切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16160阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 vX?MB  
    S:5vC {  
    k|uW~ I)  
    \iL{q^Im  
    然后添加了默认公差分析,基本没变 B|I9Ex~L  
    X 8/9x-E_  
    @kh:o\  
    ~t=73 fwB  
    然后运行分析的结果如下: =:fN  
    dlv1liSXL5  
    Analysis of Tolerances fl@=h[g#t  
    }^Ymg7wA  
    File : E:\光学设计资料\zemax练习\f500.ZMX p9X{E%A<:  
    Title: 7l%]O}!d)  
    Date : TUE JUN 21 2011  {^8->V  
    ;r8< Ed  
    Units are Millimeters. xxy (#j$  
    All changes are computed using linear differences. P55QE+B  
    S[zETRSG  
    Paraxial Focus compensation only. SH ow~wxw  
    jK(]e iR$S  
    WARNING: Solves should be removed prior to tolerancing. WMi$ATq  
    "5wer5? t  
    Mnemonics: 2|a5xTzH  
    TFRN: Tolerance on curvature in fringes. iVaCXXf'  
    TTHI: Tolerance on thickness. W^e"()d/Z  
    TSDX: Tolerance on surface decentering in x. [LF<aR5  
    TSDY: Tolerance on surface decentering in y. {)`tN&\  
    TSTX: Tolerance on surface tilt in x (degrees).  Uf,fd  
    TSTY: Tolerance on surface tilt in y (degrees). B+VD53 V  
    TIRR: Tolerance on irregularity (fringes). BT*z^Z H  
    TIND: Tolerance on Nd index of refraction. 6lAHB*`  
    TEDX: Tolerance on element decentering in x. cM?i _m  
    TEDY: Tolerance on element decentering in y. Z>l%:;H  
    TETX: Tolerance on element tilt in x (degrees). x*#9\*@EI  
    TETY: Tolerance on element tilt in y (degrees). 'g5 Gdn  
    wH0m^?a!3  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. zk++#rB  
    w;p~|!  
    WARNING: Boundary constraints on compensators will be ignored. )JsmzGC0  
    ?mi1PNps#  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ;h~v,h  
    Mode                : Sensitivities QKHAN{hJ  
    Sampling            : 2 rYI7V?  
    Nominal Criterion   : 0.54403234 x{_3/4  
    Test Wavelength     : 0.6328 EEJ OJ<  
    %G`GdG}T  
    |& Pa`=sp  
    Fields: XY Symmetric Angle in degrees z)_h"y?H{%  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY UJ?qGOM3x>  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 0ZAT;eaB  
    b#[EkI 0@  
    Sensitivity Analysis: 5H^"  
    MszX9wl  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| WKvG|YRDq  
    Type                      Value      Criterion        Change          Value      Criterion        Change 'DdR2  
    Fringe tolerance on surface 1 y[A%EMd  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 =}K"@5J  
    Change in Focus                :      -0.000000                            0.000000 Dt~ |)L+  
    Fringe tolerance on surface 2 MhL>6rn  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 =\FV_4)  
    Change in Focus                :       0.000000                            0.000000 MJ_]N+  
    Fringe tolerance on surface 3 _ `~\zzUZ  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 ^ rh{  
    Change in Focus                :      -0.000000                            0.000000 e-EY]%JO  
    Thickness tolerance on surface 1 ;r3Xh)k;  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 a,ZmDkzuv  
    Change in Focus                :       0.000000                            0.000000 #V-0-n,`  
    Thickness tolerance on surface 2 !v\ _<8  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 MO%kUq|pg  
    Change in Focus                :       0.000000                           -0.000000 0[In5II  
    Decenter X tolerance on surfaces 1 through 3 P*:9u>  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 De`p@`+<#~  
    Change in Focus                :       0.000000                            0.000000 GX#SCZ&}C  
    Decenter Y tolerance on surfaces 1 through 3 _j sJS<21  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 | k?r1dj%O  
    Change in Focus                :       0.000000                            0.000000 OzA'd\|  
    Tilt X tolerance on surfaces 1 through 3 (degrees)  3PUyua'  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ,a'Y^[4k?  
