切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15735阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 &D "$N"  
    Vx5ioA]{  
    p$XL|1G*?H  
    P;D)5yP092  
    然后添加了默认公差分析,基本没变 2f8fA'|O  
    / vI sX3v  
    bq/*99``  
    NJfI9L  
    然后运行分析的结果如下: #/NZ0IbHk  
    nYJ)M AG@  
    Analysis of Tolerances qEC -'sl<  
    ozZW7dveU  
    File : E:\光学设计资料\zemax练习\f500.ZMX C0o 0 l>  
    Title: uXiAN#1  
    Date : TUE JUN 21 2011 Y/1KvF4)k  
    #<V/lPz+  
    Units are Millimeters. -/:N&6eRb  
    All changes are computed using linear differences. cXx?MF5  
    9NTBdo%u  
    Paraxial Focus compensation only. D[2I_3[wp  
    YGP.LR7  
    WARNING: Solves should be removed prior to tolerancing. $;1#gq%  
    Zgt:ZO  
    Mnemonics: /; ;_l2t  
    TFRN: Tolerance on curvature in fringes. ?{W@TY@S  
    TTHI: Tolerance on thickness. @^8tk3$ Y  
    TSDX: Tolerance on surface decentering in x. lwEJ)Bv  
    TSDY: Tolerance on surface decentering in y. eMk?#&a)  
    TSTX: Tolerance on surface tilt in x (degrees). 0xbx2jlkY  
    TSTY: Tolerance on surface tilt in y (degrees). Fp>iwdjFg  
    TIRR: Tolerance on irregularity (fringes). `mTpL^f  
    TIND: Tolerance on Nd index of refraction. `y5?lS*  
    TEDX: Tolerance on element decentering in x. z1t YD  
    TEDY: Tolerance on element decentering in y. tMxa:h;/x  
    TETX: Tolerance on element tilt in x (degrees). 4,CQJ  
    TETY: Tolerance on element tilt in y (degrees). "'us.t.  
    %N#8D<ULd  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. J0 BA@jH5  
    m6J7)Wp  
    WARNING: Boundary constraints on compensators will be ignored. 6/`$Y!.ub  
    6 /^$SWd2  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm zr~hGhfq  
    Mode                : Sensitivities %~`8F\Hiu  
    Sampling            : 2 Mg? ^5`*  
    Nominal Criterion   : 0.54403234 \M~M  
    Test Wavelength     : 0.6328 H!Gsu$C  
    4.|-?qG  
    QeP8Vl&e:  
    Fields: XY Symmetric Angle in degrees RIBj9kd  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY DIR_W-z  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 \ IJ\  
    W]kh?+SZ  
    Sensitivity Analysis: 8&g|iG  
    07WZ w1(;  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| h|h-<G?>  
    Type                      Value      Criterion        Change          Value      Criterion        Change LaL.C^K  
    Fringe tolerance on surface 1 va \ 5  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 l:v:f@M&  
    Change in Focus                :      -0.000000                            0.000000 PjriAlxD  
    Fringe tolerance on surface 2 H^cB ?i  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 OQ&?^S`8',  
    Change in Focus                :       0.000000                            0.000000 @!z9.o;  
    Fringe tolerance on surface 3 r|t ;#  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 aa:Oh^AJy  
    Change in Focus                :      -0.000000                            0.000000 ^R.kThG  
    Thickness tolerance on surface 1 #g,JNJ}  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 F(*~[*Ff  
    Change in Focus                :       0.000000                            0.000000 >%jQw.  
    Thickness tolerance on surface 2 dn0?#=  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 `9QvokD  
    Change in Focus                :       0.000000                           -0.000000 S-{3'D[Nj  
    Decenter X tolerance on surfaces 1 through 3 dIiQ^M  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 `p`)D 6  
    Change in Focus                :       0.000000                            0.000000 ssVO+ T  
    Decenter Y tolerance on surfaces 1 through 3 u^H:z0  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 l]Ozy@ Ib  
    Change in Focus                :       0.000000                            0.000000 ?n o.hf  
    Tilt X tolerance on surfaces 1 through 3 (degrees) :#8#tLv  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 @i`*i@g  
    Change in Focus                :       0.000000                            0.000000 B WdR~|2  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) !~5;Jb>s[/  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 L'k )  
    Change in Focus                :       0.000000                            0.000000 (=:9pbP  
    Decenter X tolerance on surface 1 =Q985)Y&  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 4%wP}Zj#  
    Change in Focus                :       0.000000                            0.000000 ~nk{\ rWO  
    Decenter Y tolerance on surface 1 bQG2tDvu[  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 t,#9i#q#  
    Change in Focus                :       0.000000                            0.000000 ]k~k6#),;  
    Tilt X tolerance on surface (degrees) 1 KKm &~^c  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 GKf,1kns  
    Change in Focus                :       0.000000                            0.000000 r )8[LN-  
    Tilt Y tolerance on surface (degrees) 1 uJ jm50R<  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 nb}*IExd  
    Change in Focus                :       0.000000                            0.000000 7\*_/[B  
    Decenter X tolerance on surface 2 iB#xUSkS  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 nO^aZmSu  
    Change in Focus                :       0.000000                            0.000000 g.-{=kZ   
    Decenter Y tolerance on surface 2 K3jKOV8   
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 a4HUP*  
    Change in Focus                :       0.000000                            0.000000 Oga/  
    Tilt X tolerance on surface (degrees) 2 aw9/bp*N  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 l}-JtZ?[?  
