切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16129阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 -BfZ P5  
    "2;$?*hO#  
    x^^;/%p  
    7r 07N'  
    然后添加了默认公差分析,基本没变 7D\#1h  
    1v!Xx+}  
    uy)iB'st&  
    {LYA?w^GT  
    然后运行分析的结果如下: ${0+LhST  
    ]Cnj=\'  
    Analysis of Tolerances GQhzQM1HS  
    gm~Ka%O|F  
    File : E:\光学设计资料\zemax练习\f500.ZMX zD}dvI}  
    Title: wr,X@y%(!  
    Date : TUE JUN 21 2011 |B<+Y<)f^  
    G 5w:  
    Units are Millimeters. "]>JtK  
    All changes are computed using linear differences. VFz (U)._  
    ]S9~2;2^,  
    Paraxial Focus compensation only. Z2~;u[0a[  
    \gaGTc2&  
    WARNING: Solves should be removed prior to tolerancing. zRN_` U  
    L3iY Z>]  
    Mnemonics: GV#"2{t j  
    TFRN: Tolerance on curvature in fringes. \_}Y4  
    TTHI: Tolerance on thickness. wG [X*/v  
    TSDX: Tolerance on surface decentering in x. YbB8D-  
    TSDY: Tolerance on surface decentering in y. Uq `B#JI  
    TSTX: Tolerance on surface tilt in x (degrees). XSC._)ztEE  
    TSTY: Tolerance on surface tilt in y (degrees). ag^EH"%zw  
    TIRR: Tolerance on irregularity (fringes). / >c F  
    TIND: Tolerance on Nd index of refraction. ]u  4  
    TEDX: Tolerance on element decentering in x. f?kA,!  
    TEDY: Tolerance on element decentering in y. \&ra&3o  
    TETX: Tolerance on element tilt in x (degrees). #]<j.Fc`  
    TETY: Tolerance on element tilt in y (degrees). W(a31d  
    W}#eQ|oCV  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. :pj#t$:!  
    ~K]5`(KV  
    WARNING: Boundary constraints on compensators will be ignored. +pp|Qgr 3  
    "- @{ )  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm | YmQO#''  
    Mode                : Sensitivities (@@t,\iF  
    Sampling            : 2 <o,]f E[  
    Nominal Criterion   : 0.54403234 C-' n4AY^  
    Test Wavelength     : 0.6328 QxG:NN;jW  
    H4p N+  
    ~6L\9B )  
    Fields: XY Symmetric Angle in degrees Q$Qs$  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY iV;X``S  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 {eA0I\c(C  
    .<5 66g}VP  
    Sensitivity Analysis: $K>'aI;|  
    |n3fAN  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| eFS;+?bu  
    Type                      Value      Criterion        Change          Value      Criterion        Change Y5 e6|b|  
    Fringe tolerance on surface 1 U;p"x^U`  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 B 3<T#  
    Change in Focus                :      -0.000000                            0.000000 0J7)UqMf.  
    Fringe tolerance on surface 2 XM o#LS  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ':YFm  
    Change in Focus                :       0.000000                            0.000000 It>8XKS  
    Fringe tolerance on surface 3 0m k-o  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 s)X'PJ0&Bs  
    Change in Focus                :      -0.000000                            0.000000 a<-NB9o~v  
    Thickness tolerance on surface 1 N GP}Z4  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 l?GN& u  
    Change in Focus                :       0.000000                            0.000000 cnJ(Fv_F$  
    Thickness tolerance on surface 2 `%_yRJd|;  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 kSj,Pl\NC  
    Change in Focus                :       0.000000                           -0.000000 [)UL}vAO\q  
    Decenter X tolerance on surfaces 1 through 3 A3D"b9<D  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 :4RD .l  
    Change in Focus                :       0.000000                            0.000000 j"o8]UT/  
    Decenter Y tolerance on surfaces 1 through 3 5%M 'ewu  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 d Bn/_  
    Change in Focus                :       0.000000                            0.000000 'jh9n7mH  
    Tilt X tolerance on surfaces 1 through 3 (degrees) W&>ONo6ki  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 6\"g,f  
    Change in Focus                :       0.000000                            0.000000 W2cgxT  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) j_L1KB*  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 0\XG;KA  
    Change in Focus                :       0.000000                            0.000000 bV c"'RQ  
    Decenter X tolerance on surface 1 pJ)PVo\cV  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :uwB)G  
    Change in Focus                :       0.000000                            0.000000 *b#00)d  
    Decenter Y tolerance on surface 1 1N8gH&oF  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 }>~';l  
    Change in Focus                :       0.000000                            0.000000 lS<T|:gz@  
    Tilt X tolerance on surface (degrees) 1 $M%<i~VXe&  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 oAaUXkQE  
    Change in Focus                :       0.000000                            0.000000 T^FeahA7;  
    Tilt Y tolerance on surface (degrees) 1 ,pfHNK-u  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 7;0$UYDU*  
    Change in Focus                :       0.000000                            0.000000 <X]'":  
    Decenter X tolerance on surface 2 ^f][;>c  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 IJX75hE0g  
    Change in Focus                :       0.000000                            0.000000 G-FeDP  
    Decenter Y tolerance on surface 2 MP"Pqt  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 {[B^~Y>Lr  
    Change in Focus                :       0.000000                            0.000000 ?+6w8j%\  
    Tilt X tolerance on surface (degrees) 2 c*F'x-TH  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 |ci1P[y  
    Change in Focus                :       0.000000                            0.000000 l6o?(!:!%  
    Tilt Y tolerance on surface (degrees) 2 mx\b6w7  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 7O)j]eeoL  
    Change in Focus                :       0.000000                            0.000000 NlLgXn!  
