切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15205阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Ga>uFb}W~  
    {=2DqkTD  
    h"mi"H^o  
    uQ$^;Pr  
    然后添加了默认公差分析,基本没变 a 3SlxsWW  
    _n8GWBi  
    wBj-m  
    .jw}JJ  
    然后运行分析的结果如下: 6DIZ@oi  
    f>o,N{|  
    Analysis of Tolerances #hfuH=&oh  
    ^[E' 1$D  
    File : E:\光学设计资料\zemax练习\f500.ZMX %VJ85^B3  
    Title: 0-Y:v(|.  
    Date : TUE JUN 21 2011 ^)!F9h+  
    1F'1>Bu~  
    Units are Millimeters. `^JJ&)4iv  
    All changes are computed using linear differences. Qp,DL@mp>8  
    Gl %3XdU  
    Paraxial Focus compensation only. '7Nr8D4L  
    5wao1sd#  
    WARNING: Solves should be removed prior to tolerancing. B5V_e!*5F*  
    7M_U2cd|TD  
    Mnemonics: $0oO &)*  
    TFRN: Tolerance on curvature in fringes. 8(g:HR*;  
    TTHI: Tolerance on thickness. 8b.u'r174  
    TSDX: Tolerance on surface decentering in x.  MTER(L  
    TSDY: Tolerance on surface decentering in y. 0kQPJWF  
    TSTX: Tolerance on surface tilt in x (degrees). c !ZM  
    TSTY: Tolerance on surface tilt in y (degrees). YYEJph@06q  
    TIRR: Tolerance on irregularity (fringes). SnlyUP~P  
    TIND: Tolerance on Nd index of refraction. 6Tw#^;q-  
    TEDX: Tolerance on element decentering in x. 'TC/vnM  
    TEDY: Tolerance on element decentering in y. %D$,;{ew  
    TETX: Tolerance on element tilt in x (degrees). 4D%9Rc0 G  
    TETY: Tolerance on element tilt in y (degrees). 93qwH%  
    NgCuFL(Ic  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. aJL^AG  
    o}Odw;  
    WARNING: Boundary constraints on compensators will be ignored. TC~Q G$NW  
    W6T|iZoV"r  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm FsB^CxVg  
    Mode                : Sensitivities ,oxcq?7#4  
    Sampling            : 2 =(a1+. O  
    Nominal Criterion   : 0.54403234 xqXDxJlns  
    Test Wavelength     : 0.6328 5J)=}e  
    do-ahl,  
    ,:fl?x.X  
    Fields: XY Symmetric Angle in degrees ^,F;M`[  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY $WYbm}j  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 - K%,^6  
    ]eQV ,Vt  
    Sensitivity Analysis: =~Ynz7 /x  
    pL1Q7&&c0  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| n?\ nn3  
    Type                      Value      Criterion        Change          Value      Criterion        Change Cz4)Yz  
    Fringe tolerance on surface 1 qmTb-~  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 (>6*#9#p  
    Change in Focus                :      -0.000000                            0.000000 ]q- g[e'  
    Fringe tolerance on surface 2 *#%9Rp2|  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 uPYmHA} _/  
    Change in Focus                :       0.000000                            0.000000 cYx4~V^  
    Fringe tolerance on surface 3 HkV1sT  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 QB:i/9  
    Change in Focus                :      -0.000000                            0.000000 ;!91^Tl  
    Thickness tolerance on surface 1 nzjkX4KV  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 yc2/~a_ Gx  
    Change in Focus                :       0.000000                            0.000000 9jN)I(^D6  
    Thickness tolerance on surface 2 ,\ 2a=Fp  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 D'Z|}(d&  
    Change in Focus                :       0.000000                           -0.000000 ,*4p?|A  
    Decenter X tolerance on surfaces 1 through 3 {7!UQrm<  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 O3N0YGhJ  
    Change in Focus                :       0.000000                            0.000000 aK,z}l(N  
    Decenter Y tolerance on surfaces 1 through 3 `c/*H29  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 6.5T/D*TT  
    Change in Focus                :       0.000000                            0.000000 dC=)^(  
    Tilt X tolerance on surfaces 1 through 3 (degrees) *5zrZ]^  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 !zPG? q]3  
    Change in Focus                :       0.000000                            0.000000 Lb{e,JH  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) #-3=o6DCK  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ) \Y7&  
    Change in Focus                :       0.000000                            0.000000 Xi?b]Z  
    Decenter X tolerance on surface 1 uE[(cko  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 9ukg}_Hx  
    Change in Focus                :       0.000000                            0.000000 vHAg-Av c  
    Decenter Y tolerance on surface 1 !R*-R.%  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 =fm]Dl9h*  
    Change in Focus                :       0.000000                            0.000000 -(`OcGM'L  
    Tilt X tolerance on surface (degrees) 1 $Vc~/>  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 st"{M\.p  
    Change in Focus                :       0.000000                            0.000000 =0 @&GOq  
