我现在在初学zemax的
公差分析,找了一个双胶合
透镜 v(7A=/W_ @
:4Kk
4g1
|O9=C`G_ 2!3&Ub#FO 然后添加了默认公差分析,基本没变
hw'2q9J| MH Yf8HN
zB$6e!fc rWs5s!l, 然后运行分析的结果如下:
VfcQibm _Usg`ax- Analysis of Tolerances
'> Q$5R1 bX(*f>G' File : E:\光学设计资料\zemax练习\f500.ZMX
J|
'(;Ay4u Title:
oX4uRc7wR Date : TUE JUN 21 2011
%Nn'p" V6{xX0'b*m Units are Millimeters.
Aii[=x8 All changes are computed using linear differences.
RM+E -N(MEzAE Paraxial Focus compensation only.
E\S&} K,s m'B6qy!}6 WARNING: Solves should be removed prior to tolerancing.
R,bcE4WR" &Kp+8D* Mnemonics:
!~l%6Z5 TFRN: Tolerance on curvature in fringes.
k9xKaJ%1 TTHI: Tolerance on thickness.
"y0A<-~ TSDX: Tolerance on surface decentering in x.
6 {Z\cwP)c TSDY: Tolerance on surface decentering in y.
!gf3%!% TSTX: Tolerance on surface tilt in x (degrees).
5w1[KO#K| TSTY: Tolerance on surface tilt in y (degrees).
/6c10}f TIRR: Tolerance on irregularity (fringes).
ex+AT;o TIND: Tolerance on Nd index of refraction.
8!SiTOzR? TEDX: Tolerance on element decentering in x.
jf/9]`Hf TEDY: Tolerance on element decentering in y.
@ 1A_eF TETX: Tolerance on element tilt in x (degrees).
o{LFXNcg[ TETY: Tolerance on element tilt in y (degrees).
fO>~V1 3@?YTez# WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
F8Wq&X#r c7IR06E WARNING: Boundary constraints on compensators will be ignored.
%Ab_PAw PWu2;JF Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
p d3&AsU Mode : Sensitivities
RAI&;" Sampling : 2
30E v" Nominal Criterion : 0.54403234
+yH~G9u( Test Wavelength : 0.6328
u/c3omY"# ]/Qy1, XSjelA? Fields: XY Symmetric Angle in degrees
\Egc5{ # X-Field Y-Field Weight VDX VDY VCX VCY
!F#aodM1N 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
HbfB[% So.P @CCd Sensitivity Analysis:
`j}d=zZ !o':\hex6 |----------------- Minimum ----------------| |----------------- Maximum ----------------|
;OU>AnWr(& Type Value Criterion Change Value Criterion Change
.r5oN +?e Fringe tolerance on surface 1
XuoEAu8] TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
/8t+d.r;/ Change in Focus :
-0.000000 0.000000
cievC,3* Fringe tolerance on surface 2
PFy;qk TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
?VP!1O=J Change in Focus : 0.000000 0.000000
\R\@t]>Y Fringe tolerance on surface 3
.`>l.gmi& TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
t`YZ)>Ws Change in Focus : -0.000000 0.000000
F*JvpI[7n Thickness tolerance on surface 1
kefv=n*]l TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
l()MYuLNV Change in Focus : 0.000000 0.000000
,,gLrVk Thickness tolerance on surface 2
J2<
QAX TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
!_-sTZ Change in Focus : 0.000000 -0.000000
Iei7!KLW Decenter X tolerance on surfaces 1 through 3
Sja{$zL+W TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
m_!vIUOz Change in Focus : 0.000000 0.000000
&M3ES}6 Decenter Y tolerance on surfaces 1 through 3
0SYf<$ TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
q
X%vRf0 Change in Focus : 0.000000 0.000000
!\#Wk0Ku Tilt X tolerance on surfaces 1 through 3 (degrees)
"4ozlWx TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