    Change in Focus                :       0.000000                            0.000000 vE{L`,\ q  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) .H#<yPty  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 fq<JX5DER  
    Change in Focus                :       0.000000                            0.000000 Ba#wW E  
    Decenter X tolerance on surface 1 ]9PQKC2&  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $I|6v  
    Change in Focus                :       0.000000                            0.000000 sLze/D_M*  
    Decenter Y tolerance on surface 1 oY<R[NYKu  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 z,K;GZuP  
    Change in Focus                :       0.000000                            0.000000 Yaix\*II  
    Tilt X tolerance on surface (degrees) 1 &rfl(&\oUi  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 jBMGm"NE  
    Change in Focus                :       0.000000                            0.000000 srQ]TYH ,  
    Tilt Y tolerance on surface (degrees) 1 z)F<{]%  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 cH48)  
    Change in Focus                :       0.000000                            0.000000 0BrAgv"3a_  
    Decenter X tolerance on surface 2 uW0Dm#  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 B1i&HoGbz  
    Change in Focus                :       0.000000                            0.000000 jz$ ]"\G#  
    Decenter Y tolerance on surface 2 ?aWMU?S  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 D^ )?*(  
    Change in Focus                :       0.000000                            0.000000 z(eAhK}6?  
    Tilt X tolerance on surface (degrees) 2 $(fhO   
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 W )jtTC7  
    Change in Focus                :       0.000000                            0.000000 lPZYd 8  
    Tilt Y tolerance on surface (degrees) 2 b Od<x >@  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 n5+Z|<3)  
    Change in Focus                :       0.000000                            0.000000 brEA-xNWQ  
    Decenter X tolerance on surface 3 d#1yVdqRl  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 czg9tG8  
    Change in Focus                :       0.000000                            0.000000 F[)5A5+:Y  
    Decenter Y tolerance on surface 3 >/.w80<'  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 2bu>j1h  
    Change in Focus                :       0.000000                            0.000000 8/s?Gz  
    Tilt X tolerance on surface (degrees) 3 O)$Pvll  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 CK9FAuU  
    Change in Focus                :       0.000000                            0.000000 .R]DT5  
    Tilt Y tolerance on surface (degrees) 3 enT[#f[{  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 3 =-V!E  
    Change in Focus                :       0.000000                            0.000000 !2F X l;  
    Irregularity of surface 1 in fringes ZxB7H{  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ]sZ! -q'8  
    Change in Focus                :       0.000000                            0.000000 a.2Xl}2o5  
    Irregularity of surface 2 in fringes mqK}y K^P]  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 YL&)@h  
    Change in Focus                :       0.000000                            0.000000 i]15g@  
    Irregularity of surface 3 in fringes ):lH   
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ~@$RX: p  
    Change in Focus                :       0.000000                            0.000000  7 T  
    Index tolerance on surface 1 D{rM  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 \l1==,wk  
    Change in Focus                :       0.000000                            0.000000 y.$Ae1a=  
    Index tolerance on surface 2 &embAqW:  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 gy Ey=@L  
    Change in Focus                :       0.000000                           -0.000000 6aKfcvf &  
    ^Lv )){t  
    Worst offenders: *RM 3 _  
    Type                      Value      Criterion        Change hgK 4;R  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 \}71p zw(  
    TSTY   2             0.20000000     0.35349910    -0.19053324 tU0jFBB  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 l[<U UEjZJ  
