切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16525阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 S(?A3 H  
    &I[` .:NJ  
    'tvuw\hhL  
    ,isjiy J  
    然后添加了默认公差分析,基本没变 N5h9){Mx  
    a @d 15CN  
    o. ;Vrc  
    V)N{Fr)&  
    然后运行分析的结果如下: U+@U/s%8  
    y&-QLX L  
    Analysis of Tolerances "WUS?Q  
    zsJermF,O  
    File : E:\光学设计资料\zemax练习\f500.ZMX _B&Lyg !J  
    Title: v8j3 K   
    Date : TUE JUN 21 2011 $(Mz@#%  
    @NqwJ.%g  
    Units are Millimeters. xLDD;Qm,  
    All changes are computed using linear differences. Y)+q[MZ R  
    ?Rx(@  
    Paraxial Focus compensation only. upL3M`  
    'A3skznX{  
    WARNING: Solves should be removed prior to tolerancing. VqpC@C$  
    v{fcQb  
    Mnemonics: . R/y`:1:W  
    TFRN: Tolerance on curvature in fringes. -!:5jfT"  
    TTHI: Tolerance on thickness. ne/JC(  
    TSDX: Tolerance on surface decentering in x. 0FgF,  
    TSDY: Tolerance on surface decentering in y. ]| +M0:2?  
    TSTX: Tolerance on surface tilt in x (degrees). 6CIzT.  
    TSTY: Tolerance on surface tilt in y (degrees). Z>Mv$F"p:  
    TIRR: Tolerance on irregularity (fringes). fyA-*)oHv  
    TIND: Tolerance on Nd index of refraction. Zo yO[#  
    TEDX: Tolerance on element decentering in x. $[n:IDa*@1  
    TEDY: Tolerance on element decentering in y. HP1QI/*v  
    TETX: Tolerance on element tilt in x (degrees). G7Sw\wW  
    TETY: Tolerance on element tilt in y (degrees). d%"XsbO  
    ow.!4kx{d  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. gJ'pwSA  
    d6YXITL)\>  
    WARNING: Boundary constraints on compensators will be ignored. d#H9jg15e  
    ABX%oZ7[|o  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Bhd)# P  
    Mode                : Sensitivities .'gm2  
    Sampling            : 2 HdJ g  
    Nominal Criterion   : 0.54403234 <78|~SKAV  
    Test Wavelength     : 0.6328 r(46jV.sD:  
    @we1#Vz.  
    <ak[`]  
    Fields: XY Symmetric Angle in degrees czuIs|_K*  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY [49Cvde^  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 89g a+#7  
    -HG .GA  
    Sensitivity Analysis: nQjpJ /=  
    H.@$#D  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| \}s/<Q  
    Type                      Value      Criterion        Change          Value      Criterion        Change %+N]$Q  
    Fringe tolerance on surface 1 iM)K:L7d  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 SG&,o =I$  
    Change in Focus                :      -0.000000                            0.000000 A51 a/p#  
    Fringe tolerance on surface 2 v$|~ g'6  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ?K>)bA&l'  
    Change in Focus                :       0.000000                            0.000000 <46&R[17M  
    Fringe tolerance on surface 3 K)7T]z`  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 vSH,fS-n  
    Change in Focus                :      -0.000000                            0.000000 ,,gMUpL7_8  
    Thickness tolerance on surface 1 X8$Mzeq  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 L7-BuW}&  
    Change in Focus                :       0.000000                            0.000000 W2 -%/  
    Thickness tolerance on surface 2 oAQQ OtpZN  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 P1Hab2%+  
    Change in Focus                :       0.000000                           -0.000000 c$Kc,`2m7  
    Decenter X tolerance on surfaces 1 through 3 g<W]NYm  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 olE(#}7V  
    Change in Focus                :       0.000000                            0.000000 7__[=)(b2X  
    Decenter Y tolerance on surfaces 1 through 3  AG@gOm  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 )4L2&e`k)(  
    Change in Focus                :       0.000000                            0.000000 /Sw~<B!8N  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ub-3/T  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 SIJ7Y{\.  
    Change in Focus                :       0.000000                            0.000000 QnWE;zN[7A  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ga 5Q  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 q? ' 4&  
    Change in Focus                :       0.000000                            0.000000 Lq2Q:w'  
    Decenter X tolerance on surface 1 M:/NW-:  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 "?NDN4l*  
    Change in Focus                :       0.000000                            0.000000 gwoe1:F:J  
    Decenter Y tolerance on surface 1 NP T-d  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 z1mB Hz6  
    Change in Focus                :       0.000000                            0.000000 R^l0Bu]X  
    Tilt X tolerance on surface (degrees) 1 djdTh +>28  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 nqj(V  
    Change in Focus                :       0.000000                            0.000000 e*7O!Z=O  
    Tilt Y tolerance on surface (degrees) 1 ~)U50. CH  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 K%v:giN$l`  
    Change in Focus                :       0.000000                            0.000000 \,Y .5?  
