切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16326阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 )5&m:R9  
    W4#:_R,&,  
    z$<6;2  
    _*;cwMne-  
    然后添加了默认公差分析,基本没变 We4 FR4`  
    [7Kn$OfP  
    TY#1Z )%  
    rxz3Mqg  
    然后运行分析的结果如下: siG?Sd_2  
    DRzpV6s  
    Analysis of Tolerances (dT!u8Oe  
    KYl^{F  
    File : E:\光学设计资料\zemax练习\f500.ZMX 3jn@ [ m  
    Title: JRiuU:=J~`  
    Date : TUE JUN 21 2011 &6:,2W&s  
    I|ULf  
    Units are Millimeters. a-} %R  
    All changes are computed using linear differences. Sx~_p3_5U  
    \LYQZ*F  
    Paraxial Focus compensation only. pvM8PlYo]`  
    d,[KcX  
    WARNING: Solves should be removed prior to tolerancing. Xo*$|9[.  
    2$Ji4`p}S  
    Mnemonics: (gf\VYM-7  
    TFRN: Tolerance on curvature in fringes. ,C&>mv xA  
    TTHI: Tolerance on thickness. Ly<;x^D  
    TSDX: Tolerance on surface decentering in x. j(BS;J$i  
    TSDY: Tolerance on surface decentering in y. EUn"x'   
    TSTX: Tolerance on surface tilt in x (degrees). `MwQ6%lf  
    TSTY: Tolerance on surface tilt in y (degrees). ZB2'm3'bh  
    TIRR: Tolerance on irregularity (fringes). NY;UI (<]  
    TIND: Tolerance on Nd index of refraction. Gu}x+hG  
    TEDX: Tolerance on element decentering in x. [.I,B tY+  
    TEDY: Tolerance on element decentering in y. MU e 'xK  
    TETX: Tolerance on element tilt in x (degrees). :^s7#4%6  
    TETY: Tolerance on element tilt in y (degrees).  bSR<d  
    bc4x"]!  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. }F`Tp8/&j  
    /SKr.S61e  
    WARNING: Boundary constraints on compensators will be ignored. PHK#b.B>a8  
    .apX72's,  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm _Ry.Wth  
    Mode                : Sensitivities uy9B8&Sr  
    Sampling            : 2 KVcZ@0[S  
    Nominal Criterion   : 0.54403234 0V#t ;`Q3  
    Test Wavelength     : 0.6328 h]MVFn{  
    GufP[|7b-  
    &v-V_.0(H  
    Fields: XY Symmetric Angle in degrees }J?fJ (  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY >YBpB,WND  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Z :9VxZ  
    0xxzhlKNL  
    Sensitivity Analysis: Q kZM(pG  
    yK B[HpU-  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| N Sh.g #  
    Type                      Value      Criterion        Change          Value      Criterion        Change m3(T0.j0P  
    Fringe tolerance on surface 1 $i@EfujY  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 7L+X\oaB  
    Change in Focus                :      -0.000000                            0.000000 a!:8`X~[/$  
    Fringe tolerance on surface 2 $048y X 7M  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ?Bzi#Z  
    Change in Focus                :       0.000000                            0.000000 a-E-hX2  
    Fringe tolerance on surface 3 9f^PR|F  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 $vLV< y07  
    Change in Focus                :      -0.000000                            0.000000 v|I5Gz$qpa  
    Thickness tolerance on surface 1 AMd)d^;  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 2E2}|: ||&  
    Change in Focus                :       0.000000                            0.000000 _0*>I1F~  
    Thickness tolerance on surface 2 ww($0A`ek  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 LZ)m](+M  
    Change in Focus                :       0.000000                           -0.000000 l>UUaf|O  
    Decenter X tolerance on surfaces 1 through 3 e^NEj1  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 eM+;x\jo?  
    Change in Focus                :       0.000000                            0.000000 KF_Wu}q d  
    Decenter Y tolerance on surfaces 1 through 3 H 1D;:n  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ?GNF=#=M  
    Change in Focus                :       0.000000                            0.000000 z>33O5U  
    Tilt X tolerance on surfaces 1 through 3 (degrees) "-n%874IT  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 EOX_[ek7  
    Change in Focus                :       0.000000                            0.000000 }#G"!/ZA0:  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) &U~r}=  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 uT}TSwgp  
    Change in Focus                :       0.000000                            0.000000 T#n1@FgC  
    Decenter X tolerance on surface 1 vif8 {S  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 kr(<Y|  
    Change in Focus                :       0.000000                            0.000000 OJsd[l3xR  
    Decenter Y tolerance on surface 1 PGPbpl&\t  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 `f+8WPJPZ  
    Change in Focus                :       0.000000                            0.000000 n<:d%&^n  
    Tilt X tolerance on surface (degrees) 1 =/g$bZ  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Yc82vSG'  
    Change in Focus                :       0.000000                            0.000000 0O#B'Uu  
    Tilt Y tolerance on surface (degrees) 1 WjrMd#^  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 =*g$#l4  
    Change in Focus                :       0.000000                            0.000000 pTALhj#,  
    Decenter X tolerance on surface 2 ~$4.Mf,u  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 em1cc,  
    Change in Focus                :       0.000000                            0.000000 U>_IYT  
    Decenter Y tolerance on surface 2 l^!A  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 i6md fp|k  
    Change in Focus                :       0.000000                            0.000000 ?JgO-.  
