切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16309阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 el<Gd.p.d  
    gLSI?  
    d$ o m\@  
    3<.DiY  
    然后添加了默认公差分析,基本没变 Q(x=;wf5r  
    n[y=DdiKGS  
    }JOz,SQHP  
    L$a{%]I  
    然后运行分析的结果如下: ~YNzSkz  
    Z}zka<y6K6  
    Analysis of Tolerances Dd0yQgCu  
    9'Z{uHi%  
    File : E:\光学设计资料\zemax练习\f500.ZMX wqm{f~nj=  
    Title: ph)=:*A6&  
    Date : TUE JUN 21 2011 kL s{B  
    `r&Ui%fk;0  
    Units are Millimeters. fFC9:9<  
    All changes are computed using linear differences. BGfwgI.m  
    qDg`4yX.}  
    Paraxial Focus compensation only. .rg "(I  
    +R$;LtR  
    WARNING: Solves should be removed prior to tolerancing. ^4JK4+!Zfq  
    rx]Q,;"  
    Mnemonics: =|O]X|y-lZ  
    TFRN: Tolerance on curvature in fringes. )jwovS?V  
    TTHI: Tolerance on thickness. #WUN=u   
    TSDX: Tolerance on surface decentering in x. L kafB2y  
    TSDY: Tolerance on surface decentering in y. $0{ h Uex  
    TSTX: Tolerance on surface tilt in x (degrees). p? +!*BZ  
    TSTY: Tolerance on surface tilt in y (degrees). Ac*)z#H  
    TIRR: Tolerance on irregularity (fringes). J#w=Z>oz<  
    TIND: Tolerance on Nd index of refraction. j^Qk\(^#IV  
    TEDX: Tolerance on element decentering in x. <b4} B   
    TEDY: Tolerance on element decentering in y. C<QpUJ`k  
    TETX: Tolerance on element tilt in x (degrees). %;_EWs/z8  
    TETY: Tolerance on element tilt in y (degrees). O d6'bO;G  
    3 ?gfDJfE  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. -'oxenu  
    4 y.' O  
    WARNING: Boundary constraints on compensators will be ignored. )g&nI <Mh  
    [$>@f{:  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Pr1OQbg]8  
    Mode                : Sensitivities p&xj7qwp@F  
    Sampling            : 2 :hB6-CZkqN  
    Nominal Criterion   : 0.54403234 1_xkGc-z<  
    Test Wavelength     : 0.6328 7k#>$sY+  
    :1UOT'_  
    Q[!?SSX%  
    Fields: XY Symmetric Angle in degrees cy8r}wD  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 0ikA@SAq  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 MD 0d  
    bLg gh]Fh  
    Sensitivity Analysis: ~T._ v;IT  
    sV%=z}n=  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| A|mE3q=  
    Type                      Value      Criterion        Change          Value      Criterion        Change djdSD  
    Fringe tolerance on surface 1 pP\^bjI   
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 1?TgI0HS  
    Change in Focus                :      -0.000000                            0.000000 mCI5^%*0jQ  
    Fringe tolerance on surface 2 NP.qh1{NP  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 .(Z^}  
    Change in Focus                :       0.000000                            0.000000 tsB}'+!v#  
    Fringe tolerance on surface 3 je:J`4k$  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 !*wd d8   
    Change in Focus                :      -0.000000                            0.000000 +,ld;NM{  
    Thickness tolerance on surface 1 :h0!giqoQ  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 I$TD[W  
    Change in Focus                :       0.000000                            0.000000 6il+hz2&lH  
    Thickness tolerance on surface 2 v49 i.c9  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Me+)2S 9  
    Change in Focus                :       0.000000                           -0.000000 .D=#HEshk  
    Decenter X tolerance on surfaces 1 through 3 ~ayU\4B  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 {!4ZRNy(k  
    Change in Focus                :       0.000000                            0.000000 naY#`xig  
    Decenter Y tolerance on surfaces 1 through 3 X-"0Zc  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 :' !_PN  
    Change in Focus                :       0.000000                            0.000000 LKud'  
    Tilt X tolerance on surfaces 1 through 3 (degrees) >u `Ci>tY  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 rG B*a8  
    Change in Focus                :       0.000000                            0.000000 Ys5I qj=mp  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) |z)7XK  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 SwH#=hg  
    Change in Focus                :       0.000000                            0.000000 T!pHT'J  
    Decenter X tolerance on surface 1 kgX"I ?>d  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :r_/mzR#  
    Change in Focus                :       0.000000                            0.000000 [}l 1`>  
    Decenter Y tolerance on surface 1 taSYR$VJ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 w 3L+7V,!  
