切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16284阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 U5odSR$  
    fs\l*nBig  
    [*@"[u   
    -|T.APxB  
    然后添加了默认公差分析,基本没变 9%pq+?u9  
    bP(xMw<'j  
    525W; mu{  
    Hr:WE+'  
    然后运行分析的结果如下: PE0A`  
    u`3J2 ,.  
    Analysis of Tolerances e+j7dmGa  
    fQM:NI? 9?  
    File : E:\光学设计资料\zemax练习\f500.ZMX lo Oh }y+  
    Title: jUYb8:B  
    Date : TUE JUN 21 2011 "1t%J7c_  
    wUv Zc  
    Units are Millimeters. h#a,<B|  
    All changes are computed using linear differences. :>]= YE  
    eNR>W>;'  
    Paraxial Focus compensation only. *MglX<  
    u?i_N0H  
    WARNING: Solves should be removed prior to tolerancing. 1ve %xF  
    {%*,KB>b  
    Mnemonics: x=(Q$Hl5  
    TFRN: Tolerance on curvature in fringes. N[:;f^bH49  
    TTHI: Tolerance on thickness. $C#G8Ck,  
    TSDX: Tolerance on surface decentering in x. 4 cDjf~n  
    TSDY: Tolerance on surface decentering in y. N*y09?/h  
    TSTX: Tolerance on surface tilt in x (degrees). 1^jGSB.%A  
    TSTY: Tolerance on surface tilt in y (degrees). @lRTp  
    TIRR: Tolerance on irregularity (fringes). A!\ g!*  
    TIND: Tolerance on Nd index of refraction. a"@k11  
    TEDX: Tolerance on element decentering in x. $hXhq*5|c  
    TEDY: Tolerance on element decentering in y. nep0<&"  
    TETX: Tolerance on element tilt in x (degrees). ]c4?-Vq%u  
    TETY: Tolerance on element tilt in y (degrees). 7.`Fe g.  
    e0Zwhz,  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Iy% fg',%  
    yY+)IU.  
    WARNING: Boundary constraints on compensators will be ignored. K-vG5t0$\/  
    &NM.}f  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 5)bf$?d   
    Mode                : Sensitivities >MwjUq  
    Sampling            : 2 aNs~Uad1U  
    Nominal Criterion   : 0.54403234 a\;Vly;  
    Test Wavelength     : 0.6328 "^Y)&<J&  
    noJ5h |  
    q$x$ 4  
    Fields: XY Symmetric Angle in degrees 9.)*z-f$  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY {xJq F4  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 D+.< kY.  
    7L)edR [  
    Sensitivity Analysis: BWRAz*V  
    [;~:',vHQf  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| FOz~iS\  
    Type                      Value      Criterion        Change          Value      Criterion        Change HGM? ?=  
    Fringe tolerance on surface 1 iYJ:P  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 S5'ZKk  
    Change in Focus                :      -0.000000                            0.000000 `< _A#@  
    Fringe tolerance on surface 2 >v--R8I*  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 -hL0}Wy$N  
    Change in Focus                :       0.000000                            0.000000 `TwDR6&  
    Fringe tolerance on surface 3 ?'SHt9b3|  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 RI.6.f1dy  
    Change in Focus                :      -0.000000                            0.000000 +c'b=n9j  
    Thickness tolerance on surface 1 (OS -v~{r@  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 "  ,k(*  
    Change in Focus                :       0.000000                            0.000000 PY.4J4nn|  
    Thickness tolerance on surface 2 YNHQbsZUI,  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 Q5%$P\  
    Change in Focus                :       0.000000                           -0.000000 v_=xN^R  
    Decenter X tolerance on surfaces 1 through 3 ~hiJOaCzM  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 SUGB)vEa  
    Change in Focus                :       0.000000                            0.000000 ;6+e!h'1  
    Decenter Y tolerance on surfaces 1 through 3 Em6P6D>S>,  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 pAK7V;sJ  
    Change in Focus                :       0.000000                            0.000000 (h&XtFul}  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ,yPs4',d  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 XL=Y~7b  
    Change in Focus                :       0.000000                            0.000000 3QM;K^$  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ly_@dsU'  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 *49({TD6`  
    Change in Focus                :       0.000000                            0.000000 /w[B,_ZKTk  
    Decenter X tolerance on surface 1 dOG]Yjc  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ={'*C7K)oK  
    Change in Focus                :       0.000000                            0.000000 ^ &UezDTS  
    Decenter Y tolerance on surface 1 8&K1;l }  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671  F6'[8f  
    Change in Focus                :       0.000000                            0.000000 `3wzOMgJ  
    Tilt X tolerance on surface (degrees) 1 y&A0}>a:d  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 A8|DB@ Bi  
