切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16371阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 v(7A=/W_  
    @ :4Kk 4g1  
    |O9=C`G_  
    2!3&Ub#FO  
    然后添加了默认公差分析,基本没变 hw'2q9J|  
    MHYf8HN  
    zB$6e!fc  
    rWs5s!l,  
    然后运行分析的结果如下: VfcQibm  
    _Usg`ax-  
    Analysis of Tolerances '> Q$5R1  
    bX(*f>G'  
    File : E:\光学设计资料\zemax练习\f500.ZMX J| '(;Ay4u  
    Title: oX4uRc7wR  
    Date : TUE JUN 21 2011 %Nn'p"  
    V6{xX0'b*m  
    Units are Millimeters. Aii[=x8  
    All changes are computed using linear differences. RM+E  
    -N(MEzAE  
    Paraxial Focus compensation only. E\S&} K,s  
    m'B6qy!}6  
    WARNING: Solves should be removed prior to tolerancing. R,bcE4WR"  
    &Kp+8D*  
    Mnemonics: !~l%6Z5  
    TFRN: Tolerance on curvature in fringes. k9xKaJ %1  
    TTHI: Tolerance on thickness. "y0 A<-~  
    TSDX: Tolerance on surface decentering in x. 6 {Z\cwP)c  
    TSDY: Tolerance on surface decentering in y. !gf3%!%  
    TSTX: Tolerance on surface tilt in x (degrees). 5w1[KO#K|  
    TSTY: Tolerance on surface tilt in y (degrees). /6c10}f  
    TIRR: Tolerance on irregularity (fringes). ex+AT;o  
    TIND: Tolerance on Nd index of refraction. 8!SiTOzR?  
    TEDX: Tolerance on element decentering in x. jf/9]`Hf  
    TEDY: Tolerance on element decentering in y. @ 1A_eF  
    TETX: Tolerance on element tilt in x (degrees). o {LFXNcg[  
    TETY: Tolerance on element tilt in y (degrees). fO>~V1  
    3@?YTez#  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. F8Wq&X#r  
    c7IR06E  
    WARNING: Boundary constraints on compensators will be ignored. %Ab_PAw  
    PWu2;JF  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm pd3&AsU  
    Mode                : Sensitivities RA I&;"  
    Sampling            : 2 30E v"  
    Nominal Criterion   : 0.54403234 +yH~G9u(  
    Test Wavelength     : 0.6328 u/c3omY"#  
    ]/Qy1,  
    XSjelA?  
    Fields: XY Symmetric Angle in degrees \Egc5{   
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY !F#aodM1N  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 HbfB[%  
    So.P @CCd  
    Sensitivity Analysis: `j}d=zZ  
    !o':\hex6  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ;OU>AnWr(&  
    Type                      Value      Criterion        Change          Value      Criterion        Change .r5oN+?e  
    Fringe tolerance on surface 1 XuoEAu8]  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 /8t+d.r;/  
    Change in Focus                :      -0.000000                            0.000000 cievC,3*  
    Fringe tolerance on surface 2 PFy;qk  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ?VP!1O=J  
    Change in Focus                :       0.000000                            0.000000 \R\@t] >Y  
    Fringe tolerance on surface 3 .`>l.gmi&  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 t`YZ)>Ws  
    Change in Focus                :      -0.000000                            0.000000 F*JvpI[7n  
    Thickness tolerance on surface 1 kefv=n*]l  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 l()MYuLNV  
    Change in Focus                :       0.000000                            0.000000 ,,gLrV k  
    Thickness tolerance on surface 2 J2< QAX  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 !_-sTZ  
    Change in Focus                :       0.000000                           -0.000000 Iei7!KLW  
    Decenter X tolerance on surfaces 1 through 3 Sja{$zL+W  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 m_!vIUOz  
    Change in Focus                :       0.000000                            0.000000 &M3ES}6  
    Decenter Y tolerance on surfaces 1 through 3 0SY f<$  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 q X%vRf0  
    Change in Focus                :       0.000000                            0.000000 !\#Wk0Ku  
    Tilt X tolerance on surfaces 1 through 3 (degrees) "4ozlWx  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 n^pZXb;Y  
    Change in Focus                :       0.000000                            0.000000 r3H}*Wpf  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) {#1j"  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Vv yrty  
    Change in Focus                :       0.000000                            0.000000 OVUs]uK  
    Decenter X tolerance on surface 1 O/Y\ps3r  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 RJRq` T|m  
    Change in Focus                :       0.000000                            0.000000 Le` /  
    Decenter Y tolerance on surface 1 k)5_1y  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 iL0jpa<}  
    Change in Focus                :       0.000000                            0.000000 xv$)u<Ve  
    Tilt X tolerance on surface (degrees) 1 @Xve qUUU  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 t8A kdSU0  
    Change in Focus                :       0.000000                            0.000000 C,{F0-D  
    Tilt Y tolerance on surface (degrees) 1 pG!(6V-x<E  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 9P7xoXJ@y  
    Change in Focus                :       0.000000                            0.000000 Jm %ynW  
    Decenter X tolerance on surface 2 >lraYMc<rZ  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 *U;4t/(  
    Change in Focus                :       0.000000                            0.000000 Bn~\HW\Lh  
    Decenter Y tolerance on surface 2 S9HBr  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 C#Hcv*D  
    Change in Focus                :       0.000000                            0.000000 8ji^d1G,  
    Tilt X tolerance on surface (degrees) 2 &gGs) $f[  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 DO&+=o`"  
    Change in Focus                :       0.000000                            0.000000 NZo<IKD$  
    Tilt Y tolerance on surface (degrees) 2 t1e4H=d>  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 %bIsrQ~B  
    Change in Focus                :       0.000000                            0.000000 ~~C6)N~1  
    Decenter X tolerance on surface 3 8pYyG |\  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 L!;^ #g  
    Change in Focus                :       0.000000                            0.000000 O9t=lrYV!  