n^pZXb;Y Change in Focus : 0.000000 0.000000
r3H}*Wpf Tilt Y tolerance on surfaces 1 through 3 (degrees)
{#1j" TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Vvyrty Change in Focus : 0.000000 0.000000
OVUs]uK Decenter X tolerance on surface 1
O/Y\ps3r TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
RJRq` T|m Change in Focus : 0.000000 0.000000
Le`/ Decenter Y tolerance on surface 1
k)5_1 y TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
iL0jpa<} Change in Focus : 0.000000 0.000000
xv$)u<Ve Tilt X tolerance on surface (degrees) 1
@Xve qUUU TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
t8AkdSU0 Change in Focus : 0.000000 0.000000
C,{F0-D Tilt Y tolerance on surface (degrees) 1
pG!(6V-x<E TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
9P7xoXJ@y Change in Focus : 0.000000 0.000000
Jm %ynW Decenter X tolerance on surface 2
>lraYMc<rZ TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
*U;4t/( Change in Focus : 0.000000 0.000000
Bn~\HW\Lh Decenter Y tolerance on surface 2
S9HBr TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
C#Hcv*D Change in Focus : 0.000000 0.000000
8ji^d1G, Tilt X tolerance on surface (degrees) 2
&gGs) $f[ TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
DO&+=o`" Change in Focus : 0.000000 0.000000
NZo<IKD$ Tilt Y tolerance on surface (degrees) 2
t1e4H=d> TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
%bIsrQ~B Change in Focus : 0.000000 0.000000
~~C6)N~1 Decenter X tolerance on surface 3
8pYyG
| \ TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
L!;^#g Change in Focus : 0.000000 0.000000
O9t=lrYV! Decenter Y tolerance on surface 3
F2IC$:e
M TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
Md8(`@`o Change in Focus : 0.000000 0.000000
'FShNY5 Tilt X tolerance on surface (degrees) 3
V~OUE]]Q TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
T>#TDMU#Fm Change in Focus : 0.000000 0.000000
Ln
~4mN^ Tilt Y tolerance on surface (degrees) 3
\s=QiPK TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
r_Lu~y| Change in Focus : 0.000000 0.000000
z*6$&sS\> Irregularity of surface 1 in fringes
EVR! @6@ TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
C@%iQ]= Change in Focus : 0.000000 0.000000
B-!guf
rnY Irregularity of surface 2 in fringes
z>6.[Z(T TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
1'Nh jL Change in Focus : 0.000000 0.000000
6|QTS|! Irregularity of surface 3 in fringes
,#
]+HS^B TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
[ L
Change in Focus : 0.000000 0.000000
}A-{ 6Qe Index tolerance on surface 1
s~L`53A TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
y)P&]&"? Change in Focus : 0.000000 0.000000
W+KF2(lB Index tolerance on surface 2
iBucT"d] TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
UL&} s_ Change in Focus : 0.000000 -0.000000
Kk 7GZ ^[#=L4 Worst offenders:
?fV?|ZGZI Type Value Criterion Change
Wu ,S\! TSTY 2 -0.20000000 0.35349910 -0.19053324
C ck#Y TSTY 2 0.20000000 0.35349910 -0.19053324
6Z Xu,ks} TSTX 2 -0.20000000 0.35349910 -0.19053324
mB~~_]M