    Tilt Y tolerance on surface (degrees) 1 |AlR^N  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 LPG`^SA  
    Change in Focus                :       0.000000                            0.000000 'Dvv?>=&  
    Decenter X tolerance on surface 2 /8VP[i)u  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 :{NC-%4o0  
    Change in Focus                :       0.000000                            0.000000 c}3W:}lW  
    Decenter Y tolerance on surface 2 =9kN_:-  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 izKfU?2]X@  
    Change in Focus                :       0.000000                            0.000000 X7,PEA  
    Tilt X tolerance on surface (degrees) 2 =%zLh<3v  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @&D?e:|!U  
    Change in Focus                :       0.000000                            0.000000 {;2vmx9  
    Tilt Y tolerance on surface (degrees) 2 BmHwu{n'  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 MNH1D! }  
    Change in Focus                :       0.000000                            0.000000 !6Sd(2  
    Decenter X tolerance on surface 3 2F%W8Y 3  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Soie^$ Y  
    Change in Focus                :       0.000000                            0.000000 {lth+{&L#  
    Decenter Y tolerance on surface 3 DzQ1%!  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195  0l;<5  
    Change in Focus                :       0.000000                            0.000000 _"4xKh)  
    Tilt X tolerance on surface (degrees) 3 8Ld:"Y#  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 T[= S$n -'  
    Change in Focus                :       0.000000                            0.000000 j3q~E[Mz\  
    Tilt Y tolerance on surface (degrees) 3 %4 \OPw&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 I\qYkWg7  
    Change in Focus                :       0.000000                            0.000000 =)O,`.M.Y  
    Irregularity of surface 1 in fringes 1FtM>&%4  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 n.hv!W0  
    Change in Focus                :       0.000000                            0.000000 ~}K5#<   
    Irregularity of surface 2 in fringes \c[IbL07  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ]|_\xO(  
    Change in Focus                :       0.000000                            0.000000 CF|]e:  
    Irregularity of surface 3 in fringes tNVV)C  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 OT^%3:zg  
    Change in Focus                :       0.000000                            0.000000 i&8FBV-  
    Index tolerance on surface 1 T0)"1D<l  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 y2O4I'/5<  
    Change in Focus                :       0.000000                            0.000000 <o2r~E0r3  
    Index tolerance on surface 2 >;z<j$;F<  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 iYnEwAoN;  
    Change in Focus                :       0.000000                           -0.000000 KJE[+R H+z  
    Sx    
    Worst offenders: uP\lCqK,  
    Type                      Value      Criterion        Change Bx[rC  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 2iu_pjj  
    TSTY   2             0.20000000     0.35349910    -0.19053324 `Q+moX  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 >:=|L%]s;\  
    TSTX   2             0.20000000     0.35349910    -0.19053324 `:'w@(q  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 'WHHc 9rG,  
    TSTY   1             0.20000000     0.42678383    -0.11724851 >zkRcm  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 *&AfR8x_z  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ylKmj]A  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 /v095H@  
    TSTY   3             0.20000000     0.42861670    -0.11541563 4/ X/>Y1  
    RFh"&0[  
    Estimated Performance Changes based upon Root-Sum-Square method: B12$I:x`  
    Nominal MTF                 :     0.54403234 EkT."K  
    Estimated change            :    -0.36299231 C@N1ljXJT  
    Estimated MTF               :     0.18104003 e&eW|E  
    7?OH,^  
    Compensator Statistics: ]CU]pK?nq  
    Change in back focus: "l={)=R  
    Minimum            :        -0.000000 3Rm#-T s  
    Maximum            :         0.000000 9;F bnp'  
    Mean               :        -0.000000 b]E|*  
    Standard Deviation :         0.000000 D 71;&G]0  
    @v\*AYr'M  
    Monte Carlo Analysis: k7tYa;C  
    Number of trials: 20 T ^A b!O  
    ,2oF:H  
    Initial Statistics: Normal Distribution ,mPnQ?  
    (BX83)  
      Trial       Criterion        Change )hwV`2>l  
          1     0.42804416    -0.11598818 D .vw8H3  
    Change in Focus                :      -0.400171 [nxE)D  
          2     0.54384387    -0.00018847 )a}"^1  
    Change in Focus                :       1.018470 K; FW  
          3     0.44510003    -0.09893230 0=wK:Ex  
    Change in Focus                :      -0.601922 M Jj4Hd  
          4     0.18154684    -0.36248550 %7Kooq(i  
    Change in Focus                :       0.920681 >]'yK!a?  