    Change in Focus                :       0.000000                            0.000000 /jU4mPb;\D  
    Tilt X tolerance on surface (degrees) 1 f*[Uq0?  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ehX4[j6  
    Change in Focus                :       0.000000                            0.000000  ZN;fDv  
    Tilt Y tolerance on surface (degrees) 1 oFu( J  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 Fz$^CMw5K  
    Change in Focus                :       0.000000                            0.000000 |y]8gL^  
    Decenter X tolerance on surface 2 `7 J4h9K  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 x1`Jlzrp,  
    Change in Focus                :       0.000000                            0.000000 V#PT.,Xa.  
    Decenter Y tolerance on surface 2 aFy'6c}  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 .18MMzdN  
    Change in Focus                :       0.000000                            0.000000 $I3}% '`+  
    Tilt X tolerance on surface (degrees) 2 {<Vw55)#0Q  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 6)3pnhG9  
    Change in Focus                :       0.000000                            0.000000 qEPC]es|T  
    Tilt Y tolerance on surface (degrees) 2 `9VRT`e  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Oyjhc<6  
    Change in Focus                :       0.000000                            0.000000 z0tm3ovp  
    Decenter X tolerance on surface 3 Y#Pg*C8>8  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 flU?6\_UC  
    Change in Focus                :       0.000000                            0.000000 ;U<rFs40  
    Decenter Y tolerance on surface 3 1&YkRCn0  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ca$K)=cDW  
    Change in Focus                :       0.000000                            0.000000 )>^!X$`3  
    Tilt X tolerance on surface (degrees) 3 D +9l$**a  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 3gba~}c)  
    Change in Focus                :       0.000000                            0.000000 H*EN199  
    Tilt Y tolerance on surface (degrees) 3 ~0gHh  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 <#:ey^q<  
    Change in Focus                :       0.000000                            0.000000 >o!~T}J7  
    Irregularity of surface 1 in fringes vF$sVu|B  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 6t`cY  
    Change in Focus                :       0.000000                            0.000000 hdH}4W  
    Irregularity of surface 2 in fringes H}}C>p"!,  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 A]s|"Pav,  
    Change in Focus                :       0.000000                            0.000000 WQYw@M~4Q!  
    Irregularity of surface 3 in fringes m2PI^?|e  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 N/N~>7f  
    Change in Focus                :       0.000000                            0.000000 4#w Z#}  
    Index tolerance on surface 1  i(n BXV{  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 @7,k0H9Moa  
    Change in Focus                :       0.000000                            0.000000 MJI`1*(  
    Index tolerance on surface 2 .OSFLY#[?  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Z {*<G x  
    Change in Focus                :       0.000000                           -0.000000 7F wo t&  
    6^"Spf]  
    Worst offenders: xIa8Ac  
    Type                      Value      Criterion        Change OOj }CZ6  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Dt*/tVF  
    TSTY   2             0.20000000     0.35349910    -0.19053324 I=9sTR)  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 QNgfvy  
    TSTX   2             0.20000000     0.35349910    -0.19053324 5TS&NefM  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 xr1,D5  
    TSTY   1             0.20000000     0.42678383    -0.11724851 v,A8Mk2s#  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 E4N{;'  
    TSTX   1             0.20000000     0.42678383    -0.11724851 'P3jUc)  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 y` 6!Vj l  
    TSTY   3             0.20000000     0.42861670    -0.11541563 [$%O-_x  
    Q}:#H z?U  
    Estimated Performance Changes based upon Root-Sum-Square method: {Z(kzJwN  
    Nominal MTF                 :     0.54403234 'o]8UD(  
    Estimated change            :    -0.36299231 !juh}q&}|  
    Estimated MTF               :     0.18104003 |t uh/e@dx  
    QL`Hb p  
    Compensator Statistics: )V?:qCuY>  
    Change in back focus: L/2,r*LNx$  
    Minimum            :        -0.000000 qv.s-@l8  
    Maximum            :         0.000000 Ni-@El99  
    Mean               :        -0.000000 %oHK=],|1  
    Standard Deviation :         0.000000 :"I!$_E'  
    U/9_:  
    Monte Carlo Analysis: Q?]-/v  
    Number of trials: 20 J>p6')Y6~  
    S<UWv@`U"  
    Initial Statistics: Normal Distribution 7FGi+  
    :SvgXMY@  
      Trial       Criterion        Change HGlQZwf  
          1     0.42804416    -0.11598818 B'8/`0^n5  
    Change in Focus                :      -0.400171 jPa"|9A  
          2     0.54384387    -0.00018847 &Na,D7A:3I  
    Change in Focus                :       1.018470 1 paLxR5  
          3     0.44510003    -0.09893230 aGq1 YOD[$  
    Change in Focus                :      -0.601922 :.aMhyh#*  
          4     0.18154684    -0.36248550 ="J *v>  
    Change in Focus                :       0.920681  {Bw  
          5     0.28665820    -0.25737414 `R6dnbH  
    Change in Focus                :       1.253875 U;#9^<^  
          6     0.21263372    -0.33139862 S^T ><C  
    Change in Focus                :      -0.903878 |Q?^Ba  
          7     0.40051424    -0.14351809 < wi9   
    Change in Focus                :      -1.354815 P+bA>lJd  
          8     0.48754161    -0.05649072 "kd)dy95H  
    Change in Focus                :       0.215922 h'ik19  
          9     0.40357468    -0.14045766 VMIX=gTZ  
    Change in Focus                :       0.281783 y XT8:2M  
         10     0.26315315    -0.28087919 F(KsB5OY?  
