我现在在初学zemax的
公差分析,找了一个双胶合
透镜 FMY
r6/I B;4hI?
o;FjpZ #[sC H 然后添加了默认公差分析,基本没变
V'c9DoSRI\ ;1S{xd*^N
3Zsqx=w RUf,)]Vvk 然后运行分析的结果如下:
\|R`wFn^P ]=9%fA Analysis of Tolerances
@SPmb o W#e:r z8= File : E:\光学设计资料\zemax练习\f500.ZMX
6`NsX Title:
BdUhFN* Date : TUE JUN 21 2011
ig; ~
T R.A}tV=j# Units are Millimeters.
0'^? m$ All changes are computed using linear differences.
9^0 'VRG .)|jBC8|} Paraxial Focus compensation only.
*bn9j>|iv h1fJ`WT6, WARNING: Solves should be removed prior to tolerancing.
%'\D_W& |:!#kA Mnemonics:
\#tr4g~u TFRN: Tolerance on curvature in fringes.
#Vul#JHW TTHI: Tolerance on thickness.
:L:;~t K TSDX: Tolerance on surface decentering in x.
1>a^Q TSDY: Tolerance on surface decentering in y.
Uvf-h4^J]: TSTX: Tolerance on surface tilt in x (degrees).
C'n 9n!hR TSTY: Tolerance on surface tilt in y (degrees).
3I:DL#f TIRR: Tolerance on irregularity (fringes).
TW3:Y\ p TIND: Tolerance on Nd index of refraction.
<n }=zu TEDX: Tolerance on element decentering in x.
n$`Nx\ v TEDY: Tolerance on element decentering in y.
HLYM(Pz TETX: Tolerance on element tilt in x (degrees).
\Zoo9Wy
TETY: Tolerance on element tilt in y (degrees).
NXeo&+F SKLQAE5 WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
Z I}m~7 5`x9+XvoN WARNING: Boundary constraints on compensators will be ignored.
iCAd7=o b@1QE Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
dUb(C1h Mode : Sensitivities
6ap,XFRMh Sampling : 2
Z|8f7@k{|+ Nominal Criterion : 0.54403234
\vQ_:-A Test Wavelength : 0.6328
lS?f?n^ = 1}-]ctVn /f%u_ 8pV% Fields: XY Symmetric Angle in degrees
`R:<(: # X-Field Y-Field Weight VDX VDY VCX VCY
W:rzfO.`Z 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
NPB':r-8 zztW7MG2lQ Sensitivity Analysis:
"a,Tc2xk SI;G|uO;/ |----------------- Minimum ----------------| |----------------- Maximum ----------------|
lq.0?( Type Value Criterion Change Value Criterion Change
+\:I3nKs% Fringe tolerance on surface 1
G)< k5U4 TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
tD4IwX Change in Focus :
-0.000000 0.000000
,\=u(Y\I[ Fringe tolerance on surface 2
}FM<uBKW TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
H>DJ-lG( Change in Focus : 0.000000 0.000000
u'32nf? Fringe tolerance on surface 3
nosEo?{ TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
'Y
vW|Iq Change in Focus : -0.000000 0.000000
}U^9( Thickness tolerance on surface 1
;U7\pc;S TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
k*!J,/=k Change in Focus : 0.000000 0.000000
B;K{Vo:C Thickness tolerance on surface 2
'HqAm$V+ TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
1H[lf
B Change in Focus : 0.000000 -0.000000
erqm=) Decenter X tolerance on surfaces 1 through 3
Nc"h8p? TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
eM9~&{m. Change in Focus : 0.000000 0.000000
yS3x)) Decenter Y tolerance on surfaces 1 through 3
hM8G"b TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
1:>RQPXcWv Change in Focus : 0.000000 0.000000
O'wN4qb=F Tilt X tolerance on surfaces 1 through 3 (degrees)
e<C5}#wt TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
(c}0Sg Change in Focus : 0.000000 0.000000
8F[j}.8q Tilt Y tolerance on surfaces 1 through 3 (degrees)
hD$U8~zK TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
T8Khm O Change in Focus : 0.000000 0.000000
hh8UKEM- Decenter X tolerance on surface 1
p}Gk|Kjlq, TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
hCo&SRC/5 Change in Focus : 0.000000 0.000000
-d[x09 Decenter Y tolerance on surface 1
a"EQldm|d TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
uY;/3?k& Change in Focus : 0.000000 0.000000
C8t+-p Tilt X tolerance on surface (degrees) 1
4\$Ze0tv TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
gai?LXM
l} Change in Focus : 0.000000 0.000000
!tbRqW6v Tilt Y tolerance on surface (degrees) 1
g
Sa ,A TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
}40/GWp<f Change in Focus : 0.000000 0.000000
Maxnk3n Decenter X tolerance on surface 2
>`NM?KP s TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
.K7A!; Change in Focus : 0.000000 0.000000
h:GOcLYM@X Decenter Y tolerance on surface 2
1L9^N TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
vj_oMmjKw Change in Focus : 0.000000 0.000000
c:$:j,i} Tilt X tolerance on surface (degrees) 2
r2<+ =INn TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
!