    Decenter Y tolerance on surface 3 F2IC$:e M  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Md8(`@`o  
    Change in Focus                :       0.000000                            0.000000 'FShNY5  
    Tilt X tolerance on surface (degrees) 3 V~OUE]]Q  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 T>#TDMU#Fm  
    Change in Focus                :       0.000000                            0.000000 Ln ~4mN^  
    Tilt Y tolerance on surface (degrees) 3 \s=QiPK  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 r_Lu~y|  
    Change in Focus                :       0.000000                            0.000000 z*6$&sS\>  
    Irregularity of surface 1 in fringes EVR! @6@  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 C@%iQ]=  
    Change in Focus                :       0.000000                            0.000000 B-!guf rnY  
    Irregularity of surface 2 in fringes z>6.[Z(T  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 1'NhjL  
    Change in Focus                :       0.000000                            0.000000 6 |QTS|!  
    Irregularity of surface 3 in fringes ,# ]+HS^B  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 [ L  
    Change in Focus                :       0.000000                            0.000000 }A-{6Qe  
    Index tolerance on surface 1 s~L`53A  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 y)P&]&"?  
    Change in Focus                :       0.000000                            0.000000 W+KF2(lB  
    Index tolerance on surface 2 iBucT"d]  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 UL&} s_  
    Change in Focus                :       0.000000                           -0.000000 K k7GZ  
    ^[#=L4  
    Worst offenders: ?fV?|ZGZI  
    Type                      Value      Criterion        Change Wu,S\!  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 C ck#Y  
    TSTY   2             0.20000000     0.35349910    -0.19053324 6Z Xu,ks}  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 mB~~_]M N  
    TSTX   2             0.20000000     0.35349910    -0.19053324 E30Ln_^o  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 M_Bu,<q^  
    TSTY   1             0.20000000     0.42678383    -0.11724851 m~;B:LN<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 \0nlPXk?G  
    TSTX   1             0.20000000     0.42678383    -0.11724851 iUTU*El>  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 e9 *lixh  
    TSTY   3             0.20000000     0.42861670    -0.11541563 )9B:Y;>)  
    /[%w*v*'  
    Estimated Performance Changes based upon Root-Sum-Square method: p-xd k|'[  
    Nominal MTF                 :     0.54403234 w//omF'`  
    Estimated change            :    -0.36299231 gGEIK0\{  
    Estimated MTF               :     0.18104003 Kk=LXmL2  
    myIe_k,F  
    Compensator Statistics: OM)3Y6rK  
    Change in back focus: zW5C1:.3K  
    Minimum            :        -0.000000 b!^@PIX  
    Maximum            :         0.000000 vQgq]mA?  
    Mean               :        -0.000000 JaI Kjn  
    Standard Deviation :         0.000000 p?JQ[K7i  
    VO_dA4C}z  
    Monte Carlo Analysis: at| \FOKj  
    Number of trials: 20 L5f$TLw h;  
    'mE^5K  
    Initial Statistics: Normal Distribution )c+k_;t'+  
    DZk1ZLz  
      Trial       Criterion        Change bq NP#C  
          1     0.42804416    -0.11598818 JYJU&u  
    Change in Focus                :      -0.400171 Vm,,u F  
          2     0.54384387    -0.00018847 e)b%`ntF  
    Change in Focus                :       1.018470 JNi=`X&A  
          3     0.44510003    -0.09893230 psUE!~9,  
    Change in Focus                :      -0.601922 KmmQ,e%  
          4     0.18154684    -0.36248550 $gvr -~  
    Change in Focus                :       0.920681 -ihiG_f  
          5     0.28665820    -0.25737414 0[Eb .2I  
    Change in Focus                :       1.253875  z)w-N  
          6     0.21263372    -0.33139862 p0VUh!  