    Decenter X tolerance on surface 2 7g\v (P  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 $ZM'dIk?  
    Change in Focus                :       0.000000                            0.000000 6e-ME3!<l  
    Decenter Y tolerance on surface 2 P0l fK}  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ?+t;\  
    Change in Focus                :       0.000000                            0.000000 8R MM97@1Q  
    Tilt X tolerance on surface (degrees) 2 ,hn#DJ)  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ,*|Q=  
    Change in Focus                :       0.000000                            0.000000 0;bdwIP3  
    Tilt Y tolerance on surface (degrees) 2 ;g0Q_F@;p  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 t*IePz]/  
    Change in Focus                :       0.000000                            0.000000 ):$KM{X  
    Decenter X tolerance on surface 3 rl|'.~mc  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 |Ea%nghl  
    Change in Focus                :       0.000000                            0.000000 U@OdQAX  
    Decenter Y tolerance on surface 3 "iSY;y o  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Nny*C`uDF  
    Change in Focus                :       0.000000                            0.000000 {-4+=7Sg1  
    Tilt X tolerance on surface (degrees) 3 wL0[Slf}  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 RE>Q5#|c  
    Change in Focus                :       0.000000                            0.000000 & =[!L0{  
    Tilt Y tolerance on surface (degrees) 3 /~NX<Ye&  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 c]4X`3]  
    Change in Focus                :       0.000000                            0.000000 Wk%|%/:  
    Irregularity of surface 1 in fringes >(RkoExO/  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 3``JrkPI  
    Change in Focus                :       0.000000                            0.000000 32ki ?\P  
    Irregularity of surface 2 in fringes 5P!ZGbG  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 sX1DbEjj[o  
    Change in Focus                :       0.000000                            0.000000 eFiG:LS7  
    Irregularity of surface 3 in fringes ]}L'jK 0  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 V4,Gt ]4  
    Change in Focus                :       0.000000                            0.000000 <m-(B"F X  
    Index tolerance on surface 1 ##jJa SxG  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 PuN L%D  
    Change in Focus                :       0.000000                            0.000000 n41#  
    Index tolerance on surface 2 >Scyc-n  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 2.v{W-D[  
    Change in Focus                :       0.000000                           -0.000000 w/#7G\U  
    "'v+*H 3  
    Worst offenders: :s *  
    Type                      Value      Criterion        Change Z<X=00,wg  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 =8]`-(  
    TSTY   2             0.20000000     0.35349910    -0.19053324 c(Dp`f,  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 DT]4C!dh  
    TSTX   2             0.20000000     0.35349910    -0.19053324 vMz|'-rm$  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 A%D 'Z85 -  
    TSTY   1             0.20000000     0.42678383    -0.11724851 B?j t?  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ?}?"m:=  
    TSTX   1             0.20000000     0.42678383    -0.11724851 2y`h'z  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 S^%3Vf}  
    TSTY   3             0.20000000     0.42861670    -0.11541563 mx9vjW fy  
    ljbAfd  
    Estimated Performance Changes based upon Root-Sum-Square method: $mJv\;t  
    Nominal MTF                 :     0.54403234 }b2YX+/e$f  
    Estimated change            :    -0.36299231 c+FTt(\8.  
    Estimated MTF               :     0.18104003 7NvKp inQ  
    pT,8E(*l2  
    Compensator Statistics: zH1 ;h  
    Change in back focus: ~R|9|k  
    Minimum            :        -0.000000 n-9xfn0U~#  
    Maximum            :         0.000000 i9ySD  
    Mean               :        -0.000000 'l'3&.{Yfk  
    Standard Deviation :         0.000000 ](JrEg$K  
     ] 2 `%i5  
    Monte Carlo Analysis: %"{P?V<-V  
    Number of trials: 20 =`+D/ W\[Y  
    _[[0rn$  
    Initial Statistics: Normal Distribution ZxtO.U2  
    9^/Y7Wp/@  
      Trial       Criterion        Change e|k]te  
          1     0.42804416    -0.11598818 9 dNB _  
    Change in Focus                :      -0.400171 *}]#E$  
          2     0.54384387    -0.00018847 f#ZM 2!^!  
    Change in Focus                :       1.018470 qm=U<'b^  
          3     0.44510003    -0.09893230 `NtW+v  
    Change in Focus                :      -0.601922 5t%8y!s  
          4     0.18154684    -0.36248550 Ck/44Wfej  
    Change in Focus                :       0.920681 .))g]CH  
          5     0.28665820    -0.25737414 Ey7zb#/<!  
