切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16250阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 9QaEUy*,  
    v~>^c1:  
    }-H<wQ&x  
    41y}n{4n8  
    然后添加了默认公差分析,基本没变 #/'5N|?  
    o<f[K}t9  
    OczVObbS  
    ^E&':6(  
    然后运行分析的结果如下: ShAI6j  
    eR.ucTji  
    Analysis of Tolerances yZ t}Jnv  
    0r=:l/Pz  
    File : E:\光学设计资料\zemax练习\f500.ZMX #87:Or1  
    Title: OHeVm-VC  
    Date : TUE JUN 21 2011 K9co_n_L  
    M9{?gM9  
    Units are Millimeters. [xT2c.2__J  
    All changes are computed using linear differences. ($^XF:#5  
    g_Wf3o857J  
    Paraxial Focus compensation only. /g3U,?qP  
    kd9rvy0oK  
    WARNING: Solves should be removed prior to tolerancing. GH2D5HVN  
    ;+XiDEX0}  
    Mnemonics: ;L.@4b[lP  
    TFRN: Tolerance on curvature in fringes. T69'ta32V  
    TTHI: Tolerance on thickness. hPt(7E2ke~  
    TSDX: Tolerance on surface decentering in x. wXf_2qB9  
    TSDY: Tolerance on surface decentering in y. K1O0/2O  
    TSTX: Tolerance on surface tilt in x (degrees). d_BO&k<+I  
    TSTY: Tolerance on surface tilt in y (degrees). E 5PefD\m  
    TIRR: Tolerance on irregularity (fringes). 6dO )]  
    TIND: Tolerance on Nd index of refraction. GuMsw*{>  
    TEDX: Tolerance on element decentering in x. SesJg~8  
    TEDY: Tolerance on element decentering in y.  Ex35  
    TETX: Tolerance on element tilt in x (degrees). 6P;JF%{J  
    TETY: Tolerance on element tilt in y (degrees). P`wp`HI  
    4J*%$Vxv  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. `i0RLGze  
    $-9m8}U(Y  
    WARNING: Boundary constraints on compensators will be ignored. SEQ bw](ss  
    3X,9K23T  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm RrSo`q-h+  
    Mode                : Sensitivities S/pTFlptCa  
    Sampling            : 2 |S#)[83*3  
    Nominal Criterion   : 0.54403234 N?0T3-/K  
    Test Wavelength     : 0.6328 P X ?!R4S  
    GbG!vo  
    0hK)/!Y  
    Fields: XY Symmetric Angle in degrees . Rxz;-VA  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY l=%v  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ipfiarT~)  
    PNgj 8J4  
    Sensitivity Analysis: Qy |*[  
    tv,iCV  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| nb0V~W  
    Type                      Value      Criterion        Change          Value      Criterion        Change ;Ad$Q9)EE  
    Fringe tolerance on surface 1 +9>t; Ty  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 _O ~DJ"  
    Change in Focus                :      -0.000000                            0.000000 jLc4D'  
    Fringe tolerance on surface 2 gTZ1LJ  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 w$UWfL(  
    Change in Focus                :       0.000000                            0.000000 <T JUKznO  
    Fringe tolerance on surface 3 lCg'K(|"  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 j.X3SQb4G  
    Change in Focus                :      -0.000000                            0.000000 rmutw~nHD  
    Thickness tolerance on surface 1 W>0 36  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 C0;c'4(  
    Change in Focus                :       0.000000                            0.000000 %{s<h6{R  
    Thickness tolerance on surface 2 k_.%(ZE  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 n\&[^Q#b|  
    Change in Focus                :       0.000000                           -0.000000 .0;Z:x_3  
    Decenter X tolerance on surfaces 1 through 3 <m"Zk k  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 S !cc%  
    Change in Focus                :       0.000000                            0.000000 ;_)&#X,?(  
    Decenter Y tolerance on surfaces 1 through 3 ]Ow A>fb  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 )xIk#>)  
    Change in Focus                :       0.000000                            0.000000 + |MHiC  
    Tilt X tolerance on surfaces 1 through 3 (degrees) DQY*0\  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 HYf&0LT<11  
    Change in Focus                :       0.000000                            0.000000 r`}')2  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 7*]O]6rP  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 z/aZD\[_  
    Change in Focus                :       0.000000                            0.000000 =dz  iR _  
    Decenter X tolerance on surface 1 EQXvEJ^  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 U7(84k\j  
    Change in Focus                :       0.000000                            0.000000 E\&~S+:Xp  
    Decenter Y tolerance on surface 1 }-9  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 BXy g ?  