    Change in Focus                :       0.000000                            0.000000 Vae}:8'}  
    Tilt Y tolerance on surface (degrees) 2 8[  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 n}?XFx!%  
    Change in Focus                :       0.000000                            0.000000  QDCu  
    Decenter X tolerance on surface 3 -r%4,4  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 JWhi*je  
    Change in Focus                :       0.000000                            0.000000 $j61IL3+  
    Decenter Y tolerance on surface 3 d?dZ=]~C  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 L{y%\:]  
    Change in Focus                :       0.000000                            0.000000 [DS.@97n  
    Tilt X tolerance on surface (degrees) 3 w"Gci~]bXU  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 < GoUth.#  
    Change in Focus                :       0.000000                            0.000000 L{H` t{ A  
    Tilt Y tolerance on surface (degrees) 3 xa+=9=<AQ  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 1} 1.5[4d  
    Change in Focus                :       0.000000                            0.000000 ?@"F\Bv<h  
    Irregularity of surface 1 in fringes P]]re,&R  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !d Ns3d  
    Change in Focus                :       0.000000                            0.000000 E.V#Bk=  
    Irregularity of surface 2 in fringes 'p3JYRT$  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 9 cU]@j}2  
    Change in Focus                :       0.000000                            0.000000 vmW > $P  
    Irregularity of surface 3 in fringes o^P/ -&T  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 0mcZe5RS  
    Change in Focus                :       0.000000                            0.000000 @=CN#D12  
    Index tolerance on surface 1 +&?#Gdb  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 *o<zo `  
    Change in Focus                :       0.000000                            0.000000 y;zp*(}f$h  
    Index tolerance on surface 2 zu8   
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 cMxuG'{=.  
    Change in Focus                :       0.000000                           -0.000000 ;Fw{p{7<  
    c*o05pMS  
    Worst offenders: \\Ps*HN  
    Type                      Value      Criterion        Change {%g]Ym=  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 QWL$F:9:  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ;S Re`  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 gaFOm9y.e  
    TSTX   2             0.20000000     0.35349910    -0.19053324 \09m ?;^  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Nl~'W  
    TSTY   1             0.20000000     0.42678383    -0.11724851 | Q0Wv8/  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Ph@hk0dgr/  
    TSTX   1             0.20000000     0.42678383    -0.11724851 {4B{~Qe;  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 F@ Sw  
    TSTY   3             0.20000000     0.42861670    -0.11541563 NDsF<2A4  
     bT(}=j  
    Estimated Performance Changes based upon Root-Sum-Square method: sfb)iH|sW  
    Nominal MTF                 :     0.54403234 Zb> UY8  
    Estimated change            :    -0.36299231 SUv(MA&  
    Estimated MTF               :     0.18104003 ]w7wwU^^*U  
    0hJ,l.  
    Compensator Statistics: ]70V  
    Change in back focus: TVy\%FP^L  
    Minimum            :        -0.000000 jVA|Vi_2  
    Maximum            :         0.000000 < cNJrer  
    Mean               :        -0.000000 | ]#PF*  
    Standard Deviation :         0.000000 4KSZ;fV6/  
    h = <x%sie  
    Monte Carlo Analysis: v#/k`x\  
    Number of trials: 20 rQE:rVKVh  
    bU$4"_eA B  
    Initial Statistics: Normal Distribution SSCyq#dl$  
    d v8q&_  
      Trial       Criterion        Change 2c)Ez?  
