000     0.35349910    -0.19053324 =~% B}T  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ;6I{7[  
    TSTY   1             0.20000000     0.42678383    -0.11724851 >8~+[e  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 m-lUgx7  
    TSTX   1             0.20000000     0.42678383    -0.11724851 a3L]'E'*#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 "PBUyh-Z  
    TSTY   3             0.20000000     0.42861670    -0.11541563 y(B~)T~e@  
    l|`%FB^k  
    Estimated Performance Changes based upon Root-Sum-Square method: ^IuHc_  
    Nominal MTF                 :     0.54403234 \. A~>=:  
    Estimated change            :    -0.36299231 g83!il\  
    Estimated MTF               :     0.18104003 iKa}@U  
    @4 m_\]Wy  
    Compensator Statistics: Ep0L51Q  
    Change in back focus: &%`IPhbT  
    Minimum            :        -0.000000 9)Y]05us  
    Maximum            :         0.000000 rp.S4;=Q9  
    Mean               :        -0.000000 C:g2E[#  
    Standard Deviation :         0.000000 '2a}1?  
    ^9o;=!D!9  
    Monte Carlo Analysis: Zr_{Z@IpU  
    Number of trials: 20 ;8;nY6Ie  
    W|3XD-v@  
    Initial Statistics: Normal Distribution *A`hKx  
    -c!{';Zn  
      Trial       Criterion        Change HH3WZ^0>  
          1     0.42804416    -0.11598818 ZGa>^k[:  
    Change in Focus                :      -0.400171 O,ZvV3  
          2     0.54384387    -0.00018847 t<9oEjk["  
    Change in Focus                :       1.018470 b&A+`d  
          3     0.44510003    -0.09893230 AZxx%6  
    Change in Focus                :      -0.601922 0ANqEQX  
          4     0.18154684    -0.36248550 q[Hx y  
    Change in Focus                :       0.920681 8zGe5Dn9  
          5     0.28665820    -0.25737414 ZVJbpn<lo)  
    Change in Focus                :       1.253875 "?V4Tl~uu  
          6     0.21263372    -0.33139862 B5u0 6O  
    Change in Focus                :      -0.903878 {IJV(%E   
          7     0.40051424    -0.14351809 7rc^-!k  
    Change in Focus                :      -1.354815 )h,+>U@  
          8     0.48754161    -0.05649072 @#1k+tSA,  
    Change in Focus                :       0.215922 Rk56H  
          9     0.40357468    -0.14045766 ZrnZ7,!@  
    Change in Focus                :       0.281783 cu]2`DF  
         10     0.26315315    -0.28087919 g1L$+xD^  
    Change in Focus                :      -1.048393 %xf6U>T  
         11     0.26120585    -0.28282649 XRKL;|cd  
    Change in Focus                :       1.017611 s2iR  }<  
         12     0.24033815    -0.30369419 qr$=oCqa  
    Change in Focus                :      -0.109292 Z:09 ]r1  
         13     0.37164046    -0.17239188 xj)*K%re  
    Change in Focus                :      -0.692430 cUaLv1:HI  
         14     0.48597489    -0.05805744 ~qLbyzHaB  
    Change in Focus                :      -0.662040 vL{~?vq6  
         15     0.21462327    -0.32940907 vY<(3[pp  
    Change in Focus                :       1.611296 V{@<Z8sW#  
         16     0.43378226    -0.11025008 Zgt, 'T  
    Change in Focus                :      -0.640081 tQbDP!,A*=  
         17     0.39321881    -0.15081353 f GE+DjeA  
    Change in Focus                :       0.914906 MFaK=1  
         18     0.20692530    -0.33710703 .t4IR =Z  
    Change in Focus                :       0.801607 JSt%L|}Y  
         19     0.51374068    -0.03029165 #tKc!]m  
    Change in Focus                :       0.947293 7qV_QZ!.  
         20     0.38013374    -0.16389860 7w_`<b6  
    Change in Focus                :       0.667010 y. @7aT5  
    3_B .W  
    Number of traceable Monte Carlo files generated: 20 Zaf].R  
    yJc<;Qx  
    Nominal     0.54403234 ++F #Z(p  
    Best        0.54384387    Trial     2 gfw,S;  
    Worst       0.18154684    Trial     4 n>)CCf@H  
    Mean        0.35770970 1`r 4  
    Std Dev     0.11156454 '0GCaL*Sd  
    ^E8&!s  
    a9mLPP  
    Compensator Statistics: X{P_HCd  
    Change in back focus: FF6[qSV  
    Minimum            :        -1.354815 rXuhd [!(P  
    Maximum            :         1.611296 DGj:qd(  
    Mean               :         0.161872 hf^,  
    Standard Deviation :         0.869664 Bjq1za  
    63QMv[`,  
    90% >       0.20977951               ! pR&&uG  
    80% >       0.22748071               (Ybc~M)z  
    50% >       0.38667627               wAkpk&R  
    20% >       0.46553746               kq8:h  
    10% >       0.50064115                [94A?pn[z  
    }L>}_NV\  
    End of Run. tm@&f  
    RZ:Yu  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 d5fnJ*a>l  
    C$SuFL(pb  
    'U.)f@L#w  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 n'9Wl'  
    )~v`dwKj;  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 .A<G$ db ?  
    80% >       0.22748071                 S[J eW  
    50% >       0.38667627                 \@;$xdA$  
    20% >       0.46553746                 r*HbglB  
    10% >       0.50064115 SK [1h3d  
    Y[)b".K  
    最后这个数值是MTF值呢,还是MTF的公差? _QBN/KE9  
    kH~ z07:  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   @W6:JO  
    G2qv)7{l2  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : {W+IUvn  
    90% >       0.20977951                 RW{y.WhB  
    80% >       0.22748071                 (+yH   
    50% >       0.38667627                 mT:NC'b<9  
    20% >       0.46553746                 GY>G}bfh  
    10% >       0.50064115 @C-03`JWuK  
    ....... clG@]<a`_  
    {N3&JL5\"E  
    {Qi J-[q  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Y-UXr8  
    Mode                : Sensitivities -MRX@a^1  
    Sampling            : 2 NbC2N)L4  
    Nominal Criterion   : 0.54403234 )I#{\^  
    Test Wavelength     : 0.6328 qnCjNN  
    ~NZL~p  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? &|j0GP&  
    Y)@Y$_  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试