    Change in Focus                :       0.000000                            0.000000 J@w Q3#5a  
    Tilt X tolerance on surface (degrees) 1 s,O:l0  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 \&|)?'8rS  
    Change in Focus                :       0.000000                            0.000000 .~qu,q7k~  
    Tilt Y tolerance on surface (degrees) 1 X*6bsYbK-  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 s0 hD;`cm  
    Change in Focus                :       0.000000                            0.000000 > !k  
    Decenter X tolerance on surface 2  chW 1UE  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 3 4CqLPg8  
    Change in Focus                :       0.000000                            0.000000 l -us j%\  
    Decenter Y tolerance on surface 2 =B_vQJF2  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 `)$'1,]u  
    Change in Focus                :       0.000000                            0.000000 p =_K P9  
    Tilt X tolerance on surface (degrees) 2  2bwf(  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 zts%oIgV  
    Change in Focus                :       0.000000                            0.000000 <z+5+h|^  
    Tilt Y tolerance on surface (degrees) 2 < TJzp  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 F1%-IBe  
    Change in Focus                :       0.000000                            0.000000 :4|ubu  
    Decenter X tolerance on surface 3 M q;m+{B  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 zLd i  
    Change in Focus                :       0.000000                            0.000000 Hy~kHBIL  
    Decenter Y tolerance on surface 3 CL oc  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 WrBiAh,  
    Change in Focus                :       0.000000                            0.000000 "pGSz%i-  
    Tilt X tolerance on surface (degrees) 3 o8c4h<,  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 [`^5Zb  
    Change in Focus                :       0.000000                            0.000000 6jT+kq)  
    Tilt Y tolerance on surface (degrees) 3 3:1 h:Yc<  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 X@JrfvKv[d  
    Change in Focus                :       0.000000                            0.000000 ib8@U}Vn1  
    Irregularity of surface 1 in fringes QQ^P IQj  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ibo{!>m  
    Change in Focus                :       0.000000                            0.000000 *^+8_%;1  
    Irregularity of surface 2 in fringes swEE >=  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 +Zgh[a  
    Change in Focus                :       0.000000                            0.000000 }_m/3*x_  
    Irregularity of surface 3 in fringes W=j  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 | wuUH  
    Change in Focus                :       0.000000                            0.000000 >DqV^%2l  
    Index tolerance on surface 1  uaN0X"  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 H|&[,&M>  
    Change in Focus                :       0.000000                            0.000000 ,q$'hYTaJ  
    Index tolerance on surface 2 R+Q..9 P  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 <RQ\nU  
    Change in Focus                :       0.000000                           -0.000000 _s{on/u  
    J_) .Hd  
    Worst offenders: SJ4[n.tPI  
    Type                      Value      Criterion        Change 5{ ?J5  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ;G!JKg  
    TSTY   2             0.20000000     0.35349910    -0.19053324 O3H dPQ  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 YmXh_bk  
    TSTX   2             0.20000000     0.35349910    -0.19053324 HX\^ecZ#E  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 @}sxA9 a  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ^]_[dqd  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 znm3b8ns  
    TSTX   1             0.20000000     0.42678383    -0.11724851 p2Yc:9r9+A  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 &|cg`m  
    TSTY   3             0.20000000     0.42861670    -0.11541563 I29aja  
    fX"cQ&  
    Estimated Performance Changes based upon Root-Sum-Square method: Kxs_R#k  
    Nominal MTF                 :     0.54403234 V80BO#Pk  
    Estimated change            :    -0.36299231 'a8{YT4  
    Estimated MTF               :     0.18104003 ! *Snx  
    ro:B[XE  
    Compensator Statistics: S+aXlb  
    Change in back focus: 1yHlBeEC  
    Minimum            :        -0.000000 )nncCU W  
    Maximum            :         0.000000 BC|=-^(  
    Mean               :        -0.000000 tS|gQUF17  
    Standard Deviation :         0.000000 |T!ivd1G  
    7{0;<@  
    Monte Carlo Analysis: 'vbrzI5m  
    Number of trials: 20 1?k{jt~  
    z  u53mZ  
    Initial Statistics: Normal Distribution -2Bkun4Pt  
    $H}G'LqiG  
      Trial       Criterion        Change 3-^z<*  
          1     0.42804416    -0.11598818 pGS!Nn;K2  
    Change in Focus                :      -0.400171 `x b\)  
          2     0.54384387    -0.00018847 ]Dj,8tf`H  
    Change in Focus                :       1.018470 {,V.IDs8[  
          3     0.44510003    -0.09893230 C%#%_ "N  
    Change in Focus                :      -0.601922 8n_!WDD  
          4     0.18154684    -0.36248550 `cu W^/c  
    Change in Focus                :       0.920681 ddR*&.Y!a  
          5     0.28665820    -0.25737414 LBO3){=J  
    Change in Focus                :       1.253875 ~< ~PaP$=\  
          6     0.21263372    -0.33139862 (6b*JQ^^  
    Change in Focus                :      -0.903878 ^g^R[8  
          7     0.40051424    -0.14351809 &~9'7 n!  
