切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16271阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 xo6-Y=c8  
    G9N6iKP!  
    9{'GrL  
    *]W{83rXQ  
    然后添加了默认公差分析,基本没变 l yF~E  
    #J)sz,)(  
    TW{.qed8^  
    ~>k<I:BtrT  
    然后运行分析的结果如下: &]ts*qCEL  
    #=OKY@z/  
    Analysis of Tolerances GBHv| GO  
    2%. A{!  
    File : E:\光学设计资料\zemax练习\f500.ZMX 2?z3s|+[  
    Title: QyJ}zwD  
    Date : TUE JUN 21 2011 Xb?P'nD  
    P"XF|*^U  
    Units are Millimeters. "n}J6   
    All changes are computed using linear differences. Al5E  
    t*NZ@)>  
    Paraxial Focus compensation only. ,gUSW  
    Ra%RcUf~sh  
    WARNING: Solves should be removed prior to tolerancing. pTprU)sa7  
    _o'ii VDuD  
    Mnemonics: ;v^tUyhCb  
    TFRN: Tolerance on curvature in fringes. Y]Vt&*{JV  
    TTHI: Tolerance on thickness. Uk` ym  
    TSDX: Tolerance on surface decentering in x. ;;2XLkWu  
    TSDY: Tolerance on surface decentering in y. =XzrmPu  
    TSTX: Tolerance on surface tilt in x (degrees). 4fT,/[k?  
    TSTY: Tolerance on surface tilt in y (degrees). 3PIZay  
    TIRR: Tolerance on irregularity (fringes). W.r0W2))(  
    TIND: Tolerance on Nd index of refraction. Rf^$?D&^  
    TEDX: Tolerance on element decentering in x. 58DkVQ6  
    TEDY: Tolerance on element decentering in y. WJ<nc+/v:  
    TETX: Tolerance on element tilt in x (degrees). Mi%i_T^i  
    TETY: Tolerance on element tilt in y (degrees). P%8 Gaa=  
    fFMGpibkM  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. T&oY:1D,g  
    qg7.E+  
    WARNING: Boundary constraints on compensators will be ignored. }TzMWdT  
    V: fz  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ?T3zA2  
    Mode                : Sensitivities "T=Z/@Vy  
    Sampling            : 2 e=<knKc Q  
    Nominal Criterion   : 0.54403234 ^HgQ"dD <  
    Test Wavelength     : 0.6328 Q>8F&p?R  
    /x c<&  
    5z~rl}`v  
    Fields: XY Symmetric Angle in degrees B8F.}M-!  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY H!?Av$h`  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 -*~ = 4m<  
    q_bE?j{  
    Sensitivity Analysis: 'W(+rTFf!  
    z#ab V1 Xi  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ^I4'7]n-  
    Type                      Value      Criterion        Change          Value      Criterion        Change E (  
    Fringe tolerance on surface 1 48hu=,)81*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 pM],-7UM  
    Change in Focus                :      -0.000000                            0.000000 t~U:Ea[gd  
    Fringe tolerance on surface 2 ]-QY, k  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 \3JZ =/  
    Change in Focus                :       0.000000                            0.000000 b`){f\#t  
    Fringe tolerance on surface 3 #tg,%*.s  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 S96H`kedZo  
    Change in Focus                :      -0.000000                            0.000000 R4"*<%1  
    Thickness tolerance on surface 1 Ydm 0  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 $&& mGD;?K  
    Change in Focus                :       0.000000                            0.000000 t2skg  
    Thickness tolerance on surface 2 i8iv{e2  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 )hs"P%Zg  
    Change in Focus                :       0.000000                           -0.000000 K&Ner(/X`6  
    Decenter X tolerance on surfaces 1 through 3 'w3BSaJi  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 @ol=gBU  
    Change in Focus                :       0.000000                            0.000000 '#RzX8|v<  
    Decenter Y tolerance on surfaces 1 through 3 F*m^AFjs  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 $mdmuUIy-3  
    Change in Focus                :       0.000000                            0.000000 3 <}\{jT  
    Tilt X tolerance on surfaces 1 through 3 (degrees) %IrR+f+H  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 QZ?#ixvJ  
    Change in Focus                :       0.000000                            0.000000 wNo2$>*  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) <Hd8Jd4f  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 c%y(Z5  
    Change in Focus                :       0.000000                            0.000000 H'KCIqo  
    Decenter X tolerance on surface 1 j5Kw0Wy7  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 R=&9M4  
    Change in Focus                :       0.000000                            0.000000 |osu4=s|  
    Decenter Y tolerance on surface 1 wpgO09  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 MDV<[${   
    Change in Focus                :       0.000000                            0.000000 G>Fk )  
    Tilt X tolerance on surface (degrees) 1 @Wgd(Ezd  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 .5L|(B=H  
    Change in Focus                :       0.000000                            0.000000 <A|X4;  
    Tilt Y tolerance on surface (degrees) 1 s%M#  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 (-S<9u-r  
    Change in Focus                :       0.000000                            0.000000 Pq\ `0/4_  
    Decenter X tolerance on surface 2 krqz;q-p~  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 NSe H u k  
    Change in Focus                :       0.000000                            0.000000 { 0\Ez}  
    Decenter Y tolerance on surface 2 MWdev.m:Z  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 -R %T Dx  
