切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16384阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 tq1h1  
    o&X!75^G>  
    Ig S.U  
    k^ID  
    然后添加了默认公差分析,基本没变 i12iB+q  
    !d"J,.)  
    Zcdt\;HKr  
    B"8^5#t4s  
    然后运行分析的结果如下: 'n.ATV,  
    z3>}(+  
    Analysis of Tolerances :%;K`w  
    =f{r+'[;^  
    File : E:\光学设计资料\zemax练习\f500.ZMX 7gPkg63  
    Title: #&Biu }4D  
    Date : TUE JUN 21 2011 18|H  
    N{E >R&,q  
    Units are Millimeters. D'A)H  
    All changes are computed using linear differences. GyT{p#l  
    "iOT14J!7  
    Paraxial Focus compensation only. 9[8?'`m  
    h-#Glse<  
    WARNING: Solves should be removed prior to tolerancing. 3hb1^HNT  
    dG6Mo76  
    Mnemonics: |-2,k#|  
    TFRN: Tolerance on curvature in fringes. #  ,GpZ  
    TTHI: Tolerance on thickness. iPI6 _h  
    TSDX: Tolerance on surface decentering in x. *mq+w&  
    TSDY: Tolerance on surface decentering in y. a0y;c@pkO  
    TSTX: Tolerance on surface tilt in x (degrees). 22(0Jb\_  
    TSTY: Tolerance on surface tilt in y (degrees). [x,_0-_  
    TIRR: Tolerance on irregularity (fringes). L?0dZY-"  
    TIND: Tolerance on Nd index of refraction. y%3Yr?]  
    TEDX: Tolerance on element decentering in x. gK`6 NUj  
    TEDY: Tolerance on element decentering in y. X}g!Lp  
    TETX: Tolerance on element tilt in x (degrees). 1<ZvHv  
    TETY: Tolerance on element tilt in y (degrees). ;|}6\=(  
    x|E$ f+  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. .Ml}cE$L  
    He&dVP  
    WARNING: Boundary constraints on compensators will be ignored. ;h] zN  
    HJoPk'p%  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm =yvyd0|35  
    Mode                : Sensitivities u[ "Pg  
    Sampling            : 2 zFwp$K>{QY  
    Nominal Criterion   : 0.54403234 ;^t<LhN:  
    Test Wavelength     : 0.6328 a?&oOQd-iP  
    TzerAX^  
    \ $z.x-U  
    Fields: XY Symmetric Angle in degrees S9-K  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 8?P@<Do%  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 wnha c}  
    h6la+l?x  
    Sensitivity Analysis: Vc c/  
    n16,u$|  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| `<C)oF\~f  
    Type                      Value      Criterion        Change          Value      Criterion        Change H4Pj 3'  
    Fringe tolerance on surface 1 R:Z{,R+  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 }.MJVB3  
    Change in Focus                :      -0.000000                            0.000000 |cUlXg=  
    Fringe tolerance on surface 2 H?UmHww E  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 `'.u$IBW  
    Change in Focus                :       0.000000                            0.000000 g:O~1jq  
    Fringe tolerance on surface 3 9`QWqu[  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ~vBmW_j  
    Change in Focus                :      -0.000000                            0.000000 YD7i6A  
    Thickness tolerance on surface 1 -=5z&) X  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 8H3|^J  
    Change in Focus                :       0.000000                            0.000000 ZKPnvL70  
    Thickness tolerance on surface 2 B k#68p  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 3($%AGKJ  
    Change in Focus                :       0.000000                           -0.000000 W}.;]x%1B  
    Decenter X tolerance on surfaces 1 through 3 bgL`FW i3  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 z(K[i?&  
    Change in Focus                :       0.000000                            0.000000 IWsB$T  
    Decenter Y tolerance on surfaces 1 through 3 w\8grEj  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 E(>RmPP=7  
    Change in Focus                :       0.000000                            0.000000 ub0]nov  
    Tilt X tolerance on surfaces 1 through 3 (degrees) $kvF]|<bu  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 *5.s@L( VU  
    Change in Focus                :       0.000000                            0.000000 9bq#&~+  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) N-4LdC  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 2*F["E  
    Change in Focus                :       0.000000                            0.000000 <eI7xifD  
    Decenter X tolerance on surface 1 nW!rM($q  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 &ZClv"6  
    Change in Focus                :       0.000000                            0.000000 <Y9((QSM4  
    Decenter Y tolerance on surface 1 f[!N]*  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 %}x/ fq  
    Change in Focus                :       0.000000                            0.000000 wQlK[F]!>  
    Tilt X tolerance on surface (degrees) 1 7V%}U5  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ]?/[& PP,  
    Change in Focus                :       0.000000                            0.000000 #ZeZs31  
    Tilt Y tolerance on surface (degrees) 1 p p9Gzn C  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 &5)Kg%r  
    Change in Focus                :       0.000000                            0.000000 |wQ|h$|  
    Decenter X tolerance on surface 2 !2>gC"$nv  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ePP-&V"`"  
    Change in Focus                :       0.000000                            0.000000 VfAIx]Fa  
    Decenter Y tolerance on surface 2 n*{e0,gp`  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 <RKh%4#~  
    Change in Focus                :       0.000000                            0.000000 i/NY86A  
    Tilt X tolerance on surface (degrees) 2 +^1H tI|y  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 YFy5>*W  
    Change in Focus                :       0.000000                            0.000000 v%VCFJ  
    Tilt Y tolerance on surface (degrees) 2 GGo nA  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @G~T&6E!  