          1     0.42804416    -0.11598818 &E& _Z6#  
    Change in Focus                :      -0.400171 _]oNbcbt(  
          2     0.54384387    -0.00018847 _x+)Tv  
    Change in Focus                :       1.018470 B!J~ t8  
          3     0.44510003    -0.09893230 X ? eCK,  
    Change in Focus                :      -0.601922 iX]tL:,~i  
          4     0.18154684    -0.36248550 $, I%g<  
    Change in Focus                :       0.920681 x-E@[=  
          5     0.28665820    -0.25737414 SM? rss.=  
    Change in Focus                :       1.253875 mz-sazgV  
          6     0.21263372    -0.33139862 l~mC$>f  
    Change in Focus                :      -0.903878 86 $88`/2  
          7     0.40051424    -0.14351809 5t=7-  
    Change in Focus                :      -1.354815 KE$I!$zO  
          8     0.48754161    -0.05649072 zE,1zBS<  
    Change in Focus                :       0.215922 TzSEQ S{  
          9     0.40357468    -0.14045766 &9j*Y  
    Change in Focus                :       0.281783 TUy 25E  
         10     0.26315315    -0.28087919 W!Qaa(o?  
    Change in Focus                :      -1.048393 pB(|Y]3A  
         11     0.26120585    -0.28282649 J 2H$ALl  
    Change in Focus                :       1.017611 8'<RPU}M  
         12     0.24033815    -0.30369419 7)-uYi] dA  
    Change in Focus                :      -0.109292 4:zyZu3fm  
         13     0.37164046    -0.17239188 !-tP\%'  
    Change in Focus                :      -0.692430 Zb&5)&'X  
         14     0.48597489    -0.05805744 /#Fz K  
    Change in Focus                :      -0.662040 UlNx5l+k  
         15     0.21462327    -0.32940907 d?6\  
    Change in Focus                :       1.611296 h/s8".\  
         16     0.43378226    -0.11025008 8wH1x .  
    Change in Focus                :      -0.640081 c3aBPig\D  
         17     0.39321881    -0.15081353 Pt=@U:  
    Change in Focus                :       0.914906 ;{j@ia  
         18     0.20692530    -0.33710703 5K#<VU*:  
    Change in Focus                :       0.801607 X$A[~v  
         19     0.51374068    -0.03029165 NG+%H1!$_  
    Change in Focus                :       0.947293 D~Rv"Hh  
         20     0.38013374    -0.16389860 FlyRcj  
    Change in Focus                :       0.667010 M&SY2\\TB  
    <^n@q f}  
    Number of traceable Monte Carlo files generated: 20 r?%,#1|$$  
    Nu,t,&B   
    Nominal     0.54403234 x'iBEm  
    Best        0.54384387    Trial     2 cgV5{|P  
    Worst       0.18154684    Trial     4 U-.A+#<IT9  
    Mean        0.35770970 Q$^)z_jai  
    Std Dev     0.11156454 4p6\8eytq.  
    P;bOtT --  
    yc7 "tptfF  
    Compensator Statistics: 4(mRLr%l@`  
    Change in back focus: -Pp =)_O  
    Minimum            :        -1.354815 SdXAL  
    Maximum            :         1.611296 9i`MUE1Sh  
    Mean               :         0.161872 c~)H" n  
    Standard Deviation :         0.869664 M <K}H8?  
    70F(`;  
    90% >       0.20977951               Iy;bzHXs  
    80% >       0.22748071               dTVh{~/  
    50% >       0.38667627               GhC%32F  
    20% >       0.46553746               4<btWbk5u*  
    10% >       0.50064115                rCsH 0:l8P  
    j"Z9}F@  
    End of Run. L"It0C  
    fq(3uE]nC  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 AVO$R\1YR  
    ;mauA#vd  
    7Um3m yXU  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ;\54(x}|K  
    S{S.H?{F  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 )(DX]Tr`  
    80% >       0.22748071                 FQO>%=&4  
    50% >       0.38667627                 QvDD   
    20% >       0.46553746                 X0BBJ(e  
    10% >       0.50064115 *:,y`!F=y  
    i3<ZFR  
    最后这个数值是MTF值呢,还是MTF的公差? o]WG8Mo-  
    1J[|Ow  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   jB0ED0)wX  
    <lf6gb  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : t*cVDA&K  
    90% >       0.20977951                 HA::(cXL  
    80% >       0.22748071                 # vBS7ba  
    50% >       0.38667627                 KvfZj  
    20% >       0.46553746                 ,?ci+M)  
    10% >       0.50064115 7(1UXtT  
    ....... " H; i Av  
    `Wy8g?d;bn  
    HE>sZ;  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   k| Ye[GM*  
    Mode                : Sensitivities GO=3<Q{;  
    Sampling            : 2 {'R\C5 :D7  
    Nominal Criterion   : 0.54403234 @[(<oX%  
    Test Wavelength     : 0.6328  i%a jL  
    [!CIBK99  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 98^o9i  
    KsMC+:`F  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试