切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15203阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 WywS1viD  
    %10ONe}  
    !?P8[K  
    +8Lbz^#  
    然后添加了默认公差分析,基本没变 WO qDW~  
    A(FnU:  
    }4|EHhG  
    xe!bfzU  
    然后运行分析的结果如下: q?}C`5%D  
    #r'MfTr  
    Analysis of Tolerances YRu@; `  
    ojd0um6I{  
    File : E:\光学设计资料\zemax练习\f500.ZMX Z2g'&,uc#  
    Title: e|]e\Or>  
    Date : TUE JUN 21 2011 nI*.(+h  
    @_+aX.,  
    Units are Millimeters. V]zc-gYI  
    All changes are computed using linear differences. )5}<@Ql  
    PQ&*(G  
    Paraxial Focus compensation only. *S,~zOYN  
    VQ9A/DH/  
    WARNING: Solves should be removed prior to tolerancing. 6'#5Dqw"r  
    =:]ps<Qx  
    Mnemonics: r<vMp'u  
    TFRN: Tolerance on curvature in fringes. =1IK"BA2?  
    TTHI: Tolerance on thickness. _SBbd9  
    TSDX: Tolerance on surface decentering in x. W@d&X+7e  
    TSDY: Tolerance on surface decentering in y. 2aYBcPFQh#  
    TSTX: Tolerance on surface tilt in x (degrees). k =! Q  
    TSTY: Tolerance on surface tilt in y (degrees). :?Ns>#6t  
    TIRR: Tolerance on irregularity (fringes). _?~%+Oz/  
    TIND: Tolerance on Nd index of refraction. n28JWkK8  
    TEDX: Tolerance on element decentering in x. Q~N,QMr)k&  
    TEDY: Tolerance on element decentering in y. jWrU'X  
    TETX: Tolerance on element tilt in x (degrees). hXTfmFy{n  
    TETY: Tolerance on element tilt in y (degrees). ? :H+j6+f  
    eAy,T<#  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. &QHJ%c  
    ~5KcbGD~  
    WARNING: Boundary constraints on compensators will be ignored. 'UlVc2%{  
     2v{WX  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm meX2Y;  
    Mode                : Sensitivities QG5WsuT  
    Sampling            : 2 U{2xgN J  
    Nominal Criterion   : 0.54403234 e*:K79 y  
    Test Wavelength     : 0.6328 LF7- ?? '  
    (]]hSkE  
    c*IrZm  
    Fields: XY Symmetric Angle in degrees *[si!e%  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY mnpk9x}m  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 8 .%0JJ.3  
    TLwxP"  
    Sensitivity Analysis: &;@L] o  
    _Y; TS1u  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| -UhpPw 6  
    Type                      Value      Criterion        Change          Value      Criterion        Change ^')8-aF .  
    Fringe tolerance on surface 1 @v)Z>xv  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Z[?n{vD7  
    Change in Focus                :      -0.000000                            0.000000 U6.aoqb%  
    Fringe tolerance on surface 2 x%mRDm~-  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 /QXUD.( 8  
    Change in Focus                :       0.000000                            0.000000 2 @#yQB1  
    Fringe tolerance on surface 3 dtTn]}J  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 $_.t'8F  
    Change in Focus                :      -0.000000                            0.000000 S=qh7ML  
    Thickness tolerance on surface 1 )9eI o&Nl  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 EFX2>&mWo8  
    Change in Focus                :       0.000000                            0.000000 YmV/[{  
    Thickness tolerance on surface 2 B;9,Qbb  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Dz}i-tw+  
    Change in Focus                :       0.000000                           -0.000000 digc7;8L  
    Decenter X tolerance on surfaces 1 through 3 io#}z4"'qY  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Ln>!4i+-B)  
    Change in Focus                :       0.000000                            0.000000 D$ds[if$U,  
    Decenter Y tolerance on surfaces 1 through 3 C$w%! jE  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 #T7v]@K67  
    Change in Focus                :       0.000000                            0.000000 F- ,gj{s  
    Tilt X tolerance on surfaces 1 through 3 (degrees) [mtp-4*  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 B!RfPk1B<*  
    Change in Focus                :       0.000000                            0.000000 Rta}*  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 'cO8& |  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 [:X@|,1V!L  
    Change in Focus                :       0.000000                            0.000000 Olzw)WjG  
    Decenter X tolerance on surface 1 F.vRs|fk  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 nb_/1{F  
    Change in Focus                :       0.000000                            0.000000 qk& F>6<9*  
    Decenter Y tolerance on surface 1 L( 6b2{"  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Z '5itN^  
    Change in Focus                :       0.000000                            0.000000 ASXGM0t  
    Tilt X tolerance on surface (degrees) 1 %2 r ~  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 E*'YxI  
    Change in Focus                :       0.000000                            0.000000 <nk|Z'G E  
    Tilt Y tolerance on surface (degrees) 1 d.&_j`\F  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 MzvhE0ab  
    Change in Focus                :       0.000000                            0.000000 ?mH=3 :~  
    Decenter X tolerance on surface 2 UQ0!tFx  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 *V&M5  
    Change in Focus                :       0.000000                            0.000000 H oQb.Z  
    Decenter Y tolerance on surface 2 ";/]rwHa)  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 H!;N0",]N  
    Change in Focus                :       0.000000                            0.000000 d@3DsE.{i  
    Tilt X tolerance on surface (degrees) 2 ?1=.scmgDG  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 y [Vd*8  
    Change in Focus                :       0.000000                            0.000000 = 3(v4E':5  
    Tilt Y tolerance on surface (degrees) 2 S m(*<H  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 f`qy~M&  
    Change in Focus                :       0.000000                            0.000000 alJ0gc2?  