    Change in Focus                :      -0.903878 (%'9CfPx  
          7     0.40051424    -0.14351809 ||Y<f *  
    Change in Focus                :      -1.354815 A gWPa.'3  
          8     0.48754161    -0.05649072 /iG7MC\`  
    Change in Focus                :       0.215922 pO]8 dE0  
          9     0.40357468    -0.14045766 R\O.e  
    Change in Focus                :       0.281783 5FOqv=6S  
         10     0.26315315    -0.28087919 y}"7e)|t%  
    Change in Focus                :      -1.048393 7u|B ](FS  
         11     0.26120585    -0.28282649 %\6Q .V#s  
    Change in Focus                :       1.017611 5jZiJw(  
         12     0.24033815    -0.30369419 :m ZYS4L~  
    Change in Focus                :      -0.109292 `q_<Im%I  
         13     0.37164046    -0.17239188 suVmg-d  
    Change in Focus                :      -0.692430 ;dZMa]X0  
         14     0.48597489    -0.05805744 ,b|-rU\  
    Change in Focus                :      -0.662040 e;(  
         15     0.21462327    -0.32940907 eV2mMSY  
    Change in Focus                :       1.611296 6R4<J% $P  
         16     0.43378226    -0.11025008 v&;:^jJ8  
    Change in Focus                :      -0.640081 U(,.D}PG  
         17     0.39321881    -0.15081353 <]U1\~j  
    Change in Focus                :       0.914906 OfZN|S+~W  
         18     0.20692530    -0.33710703 sn{tra  
    Change in Focus                :       0.801607 ea9oakF  
         19     0.51374068    -0.03029165 3WUH~l{UJ  
    Change in Focus                :       0.947293 |5MbAqjzC  
         20     0.38013374    -0.16389860 S v`qB'e2  
    Change in Focus                :       0.667010 #/70!+J_UF  
    1@qgF  
    Number of traceable Monte Carlo files generated: 20 :Li/=>R^  
    @R q}nq=k  
    Nominal     0.54403234 Mvcfk$pA  
    Best        0.54384387    Trial     2 ue{xnjw>U  
    Worst       0.18154684    Trial     4 Jp~zX lu  
    Mean        0.35770970 RE"^ )-  
    Std Dev     0.11156454 g0&\l}&%U  
    5kMWW*Xtf  
    ,D=fFpn  
    Compensator Statistics: |FNCXlgZ  
    Change in back focus: WNy3@+@GZ  
    Minimum            :        -1.354815 ^}$O|t  
    Maximum            :         1.611296 Im?LIgt$  
    Mean               :         0.161872 :dnJY%/q  
    Standard Deviation :         0.869664 ,wj"! o#  
    DuF"*R~et  
    90% >       0.20977951               /aqEJGG>  
    80% >       0.22748071               j6YiE~  
    50% >       0.38667627               qJv[MBjk3B  
    20% >       0.46553746               Zv!{{XO2;  
    10% >       0.50064115                WAPhv-6  
    j*R,m1e8  
    End of Run. F- rQ3  
    {/8Q)2*>0  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 QP(BZJC  
    i$^ZTb^  
    egR-w[{  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 s0"e'  
    ,kM)7!]N  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 *C|  
    80% >       0.22748071                 J$ut_N):N  
    50% >       0.38667627                 6p;m\  
    20% >       0.46553746                 0Q9T3X  
    10% >       0.50064115 -G|a*^  
    eVh - _  
    最后这个数值是MTF值呢,还是MTF的公差? $iw%(H  
    QO;4}rq  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   `)$_YZq|SR  
    b7:0#l$  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : l~:v (R5  
    90% >       0.20977951                 c,EBF\r8*  
    80% >       0.22748071                 ;zTuKex~  
    50% >       0.38667627                 AEirj /  
    20% >       0.46553746                 Pz_Oe,{.I  
    10% >       0.50064115 f7urJ'!V  
    ....... {BBw$m,o  
    ,:n| ?7  
    ^y.nDs%ZT7  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Fqq6^um  
    Mode                : Sensitivities |[xi/Q^7  
    Sampling            : 2 *V^ #ga#A  
    Nominal Criterion   : 0.54403234 7v}x?I  
    Test Wavelength     : 0.6328 WKM)*@#,  
    V~MiO.B  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? u`:hMFTID  
    Rf %HIAVE  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试