    Change in Focus                :      -1.354815 zn!H&!8&  
          8     0.48754161    -0.05649072 u`K)dH,  
    Change in Focus                :       0.215922 W|C>X=zTi  
          9     0.40357468    -0.14045766 k9]M=eO  
    Change in Focus                :       0.281783 OPi><8x  
         10     0.26315315    -0.28087919 gXrXVv<)yw  
    Change in Focus                :      -1.048393 kBF.TGT[l  
         11     0.26120585    -0.28282649 DcjF $E  
    Change in Focus                :       1.017611 32#|BBY  
         12     0.24033815    -0.30369419 (T&rvE  
    Change in Focus                :      -0.109292 :.2Tcq  
         13     0.37164046    -0.17239188 c:[z({`  
    Change in Focus                :      -0.692430 rf}@16O$'  
         14     0.48597489    -0.05805744 )(^L *  
    Change in Focus                :      -0.662040 mI$<+S1!  
         15     0.21462327    -0.32940907 b-'T>1V  
    Change in Focus                :       1.611296 %8U/!(.g  
         16     0.43378226    -0.11025008 ,tZJSfHB  
    Change in Focus                :      -0.640081 pv LA:LW2  
         17     0.39321881    -0.15081353 }MW7,F  
    Change in Focus                :       0.914906 |<:Owd=  
         18     0.20692530    -0.33710703 roiUVisq*  
    Change in Focus                :       0.801607 B<V8:vOam  
         19     0.51374068    -0.03029165 . N:& {$o:  
    Change in Focus                :       0.947293 =x_~7 Xc{  
         20     0.38013374    -0.16389860 IF>dsAAI<  
    Change in Focus                :       0.667010 Nj p?/r  
    p'@| O q&  
    Number of traceable Monte Carlo files generated: 20 Bsr; MVD  
    htgtgW9 ^P  
    Nominal     0.54403234 /=y _ #l  
    Best        0.54384387    Trial     2 u*W6fg/"  
    Worst       0.18154684    Trial     4 pgp@Zw)r)k  
    Mean        0.35770970 te<lCD6  
    Std Dev     0.11156454 {hP_"nN#  
    {Yt@H  
    6jDHA3  
    Compensator Statistics: ?.*^#>-  
    Change in back focus:  _klT  
    Minimum            :        -1.354815 w!GPPW(  
    Maximum            :         1.611296 J>o%6D  
    Mean               :         0.161872 f3[/zcm;  
    Standard Deviation :         0.869664 Tgf\f%,h  
    AlVB hR`  
    90% >       0.20977951               *_qLLJg  
    80% >       0.22748071               Z?@oe-mz  
    50% >       0.38667627               M15jwR!:M  
    20% >       0.46553746               i(hL6DLD  
    10% >       0.50064115                F4b$  
    ^KlW"2:  
    End of Run. z\kiYQ6kA  
    n7>L&?N#y#  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 WP}NHz4H  
    P{2ue`w[  
    s MZ90Q$  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 Z<Rhn  
    i 6DcLE  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 IE0hC\C}  
    80% >       0.22748071                 i^Ip+J+[  
    50% >       0.38667627                 a0/[L  
    20% >       0.46553746                 d95 $w8>  
    10% >       0.50064115  Qk)E:  
    J+:gIszsWT  
    最后这个数值是MTF值呢,还是MTF的公差? !\hUjM+(}  
    $:u5XJx  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   b9L" ?{  
    = ;z42oS  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : pe@j`Sm:Ej  
    90% >       0.20977951                 {OGv1\ol&  
    80% >       0.22748071                 uh 3yiDj@a  
    50% >       0.38667627                  Y!*F-v@  
    20% >       0.46553746                 wzNGL{3  
    10% >       0.50064115 G~FAChI8![  
    ....... 4O1[D? )`x  
    Puodsd  
    x17K8De  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   aA3KJa  
    Mode                : Sensitivities p6|RV(?8  
    Sampling            : 2 o@j)clf  
    Nominal Criterion   : 0.54403234 YIZ+BVa  
    Test Wavelength     : 0.6328 C[IY9s:Pf  
    ]aqg{XdGt  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ,'c?^ $J|z  
    G ;fc8a[X  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试