\gRXP} Change in Focus : 0.000000 0.000000
Y^!40XjrD Tilt Y tolerance on surface (degrees) 2
nQP0<_S TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
+(/Z=4;,[ Change in Focus : 0.000000 0.000000
IB?A]oN1{ Decenter X tolerance on surface 3
(la TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
F9c2JBOM Change in Focus : 0.000000 0.000000
NV91{o(-7 Decenter Y tolerance on surface 3
E8j9@BHU[r TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
wM yPR_ Change in Focus : 0.000000 0.000000
M"FAUqz` Tilt X tolerance on surface (degrees) 3
P! 3$RO TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Pw7'6W1 Change in Focus : 0.000000 0.000000
zHU#Jjc_b Tilt Y tolerance on surface (degrees) 3
+
zrwz\ TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
|knP Change in Focus : 0.000000 0.000000
s<dD>SU Irregularity of surface 1 in fringes
'^J/aV TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
:E^B~ OuL Change in Focus : 0.000000 0.000000
.ClCP?HG Irregularity of surface 2 in fringes
(Q4_3<G+ TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
p/5!a~1'xN Change in Focus : 0.000000 0.000000
{xykf7zp Irregularity of surface 3 in fringes
I{AU, TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
ps[6)d)o Change in Focus : 0.000000 0.000000
M!hby31 Index tolerance on surface 1
I/>IB TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
<s2l*mc Change in Focus : 0.000000 0.000000
2lSM`cw Index tolerance on surface 2
Pz)QOrrG~ TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
mQvKreo~ Change in Focus : 0.000000 -0.000000
|{jAMC0# EGDE4n5>I Worst offenders:
:aqh8bv Type Value Criterion Change
u}rot+)% TSTY 2 -0.20000000 0.35349910 -0.19053324
R] [M_ r TSTY 2 0.20000000 0.35349910 -0.19053324
[!q&r(-K TSTX 2 -0.20000000 0.35349910 -0.19053324
qB39\j TSTX 2 0.20000000 0.35349910 -0.19053324
b
mm@oi TSTY 1 -0.20000000 0.42678383 -0.11724851
$`Xx5Ts7 TSTY 1 0.20000000 0.42678383 -0.11724851
VoyH: TSTX 1 -0.20000000 0.42678383 -0.11724851
Y1'.m5E TSTX 1 0.20000000 0.42678383 -0.11724851
wW<"l"x, TSTY 3 -0.20000000 0.42861670 -0.11541563
#-Rz`Y<& TSTY 3 0.20000000 0.42861670 -0.11541563
d-<y'GYw
)f!dG(\ Estimated Performance Changes based upon Root-Sum-Square method:
6uXW`/lvX Nominal MTF : 0.54403234
IX*S:7S[ Estimated change : -0.36299231
CU;nrd " Estimated MTF : 0.18104003
r:5Ve&~ g
Oj5c Compensator Statistics: w.Vynb Change in back focus: &v-V_.0(H Minimum : -0.000000 F=om^6G%X5 Maximum : 0.000000 >YBpB,WND Mean : -0.000000 Z