    Change in Focus                :       0.000000                            0.000000 MawWgd*  
    Tilt Y tolerance on surface (degrees) 1 /i !3Fr"  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 :2v^pg|  
    Change in Focus                :       0.000000                            0.000000 [l`_2{:  
    Decenter X tolerance on surface 2 @$:T]N3m  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 6 (M^`&fl  
    Change in Focus                :       0.000000                            0.000000 8VWkUsOoI  
    Decenter Y tolerance on surface 2 J~jxmh  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 &Hl*Eg f  
    Change in Focus                :       0.000000                            0.000000 4k7 LM]  
    Tilt X tolerance on surface (degrees) 2 E8gbm&x*  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 fC4#b?Q  
    Change in Focus                :       0.000000                            0.000000 JyiP3whW  
    Tilt Y tolerance on surface (degrees) 2 LA +BH_t&  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 pYxdE|2j  
    Change in Focus                :       0.000000                            0.000000 :NCY6? [Dz  
    Decenter X tolerance on surface 3 9sQ #v-+Yx  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 hwD;1n  
    Change in Focus                :       0.000000                            0.000000 \Ei(HmEU  
    Decenter Y tolerance on surface 3 UgqfO(  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 r0Cc0TMdj  
    Change in Focus                :       0.000000                            0.000000 # .j[iN :+  
    Tilt X tolerance on surface (degrees) 3 N'5AU (  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 V eD<1<  
    Change in Focus                :       0.000000                            0.000000 1J{1>r  
    Tilt Y tolerance on surface (degrees) 3 {?+dVLa^;  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 3QZ~t#,7ij  
    Change in Focus                :       0.000000                            0.000000 C<G`wXlP|  
    Irregularity of surface 1 in fringes .sqX>sU/]  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 s3Wjg  
    Change in Focus                :       0.000000                            0.000000 G=VbEL^H  
    Irregularity of surface 2 in fringes AcoU.tpP  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 M9PzA'}4W6  
    Change in Focus                :       0.000000                            0.000000 arQEi  
    Irregularity of surface 3 in fringes ;:`0:Ao.  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 s.uw,x  
    Change in Focus                :       0.000000                            0.000000 U %,K8u|WH  
    Index tolerance on surface 1 fR^aFT  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 L_~vPp  
    Change in Focus                :       0.000000                            0.000000 s/+k[9l2  
    Index tolerance on surface 2 Fv!KLw@  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 <+r<3ZBA  
    Change in Focus                :       0.000000                           -0.000000 cUDo}Yu  
    o$XJSz|6  
    Worst offenders: Cg]Iz< <bE  
    Type                      Value      Criterion        Change mI4)+8SUu  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Q($.s=&l;  
    TSTY   2             0.20000000     0.35349910    -0.19053324 h%=>iQ%enc  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 HLruZyN4  
    TSTX   2             0.20000000     0.35349910    -0.19053324 6 @X j  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Cju%CE3a  
    TSTY   1             0.20000000     0.42678383    -0.11724851 %=PGvu  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 =7l'3z8  
    TSTX   1             0.20000000     0.42678383    -0.11724851 h ycdk1SN  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 k6(9Rw8bCk  
    TSTY   3             0.20000000     0.42861670    -0.11541563 5h!ZoB)n  
    7[/1uI9U8K  
    Estimated Performance Changes based upon Root-Sum-Square method: QE\t}>  
    Nominal MTF                 :     0.54403234 dH[TnqJn  
    Estimated change            :    -0.36299231 97L|IZ s)  
    Estimated MTF               :     0.18104003 %=G*{mK  
    ;Q{~jT  
    Compensator Statistics: F,)\\$=,  
    Change in back focus: >P_/a,O8  
    Minimum            :        -0.000000 =)O%5<Lwx  
    Maximum            :         0.000000 ^DaP^<V  
    Mean               :        -0.000000 W&'[Xj  
    Standard Deviation :         0.000000 \|wUxijJ*,  
    p2)563#RS  
    Monte Carlo Analysis: @TqqF:c7  
    Number of trials: 20 v "Yo  
    :,~]R,tJQ  
    Initial Statistics: Normal Distribution PSR21;  
    sSdnH_;&  
      Trial       Criterion        Change >`S $(f  
          1     0.42804416    -0.11598818 4],*y`& g  
    Change in Focus                :      -0.400171 '0MH-M  
          2     0.54384387    -0.00018847 ^:Hx.  
