切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15223阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ?WtG|w  
    ^ O Xr: P  
    P| P fG=  
    $0 S#d@v}  
    然后添加了默认公差分析,基本没变 .P :f  
    _.*4Y  
    m<,G:?RM  
    /0&:Yp=>  
    然后运行分析的结果如下: 5QFXj)hR+4  
    Dw/Gha/  
    Analysis of Tolerances \g:qQ*.  
    w$[Ds  
    File : E:\光学设计资料\zemax练习\f500.ZMX `NWgETf^#  
    Title: +;wqX]SD&  
    Date : TUE JUN 21 2011 ^r$iN %&~  
    9eN2)a/  
    Units are Millimeters. SAE '?_  
    All changes are computed using linear differences. s.I1L?s1w?  
    ,{ L;B  
    Paraxial Focus compensation only. FDd>(!>  
    G9y12HV  
    WARNING: Solves should be removed prior to tolerancing. L8w76|  
    ]1|Ql*6y,  
    Mnemonics: .m]=JC5'  
    TFRN: Tolerance on curvature in fringes. P2Qyz}!wo  
    TTHI: Tolerance on thickness. Ril21o! j  
    TSDX: Tolerance on surface decentering in x. V3A>Ag+^~  
    TSDY: Tolerance on surface decentering in y. &c<}++'h  
    TSTX: Tolerance on surface tilt in x (degrees). zhX`~){N6  
    TSTY: Tolerance on surface tilt in y (degrees). o=RqegL  
    TIRR: Tolerance on irregularity (fringes). 4>"cc@8&~  
    TIND: Tolerance on Nd index of refraction. bu"68A;>  
    TEDX: Tolerance on element decentering in x. O *J_+6  
    TEDY: Tolerance on element decentering in y. 'f?&EsIV?  
    TETX: Tolerance on element tilt in x (degrees). ~Ri u*<  
    TETY: Tolerance on element tilt in y (degrees). ADv"_bB:h  
    w^'?4M!  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. [ 4Y `O  
    97]a-)SA  
    WARNING: Boundary constraints on compensators will be ignored. C/CfjRzd  
    BvZ^^IUb  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm @X|i@{<';  
    Mode                : Sensitivities u_6BHsU  
    Sampling            : 2 !,6v=n[Nz  
    Nominal Criterion   : 0.54403234 v<7Gln  
    Test Wavelength     : 0.6328 R0hc tT1j  
    -Nlf~X  
    >\?z37 :T  
    Fields: XY Symmetric Angle in degrees H ?`)[#  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY wSJ]3gJM`  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 |:(23O  
    NHFEr  
    Sensitivity Analysis: CEX}`I*-  
    JwI`"$ > w  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 7Js>!KR  
    Type                      Value      Criterion        Change          Value      Criterion        Change 7dlKdKH  
    Fringe tolerance on surface 1 8R)D! 7[l  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 `z?KL(rI  
    Change in Focus                :      -0.000000                            0.000000 RhV:Z3f`6  
    Fringe tolerance on surface 2 $p0 /6c  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 L*UV  
    Change in Focus                :       0.000000                            0.000000 U7]<U-.&  
    Fringe tolerance on surface 3 1(%>`=R8  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 oxMUW<gYd  
    Change in Focus                :      -0.000000                            0.000000 !O F?xW  
    Thickness tolerance on surface 1 U50s!Z t45  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 `s>UU- 9  
    Change in Focus                :       0.000000                            0.000000 ib(>vp$V  
    Thickness tolerance on surface 2 C?w <$DU  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 OBI+<2`Oc  
    Change in Focus                :       0.000000                           -0.000000 ] ;pf  
    Decenter X tolerance on surfaces 1 through 3  %K%^ ]{  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 J+}+ "h~.  
    Change in Focus                :       0.000000                            0.000000 FI1THzW4J  
    Decenter Y tolerance on surfaces 1 through 3 3qAwBVWa  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 tIGVB+g{F  
    Change in Focus                :       0.000000                            0.000000 @q> ktE_  
    Tilt X tolerance on surfaces 1 through 3 (degrees) SLJ&{`"7  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 pwFU2}I  
    Change in Focus                :       0.000000                            0.000000 2/yXY_L  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) q:Y6fbt<7  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 VDByj "%  
    Change in Focus                :       0.000000                            0.000000 d)04;[=  
    Decenter X tolerance on surface 1 *%T)\\H2  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 T|o`a+?  