    Decenter X tolerance on surface 3 OJX* :Q  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 PeCU V6  
    Change in Focus                :       0.000000                            0.000000 bWp40&vx  
    Decenter Y tolerance on surface 3 4-ijuqjN  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 k)l*L1Y4:  
    Change in Focus                :       0.000000                            0.000000 C|"BMam  
    Tilt X tolerance on surface (degrees) 3 MZ9{*y[z  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 6k14xPj  
    Change in Focus                :       0.000000                            0.000000 dt -EY  
    Tilt Y tolerance on surface (degrees) 3 c;RB!`9"  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 u~ %xU~v  
    Change in Focus                :       0.000000                            0.000000 g$=y#<2?  
    Irregularity of surface 1 in fringes Ekq&.qjYG"  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 f~bZTf  
    Change in Focus                :       0.000000                            0.000000 & QO9/!  
    Irregularity of surface 2 in fringes "Yh[-[,  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 5Z (1&  
    Change in Focus                :       0.000000                            0.000000 x[%z \  
    Irregularity of surface 3 in fringes w?u4-GT  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 X0G Mly  
    Change in Focus                :       0.000000                            0.000000 f9`F~6$  
    Index tolerance on surface 1 N%3 G\|~Q  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ^uG^XY&ItC  
    Change in Focus                :       0.000000                            0.000000 >|Xy'ZR  
    Index tolerance on surface 2 <qGVOAnz+  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Xgq-r $O2X  
    Change in Focus                :       0.000000                           -0.000000 ;;6e t/8  
    ]{2Eo  
    Worst offenders: 0W}iKT[Z  
    Type                      Value      Criterion        Change ' pnkm0=`  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 SM3qPlsF  
    TSTY   2             0.20000000     0.35349910    -0.19053324 X{8/]'(  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 +Ndo$|XCy]  
    TSTX   2             0.20000000     0.35349910    -0.19053324 4q<LNvJA  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 bKAR}JM&  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ,ypD0Q   
    TSTX   1            -0.20000000     0.42678383    -0.11724851 $x%3^{G  
    TSTX   1             0.20000000     0.42678383    -0.11724851 a?^xEye  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 x{=@~c%eh  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ZH@BHg|}H  
    ,2*^G;J1  
    Estimated Performance Changes based upon Root-Sum-Square method: |dP[_nh?  
    Nominal MTF                 :     0.54403234 G"_ 8`l  
    Estimated change            :    -0.36299231 K/^70;/!.  
