切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16114阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 [eOv fD  
    ITn PF{N  
    j!%^6Io4  
    IFS_DW  
    然后添加了默认公差分析,基本没变 y5O &9Ckw  
    W\w#}kY  
    f.66N9BHL,  
    }P{Wk7#Jq  
    然后运行分析的结果如下: Su? cC/  
    >nih:5J,ja  
    Analysis of Tolerances XQfmD;U  
    <;~u@^>  
    File : E:\光学设计资料\zemax练习\f500.ZMX to,\n"$~!  
    Title: LGW_7&0<<  
    Date : TUE JUN 21 2011 Q@NFfJJ  
    o59$v X,  
    Units are Millimeters. `JPkho  
    All changes are computed using linear differences. V?wV*]c  
    1^= QIX  
    Paraxial Focus compensation only. f38e(Q];m  
    d(ypFd9z  
    WARNING: Solves should be removed prior to tolerancing. 3/Z>W|w#w  
    +`{OOp=  
    Mnemonics: a@q c?  
    TFRN: Tolerance on curvature in fringes. 2u!&Te(!9  
    TTHI: Tolerance on thickness. v0E6i!D/  
    TSDX: Tolerance on surface decentering in x. DC-d@N+  
    TSDY: Tolerance on surface decentering in y. #C?M-  
    TSTX: Tolerance on surface tilt in x (degrees). 66" 6>  
    TSTY: Tolerance on surface tilt in y (degrees). $8HiX6r  
    TIRR: Tolerance on irregularity (fringes). %Pt){9b  
    TIND: Tolerance on Nd index of refraction. SUUN_w~  
    TEDX: Tolerance on element decentering in x. 9:VUtx#}2  
    TEDY: Tolerance on element decentering in y. 650qG$  
    TETX: Tolerance on element tilt in x (degrees). kC 6*An_f  
    TETY: Tolerance on element tilt in y (degrees). 2xX:Q'\2  
    kV5)3%?  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. "2sk1  
    Q1?*+]  
    WARNING: Boundary constraints on compensators will be ignored. 9jEH"`qqk  
    rZaO^}u]  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm p WJ EFm  
    Mode                : Sensitivities M~|7gK.m1  
    Sampling            : 2 @v#P u_  
    Nominal Criterion   : 0.54403234 H;=Fq+  
    Test Wavelength     : 0.6328 3)\fZYu)  
    NId.TaXh  
    E BBd  
    Fields: XY Symmetric Angle in degrees 0.n[_?<(  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY G--X)h-  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 mOn_#2=KF  
    *pS 7,Hm  
    Sensitivity Analysis: \'*M }G  
    VK1B}5/  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| TSsZzsdr2  
    Type                      Value      Criterion        Change          Value      Criterion        Change _"yA1D0d_  
    Fringe tolerance on surface 1 fTvm2+.nX  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 'EAskA] *  
    Change in Focus                :      -0.000000                            0.000000 Im/tU6ybV  
    Fringe tolerance on surface 2 A&~fw^HM  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 er)I".|  
    Change in Focus                :       0.000000                            0.000000 =huV(THU  
    Fringe tolerance on surface 3 +W*~=*h|  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 `;;l {8  
    Change in Focus                :      -0.000000                            0.000000 P%(9`A  
    Thickness tolerance on surface 1 }>0>OqvF  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 SNH 3C1  
    Change in Focus                :       0.000000                            0.000000 R54[U  
    Thickness tolerance on surface 2 vb6EO[e% I  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ~!r;?38V`  
    Change in Focus                :       0.000000                           -0.000000 #T^2=7 w  
    Decenter X tolerance on surfaces 1 through 3 t n5  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 gaY&2  
    Change in Focus                :       0.000000                            0.000000 M }d:B)cz  
    Decenter Y tolerance on surfaces 1 through 3 71c[ `h*0{  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 qEST[S V  
    Change in Focus                :       0.000000                            0.000000 eNAxVF0  
    Tilt X tolerance on surfaces 1 through 3 (degrees) L4g%o9G  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 CPP~,E_  
    Change in Focus                :       0.000000                            0.000000 0^-1d2Z~  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) chE!,gik  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Kg$RT?q-C6  
    Change in Focus                :       0.000000                            0.000000 =L" 0]4K  
    Decenter X tolerance on surface 1 p1Zb&:+  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 S v>6:y9?G  
    Change in Focus                :       0.000000                            0.000000 P6 OnE18n  
    Decenter Y tolerance on surface 1 U@mznf* J  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 x 6`!  
