我现在在初学zemax的
公差分析,找了一个双胶合
透镜 2z\F m/Z. XbC8t &Q],
CA4-&O" .;2!c'mT9 然后添加了默认公差分析,基本没变
iV5I =;H'~
}'W^Ki$ Pb,^UFa= 然后运行分析的结果如下:
DVJc-.x8 co3 ,8\N0 Analysis of Tolerances
c)8wO=! pJz8e&wyLM File : E:\光学设计资料\zemax练习\f500.ZMX
mz*z1`\7v\ Title:
IdxTo Mr Date : TUE JUN 21 2011
-z$0S%2? pL@zZK0 Units are Millimeters.
~@D%qbN All changes are computed using linear differences.
O+?zn: ,[\(U!Z7:% Paraxial Focus compensation only.
/aG>we 1Ol]^'y7) WARNING: Solves should be removed prior to tolerancing.
s%oAsQ_y \z9?rvT: Mnemonics:
(NdgF+'= TFRN: Tolerance on curvature in fringes.
>!1 f` TTHI: Tolerance on thickness.
G)hH?_U#T TSDX: Tolerance on surface decentering in x.
+c a296^ TSDY: Tolerance on surface decentering in y.
:dN35Y] a TSTX: Tolerance on surface tilt in x (degrees).
\&5@ yh TSTY: Tolerance on surface tilt in y (degrees).
Wp}9%Mq~Jy TIRR: Tolerance on irregularity (fringes).
U.U.\ TIND: Tolerance on Nd index of refraction.
&8_;: TEDX: Tolerance on element decentering in x.
Jche79B TEDY: Tolerance on element decentering in y.
rx>Tc#g TETX: Tolerance on element tilt in x (degrees).
C..2y4bA} TETY: Tolerance on element tilt in y (degrees).
]7kGHIJ| $
bNe0
WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
cWO
)QIE 1fW4=pF-K WARNING: Boundary constraints on compensators will be ignored.
x{>Y$t] q7&yb.<KD. Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
O'-Zn]@.] Mode : Sensitivities
S7ehk*` Sampling : 2
U;{,lS2l Nominal Criterion : 0.54403234
eCIRt/ uA Test Wavelength : 0.6328
kA%OF*%|6 B"m:<@ " ~f10ZB_k>' Fields: XY Symmetric Angle in degrees
: .o=F`W # X-Field Y-Field Weight VDX VDY VCX VCY
9c{%m4 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
sNfb %r qTHg[sME Sensitivity Analysis:
ZBR^[OXO J(0 =~Z[ |----------------- Minimum ----------------| |----------------- Maximum ----------------|
pq?[ wp" Type Value Criterion Change Value Criterion Change
_8li4;F Fringe tolerance on surface 1
LnTe_Q7_ TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
~hz@9E]O Change in Focus :
-0.000000 0.000000
d50IAa^p6J Fringe tolerance on surface 2
2${,%8"0s TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
5Vnr"d Change in Focus : 0.000000 0.000000
+<\cd9 Fringe tolerance on surface 3
.;Utkf'I TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
o\ow{gh9 Change in Focus : -0.000000 0.000000
$qtU Thickness tolerance on surface 1
_RaVnMJKX4 TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
3cfZ!E~^kc Change in Focus : 0.000000 0.000000
).+xcv Thickness tolerance on surface 2
ss`q{ARb
TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
9hR:y. Change in Focus : 0.000000 -0.000000
TXD^Do5^ Decenter X tolerance on surfaces 1 through 3
pmW6~%}* TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
udEb/7ZL Change in Focus : 0.000000 0.000000
Gj7QGIKx Decenter Y tolerance on surfaces 1 through 3
2gL[\/s TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
*T>#zR{ Change in Focus : 0.000000 0.000000
t66f 7AR Tilt X tolerance on surfaces 1 through 3 (degrees)
