切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16037阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ;/YSQt)rc>  
    c s hZR(b  
    H%/$Rqg  
    Ru sa &#[  
    然后添加了默认公差分析,基本没变 -Y+[`0$'  
    G& ;W  
    Y@pa+~[{h3  
    S4 tdW A  
    然后运行分析的结果如下: iPs()IN.O  
    I=b#tUBh8  
    Analysis of Tolerances tBf u{oC  
    RJg# A`  
    File : E:\光学设计资料\zemax练习\f500.ZMX @4&sL](q  
    Title: #_H=pNWe  
    Date : TUE JUN 21 2011 d2 d^XMe!  
    AU >d1S.  
    Units are Millimeters. "cti(0F-d  
    All changes are computed using linear differences. 3nG(z>  
     EGV@L#  
    Paraxial Focus compensation only. :1A Ound  
    zZA I"\;W  
    WARNING: Solves should be removed prior to tolerancing. J|K~a?&vN  
    A]>0lB  
    Mnemonics: 7$w:~VZ  
    TFRN: Tolerance on curvature in fringes. &18} u~M  
    TTHI: Tolerance on thickness. K;YK[M1!  
    TSDX: Tolerance on surface decentering in x. 4S9AXE6  
    TSDY: Tolerance on surface decentering in y. 6)H70VPJ  
    TSTX: Tolerance on surface tilt in x (degrees). txliZ|.O  
    TSTY: Tolerance on surface tilt in y (degrees). )ll}hGS  
    TIRR: Tolerance on irregularity (fringes). @jjp\~  
    TIND: Tolerance on Nd index of refraction. 6C   
    TEDX: Tolerance on element decentering in x. n2T vPt\  
    TEDY: Tolerance on element decentering in y. fEM8/bhq  
    TETX: Tolerance on element tilt in x (degrees). tFb49zbk  
    TETY: Tolerance on element tilt in y (degrees). *WOA",gZ  
    J4x1qY)Y&v  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. =n$,Vv4A  
    G*n5`N@>7  
    WARNING: Boundary constraints on compensators will be ignored. Z|3l2ucl  
    /TpM#hkq/2  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm IU3OI:uq  
    Mode                : Sensitivities r{Xh]U&>k  
    Sampling            : 2 (z"Cwa@e  
    Nominal Criterion   : 0.54403234 VCh%v-/  
    Test Wavelength     : 0.6328 Yr[1-Oy/k  
    dmf~w_(7  
    .*v8*8OJ&  
    Fields: XY Symmetric Angle in degrees [=XsI]B\  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 3"q%-M|+Q  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 0xH$!?{b  
    _a c_8m  
    Sensitivity Analysis: %*LdacjZ  
    "IB)=Hc  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| RJ@d_~%U  
    Type                      Value      Criterion        Change          Value      Criterion        Change >j\zj] -"  
    Fringe tolerance on surface 1 sHAzg^n}r  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 #E*jX-JT  
    Change in Focus                :      -0.000000                            0.000000 Dx iCq(;  
    Fringe tolerance on surface 2 G&:YgwG  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 9t;aJFI  
    Change in Focus                :       0.000000                            0.000000 /eZA AH  
    Fringe tolerance on surface 3 EjvxfqPv  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 hcM 0?=  
    Change in Focus                :      -0.000000                            0.000000 e}aD <E G  
    Thickness tolerance on surface 1 m3.d!~U\  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 -O-_F6p'D  
    Change in Focus                :       0.000000                            0.000000 #B>Hq~ vrC  
    Thickness tolerance on surface 2 '0w'||#1  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 r@wWGbQ|L  
    Change in Focus                :       0.000000                           -0.000000 Rqu;;VI[  
    Decenter X tolerance on surfaces 1 through 3 Cm>8r5LG  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 U4 M!RdG  
    Change in Focus                :       0.000000                            0.000000 Qx$Yj  
    Decenter Y tolerance on surfaces 1 through 3 2D&tDX<  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 G+}|gG8  
    Change in Focus                :       0.000000                            0.000000 A2F+$N  
    Tilt X tolerance on surfaces 1 through 3 (degrees) V .$<  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 :* @=px  
    Change in Focus                :       0.000000                            0.000000 6ffrV  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) S1zV.]  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 1\_4# @')  
    Change in Focus                :       0.000000                            0.000000 i7*4hYY  
    Decenter X tolerance on surface 1 m<r.sq&;  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 sL[,J[AN;  
    Change in Focus                :       0.000000                            0.000000 1<pbO:r  
    Decenter Y tolerance on surface 1 HOXqIZN85  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 7?B]X%  
    Change in Focus                :       0.000000                            0.000000 Ks9"U^bPs  
    Tilt X tolerance on surface (degrees) 1 b\H~Ot[i  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Mx[tE?!2  
    Change in Focus                :       0.000000                            0.000000 /q(+r5k \  
    Tilt Y tolerance on surface (degrees) 1 Rl<~:,D  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ~h0SD(  
    Change in Focus                :       0.000000                            0.000000 ~M,nCG^4  
    Decenter X tolerance on surface 2 Qz[~{-<  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 JF!!)6!2#  
    Change in Focus                :       0.000000                            0.000000 N',]WZ}  
    Decenter Y tolerance on surface 2 PK!=3fK4\F  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 e6#^4Y/+`  
    Change in Focus                :       0.000000                            0.000000 "l2_7ZXsPT  
    Tilt X tolerance on surface (degrees) 2 4*d_2:|u  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 bV`Zo(z  
    Change in Focus                :       0.000000                            0.000000 >:h 8T]F  
    Tilt Y tolerance on surface (degrees) 2 En-eG37 l  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 rzY7f: '  
    Change in Focus                :       0.000000                            0.000000 N!r@M."  