:9VxZ Standard Deviation : 0.000000 by
U\I5 _tReZ(Vw Monte Carlo Analysis:
oGVSy`ku Number of trials: 20
$.N~AA~0 1a$V{Eag Initial Statistics: Normal Distribution
huoKr q-G|@6O Trial Criterion Change
8$v7|S6 z 1 0.42804416 -0.11598818
ye|a#a9N Change in Focus : -0.400171
h*KHEg"+ 2 0.54384387 -0.00018847
yUW&Wgc=: Change in Focus : 1.018470
JZ%F 3 0.44510003 -0.09893230
|3,V%>z Change in Focus : -0.601922
6XAr8mw9 4 0.18154684 -0.36248550
P082.:q" Change in Focus : 0.920681
xNm32~ 5 0.28665820 -0.25737414
j?f <hQ Change in Focus : 1.253875
0#[f2X62B 6 0.21263372 -0.33139862
yOK])&c Change in Focus : -0.903878
Z&w^9;30P 7 0.40051424 -0.14351809
p}A4K#G Change in Focus : -1.354815
M91lV(Z 8 0.48754161 -0.05649072
unnx#e] Change in Focus : 0.215922
Hm
VTfH' 9 0.40357468 -0.14045766
]kkBgjQbS Change in Focus : 0.281783
2]3HX3 10 0.26315315 -0.28087919
n+qVT4o Change in Focus : -1.048393
S%X\,N 11 0.26120585 -0.28282649
5;
PXF Change in Focus : 1.017611
WQ}!]$<"y 12 0.24033815 -0.30369419
_Hu2[lV Change in Focus : -0.109292
#a | ch6B 13 0.37164046 -0.17239188
bfJ`}xl(8 Change in Focus : -0.692430
q83~j`ZJ$ 14 0.48597489 -0.05805744
NceB'YG| Change in Focus : -0.662040
X^D9)kel 15 0.21462327 -0.32940907
Dsj|~J3 Change in Focus : 1.611296
[u9JL3 16 0.43378226 -0.11025008
2ly,l[p8 Change in Focus : -0.640081
bkwa{V 17 0.39321881 -0.15081353
BO4 K#H7 Change in Focus : 0.914906
@qPyrgy 18 0.20692530 -0.33710703
'n[+r}3 Change in Focus : 0.801607
8F^,8kIR 19 0.51374068 -0.03029165
uR;-eK Change in Focus : 0.947293
~$4.Mf,u 20 0.38013374 -0.16389860
em1cc, Change in Focus : 0.667010
U>_IYT
l^!A Number of traceable Monte Carlo files generated: 20
i6md fp|k ?JgO-. Nominal 0.54403234
aw/7Z` Best 0.54384387 Trial 2
"Ug/
',jkV Worst 0.18154684 Trial 4
VS9]po>= Mean 0.35770970
x$n~f:1Y Std Dev 0.11156454
}@14E-N= >HPvgR/#BY [2'm`tZL Compensator Statistics:
Hs%QEvZl Change in back focus:
g. ?*F#2 Minimum : -1.354815
xIQ/$[&v Maximum : 1.611296
2]D$|M?$~ Mean : 0.161872
xegQRc Standard Deviation : 0.869664
bEBBwv *IWFeu7y 90% > 0.20977951 QtY hg$K3 80% > 0.22748071 0\'Q&oTo 50% > 0.38667627 q#99iiG1 20% > 0.46553746 -XVEV 10% > 0.50064115 wb6 L?t @VC .> End of Run.
,\lYPx\P[ VW9>xVd4 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
a|QE *s.
[0u.}c;( kS+r"e
.TM 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
_ktK+8*6` Tr8AG> 不吝赐教