I6hhU;)C TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
!v5sWVVR Change in Focus : 0.000000 0.000000
eW"x%|/Q7 Tilt Y tolerance on surfaces 1 through 3 (degrees)
R!/,E TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
&Qq/Xi,bZ Change in Focus : 0.000000 0.000000
SEQO2`]e: Decenter X tolerance on surface 1
c;21i;&,9 TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
*]:G7SW{ Change in Focus : 0.000000 0.000000
mU?&\w=v$ Decenter Y tolerance on surface 1
|P. = TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
v;bM.OL Change in Focus : 0.000000 0.000000
;ad9{":J#B Tilt X tolerance on surface (degrees) 1
/md Q(Dm TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
#>E3' 5b Change in Focus : 0.000000 0.000000
+2V%'{: Tilt Y tolerance on surface (degrees) 1
1(:b{Bl TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
dWW-tHv# Change in Focus : 0.000000 0.000000
"lU]tIpCu Decenter X tolerance on surface 2
r\l3_t TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
dEQReD Change in Focus : 0.000000 0.000000
,WO%L~db Decenter Y tolerance on surface 2
f
$.\o TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
0{"dI;b% Change in Focus : 0.000000 0.000000
&v3D" J Tilt X tolerance on surface (degrees) 2
(!_X:+0_ TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
ui.QYAYaV Change in Focus : 0.000000 0.000000
]xJ'oBhy Tilt Y tolerance on surface (degrees) 2
h=v[i!U-eY TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
w>z8c3Dq} Change in Focus : 0.000000 0.000000
JO&;bT< Decenter X tolerance on surface 3
}"&n[/8~ TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
/\ ,_P Change in Focus : 0.000000 0.000000
(5Z8zNH`3 Decenter Y tolerance on surface 3
_o &, TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
taWirqd9 Change in Focus : 0.000000 0.000000
-~(0O Tilt X tolerance on surface (degrees) 3
D y`W5_xSz TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
/^z/]!JG:V Change in Focus : 0.000000 0.000000
k lP{yxU'n Tilt Y tolerance on surface (degrees) 3
oN&rq6eN TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Y'<uZl^aX Change in Focus : 0.000000 0.000000
jlRl2 #" Irregularity of surface 1 in fringes
9&[)(On74 TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
|z!q
r}i Change in Focus : 0.000000 0.000000
vk4C_8m Irregularity of surface 2 in fringes
3ZW/$KP/ TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
] 689 Q%D Change in Focus : 0.000000 0.000000
j{Yt70Wv Irregularity of surface 3 in fringes
NSMjr_ TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
L;.VEz! Change in Focus : 0.000000 0.000000
ny!lja5[ Index tolerance on surface 1
Zzw}sZ?8 TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
4DQ07w Change in Focus : 0.000000 0.000000
RQj`9F Index tolerance on surface 2
m{:" 1] TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
KA|&Q<<{@ Change in Focus : 0.000000 -0.000000
~4MtDf (B>yaM#5 Worst offenders:
$n=W2WJ6f Type Value Criterion Change
++Rdv0~ TSTY 2 -0.20000000 0.35349910 -0.19053324
"xe7Dl TSTY 2 0.20000000 0.35349910 -0.19053324