    Decenter X tolerance on surface 3 KZ;U6TBiB  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 CKrh14ul  
    Change in Focus                :       0.000000                            0.000000 I6h{S}2  
    Decenter Y tolerance on surface 3 lvcX}{>\  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 nA5v+d-<T  
    Change in Focus                :       0.000000                            0.000000 &c?-z}=G  
    Tilt X tolerance on surface (degrees) 3 )vhHlZ *+  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 lOcvRF  
    Change in Focus                :       0.000000                            0.000000 HI)ks~E/  
    Tilt Y tolerance on surface (degrees) 3 u!X[xe;  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 _9""3O  
    Change in Focus                :       0.000000                            0.000000 y}nM'$p  
    Irregularity of surface 1 in fringes (m~MyT#S  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ATH0n>)  
    Change in Focus                :       0.000000                            0.000000 x^9W<  
    Irregularity of surface 2 in fringes [Gysx  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 h}rrsVj3  
    Change in Focus                :       0.000000                            0.000000 X62z>mM  
    Irregularity of surface 3 in fringes V'\4sPt  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 N{ ;{<C9Z  
    Change in Focus                :       0.000000                            0.000000 s%;18V:pi  
    Index tolerance on surface 1 ]:Ocu--  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 !Kd/ lDY  
    Change in Focus                :       0.000000                            0.000000 9e1gjC\c  
    Index tolerance on surface 2 .lTU[(qwu  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 wz T+V,   
    Change in Focus                :       0.000000                           -0.000000 C&K%Q3V  
    }a|S gI  
    Worst offenders: ~\Fde^1  
    Type                      Value      Criterion        Change 2mVH*\D  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 I)O%D3wfMW  
    TSTY   2             0.20000000     0.35349910    -0.19053324 IcI y  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 v #IC  
    TSTX   2             0.20000000     0.35349910    -0.19053324 zxTm`Dh;[  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 6D _4o&N  
    TSTY   1             0.20000000     0.42678383    -0.11724851 SQWA{f  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 X NnsMl  
    TSTX   1             0.20000000     0.42678383    -0.11724851 9O~1o?ni  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Z;SRW92@  
    TSTY   3             0.20000000     0.42861670    -0.11541563 DV]Kd 7  
    SL>>]A,E<`  
    Estimated Performance Changes based upon Root-Sum-Square method: R-bICGSE  
    Nominal MTF                 :     0.54403234 X*}S(9cg\i  
    Estimated change            :    -0.36299231 -GH#nF3G  
    Estimated MTF               :     0.18104003 qeH#c=DQ  
    Vy&F{T;$  
    Compensator Statistics: /QD}_lh;,  
    Change in back focus: 1h"0B  
    Minimum            :        -0.000000 X7Cou6r  
    Maximum            :         0.000000 X}h{xl   
    Mean               :        -0.000000 MoO jM&9  
    Standard Deviation :         0.000000 at ]Lz_\  
    HOtays,#<}  
    Monte Carlo Analysis: {;=+#QK/  
    Number of trials: 20 f.Q?-M  
    nu4GK}xI  
    Initial Statistics: Normal Distribution /!d,f4n  
    x]Q+M2g?  