    Change in Focus                :       1.018470 R>#BJ^>=  
          3     0.44510003    -0.09893230 wusj;v4C4M  
    Change in Focus                :      -0.601922 %@Ow.7zh  
          4     0.18154684    -0.36248550 (7k}ysc  
    Change in Focus                :       0.920681 56JvF*hP  
          5     0.28665820    -0.25737414 :Y\!~J3W  
    Change in Focus                :       1.253875 VAL]\@Q}  
          6     0.21263372    -0.33139862 #l<un<  
    Change in Focus                :      -0.903878 p@Va`:RDW  
          7     0.40051424    -0.14351809 N#!**Q 0  
    Change in Focus                :      -1.354815 lq[o2\  
          8     0.48754161    -0.05649072 Jp#Onl+d6  
    Change in Focus                :       0.215922 8gK  <xp  
          9     0.40357468    -0.14045766 WA1h|:Z  
    Change in Focus                :       0.281783 [.[|rnil  
         10     0.26315315    -0.28087919 w /l\p3n  
    Change in Focus                :      -1.048393 9=FqI50{  
         11     0.26120585    -0.28282649 U1,f$McZs  
    Change in Focus                :       1.017611 u.~`/O  
         12     0.24033815    -0.30369419 E{B8+T:3  
    Change in Focus                :      -0.109292 KO''B or  
         13     0.37164046    -0.17239188 t7; ^rk*  
    Change in Focus                :      -0.692430 `COnb@uD  
         14     0.48597489    -0.05805744 SAUfA5|e  
    Change in Focus                :      -0.662040 6&qT1nF1  
         15     0.21462327    -0.32940907 `rQDX<?  
    Change in Focus                :       1.611296 kE` V@F  
         16     0.43378226    -0.11025008 ]?"1FSu-8r  
    Change in Focus                :      -0.640081 1v2pPUH\  
         17     0.39321881    -0.15081353 S9@2-Oc  
    Change in Focus                :       0.914906 -z6{!  
         18     0.20692530    -0.33710703 E|`JmfLQu  
    Change in Focus                :       0.801607 T^F9A55y  
         19     0.51374068    -0.03029165 R'e>YDC  
    Change in Focus                :       0.947293 jph"94  
         20     0.38013374    -0.16389860 yG~7Xo5  
    Change in Focus                :       0.667010  >M-ZjT>  
    ~V`F5B  
    Number of traceable Monte Carlo files generated: 20 |w)S &+  
    |(Q !$  
    Nominal     0.54403234 \'[C_+;X  
    Best        0.54384387    Trial     2 c'Mi9,q  
    Worst       0.18154684    Trial     4 'v?"TZ  
    Mean        0.35770970 z!> H^v  
    Std Dev     0.11156454 JrA\ V=K  
    }g]O_fN7~  
    Y [ p  
    Compensator Statistics: ~IIlCmMl,  
    Change in back focus: K2gg"#ft?  
    Minimum            :        -1.354815 z pV+W-j]  
    Maximum            :         1.611296 c!20(( 2|I  
    Mean               :         0.161872 xmp^`^v*  
    Standard Deviation :         0.869664 oy< q;'  
    ^\Gukkmh}  
    90% >       0.20977951               3`3`iN!8\@  
    80% >       0.22748071               A!n)Fpk  
    50% >       0.38667627               sY*iRq  
    20% >       0.46553746               {=A8kgt  
    10% >       0.50064115                >?yxig:_  
    m:4Ec>?e  
    End of Run. o%1dbbh  
    T>e4Og"?  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 }p$@.+  
    =(%+S<}  
    }+3v5Nz;  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 s?-J`k~q  
    4qe!+!#$  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 !caY  
    80% >       0.22748071                 \cKY{(E  
    50% >       0.38667627                 !`$xN~_  
    20% >       0.46553746                 C!%\cy%Xj  
    10% >       0.50064115 6r3.%V.&  
    Q`* v|Lp  
    最后这个数值是MTF值呢,还是MTF的公差? 3|qT.QR`Z  
    \ =(r6X  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   kl/eJN'S  
    8kA2.pIk  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : q)Uh_l.Cj  
    90% >       0.20977951                 $&>z`bAS>  
    80% >       0.22748071                 ~ R:=zGDV  
    50% >       0.38667627                 4Z"JC9As  
    20% >       0.46553746                 3$E\B=7/U  
    10% >       0.50064115 XX@@tzN  
    ....... CG -^}xE:  
     <m7T`5+  
    X?Yp=%%  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   pP`KI'aUN  
    Mode                : Sensitivities 'W>Zr}:  
    Sampling            : 2 HRPNZ!B  
    Nominal Criterion   : 0.54403234 fT&>L  
    Test Wavelength     : 0.6328 ELlTR/NW  
    g'F{;Ur  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? y].vll8R  
    `(RQh@H  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试