    Estimated MTF               :     0.18104003 D7'P^*4_B  
    |Wo_5|E  
    Compensator Statistics: jg,oGtRz  
    Change in back focus: 6Vq]AQx  
    Minimum            :        -0.000000 HizMjJ|  
    Maximum            :         0.000000 {9 PeBc  
    Mean               :        -0.000000 /CXrxeo  
    Standard Deviation :         0.000000 -~wGJM VA  
    L%3m_'6QP  
    Monte Carlo Analysis: ,{KjVv<  
    Number of trials: 20 w-[A"M]I  
    ^:c:~F6J  
    Initial Statistics: Normal Distribution >'qkW$-95  
    Gp<7i5  
      Trial       Criterion        Change > `uk2QdC  
          1     0.42804416    -0.11598818 {e>E4(  
    Change in Focus                :      -0.400171 #5Zf6w  
          2     0.54384387    -0.00018847 ]GSs{'Uh B  
    Change in Focus                :       1.018470 3n\eCdV-b<  
          3     0.44510003    -0.09893230 `63?FzT y  
    Change in Focus                :      -0.601922 X?RnP3t~  
          4     0.18154684    -0.36248550 \5k^zGF4o  
    Change in Focus                :       0.920681 ao@"j}c  
          5     0.28665820    -0.25737414 &n5Lc`  
    Change in Focus                :       1.253875 CB7 6  
          6     0.21263372    -0.33139862 z j[/~ I  
    Change in Focus                :      -0.903878 '[XtARtY`  
          7     0.40051424    -0.14351809 'Z<V(;W  
    Change in Focus                :      -1.354815 ?2;gmZd7  
          8     0.48754161    -0.05649072 )v4?+$g  
    Change in Focus                :       0.215922 {;iG}jK  
          9     0.40357468    -0.14045766 Hg~O0p}[  
    Change in Focus                :       0.281783 f/_RtOSw  
         10     0.26315315    -0.28087919 `0]kRA8=  
    Change in Focus                :      -1.048393 L}>XH*  
         11     0.26120585    -0.28282649 E0g` xf 6c  
    Change in Focus                :       1.017611 ~Sr`Tlp  
         12     0.24033815    -0.30369419 p=tj>{  
    Change in Focus                :      -0.109292 'CTvKW  
         13     0.37164046    -0.17239188 4bT21J37  
    Change in Focus                :      -0.692430 ]A;{D~X^w  
         14     0.48597489    -0.05805744 >o#5tNm  
    Change in Focus                :      -0.662040 iMrNp  
         15     0.21462327    -0.32940907 c]qq *k#  
    Change in Focus                :       1.611296 c4T8eTKU  
         16     0.43378226    -0.11025008 K#O8P+n5[  
    Change in Focus                :      -0.640081 @0XqUcV  
         17     0.39321881    -0.15081353 xz @/^Cj  
    Change in Focus                :       0.914906 h{dR)#)GF<  
         18     0.20692530    -0.33710703 Bt8   
    Change in Focus                :       0.801607 Z+zx*(X  
         19     0.51374068    -0.03029165 Z#n!=k TTm  
    Change in Focus                :       0.947293 {"cS:u  
         20     0.38013374    -0.16389860 (c{<JYEC  
    Change in Focus                :       0.667010 oZ)\Ya=  
    !9$xfg }  
    Number of traceable Monte Carlo files generated: 20 $LS$:%i4  
    r%*UU4xvB  
    Nominal     0.54403234 AWp{n  
    Best        0.54384387    Trial     2 GzJ("RE0)v  
    Worst       0.18154684    Trial     4 gtcU'4~  
    Mean        0.35770970 |j[=uS  
    Std Dev     0.11156454 YQB.3  
    JN9 W:X.  
    sCX 8  
    Compensator Statistics: Zcaec#  
    Change in back focus: \= M*x  
    Minimum            :        -1.354815 F2;k6M@  
    Maximum            :         1.611296 7?@s.Sz|fV  
    Mean               :         0.161872 9~6FWBt  
    Standard Deviation :         0.869664 !y8/El  
    S nMHk3(\  
    90% >       0.20977951               rtl|zCst  
    80% >       0.22748071               ]F,mj-?4x  
    50% >       0.38667627               h\ZnUn_J  
    20% >       0.46553746               <i~MBy. (  
    10% >       0.50064115                f0 ;Fokt(  
    [Rz9Di ;  
    End of Run. 3Mvm'T:[  
    MEOVw[hO  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 REyk,s2"6  
    $6BD6\@  
    B&l5yI b  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 gFJ. p  
    rKlu+/G  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 [P5+}@t  
    80% >       0.22748071                 =(ULfz[:  
    50% >       0.38667627                 by 'P}  
    20% >       0.46553746                 t5r,3x!E  
    10% >       0.50064115 jB+K)NXHL  
    ))y`q@  
    最后这个数值是MTF值呢,还是MTF的公差?  .;ptgX  
    <:[ P&Y  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   L: hEt  
    [LDV*79Z  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 9j[lr${A  
    90% >       0.20977951                 nSMw5  
    80% >       0.22748071                 %(f&).W  
    50% >       0.38667627                 <xb=.xe  
    20% >       0.46553746                 n U0  
    10% >       0.50064115 dm;C @.ML  
    ....... ;nzzt~aCC  
    UbWeE,T~S  
    hn$l<8=Q_  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   d9@Pze">e  
    Mode                : Sensitivities *hm;C+<~  
    Sampling            : 2 f( %r)%  
    Nominal Criterion   : 0.54403234 e!eUgD  
    Test Wavelength     : 0.6328 ~~8?|@V  
    [/P}1 c[)U  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? E#5$O2b#  
    *>=|"ff  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试