    Tilt X tolerance on surface (degrees) 2 aw/7Z`   
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 "Ug/ ',jkV  
    Change in Focus                :       0.000000                            0.000000 VS9]p o>=  
    Tilt Y tolerance on surface (degrees) 2 28R>>C=R  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 rj,K`HD  
    Change in Focus                :       0.000000                            0.000000 43>9)t  
    Decenter X tolerance on surface 3 'q92E(  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 u\XkXS`  
    Change in Focus                :       0.000000                            0.000000 lU $4NU wM  
    Decenter Y tolerance on surface 3 gr>o E#7  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 M%&A.j[  
    Change in Focus                :       0.000000                            0.000000 +`*qlP;  
    Tilt X tolerance on surface (degrees) 3 4Oy.,MDQP  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 =zm0w~']E!  
    Change in Focus                :       0.000000                            0.000000 \- =^]]b=  
    Tilt Y tolerance on surface (degrees) 3 [v0ri<sm  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 WQ[}&kY~  
    Change in Focus                :       0.000000                            0.000000 i Y*o;z,~  
    Irregularity of surface 1 in fringes ypD<2z^  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 zg#m09[4  
    Change in Focus                :       0.000000                            0.000000 GsIwY {d  
    Irregularity of surface 2 in fringes 1l+kO,X]  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 #0bO)m+NZ  
    Change in Focus                :       0.000000                            0.000000 " ^HK@$  
    Irregularity of surface 3 in fringes 6F*-qb3  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 _ }E-~I>  
    Change in Focus                :       0.000000                            0.000000 #zS1Z f^KP  
    Index tolerance on surface 1 pw,O"6J*  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 : 8^M5}  
    Change in Focus                :       0.000000                            0.000000 7m:|u*ij2~  
    Index tolerance on surface 2 kmlG3hOR,  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ]C16y. ~e  
    Change in Focus                :       0.000000                           -0.000000 5: daa  
    &yx NvyA[u  
    Worst offenders: xF( bS+(o  
    Type                      Value      Criterion        Change &8<<!#ob  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 p)B33Z zC  
    TSTY   2             0.20000000     0.35349910    -0.19053324 qH#r-  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 A~Z6jK  
    TSTX   2             0.20000000     0.35349910    -0.19053324 >4n+PXRXX  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ~;M)qR?]W  
    TSTY   1             0.20000000     0.42678383    -0.11724851 :}y9$p  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 `$s)X$W?  
    TSTX   1             0.20000000     0.42678383    -0.11724851 gq'>6vOj  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 /?KtXV>]  
    TSTY   3             0.20000000     0.42861670    -0.11541563 BBHK  
    Fe!D%p Qv  
    Estimated Performance Changes based upon Root-Sum-Square method: #z ON_[+s9  
    Nominal MTF                 :     0.54403234 O 'k+7y  
    Estimated change            :    -0.36299231 T@TIz z  
    Estimated MTF               :     0.18104003 q0,kDM66   
    60!1 D>,  
    Compensator Statistics: S6v!GQ  
    Change in back focus: S4cpQq.  
    Minimum            :        -0.000000 5Sr4-F+@%  
    Maximum            :         0.000000 D.'h?^kA  
    Mean               :        -0.000000 25 CZmsg  
    Standard Deviation :         0.000000 iI5+P`sE&J  
    v" }WP34  
    Monte Carlo Analysis: :e*DTVv8  
    Number of trials: 20 \K}-I  
    3&'2aW   
    Initial Statistics: Normal Distribution %.mEBI=hs  
    lnS(&`oh\=  
      Trial       Criterion        Change t\h$&[[l'z  
          1     0.42804416    -0.11598818 sI_7U^"[  
    Change in Focus                :      -0.400171 .%=V">R  
          2     0.54384387    -0.00018847 % Y~>Jl  
    Change in Focus                :       1.018470 0n Y6A~  
          3     0.44510003    -0.09893230 kv6Cp0uFg  
    Change in Focus                :      -0.601922 +nZUL*Ut/  
          4     0.18154684    -0.36248550 /~De2mq1   
    Change in Focus                :       0.920681 qO-9 x0v#  
          5     0.28665820    -0.25737414 -LtK8wl^  
    Change in Focus                :       1.253875 C5xag#Z1  
          6     0.21263372    -0.33139862 xJ{_qP  
    Change in Focus                :      -0.903878 j5Qo*p  
          7     0.40051424    -0.14351809 AS)UJ/lC  
    Change in Focus                :      -1.354815 $ a?  