D_l/Gxdpr TSTX 2 -0.20000000 0.35349910 -0.19053324
i63`B+L{ TSTX 2 0.20000000 0.35349910 -0.19053324
ql{^"8x TSTY 1 -0.20000000 0.42678383 -0.11724851
(ZE%tbm2 TSTY 1 0.20000000 0.42678383 -0.11724851
')AByD}Hi] TSTX 1 -0.20000000 0.42678383 -0.11724851
sowbg<D TSTX 1 0.20000000 0.42678383 -0.11724851
E<D+)A TSTY 3 -0.20000000 0.42861670 -0.11541563
-vv
TSTY 3 0.20000000 0.42861670 -0.11541563
*ajFZI [ E$$nNs Estimated Performance Changes based upon Root-Sum-Square method:
^Ei*M0fF Nominal MTF : 0.54403234
DHh+%|e Estimated change : -0.36299231
K?h[.`} Estimated MTF : 0.18104003
i;[h
9=\/ ]yyU)V0Iu Compensator Statistics: #W>x\ Change in back focus: &_Cxv8 Minimum : -0.000000 g6rv`I$l Maximum : 0.000000 vbr~<JT= Mean : -0.000000 BlkSWW/ Standard Deviation : 0.000000 bh= \ vqrBRlZ Monte Carlo Analysis:
E0sbU<11 Number of trials: 20
K%Usjezv& Mq+viU&
Initial Statistics: Normal Distribution
tpv?`(DDU >[Xm|A# Trial Criterion Change
P\D[n-& 1 0.42804416 -0.11598818
pd=7^"[}; Change in Focus : -0.400171
ggrI>vaw 2 0.54384387 -0.00018847
/- DKV~ Change in Focus : 1.018470
O"@?U 3 0.44510003 -0.09893230
.LX?VD Change in Focus : -0.601922
B*9 4 0.18154684 -0.36248550
aj&\CJ Change in Focus : 0.920681
)vO_sIbnW 5 0.28665820 -0.25737414
rER~P\- Change in Focus : 1.253875
MB}:GY? 6 0.21263372 -0.33139862
X }m7@r@ Change in Focus : -0.903878
pO\S#GnX 7 0.40051424 -0.14351809
Hm.X}HO0L Change in Focus : -1.354815
ot-(4Y 8 0.48754161 -0.05649072
8lMZ Change in Focus : 0.215922
j FgZ}Xp 9 0.40357468 -0.14045766
RM)1*l`!E Change in Focus : 0.281783
*
zd. 10 0.26315315 -0.28087919
s ;48v Change in Focus : -1.048393
k%"$$uo 11 0.26120585 -0.28282649
'"Bex` Change in Focus : 1.017611
=ft9T&ciD 12 0.24033815 -0.30369419
}j&O/Up Change in Focus : -0.109292
'g. :MQ8 13 0.37164046 -0.17239188
Bfbl#ZkyL Change in Focus : -0.692430
g;$E1U=R-E 14 0.48597489 -0.05805744
w+Ad$4Pf" Change in Focus : -0.662040
gs$3)t 15 0.21462327 -0.32940907
!.9l4@z# Change in Focus : 1.611296
RI?NB6U 16 0.43378226 -0.11025008
J09*v)L Change in Focus : -0.640081
l#b:^3 17 0.39321881 -0.15081353
?A|zRj{ Change in Focus : 0.914906
H!p!sn 18 0.20692530 -0.33710703
J =b* Change in Focus : 0.801607
#]"/{Z 19 0.51374068 -0.03029165
k"t>He Change in Focus : 0.947293
;F|jG}M" 20 0.38013374 -0.16389860
B<A:_'g Change in Focus : 0.667010
N[>:@h ggMUdlU Number of traceable Monte Carlo files generated: 20
}K?F7cD @v"T~6M Nominal 0.54403234
`$H7KI G Best 0.54384387 Trial 2
6KVV z/ Worst 0.18154684 Trial 4
b7Yq_%+ Mean 0.35770970
ldP3n:7FS Std Dev 0.11156454
"pYe-_"@ RTA%hCr! MdLj,1_T Compensator Statistics:
tAaYL
\~ Change in back focus:
%j%%Rn Minimum : -1.354815
=+`D Maximum : 1.611296
*<w3" iq Mean : 0.161872
~M*7N@D Standard Deviation : 0.869664
Ks|gL#)*Ku 'HCnB]1 90% > 0.20977951 .a {QA 80% > 0.22748071 8:~b
&> 50% > 0.38667627 anLbl#UV 20% > 0.46553746 !TGr .R 10% > 0.50064115 L+Eu
d 4yhcK& End of Run.
[@g ~ r9<V%PHv 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
0"4J"q]&
'\@WN]
hRk,vB] 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
$khrWiX li@kLh 不吝赐教