    Change in Focus                :       0.000000                            0.000000 \);.0  
    Decenter Y tolerance on surface 1 861i3OXVE>  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $5TepH0D  
    Change in Focus                :       0.000000                            0.000000 mVv\bl?<  
    Tilt X tolerance on surface (degrees) 1 p~Hvl3SxR  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Q;$ 9qOF  
    Change in Focus                :       0.000000                            0.000000 a>wfhmr  
    Tilt Y tolerance on surface (degrees) 1 zU f>db  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 gEr4zae  
    Change in Focus                :       0.000000                            0.000000 c Ndw9?Z  
    Decenter X tolerance on surface 2 a -xW8  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 dSOlD/c  
    Change in Focus                :       0.000000                            0.000000 E /fw?7eQ  
    Decenter Y tolerance on surface 2 ]ZzoJ7lr  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ^Yj"RM$;N  
    Change in Focus                :       0.000000                            0.000000 zVM4BT(  
    Tilt X tolerance on surface (degrees) 2 "wA0 LH_  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ,c4c@|Bh?  
    Change in Focus                :       0.000000                            0.000000 *:=];1 O  
    Tilt Y tolerance on surface (degrees) 2 Xw7{R  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 uP{; *E3?  
    Change in Focus                :       0.000000                            0.000000 .M DYGWKt  
    Decenter X tolerance on surface 3 yWj9EHQU[  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 )\{'fF  
    Change in Focus                :       0.000000                            0.000000 -"W)|oC_  
    Decenter Y tolerance on surface 3 g3|BE2?  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 #*!+b  
    Change in Focus                :       0.000000                            0.000000 1<xcMn0et  
    Tilt X tolerance on surface (degrees) 3 j~M#Ss-H8  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Gs[Vu@*  
    Change in Focus                :       0.000000                            0.000000 :{[<g](  
    Tilt Y tolerance on surface (degrees) 3 Dn~Z SrJ  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 >f&xJq  
    Change in Focus                :       0.000000                            0.000000 jja{*PZ6H  
    Irregularity of surface 1 in fringes ZlthYuJ  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 eY J{LPo  
    Change in Focus                :       0.000000                            0.000000 IE&_!ce  
    Irregularity of surface 2 in fringes DdBxqkh  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 PC*m% ?+  
    Change in Focus                :       0.000000                            0.000000 ~O \}/I28  
    Irregularity of surface 3 in fringes 2q)T y9  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 hP?7zz$*j  
    Change in Focus                :       0.000000                            0.000000 !G7h9CF|{  
    Index tolerance on surface 1 LO"_NeuL  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 }l~]b3@qu  
    Change in Focus                :       0.000000                            0.000000 l`SK*Bm~<  
    Index tolerance on surface 2 Tdg6kkJ  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 E@:Q 'g%  
    Change in Focus                :       0.000000                           -0.000000 S[v Rw]*  
    M]c7D`%s  
    Worst offenders: Z.!g9fi8>  
    Type                      Value      Criterion        Change m7JPH7P@BM  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 *5 e<\{!  
    TSTY   2             0.20000000     0.35349910    -0.19053324 GGH;Z WSe  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 -  $%jb2  
    TSTX   2             0.20000000     0.35349910    -0.19053324 SU/G)&Mi  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 t)LU\!  
    TSTY   1             0.20000000     0.42678383    -0.11724851 sF y]+DB  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 DL,[k (  
    TSTX   1             0.20000000     0.42678383    -0.11724851 cn$5:%IK  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 Zb]/nP1P  
    TSTY   3             0.20000000     0.42861670    -0.11541563 'f 3HKn<L  
    djUihcqA`  
    Estimated Performance Changes based upon Root-Sum-Square method: GE@uO J6H  
    Nominal MTF                 :     0.54403234 9qEOgJ  
    Estimated change            :    -0.36299231 v{o? #Sk1  
    Estimated MTF               :     0.18104003 D-6  
    oew|23Ytb  
    Compensator Statistics: D}MoNE[r  
    Change in back focus: <KtBv Ip]  
    Minimum            :        -0.000000 h6g:(3t6m  
    Maximum            :         0.000000 6#E7!-u(-  
    Mean               :        -0.000000 ;d4 y{  
    Standard Deviation :         0.000000 zhX;6= X2  
    wS V@=)H\:  
    Monte Carlo Analysis: i-b1d'?Rb  
    Number of trials: 20 zO%w_7 w  
    gV|Y54}T  
    Initial Statistics: Normal Distribution >5.zk1&H  
    GMBJjP&R]  
      Trial       Criterion        Change PB+\jj  
          1     0.42804416    -0.11598818 >PIPp7C  
    Change in Focus                :      -0.400171 Xtkw Z3  
          2     0.54384387    -0.00018847 u#FXW_-TK  
    Change in Focus                :       1.018470 k {a)gFH O  
          3     0.44510003    -0.09893230 ilv_D~|  
    Change in Focus                :      -0.601922 ;u,rtEMy;  
          4     0.18154684    -0.36248550 G]-%AO{K  
    Change in Focus                :       0.920681 MI\]IQU  
          5     0.28665820    -0.25737414 `gI~|A4  
    Change in Focus                :       1.253875 9\AS@SH{^T  
          6     0.21263372    -0.33139862 (xL :;  
    Change in Focus                :      -0.903878 Oxv+1Ub<Dv  
          7     0.40051424    -0.14351809 S 6GMUaR  
    Change in Focus                :      -1.354815 2SciB*5  
          8     0.48754161    -0.05649072 J?IC~5*2  
    Change in Focus                :       0.215922 VD/&%O8n  
          9     0.40357468    -0.14045766 r{S=Z~J  
    Change in Focus                :       0.281783 |<rfvsQ.  