    Change in Focus                :       0.000000                            0.000000 \\Fl,'  
    Decenter X tolerance on surface 3 l5l:'EY>  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 (S&X??jfB5  
    Change in Focus                :       0.000000                            0.000000 ~^UQw? ;  
    Decenter Y tolerance on surface 3 ?r"m*fY%  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 6,ylk f3  
    Change in Focus                :       0.000000                            0.000000 %19TJn%J$  
    Tilt X tolerance on surface (degrees) 3 #(?EL@5  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 j$4Tot  
    Change in Focus                :       0.000000                            0.000000 +D& W!m  
    Tilt Y tolerance on surface (degrees) 3 Z6 E-FuO  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 #E3Y; b%v  
    Change in Focus                :       0.000000                            0.000000 `[0.G0i  
    Irregularity of surface 1 in fringes {()8 W r  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 C6Ap  4  
    Change in Focus                :       0.000000                            0.000000 Ps4spy0Fp  
    Irregularity of surface 2 in fringes #5-0R7\d7  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 !E'jd72O  
    Change in Focus                :       0.000000                            0.000000 u0^GB9q  
    Irregularity of surface 3 in fringes BXiuVx  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 X8~ cWW  
    Change in Focus                :       0.000000                            0.000000 '3 xvQFg  
    Index tolerance on surface 1 "i<i.6|  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 O{y2tz3  
    Change in Focus                :       0.000000                            0.000000 -4m UGh1dy  
    Index tolerance on surface 2 O~.A}  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 n9B1NM5 \  
    Change in Focus                :       0.000000                           -0.000000 D"oyl`q  
    fT!n*;h  
    Worst offenders: osB[KRT>("  
    Type                      Value      Criterion        Change M\BLuD  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Nc()$Nl8  
    TSTY   2             0.20000000     0.35349910    -0.19053324 iEux`CcJ.  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 $5z O=`  
    TSTX   2             0.20000000     0.35349910    -0.19053324 [RiCa  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 "<SK=W  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ^n"ve2   
    TSTX   1            -0.20000000     0.42678383    -0.11724851 `PnB<rf:*1  
    TSTX   1             0.20000000     0.42678383    -0.11724851 y&")7y/uE  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ZY-W~p1:G  
    TSTY   3             0.20000000     0.42861670    -0.11541563 i9[=x(-@  
    |_{-hNiz0  
    Estimated Performance Changes based upon Root-Sum-Square method: g!(j.xe  
    Nominal MTF                 :     0.54403234 |tC!`.^\  
    Estimated change            :    -0.36299231 BaIH7JLZ8  
    Estimated MTF               :     0.18104003 f' Dl*d  
    Ouc=4'$-  
    Compensator Statistics: ;>{B K,  
    Change in back focus: !run3ip`Z  
    Minimum            :        -0.000000 m7Nm!Z7  
    Maximum            :         0.000000 w&:"x@ -|  
    Mean               :        -0.000000 "yxIaTZu  
    Standard Deviation :         0.000000 N%'=el4L  
    Fr?o 4E6h  
    Monte Carlo Analysis: @{\q1J>  
    Number of trials: 20 cd)yj&:?Bt  
    6":=p:PT.  
    Initial Statistics: Normal Distribution );$_|]#  
    f8'D{OP"G  
      Trial       Criterion        Change 6;i]v|M-  
          1     0.42804416    -0.11598818 ;  6Js   
    Change in Focus                :      -0.400171 fFudoIC  
          2     0.54384387    -0.00018847 [vV]lWOp'  
    Change in Focus                :       1.018470 DfgqB3U[  
          3     0.44510003    -0.09893230 N|Mzj|i.  