    Change in Focus                :      -1.048393 9wbj}tN\z  
         11     0.26120585    -0.28282649 .W s\%S  
    Change in Focus                :       1.017611 D1R$s*{  
         12     0.24033815    -0.30369419 1Y'NG<d _  
    Change in Focus                :      -0.109292 wl7 (|\-  
         13     0.37164046    -0.17239188 7!U^?0?/  
    Change in Focus                :      -0.692430 #g=  
         14     0.48597489    -0.05805744 `Vl9/IEk  
    Change in Focus                :      -0.662040 O+OUcMa,  
         15     0.21462327    -0.32940907 j9xu21'!%  
    Change in Focus                :       1.611296 5D eo}(3  
         16     0.43378226    -0.11025008 f9D01R fo  
    Change in Focus                :      -0.640081 c*.-mS~Z`  
         17     0.39321881    -0.15081353 'S%H"W\  
    Change in Focus                :       0.914906 d$hBgJe>N  
         18     0.20692530    -0.33710703 we8aqEomr  
    Change in Focus                :       0.801607 l}SHR|7<  
         19     0.51374068    -0.03029165 |p.|zH  
    Change in Focus                :       0.947293 &&g02>gE  
         20     0.38013374    -0.16389860 hjD%=Ri0Z  
    Change in Focus                :       0.667010 uH]oHh!}j  
    +}R#mco5K  
    Number of traceable Monte Carlo files generated: 20 KX J7\}  
    Xz`0nU  
    Nominal     0.54403234 \{ve6`7Rn  
    Best        0.54384387    Trial     2 Qk72ra)  
    Worst       0.18154684    Trial     4 8qL.L(=\/  
    Mean        0.35770970 iD*L<9  
    Std Dev     0.11156454 VwOcWKD  
    h:RP/ 0E  
    R,ZG?/#uM9  
    Compensator Statistics: T~L&c  
    Change in back focus: niqknqW<t  
    Minimum            :        -1.354815 6EeO\Qj{  
    Maximum            :         1.611296 Cxeam"-HTt  
    Mean               :         0.161872 0X3yfrim  
    Standard Deviation :         0.869664 dXfLN<nD>U  
    TV=K3F5)M  
    90% >       0.20977951               "hi03k  
    80% >       0.22748071               z]7/Gc,j  
    50% >       0.38667627               [ ou$*  
    20% >       0.46553746               -9::M}^2  
    10% >       0.50064115                6?'7`p  
    <RKT |  
    End of Run. Ec2;?pvd%J  
    DD2K>1A1  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 pH3<QNq5  
    e3ce?gk  
    tuLNGU  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 0` .5gxm  
    $,yAOaa  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 4e Y?#8  
    80% >       0.22748071                 X fqhD&g  
    50% >       0.38667627                 -sfv"?  
    20% >       0.46553746                 A4cOnG,  
    10% >       0.50064115 DL?nvH  
    P6R_W  
    最后这个数值是MTF值呢,还是MTF的公差? h='F,r5#2  
    (v%24bv  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   BqY_N8l&E  
    )+hV+rM jp  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 2T~cOH;T  
    90% >       0.20977951                 D(#f`Fj;  
    80% >       0.22748071                 GiV %Hcx  
    50% >       0.38667627                 -3EQRqVg  
    20% >       0.46553746                 0 =j }`  
    10% >       0.50064115 &riGzU]  
    ....... QPJ \Iu@D$  
    /SD}`GxH  
    9=%zdz2_S  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm    wA"@t  
    Mode                : Sensitivities b(H{i}{]  
    Sampling            : 2 cO~<iy  
    Nominal Criterion   : 0.54403234 ti\ ${C3  
    Test Wavelength     : 0.6328 MtLWpi u@[  
    gg'1q3OjM  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? m>@hh#kBg  
    X'Ss#s>g  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试