    Decenter X tolerance on surface 3 *BKD5EwS  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 S#ryEgc]  
    Change in Focus                :       0.000000                            0.000000 /d&m#%9Up]  
    Decenter Y tolerance on surface 3 MHwfJ{"zo  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 <#0i*PM_  
    Change in Focus                :       0.000000                            0.000000 J^8j|%h%e  
    Tilt X tolerance on surface (degrees) 3 -ssb|r  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 P& 1$SWNyW  
    Change in Focus                :       0.000000                            0.000000 - (s0f  
    Tilt Y tolerance on surface (degrees) 3 ;@; a eu  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 $ #=d@Nw_  
    Change in Focus                :       0.000000                            0.000000 JC'3x9_<z  
    Irregularity of surface 1 in fringes rmg\Pa8W>  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 :hICe+2ca  
    Change in Focus                :       0.000000                            0.000000 >Tf}aI+  
    Irregularity of surface 2 in fringes qGX@mo({  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 a?gF;AYk  
    Change in Focus                :       0.000000                            0.000000 e;6:U85LS  
    Irregularity of surface 3 in fringes s9C^Cy^su  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 s#7"ZN  
    Change in Focus                :       0.000000                            0.000000 i9 aR#  
    Index tolerance on surface 1 RLf-Rdx/  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 99OZK  
    Change in Focus                :       0.000000                            0.000000  ~&~4{  
    Index tolerance on surface 2 D5"5`w=C  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 $#V'm{Hh  
    Change in Focus                :       0.000000                           -0.000000 &A s>Y,y  
    &r[f ;|o  
    Worst offenders: _`gF%$]b  
    Type                      Value      Criterion        Change  ]]p\1G  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 vU%o5y:  
    TSTY   2             0.20000000     0.35349910    -0.19053324 yl$Ko  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 bg~CV&]M  
    TSTX   2             0.20000000     0.35349910    -0.19053324 X1w11Z7o  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Q7x[08TI  
    TSTY   1             0.20000000     0.42678383    -0.11724851 F w{:shC  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 1e\cJ{B  
    TSTX   1             0.20000000     0.42678383    -0.11724851 hT^&*}G  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 _4oAk @A  
    TSTY   3             0.20000000     0.42861670    -0.11541563 =Ji[ ;wy@  
    ztU"CRa8  
    Estimated Performance Changes based upon Root-Sum-Square method: ltOS()[X  
    Nominal MTF                 :     0.54403234 7"| Qmyb  
    Estimated change            :    -0.36299231 6zM:p/  
    Estimated MTF               :     0.18104003 EUSM4djL  
    j+3\I>  
    Compensator Statistics: F,vkk{Z>  
    Change in back focus: 7fq Q  
    Minimum            :        -0.000000 [w}-)&c  
    Maximum            :         0.000000 N:|``n>  
    Mean               :        -0.000000 KY&Lv^1_|  
    Standard Deviation :         0.000000 Kjbk zc1  
    [xGwqa03  
    Monte Carlo Analysis: 4lPO*:/  
    Number of trials: 20 w*{{bISw|  
    _V3z!aI  
    Initial Statistics: Normal Distribution Fepsa;\sU  
    Ep-bx&w+  
      Trial       Criterion        Change p+g=Z<?`  
          1     0.42804416    -0.11598818 #j7&2L  
    Change in Focus                :      -0.400171 oY~q^Y  
          2     0.54384387    -0.00018847 TQb/lY9*  
    Change in Focus                :       1.018470 ";dS~(~  
          3     0.44510003    -0.09893230 F7' MoH  
    Change in Focus                :      -0.601922 l!gX-U%-  
          4     0.18154684    -0.36248550 &wDZ@{h  
    Change in Focus                :       0.920681 6}Y==GP t  
          5     0.28665820    -0.25737414 0;x&\x7K  