    Change in Focus                :       1.253875 cX9o'e:C  
          6     0.21263372    -0.33139862 /l<(i+0  
    Change in Focus                :      -0.903878 D&FDPaJM  
          7     0.40051424    -0.14351809 1'f_C<.0  
    Change in Focus                :      -1.354815 z|Y54o3  
          8     0.48754161    -0.05649072 |3~m8v2-  
    Change in Focus                :       0.215922 O|t>.<T?  
          9     0.40357468    -0.14045766 r|l?2 eO~  
    Change in Focus                :       0.281783 (7qlp*8.s  
         10     0.26315315    -0.28087919 !H\;X`W|~D  
    Change in Focus                :      -1.048393 /phMrL=  
         11     0.26120585    -0.28282649 J$6WUz:?  
    Change in Focus                :       1.017611 ,P9F*;Dj  
         12     0.24033815    -0.30369419 4bk`i*-O  
    Change in Focus                :      -0.109292 #ZJ 1\Ov  
         13     0.37164046    -0.17239188 ZiZ@3O6  
    Change in Focus                :      -0.692430 o}Grb/LJ  
         14     0.48597489    -0.05805744 #e@NV4q  
    Change in Focus                :      -0.662040 1Le8W)J  
         15     0.21462327    -0.32940907 kl]V_ 7[  
    Change in Focus                :       1.611296 e%e.|+  
         16     0.43378226    -0.11025008 Ue \A ,  
    Change in Focus                :      -0.640081 !L.R"8!  
         17     0.39321881    -0.15081353 U,!qNi}  
    Change in Focus                :       0.914906 ymm]+v5S.]  
         18     0.20692530    -0.33710703  0J+WCm`  
    Change in Focus                :       0.801607 CcUF)$kz  
         19     0.51374068    -0.03029165 R3G\Gchd  
    Change in Focus                :       0.947293 &pY '  
         20     0.38013374    -0.16389860 Tw';;euw  
    Change in Focus                :       0.667010 <TVJ9l  
    l<1zLA~G  
    Number of traceable Monte Carlo files generated: 20 (m'-1wX.  
    nFJW\B&(`  
    Nominal     0.54403234 {ENd]@N*  
    Best        0.54384387    Trial     2 ;h1hz^Wq  
    Worst       0.18154684    Trial     4 QKjn/%l"@  
    Mean        0.35770970 rf=l1GW  
    Std Dev     0.11156454 ZV--d'YiEm  
    /k/X[/WO  
    f$FO 1B)  
    Compensator Statistics: "_&ZRcd*  
    Change in back focus: /W .s1N  
    Minimum            :        -1.354815 \d;)U4__!  
    Maximum            :         1.611296 _]@u)$  
    Mean               :         0.161872 Lk|`\I T  
    Standard Deviation :         0.869664 oz=V|7,  
    }Hb0@ b_  
    90% >       0.20977951               #M~yt`R~  
    80% >       0.22748071               i!%WEHPe  
    50% >       0.38667627               }vh <x6  
    20% >       0.46553746               [s$x"Ex  
    10% >       0.50064115                Dh4 Lffy  
    bVz<8b6h'-  
    End of Run. ~qZ6I)?  
    @&G}'6vF!  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 8 SU0q9X.  
    qR aPh:Q'  
    {XIpH r  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 8Ygf@*9L4  
    rGQD+ d  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Wu* 4r0  
    80% >       0.22748071                 N {{MMIq  
    50% >       0.38667627                 Zoxblk  
    20% >       0.46553746                 ;6 W[%{  
    10% >       0.50064115 XYR q"{Id  
    YvN]7tcb  
    最后这个数值是MTF值呢,还是MTF的公差? VoYL}67c  
    %\-E R !b  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   1K#[Ef4  
    dhA~Yu  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 6Ot~Q  
    90% >       0.20977951                 0D2I)E72o  
    80% >       0.22748071                 F4G81^H  
    50% >       0.38667627                 H}kSXKO8!8  
    20% >       0.46553746                 h-1?c\Qq:  
    10% >       0.50064115 T4wk$R L  
    ....... #at`7#K@  
    C^L xuUW  
    Y&yfm/Ru  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   I)'bf/6?  
    Mode                : Sensitivities 1V1I[CxlX  
    Sampling            : 2 0pMN@Cz6  
    Nominal Criterion   : 0.54403234 Oq.ss!/z  
    Test Wavelength     : 0.6328 ?p@J7{a  
    %a~/q0o>  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? WChP,hw  
    S/5QK(XLC)  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试