    Change in Focus                :       0.000000                            0.000000 2L^)k?9>g+  
    Tilt X tolerance on surface (degrees) 1 yS\&2"o  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 XZM3zlg*  
    Change in Focus                :       0.000000                            0.000000 FI$:R  
    Tilt Y tolerance on surface (degrees) 1 ;Y`Y1  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 tUJRNEg  
    Change in Focus                :       0.000000                            0.000000 }#O!GG{  
    Decenter X tolerance on surface 2 Y$r78h=4  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Z nc(Q  
    Change in Focus                :       0.000000                            0.000000 {q?&h'#y  
    Decenter Y tolerance on surface 2 Yv;s3>r  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 1q;v|F  
    Change in Focus                :       0.000000                            0.000000 G:=hg6 '  
    Tilt X tolerance on surface (degrees) 2 `@h|+`h  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 85GIEUvH/  
    Change in Focus                :       0.000000                            0.000000 )?*YrWO{  
    Tilt Y tolerance on surface (degrees) 2 n~*".ZC'Y  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 <=q} Nd\  
    Change in Focus                :       0.000000                            0.000000 B )r-,M  
    Decenter X tolerance on surface 3 }~XWtWbd-  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 z*eBjHbF  
    Change in Focus                :       0.000000                            0.000000 Cl}nP UoL  
    Decenter Y tolerance on surface 3 f&^(f1WO  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 5yy:JTAH5  
    Change in Focus                :       0.000000                            0.000000 i<m(neX[H  
    Tilt X tolerance on surface (degrees) 3 k&]nF,f  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 jhNFaBrS  
    Change in Focus                :       0.000000                            0.000000 JbMTULA  
    Tilt Y tolerance on surface (degrees) 3 e`D}[G#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 hArY$T&MB  
    Change in Focus                :       0.000000                            0.000000 %iN>4;T8  
    Irregularity of surface 1 in fringes W7i|uTM  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634  }vd*eexA  
    Change in Focus                :       0.000000                            0.000000 g7*)|FOb  
    Irregularity of surface 2 in fringes aLJm%uW6m&  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 x *eU~e_jP  
    Change in Focus                :       0.000000                            0.000000 7;"0:eX  
    Irregularity of surface 3 in fringes u/zBz*zh  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 /U~|B.z@6  
    Change in Focus                :       0.000000                            0.000000 |cPHl+$nh.  
    Index tolerance on surface 1 ~&?bU]F  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 *v>ZE6CL  
    Change in Focus                :       0.000000                            0.000000 ,5}U H  
    Index tolerance on surface 2 '$K E= Jy  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 =!O->C:  
    Change in Focus                :       0.000000                           -0.000000 eU?hin@X  
    ^:eZpQ [,  
    Worst offenders: Jg6Lr~!i  
    Type                      Value      Criterion        Change l4Xz r:]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 =l ,P'E  
    TSTY   2             0.20000000     0.35349910    -0.19053324 Mqf Ns<2  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 $B+| &]a  
    TSTX   2             0.20000000     0.35349910    -0.19053324 &NE e-cb[  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 XpIiJry!6  
    TSTY   1             0.20000000     0.42678383    -0.11724851 &SY!qTxF  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 D6sw"V#  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ?Ec9rM\ze  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 N%y i4  
    TSTY   3             0.20000000     0.42861670    -0.11541563 U@lc 1#  
    ie}O ZM  
    Estimated Performance Changes based upon Root-Sum-Square method: gV_/t+jI  
    Nominal MTF                 :     0.54403234 9(CvGzco <  
    Estimated change            :    -0.36299231 kIrrbD  
    Estimated MTF               :     0.18104003 g*| j+<:7  
    [m t.2.  
    Compensator Statistics: s[1ao"sZ^  
    Change in back focus: m7 =$*1k  
    Minimum            :        -0.000000 iTVe8eI  
    Maximum            :         0.000000 iHK~?qd}  
    Mean               :        -0.000000 Nkdv'e\  
    Standard Deviation :         0.000000 CT|+?  
    30Q p^)K  
    Monte Carlo Analysis: !Brtao"m  
    Number of trials: 20 =P- &dN  
    bf3!|Um  
    Initial Statistics: Normal Distribution (JhX:1  
    ~}/Dl#9R!  
      Trial       Criterion        Change Pf?kNJ*Tv)  
          1     0.42804416    -0.11598818 =BsV`p7rU  
    Change in Focus                :      -0.400171 CI|lJ  
          2     0.54384387    -0.00018847 +8=$-E=  
    Change in Focus                :       1.018470 p|4qkJK8  
          3     0.44510003    -0.09893230 "q4tvcK.  