    Change in Focus                :       1.253875 9O &]!ga  
          6     0.21263372    -0.33139862 E3a^"V3p  
    Change in Focus                :      -0.903878 a6zWg7 PN  
          7     0.40051424    -0.14351809 In4VS:dD  
    Change in Focus                :      -1.354815 kmW/{I9,ua  
          8     0.48754161    -0.05649072 @@ @}FV&  
    Change in Focus                :       0.215922 pIR_2Eq  
          9     0.40357468    -0.14045766 n-K/d I  
    Change in Focus                :       0.281783 @=G [mc\  
         10     0.26315315    -0.28087919 xVsI#`<a  
    Change in Focus                :      -1.048393 AxEdQRGk  
         11     0.26120585    -0.28282649 !L +b{  
    Change in Focus                :       1.017611 X\BFvSv8C  
         12     0.24033815    -0.30369419 Iep_,o.Sk  
    Change in Focus                :      -0.109292 MMO/vJC  
         13     0.37164046    -0.17239188 '-(Z.e~e  
    Change in Focus                :      -0.692430 gs+n J+b  
         14     0.48597489    -0.05805744 #-b}QhxH  
    Change in Focus                :      -0.662040 S['rTuk  
         15     0.21462327    -0.32940907 ){mqo%{SO  
    Change in Focus                :       1.611296 LRw-I.z  
         16     0.43378226    -0.11025008 uo?R;fX26  
    Change in Focus                :      -0.640081 3w>1R>7  
         17     0.39321881    -0.15081353 mph9/ %]S  
    Change in Focus                :       0.914906 zk1]?  
         18     0.20692530    -0.33710703 \0Xq&CG=E  
    Change in Focus                :       0.801607 Gv]94$'J9  
         19     0.51374068    -0.03029165 ]2ab~ gr  
    Change in Focus                :       0.947293 [ Y{  
         20     0.38013374    -0.16389860 H/*slqL  
    Change in Focus                :       0.667010 w('}QB`xad  
    %x;~ o:  
    Number of traceable Monte Carlo files generated: 20 Ya~Th)'>q  
    ^N^s|c'  
    Nominal     0.54403234 NZG ^B/  
    Best        0.54384387    Trial     2 U:@tdH+A7  
    Worst       0.18154684    Trial     4 ?N9Z;_&^.  
    Mean        0.35770970 PB*G#2W  
    Std Dev     0.11156454 EqBTN07dZS  
    *T}c{/  
    F( /Ka@  
    Compensator Statistics: S&&Q U #  
    Change in back focus: E:B<_  
    Minimum            :        -1.354815 }4piZ ch  
    Maximum            :         1.611296 BbCW3!(  
    Mean               :         0.161872 N_FjEZpX  
    Standard Deviation :         0.869664 9:3`LY3wW  
    (]?M=?0\  
    90% >       0.20977951               JbitRV@a  
    80% >       0.22748071                `2\:b^h  
    50% >       0.38667627               6~>h;wC  
    20% >       0.46553746               B@z ng2[  
    10% >       0.50064115                OaT]2o  
    A|4 3W =  
    End of Run. (["V( $  
    'n"we# [  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 x&JD~,Y  
    p1.3)=T  
    )p#L"r^)  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 b&Laxki  
    AuM}L&`i^  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 yc`3)  
    80% >       0.22748071                 /?b{*<TK  
    50% >       0.38667627                 0%q H=do6  
    20% >       0.46553746                  T-+ uQ3  
    10% >       0.50064115 darbL_1  
    xpu 2RE  
    最后这个数值是MTF值呢,还是MTF的公差? 4pelIoj  
    <9:~u]ixt  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   \~Ml<3Zd:  
    3^$=XrD  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : {cO8q }L  
    90% >       0.20977951                 qdmAkYUC  
    80% >       0.22748071                 FU J<gqL  
    50% >       0.38667627                 8t) g fSG  
    20% >       0.46553746                 o~L(;A]yN  
    10% >       0.50064115 `g)  
    ....... \7#w@3*  
    x2r.4  
    ?$uF(>LD  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Gm9  
    Mode                : Sensitivities fkImX:|q  
    Sampling            : 2 3/uvw>$  
    Nominal Criterion   : 0.54403234 i_*.  
    Test Wavelength     : 0.6328 @p}_"BHYWt  
    B!8X?8D  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ,Shzew+  
    A:2CP&*  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试