    Change in Focus                :       0.000000                            0.000000 g)?Ol  
    Tilt X tolerance on surface (degrees) 2 o\/&05rp]  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 grD[7;1~:)  
    Change in Focus                :       0.000000                            0.000000 gwsIzYV  
    Tilt Y tolerance on surface (degrees) 2 Xz)qtDN|(  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324  BdiV  
    Change in Focus                :       0.000000                            0.000000 \K~wsu/?`  
    Decenter X tolerance on surface 3 83I 5n&)  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 jI0gf&v8  
    Change in Focus                :       0.000000                            0.000000 ^H7xFd|>  
    Decenter Y tolerance on surface 3 +t%2V?  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 i9De+3VqKK  
    Change in Focus                :       0.000000                            0.000000 xp'Q>%v  
    Tilt X tolerance on surface (degrees) 3 *!JB^5(H  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 gpf0 -g-X  
    Change in Focus                :       0.000000                            0.000000 enZZ+|h  
    Tilt Y tolerance on surface (degrees) 3 OA=~ i/n~  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 $ ,]U~7S  
    Change in Focus                :       0.000000                            0.000000 #T2J +  
    Irregularity of surface 1 in fringes G`kz 0Vk  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 [:#K_EI5%  
    Change in Focus                :       0.000000                            0.000000 ls&H oJ7  
    Irregularity of surface 2 in fringes OqDP{X:  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 A"&<$5Q  
    Change in Focus                :       0.000000                            0.000000 v\4<6Z:4  
    Irregularity of surface 3 in fringes bKGX> %-  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 dd<l;4(  
    Change in Focus                :       0.000000                            0.000000 Q2- lHn^L:  
    Index tolerance on surface 1 ?#xm6oe#aH  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 [%^sl>,7  
    Change in Focus                :       0.000000                            0.000000 u "jV#,,  
    Index tolerance on surface 2 o.A:29KoU  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 T9w=k)  
    Change in Focus                :       0.000000                           -0.000000 CN:T$ f|)  
    :,aY|2si  
    Worst offenders: Z;81 "   
    Type                      Value      Criterion        Change l;@+=uVDHm  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 @}g3\xLiK  
    TSTY   2             0.20000000     0.35349910    -0.19053324 gAdqZJR%]  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 A| A#|D  
    TSTX   2             0.20000000     0.35349910    -0.19053324 > B@c74  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 _8u TK%|  
    TSTY   1             0.20000000     0.42678383    -0.11724851 G/Sp/I<d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 gtu<#h(  
    TSTX   1             0.20000000     0.42678383    -0.11724851 O8$~dzf,2  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 !Z:XSF[T  
    TSTY   3             0.20000000     0.42861670    -0.11541563 !P=Cv=  
    N~8H\  
    Estimated Performance Changes based upon Root-Sum-Square method: }^Q:Q\  
    Nominal MTF                 :     0.54403234 gPMfn:a-8  
    Estimated change            :    -0.36299231 ^%9oeT{  
    Estimated MTF               :     0.18104003 >pfeP"[(3  
    Q*>)W{H&)  
    Compensator Statistics: W^ L ^7  
    Change in back focus: l5Bm.H_  
    Minimum            :        -0.000000 nTr%S&<+"  
    Maximum            :         0.000000 H u;"TG  
    Mean               :        -0.000000 xjo`u:BH  
    Standard Deviation :         0.000000 baII!ks  
    JFm@jc  
    Monte Carlo Analysis: /\/^= j  
    Number of trials: 20 JKM(fX+  
    /fp8tL2Y  
    Initial Statistics: Normal Distribution fI)XV7,X  
    hI86WP9*  
      Trial       Criterion        Change M[mYG _{J  
          1     0.42804416    -0.11598818 _:m70%i  
    Change in Focus                :      -0.400171 lw9jk`7^  
          2     0.54384387    -0.00018847 _  Lh0  
    Change in Focus                :       1.018470 .A< HM}   
          3     0.44510003    -0.09893230 A?lL K&*  
    Change in Focus                :      -0.601922 XZ |L D#  
          4     0.18154684    -0.36248550 TRi#  
    Change in Focus                :       0.920681 d*^JO4'  
          5     0.28665820    -0.25737414 4P3RRS  
    Change in Focus                :       1.253875 ~JL qh  
          6     0.21263372    -0.33139862 ]2@(^x'=  
    Change in Focus                :      -0.903878 1 7~Pc  
          7     0.40051424    -0.14351809 .z,-ThTH@\  
    Change in Focus                :      -1.354815 W/2y; @  
          8     0.48754161    -0.05649072 aH6j,R%  
    Change in Focus                :       0.215922 K]m#~J3d>  
          9     0.40357468    -0.14045766 W]D YfR,  
    Change in Focus                :       0.281783 F-3=eKZ  
         10     0.26315315    -0.28087919 $l7}e=1  
    Change in Focus                :      -1.048393 Eg`~mE+a  
         11     0.26120585    -0.28282649 { }/  
    Change in Focus                :       1.017611 0OHXg=  
         12     0.24033815    -0.30369419 3~P$p<  
    Change in Focus                :      -0.109292 ~},H+A!?  