          8     0.48754161    -0.05649072 0}{'C5  
    Change in Focus                :       0.215922 :\XI0E  
          9     0.40357468    -0.14045766 ui:=  
    Change in Focus                :       0.281783 x2co>.i  
         10     0.26315315    -0.28087919 H~noJIw#  
    Change in Focus                :      -1.048393 nVE9^')8V  
         11     0.26120585    -0.28282649 +#2)kg 9_  
    Change in Focus                :       1.017611 -KH)J  
         12     0.24033815    -0.30369419 Mp~y0e  
    Change in Focus                :      -0.109292 8) N@qUV  
         13     0.37164046    -0.17239188 .`jo/,?+O  
    Change in Focus                :      -0.692430 Q_]d5pl  
         14     0.48597489    -0.05805744 oH^(qZ8W  
    Change in Focus                :      -0.662040 >I}9LyZt  
         15     0.21462327    -0.32940907 {:Aw_z:'  
    Change in Focus                :       1.611296 5G(3vRX|1  
         16     0.43378226    -0.11025008 <3 TA>Dz  
    Change in Focus                :      -0.640081 >-.e AvD  
         17     0.39321881    -0.15081353 `:e U.  
    Change in Focus                :       0.914906 )"Q*G/+2Ie  
         18     0.20692530    -0.33710703 <A >)[u  
    Change in Focus                :       0.801607 -'`TL$  
         19     0.51374068    -0.03029165 O:'?n8rWL  
    Change in Focus                :       0.947293 (hB?  
         20     0.38013374    -0.16389860 1|{bDlmt  
    Change in Focus                :       0.667010 '$G"[ljr  
    FS6<V0pil  
    Number of traceable Monte Carlo files generated: 20 qH> `}/,P  
    :`\) P,  
    Nominal     0.54403234 RBwO+J53y  
    Best        0.54384387    Trial     2 +-<}+8G;  
    Worst       0.18154684    Trial     4 k|vI<:'p,  
    Mean        0.35770970 'm3t|:nMU  
    Std Dev     0.11156454 ,E;;wdIt  
    %c|UmKKi  
    %' $o"  
    Compensator Statistics: /J3ZL[o?Q  
    Change in back focus: p =(@3%k  
    Minimum            :        -1.354815 {D`'0Z1"  
    Maximum            :         1.611296 qJPT%r  
    Mean               :         0.161872 yF13Of^l./  
    Standard Deviation :         0.869664 tz^/J=)"  
    m/B6[  
    90% >       0.20977951               0Yl4eB-  
    80% >       0.22748071               )yG"^Ulu  
    50% >       0.38667627               ,](:<A)W&  
    20% >       0.46553746               ^/U27B  
    10% >       0.50064115                Vw tZLP36  
    Bc7V)Y K  
    End of Run. dY7'OAUyVl  
    dq\FBwfe  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 R=Zn -q  
    3S*AxAeg  
    t?c}L7ht  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 WWKvh  
    gF?[rqz{  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 m>USD? i  
    80% >       0.22748071                 +#U|skl  
    50% >       0.38667627                 !+>v[(OzM  
    20% >       0.46553746                 =4V&*go*\  
    10% >       0.50064115 ^;!0j9"* :  
    ,B?~-2cCz  
    最后这个数值是MTF值呢,还是MTF的公差? k@zy  
    |4$M]Mf0  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   .2d9?p3Y  
    vEf4HZ&w  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : `xrmT t X  
    90% >       0.20977951                 eh"3NRrN  
    80% >       0.22748071                 )7_"wD` z  
    50% >       0.38667627                 `^lYw:xA  
    20% >       0.46553746                 &=4(l|wcg  
    10% >       0.50064115 2t $j  
    ....... ,o]4?-  
    >>[ G1   
    ou %/l4dC  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   NV#FvM/#"  
    Mode                : Sensitivities NKQOUw:qn  
    Sampling            : 2 _V\Bp=9W  
    Nominal Criterion   : 0.54403234 -,["c9'3  
    Test Wavelength     : 0.6328 -j&Tc` j_  
    5Ba[k[b^  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ~b:Rd{  
    _!|/ ;Nk  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试