          5     0.28665820    -0.25737414 `"vZ);i <  
    Change in Focus                :       1.253875 ]E3U J!!  
          6     0.21263372    -0.33139862 TEUY3z[g  
    Change in Focus                :      -0.903878 1Xy]D  
          7     0.40051424    -0.14351809 w",? Bef  
    Change in Focus                :      -1.354815 ry};m_BY  
          8     0.48754161    -0.05649072 PR<||"03  
    Change in Focus                :       0.215922 EoX_KG{  
          9     0.40357468    -0.14045766 n{*e 9Aw  
    Change in Focus                :       0.281783 +@X5!S6  
         10     0.26315315    -0.28087919 vUC!fIG  
    Change in Focus                :      -1.048393 - ~O'vLG  
         11     0.26120585    -0.28282649 ]j>i.5  
    Change in Focus                :       1.017611 NV4g~+n  
         12     0.24033815    -0.30369419 fJjgq)9  
    Change in Focus                :      -0.109292 o/ [  
         13     0.37164046    -0.17239188 8GJdRL(  
    Change in Focus                :      -0.692430 Kex[ >L10G  
         14     0.48597489    -0.05805744 Vbh6HqAHxJ  
    Change in Focus                :      -0.662040 cIXwiC8t  
         15     0.21462327    -0.32940907 8 l/[(] &  
    Change in Focus                :       1.611296 %Qn(rA@9  
         16     0.43378226    -0.11025008 {5c]Mn"r  
    Change in Focus                :      -0.640081 ^SEdA=!  
         17     0.39321881    -0.15081353 jdeva t,&u  
    Change in Focus                :       0.914906 K|W^l\Lt  
         18     0.20692530    -0.33710703 ;??ohA"{5  
    Change in Focus                :       0.801607 OLq 0V3m  
         19     0.51374068    -0.03029165 7J>Gd  
    Change in Focus                :       0.947293 rl:KJ\*D  
         20     0.38013374    -0.16389860 4yMW^:@  
    Change in Focus                :       0.667010 b hjZ7=  
    1;u4X`8  
    Number of traceable Monte Carlo files generated: 20 Hv#q:R8  
    D)='8jV7  
    Nominal     0.54403234  ]^"k8v/  
    Best        0.54384387    Trial     2 uK*Nu^  
    Worst       0.18154684    Trial     4 eR']#Q46{T  
    Mean        0.35770970 KB{RU'?f|  
    Std Dev     0.11156454 ;mm!0]V  
    ?4PQQd  
    jRkC/Lw  
    Compensator Statistics: q5 &Ci`  
    Change in back focus: 5''*UFIF1  
    Minimum            :        -1.354815 B_3QQ tjAl  
    Maximum            :         1.611296 pL oy  
    Mean               :         0.161872 ZIxRyo-i  
    Standard Deviation :         0.869664 WbjF]b\  
    ? s} %  
    90% >       0.20977951               D>ai.T%n  
    80% >       0.22748071               ~JZ3a0$^  
    50% >       0.38667627               P1 +"v*  
    20% >       0.46553746               7r{qJ7$%  
    10% >       0.50064115                )&NAs  
    7-iIay1h"  
    End of Run. wV <7pi  
    e]W0xC-  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 jy$@a%FD  
    #*IVlchA"B  
    f %fa{  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 &TN2 HZ-bJ  
    tR`S#rk  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 zeOb Aw1O  
    80% >       0.22748071                 U1\MA6pXW  
    50% >       0.38667627                 [\HQPo'S  
    20% >       0.46553746                 oI$V|D3 9  
    10% >       0.50064115 ?[SVqj2-  
    f)gGH'yOQ  
    最后这个数值是MTF值呢,还是MTF的公差? .ev\M0Dt  
    rgR?wXW]jE  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   O)<r>vqe}  
    Yf (im  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : q>c+bo 6  
    90% >       0.20977951                 [I_BCf  
    80% >       0.22748071                 B\NcCp`5  
    50% >       0.38667627                 Z!k5"\{0pE  
    20% >       0.46553746                 e ^-3etx  
    10% >       0.50064115 :Z]/Q/$  
    ....... 0yKwH\S  
    |#!eMJ&0  
    $kM '  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   z^ YeMe  
    Mode                : Sensitivities Bi$ 0{V Z8  
    Sampling            : 2 !XkymIX~O.  
    Nominal Criterion   : 0.54403234 {_?T:`  
    Test Wavelength     : 0.6328 SxnIX/]J  
    q+r ` e  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? !hwzKm=%N  
    ]J8KCjq@  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试