    Change in Focus                :      -0.601922 =t\HtAXn[  
          4     0.18154684    -0.36248550 1nhC! jDD  
    Change in Focus                :       0.920681 p@!{Sh  
          5     0.28665820    -0.25737414 9IZ}}x  
    Change in Focus                :       1.253875 `O ?61YUQH  
          6     0.21263372    -0.33139862 Ytop=ZIl'  
    Change in Focus                :      -0.903878 : &>PN,q>  
          7     0.40051424    -0.14351809 3Z;`n,g  
    Change in Focus                :      -1.354815 7'uuc]\5>  
          8     0.48754161    -0.05649072 ]p~w`_3v  
    Change in Focus                :       0.215922 gTcLS|& H  
          9     0.40357468    -0.14045766 7KXc9:p+  
    Change in Focus                :       0.281783 a[bu{Z]%  
         10     0.26315315    -0.28087919 *U|K~dl]K  
    Change in Focus                :      -1.048393 ^cB83%<Z  
         11     0.26120585    -0.28282649 GawQ~rD  
    Change in Focus                :       1.017611 ('QfB<4H1  
         12     0.24033815    -0.30369419 W;en7v;#I}  
    Change in Focus                :      -0.109292 EUevR/S  
         13     0.37164046    -0.17239188 'M+iw:R__  
    Change in Focus                :      -0.692430 musZCg$  
         14     0.48597489    -0.05805744 RuSKJ,T:9  
    Change in Focus                :      -0.662040 pLi_)(#z_  
         15     0.21462327    -0.32940907 ?_*X\En*3  
    Change in Focus                :       1.611296 N# $ob 9  
         16     0.43378226    -0.11025008 C)66 ^l!x  
    Change in Focus                :      -0.640081 wxU@M1w}  
         17     0.39321881    -0.15081353 +Z99x#  
    Change in Focus                :       0.914906 #InuN8sI  
         18     0.20692530    -0.33710703 ]  }XsP  
    Change in Focus                :       0.801607 f*U3s N^y  
         19     0.51374068    -0.03029165  _dCdyf  
    Change in Focus                :       0.947293 1'ts>6b  
         20     0.38013374    -0.16389860 3BHPD;U  
    Change in Focus                :       0.667010 I~ Q2jg2  
    y}Ji( q~  
    Number of traceable Monte Carlo files generated: 20 ~~,] b  
    [xW;5j<87  
    Nominal     0.54403234 NH+?7rf8  
    Best        0.54384387    Trial     2 SbS*z:  
    Worst       0.18154684    Trial     4 ehe hTP  
    Mean        0.35770970 [H ^ ktF  
    Std Dev     0.11156454 i[,9hp  
    IL*Ghq{/  
    Itaq4^CE  
    Compensator Statistics: &GMBvmP  
    Change in back focus: ;nS.t_UW.  
    Minimum            :        -1.354815 3Wv -olv  
    Maximum            :         1.611296 vKrOIBP  
    Mean               :         0.161872 mk*r^k`a  
    Standard Deviation :         0.869664 NL`}rj  
    qaE>])  
    90% >       0.20977951               W&MZ5t,k=  
    80% >       0.22748071               j~DTvWg<Jl  
    50% >       0.38667627               *nZe|)m  
    20% >       0.46553746               ol^uM .k%_  
    10% >       0.50064115                B<^yT@Wc  
    Jkf%k3H3I*  
    End of Run. \0bao<  
    Z9S5rPHEL  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 oW[];r  
    7S^ba  
    l 1C'<+2j!  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 zoh%^8? o  
     al#BfcZW  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Z=KHsMnB  
    80% >       0.22748071                 `T#Jiq E  
    50% >       0.38667627                 TWU[/ >K  
    20% >       0.46553746                 " J4?Sb<  
    10% >       0.50064115 g6D7Y<}d  
    &m PR[{  
    最后这个数值是MTF值呢,还是MTF的公差?  gl$}t H  
    ?S8_x]E  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   \Bvy~UeE)>  
    eV5 e:9  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : <,+6:NmT  
    90% >       0.20977951                 FZ@8&T   
    80% >       0.22748071                 wrEYbb  
    50% >       0.38667627                 |>Wi5h{6X  
    20% >       0.46553746                 ;_D5]kl`  
    10% >       0.50064115 12S[m~L%  
    ....... VK/i5yT5N  
    -z?O^:e#x  
    U\`yLsKvH`  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Rss=ihlM  
    Mode                : Sensitivities  i'NN  
    Sampling            : 2 d$*SVd:  
    Nominal Criterion   : 0.54403234 zP;1mN  
    Test Wavelength     : 0.6328 Wg C*bp{  
    n+;PfQ|  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? !kg)84C[  
    >`'>,n |  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试