    Change in Focus                :      -0.601922 %B3~t>  
          4     0.18154684    -0.36248550 85{m+1O~  
    Change in Focus                :       0.920681 G4&s_ M$  
          5     0.28665820    -0.25737414 T X`X5j  
    Change in Focus                :       1.253875 snV*gSUH  
          6     0.21263372    -0.33139862 e5 =d Ev  
    Change in Focus                :      -0.903878 8OfQ :   
          7     0.40051424    -0.14351809 e5h*GKF  
    Change in Focus                :      -1.354815 ]' mbHkn68  
          8     0.48754161    -0.05649072 Otn,UoeeB  
    Change in Focus                :       0.215922  s>rR\`  
          9     0.40357468    -0.14045766 LzygupxY!  
    Change in Focus                :       0.281783 lG*Rw-?a  
         10     0.26315315    -0.28087919 &[.5@sv  
    Change in Focus                :      -1.048393 gU9{~-9}  
         11     0.26120585    -0.28282649 l/$GF|`U  
    Change in Focus                :       1.017611 z*Sm5i&)_q  
         12     0.24033815    -0.30369419 gjF5~ `  
    Change in Focus                :      -0.109292 sE9FT#iE  
         13     0.37164046    -0.17239188 XGlt^<`  
    Change in Focus                :      -0.692430 eh# 37*-  
         14     0.48597489    -0.05805744 N,ht<l\  
    Change in Focus                :      -0.662040 l}{{7~C`  
         15     0.21462327    -0.32940907 We+rFk1ddt  
    Change in Focus                :       1.611296 ~iw&^p|=K  
         16     0.43378226    -0.11025008 h@)U,&  
    Change in Focus                :      -0.640081 -"(*'hD  
         17     0.39321881    -0.15081353 xQ?>72grP  
    Change in Focus                :       0.914906 [)H 6`w  
         18     0.20692530    -0.33710703 Z1Qz LvWs  
    Change in Focus                :       0.801607 ^<]'?4m]  
         19     0.51374068    -0.03029165 e r" w{  
    Change in Focus                :       0.947293 (su,= Z  
         20     0.38013374    -0.16389860 y48]|%73  
    Change in Focus                :       0.667010 Nk~}aj  
    J5@08 bZm  
    Number of traceable Monte Carlo files generated: 20 owVvbC2<b(  
    \j)Evjw  
    Nominal     0.54403234 J )1   
    Best        0.54384387    Trial     2 vwR_2u  
    Worst       0.18154684    Trial     4 >WLPE6E  
    Mean        0.35770970 ?z ,!iK`  
    Std Dev     0.11156454 _sjS'*]  
    !U`&a=k  
    {f*Y}/@  
    Compensator Statistics: AZ:7_4jz  
    Change in back focus: F<4rn  
    Minimum            :        -1.354815 I-v} DuM  
    Maximum            :         1.611296  ` Xc7b  
    Mean               :         0.161872 :XKYfc_y  
    Standard Deviation :         0.869664 5f0M{J,KC  
    :]"5UY?oF  
    90% >       0.20977951               /iW+<@Mas  
    80% >       0.22748071               J?4{#p  
    50% >       0.38667627               C|{Sj`,XG  
    20% >       0.46553746               Y#U.9>h  
    10% >       0.50064115                Q G) s  
    N#w5}It  
    End of Run. "tCI_ Zi;  
    t Zxx#v`  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 5C w( 4.  
    verI~M$v{  
    +/OSg.  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 z%&FLdXgW+  
    ~$!,-r  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 2 BY|Cp4R  
    80% >       0.22748071                 (>`_N%_  
    50% >       0.38667627                 lL}6IZ5sb  
    20% >       0.46553746                 ]4rmQAS7"  
    10% >       0.50064115 as07~Xvp-  
    $W._FAAJ#  
    最后这个数值是MTF值呢,还是MTF的公差? Rtf<UhUn  
    q/U-WQ<+  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   +\dVC,,=^g  
    lp*5;Ls'q  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : :M6|V_Yp  
    90% >       0.20977951                 TT/=0^"  
    80% >       0.22748071                 7$7|~k  
    50% >       0.38667627                 28JVW3&)  
    20% >       0.46553746                 9#H0|zL  
    10% >       0.50064115 H:b"Vd"x9  
    ....... yXkQ ,y  
    (,"%fc7<i  
    xK8m\=#  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   `B?+1Gv  
    Mode                : Sensitivities EQnU:a  
    Sampling            : 2 EAY+#>L*  
    Nominal Criterion   : 0.54403234 oe6Ex5h  
    Test Wavelength     : 0.6328 ;E}&{w/My  
    n2aUj(Zs=  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? >yyu:dk-;  
    KW0KXO06a  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试