N TSTX 2 0.20000000 0.35349910 -0.19053324
E30Ln_^o TSTY 1 -0.20000000 0.42678383 -0.11724851
M_Bu,<q^ TSTY 1 0.20000000 0.42678383 -0.11724851
m~;B:LN< TSTX 1 -0.20000000 0.42678383 -0.11724851
\0nlPXk?G TSTX 1 0.20000000 0.42678383 -0.11724851
iUTU*El> TSTY 3 -0.20000000 0.42861670 -0.11541563
e9 *lixh TSTY 3 0.20000000 0.42861670 -0.11541563
)9B:Y;>) /[%w*v*' Estimated Performance Changes based upon Root-Sum-Square method:
p-xd k|'[ Nominal MTF : 0.54403234
w//omF'` Estimated change : -0.36299231
gGEIK0\{ Estimated MTF : 0.18104003
Kk=LXmL2 myIe_k,F Compensator Statistics: OM)3Y6rK Change in back focus: zW5C1:.3K Minimum : -0.000000 b!^@PIX Maximum : 0.000000 vQgq]mA? Mean : -0.000000 JaI Kjn Standard Deviation : 0.000000 p?JQ[K7i VO_dA4C}z Monte Carlo Analysis:
at|
\FOKj Number of trials: 20
L5f$TLw
h; 'mE^5K Initial Statistics: Normal Distribution
)c+k_;t'+ DZk1ZLz Trial Criterion Change
bq NP#C 1 0.42804416 -0.11598818
JYJU&u Change in Focus : -0.400171
Vm,,uF 2 0.54384387 -0.00018847
e)b%`ntF Change in Focus : 1.018470
JNi=`X&A 3 0.44510003 -0.09893230
psUE!~9, Change in Focus : -0.601922
KmmQ ,e% 4 0.18154684 -0.36248550
$gvr
-~ Change in Focus : 0.920681
-ihiG_f 5 0.28665820 -0.25737414
0[Eb .2I Change in Focus : 1.253875
z)w-N 6 0.21263372 -0.33139862
p0VUh! Change in Focus : -0.903878
(%'9CfPx 7 0.40051424 -0.14351809
||Y<f * Change in Focus : -1.354815
A
gWPa.'3 8 0.48754161 -0.05649072
/iG7MC\` Change in Focus : 0.215922
pO]8
dE0 9 0.40357468 -0.14045766
R\O.e Change in Focus : 0.281783
5FOqv=6S 10 0.26315315 -0.28087919
y}"7e)|t% Change in Focus : -1.048393
7u|B ](FS 11 0.26120585 -0.28282649
%\6Q .V#s Change in Focus : 1.017611
5jZiJw( 12 0.24033815 -0.30369419
:mZYS4L~ Change in Focus : -0.109292
`q_<Im%I 13 0.37164046 -0.17239188
suVmg-d Change in Focus : -0.692430
;dZMa]X0 14 0.48597489 -0.05805744
,b|-rU\ Change in Focus : -0.662040
e;( 15 0.21462327 -0.32940907
eV2mMSY Change in Focus : 1.611296
6R4<J%$P 16 0.43378226 -0.11025008
v&;:^jJ8 Change in Focus : -0.640081
U(,.D}PG 17 0.39321881 -0.15081353
<]U1\~j Change in Focus : 0.914906
OfZN|S+~W 18 0.20692530 -0.33710703
sn{tra Change in Focus : 0.801607
ea9oakF 19 0.51374068 -0.03029165
3WUH~l{UJ Change in Focus : 0.947293
|5MbAqjzC 20 0.38013374 -0.16389860
S
v`qB'e2 Change in Focus : 0.667010
#/70!+J_UF 1@qgF Number of traceable Monte Carlo files generated: 20
:Li/=>R^ @Rq}nq=k Nominal 0.54403234
Mvcfk$pA Best 0.54384387 Trial 2
ue{xnjw>U Worst 0.18154684 Trial 4
Jp~zX
lu Mean 0.35770970
RE"^
)- Std Dev 0.11156454
g0&\l}&%U 5kMWW*Xtf ,D=fFpn Compensator Statistics:
|FNCXlgZ Change in back focus:
WNy3@+@GZ Minimum : -1.354815
^}$O|t Maximum : 1.611296
Im?LIgt$ Mean : 0.161872
:dnJY%/q Standard Deviation : 0.869664
,wj"! o# DuF"*R~et 90% > 0.20977951 /aqEJGG> 80% > 0.22748071 j6YiE~ 50% > 0.38667627 qJv[MBjk3B 20% > 0.46553746 Zv!{{XO2; 10% > 0.50064115 WAPhv-6 j*R,m1e8 End of Run.
F-
rQ3 {/8Q)2*>0 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
QP(BZJC
i$^ZTb^ egR-w[{ 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
s0"e' ,kM)7!]N 不吝赐教