      Trial       Criterion        Change |o|0qG@g  
          1     0.42804416    -0.11598818 +SZ#s :#SE  
    Change in Focus                :      -0.400171 /M\S^ !g@  
          2     0.54384387    -0.00018847 2p(K0PtX  
    Change in Focus                :       1.018470 b;Q cBGwKT  
          3     0.44510003    -0.09893230 (y=P-nm  
    Change in Focus                :      -0.601922 3QM.X^ANH  
          4     0.18154684    -0.36248550 N;;!ObVHnP  
    Change in Focus                :       0.920681 2gg5:9  
          5     0.28665820    -0.25737414 eWW\m[k]}  
    Change in Focus                :       1.253875 onHUi]yYu{  
          6     0.21263372    -0.33139862 4}LGE>  
    Change in Focus                :      -0.903878 QJvA  
          7     0.40051424    -0.14351809 `+k&]z$m  
    Change in Focus                :      -1.354815 %l5Uy??Z  
          8     0.48754161    -0.05649072 ?N&"WL^|  
    Change in Focus                :       0.215922 H:a(&Zb  
          9     0.40357468    -0.14045766 yrE|cH'f0  
    Change in Focus                :       0.281783 [[LCEw  
         10     0.26315315    -0.28087919 N}pE{~Y  
    Change in Focus                :      -1.048393 OB;AgE@  
         11     0.26120585    -0.28282649  UTHGjE  
    Change in Focus                :       1.017611 (B7M*e  
         12     0.24033815    -0.30369419 b"/P  
    Change in Focus                :      -0.109292 &yp_wW-  
         13     0.37164046    -0.17239188 |JnJ=@-y  
    Change in Focus                :      -0.692430 $ [M8G   
         14     0.48597489    -0.05805744 !NZFo S~  
    Change in Focus                :      -0.662040 O`rAqO0F  
         15     0.21462327    -0.32940907 q#c\  
    Change in Focus                :       1.611296 \6 2|w HX  
         16     0.43378226    -0.11025008 UXR$7<D+  
    Change in Focus                :      -0.640081 p`T7Y\\#!  
         17     0.39321881    -0.15081353 h9 [ov)  
    Change in Focus                :       0.914906 uRxo,.}c  
         18     0.20692530    -0.33710703 . m@Sk`s  
    Change in Focus                :       0.801607 kYmkKl_  
         19     0.51374068    -0.03029165 vb\UP&Ip  
    Change in Focus                :       0.947293 pV<18CaJ  
         20     0.38013374    -0.16389860 maXQG&.F  
    Change in Focus                :       0.667010 P0 hC4Sxf  
    "qMd%RP  
    Number of traceable Monte Carlo files generated: 20 WSWaq\9]8  
    o%RyE]pw,  
    Nominal     0.54403234 OiJ1&Fz(  
    Best        0.54384387    Trial     2 ,K,n{3]  
    Worst       0.18154684    Trial     4 @0-<|,^]  
    Mean        0.35770970 )Uo)3FAn  
    Std Dev     0.11156454 #e{l:!uS\  
    /2~qm/%Q  
    #92MI#|n9  
    Compensator Statistics: }9:d(B9;  
    Change in back focus: gR?=z}`@p  
    Minimum            :        -1.354815 9p9:nx\  
    Maximum            :         1.611296 D)K/zh)  
    Mean               :         0.161872 #zZQ@+5zw  
    Standard Deviation :         0.869664 H+;>>|+:~  
    yAW%y  
    90% >       0.20977951               G\=7d%T+  
    80% >       0.22748071               R*'rg-d  
    50% >       0.38667627               }3V Q*'X>i  
    20% >       0.46553746               >#)^4-e  
    10% >       0.50064115                CM!bD\5  
    PL%U  
    End of Run. ZZX|MA!  
    :-69,e  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 -'*B%yy  
    &Plc  
    ![0\m2~iv  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 .Q>.|mu  
    J XPE9uH  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 {^a"T'+  
    80% >       0.22748071                 jAie[5  
    50% >       0.38667627                 =\"88e;b2  
    20% >       0.46553746                 3"NO"+Q  
    10% >       0.50064115 P<ElH 3J`  
    ? %XTD39  
    最后这个数值是MTF值呢,还是MTF的公差? /Nt#|C>  
    ?#YheML?  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   a\pOgIp  
    <2"'R(4",  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ]#k=VKdV  
    90% >       0.20977951                 n8 UG{. =  
    80% >       0.22748071                 ^AhV1rBB  
    50% >       0.38667627                 gGZ-B<  
    20% >       0.46553746                 K@%o$S?>z_  
    10% >       0.50064115 mrmm@?  
    ....... VAW:h5j2@  
    >0F)^W?  
    CP0;<}k  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   B4@1WZn<8  
    Mode                : Sensitivities joz0D!-"#  
    Sampling            : 2 3</W}]$)p  
    Nominal Criterion   : 0.54403234 A"tE~m;"7  
    Test Wavelength     : 0.6328 Ab #}BHI  
    >:Y"DX-  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? A$g'/QM  
    IayF<y,8  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试