         10     0.26315315    -0.28087919 B7!;]'&d  
    Change in Focus                :      -1.048393 \-OC|\{32  
         11     0.26120585    -0.28282649 &\k?xN  
    Change in Focus                :       1.017611 V\AK6U@r^  
         12     0.24033815    -0.30369419 >! oF0R_<  
    Change in Focus                :      -0.109292 l<xFnj  
         13     0.37164046    -0.17239188 $@2"{9Z  
    Change in Focus                :      -0.692430 vL$|9|W(  
         14     0.48597489    -0.05805744 !!WJn}  
    Change in Focus                :      -0.662040 ra:GzkIw  
         15     0.21462327    -0.32940907 )|RZa|`-G  
    Change in Focus                :       1.611296 -L8Y J8J6  
         16     0.43378226    -0.11025008 c|lU(Tf  
    Change in Focus                :      -0.640081 `VZZ^K9zR  
         17     0.39321881    -0.15081353 VhvTBo<cw  
    Change in Focus                :       0.914906 dF e4K"  
         18     0.20692530    -0.33710703 ,eXFN?CB  
    Change in Focus                :       0.801607 C2G  |?=  
         19     0.51374068    -0.03029165 4%7s259%  
    Change in Focus                :       0.947293 +9zA^0   
         20     0.38013374    -0.16389860 G#0,CLGN^  
    Change in Focus                :       0.667010 pds*2p)2  
     eu9w|g  
    Number of traceable Monte Carlo files generated: 20 6e# wR/  
    r?^"6 5 =  
    Nominal     0.54403234 y9!:^kDI  
    Best        0.54384387    Trial     2 f=m/ -mAA  
    Worst       0.18154684    Trial     4 9|=nV|R'6  
    Mean        0.35770970 {y6C0A*  
    Std Dev     0.11156454 U:n*<l-k}  
    h<Wg3o  
    v459},!P  
    Compensator Statistics: k 4B_W  
    Change in back focus: KO&:06V{  
    Minimum            :        -1.354815 -~O/NX  
    Maximum            :         1.611296 W-XpJ\_  
    Mean               :         0.161872 oLS7`+b$  
    Standard Deviation :         0.869664 !M(:U,?B  
    r6t&E%b  
    90% >       0.20977951               7Z0/(V.-  
    80% >       0.22748071               SF< [FM%1  
    50% >       0.38667627               $XGtS$  
    20% >       0.46553746               3dG4pl~  
    10% >       0.50064115                S}cF0B1E*  
    e$|VG* d  
    End of Run. ,I`_F,  
    .zS D`v@[  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 |I^y0Q:K  
    Spgg+;9  
    e4[) WNR  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 4RQ5(YTTuR  
    o56kp3b)b  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Jqru AW<  
    80% >       0.22748071                 p5<2N  
    50% >       0.38667627                 ;&,.TC?l  
    20% >       0.46553746                 m:{tgcE  
    10% >       0.50064115 gj+3y9  
    B*,?C]0{  
    最后这个数值是MTF值呢,还是MTF的公差? c_1/W{  
    Zq*eX\#C  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   / L~u0 2?  
    |(ocDmd  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : agsISu(  
    90% >       0.20977951                 B\_[R'Pf&  
    80% >       0.22748071                 >XE`h 9  
    50% >       0.38667627                 3g'+0tEl  
    20% >       0.46553746                 lrys3  
    10% >       0.50064115 U e*$&VlT  
    ....... C\Ayv)S #2  
    Hj~O49%j&  
    lbkL yp2  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   M#M?1(O/NE  
    Mode                : Sensitivities gX*K&*q   
    Sampling            : 2  _^T}_  
    Nominal Criterion   : 0.54403234 }O*WV1  
    Test Wavelength     : 0.6328 Efr&12YSS  
    #&siHHs \  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? V2Y$yV8g1  
    Uu5C%9^s  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试