         13     0.37164046    -0.17239188 w@-G_-6W  
    Change in Focus                :      -0.692430 ELwXp|L  
         14     0.48597489    -0.05805744  GhfhR^P  
    Change in Focus                :      -0.662040 lD$s, hp  
         15     0.21462327    -0.32940907 oqwW  
    Change in Focus                :       1.611296 e2=}qE7  
         16     0.43378226    -0.11025008 1^$hbRq  
    Change in Focus                :      -0.640081 wBpt W2jA  
         17     0.39321881    -0.15081353 X40gJV<  
    Change in Focus                :       0.914906 n/;{-  
         18     0.20692530    -0.33710703 ]CP5s5  
    Change in Focus                :       0.801607 (Yj6 |`  
         19     0.51374068    -0.03029165 L?u {vX  
    Change in Focus                :       0.947293 3)VO{Cj!  
         20     0.38013374    -0.16389860 C3 "EZe[R  
    Change in Focus                :       0.667010 LeN }Q  
    A&1EOQ=N  
    Number of traceable Monte Carlo files generated: 20 bP$e1I3`  
    ]Yt3@ug_f  
    Nominal     0.54403234 5L6.7}B  
    Best        0.54384387    Trial     2 MkVv5C  
    Worst       0.18154684    Trial     4 *><j(uz!  
    Mean        0.35770970 \|X 1  
    Std Dev     0.11156454 TCzz]?G]la  
    w:B&8I(n}w  
    }k AE  
    Compensator Statistics: \Yp"D7:Qi  
    Change in back focus: &z3_N  
    Minimum            :        -1.354815 mKM[[l&A  
    Maximum            :         1.611296 Q +hOW-  
    Mean               :         0.161872 T\zn&6  
    Standard Deviation :         0.869664 ++w{)Io Z  
    c5f57Z  
    90% >       0.20977951               7g8\q@',  
    80% >       0.22748071               56."&0  
    50% >       0.38667627               +:#g6(P]  
    20% >       0.46553746               tF*Sg{:bCa  
    10% >       0.50064115                ! pa7]cZ  
    t re`iCH~  
    End of Run. vRmzjd~  
    ~Gg19x.#uW  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 /ORK9 g  
    V!e`P  
    '6WZi|(a  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 oPAc6ObOV~  
    ;rh =63g  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 SL% Ec%9Y  
    80% >       0.22748071                 *7/MeE6)i  
    50% >       0.38667627                 '~Gk{'Nx"  
    20% >       0.46553746                 7y>{Y$n  
    10% >       0.50064115 af2yng  
    "CWqPcr  
    最后这个数值是MTF值呢,还是MTF的公差? F|W(_llfM  
    d[Rs  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   e/u (Re  
    8U&93$  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : TY,w3E_  
    90% >       0.20977951                 ^6~CA  
    80% >       0.22748071                 u=I>DEe@ c  
    50% >       0.38667627                 H5Rn.n(|  
    20% >       0.46553746                 (s,*soAN  
    10% >       0.50064115 J}coWjw`q  
    ....... $b#"Rv  
    :_tsS)Q2m  
    6|05-x|  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   R\+p`n$  
    Mode                : Sensitivities v[ru }/4  
    Sampling            : 2 g!<@6\RB  
    Nominal Criterion   : 0.54403234 LI?rz<H!D  
    Test Wavelength     : 0.6328 bzmT.!  
    iy8U rgG;l  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? J(h=@cw  
    (H<S&5[  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试