    TSTX   2             0.20000000     0.35349910    -0.19053324 8d7 NESYl  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 \V#fl  
    TSTY   1             0.20000000     0.42678383    -0.11724851 &%`WXe-`R  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 <Hr~|oG  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ;;|.qgxc~  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 C6'K)P[p  
    TSTY   3             0.20000000     0.42861670    -0.11541563 %-woaj   
    E[cH/Rm  
    Estimated Performance Changes based upon Root-Sum-Square method: Lp) P7Yt-  
    Nominal MTF                 :     0.54403234 xqb*;TBh*  
    Estimated change            :    -0.36299231 SuXeUiK.[  
    Estimated MTF               :     0.18104003 8Si3 aq3  
    t:"3M iM=c  
    Compensator Statistics: IGOEqUw*  
    Change in back focus: bXSAZW f  
    Minimum            :        -0.000000 ( 8X^pL  
    Maximum            :         0.000000 nS](d2  
    Mean               :        -0.000000 IN75zn*%  
    Standard Deviation :         0.000000 O(6j:XD  
    x4K A8  
    Monte Carlo Analysis: Iz[ohn!f  
    Number of trials: 20 K#Zv>x!to  
    ~=Q^ ]y,  
    Initial Statistics: Normal Distribution 6Yl+IP];i  
    \CX6~  
      Trial       Criterion        Change XZ@ |(_Z  
          1     0.42804416    -0.11598818 R.cR:fA  
    Change in Focus                :      -0.400171 zdm2`D;~p  
          2     0.54384387    -0.00018847 bct8~dY  
    Change in Focus                :       1.018470 JvK]EwR ;  
          3     0.44510003    -0.09893230 q ~^!Ck+#*  
    Change in Focus                :      -0.601922 p|?FA@ 3  
          4     0.18154684    -0.36248550 s (K SN/  
    Change in Focus                :       0.920681 ^HxIy;EQ<z  
          5     0.28665820    -0.25737414 CXi[$nF3  
    Change in Focus                :       1.253875 A$i^/hJs  
          6     0.21263372    -0.33139862 G\o9mEzQ  
    Change in Focus                :      -0.903878 TbaZFLr  
          7     0.40051424    -0.14351809 d8iq9AP\o  
    Change in Focus                :      -1.354815 &%%ix#iF  
          8     0.48754161    -0.05649072 :a^/&LbLm  
    Change in Focus                :       0.215922 &isKU 8n  
          9     0.40357468    -0.14045766 P) cEYk  
    Change in Focus                :       0.281783 H~^)^6)^T  
         10     0.26315315    -0.28087919 }V[ORGzox  
    Change in Focus                :      -1.048393 `ZbFky{  
         11     0.26120585    -0.28282649 Ch\__t*v!  
    Change in Focus                :       1.017611 QYi4A "$`  
         12     0.24033815    -0.30369419 7WwE] ^M  
    Change in Focus                :      -0.109292 0?}n(f!S  
         13     0.37164046    -0.17239188 px*1 3"  
    Change in Focus                :      -0.692430 ,ga6   
         14     0.48597489    -0.05805744 i4]oE&G  
    Change in Focus                :      -0.662040 g+5c"Yk+u~  
         15     0.21462327    -0.32940907 2v2XU\u{t  
    Change in Focus                :       1.611296 k(M:#oA!  
         16     0.43378226    -0.11025008 C$0g2X  
    Change in Focus                :      -0.640081 i(_A;TT6  
         17     0.39321881    -0.15081353 SZEi+CRs0  
    Change in Focus                :       0.914906 NSBcYObX  
         18     0.20692530    -0.33710703 %~y>9K  
    Change in Focus                :       0.801607 Ij$C@hH  
         19     0.51374068    -0.03029165 Io|D u  
    Change in Focus                :       0.947293 9?8PMh.  
         20     0.38013374    -0.16389860 ;1s+1G}_z  
    Change in Focus                :       0.667010 +<j7^AEG  
    fvcS=nRQv  
    Number of traceable Monte Carlo files generated: 20 0{g*\W*+~  
    Bp3E)l  
    Nominal     0.54403234 &!OEd ]  
    Best        0.54384387    Trial     2 DzQ  
    Worst       0.18154684    Trial     4 DY9]$h*y  
    Mean        0.35770970 I/%v`[  
    Std Dev     0.11156454 6pSi-FH  
    a&V;^ /  
    fx(h fz  
    Compensator Statistics: !?(7g2NP)  
    Change in back focus: TS#[[^!S  
    Minimum            :        -1.354815 _'LZf=V0  
    Maximum            :         1.611296 m3TR}=n  
    Mean               :         0.161872 NC#F:M;b  
    Standard Deviation :         0.869664 __2<v?\  
    h%krA<G9  
    90% >       0.20977951               LP=j/qf|  
    80% >       0.22748071               6,a H[ >W  
    50% >       0.38667627               @p L9a1PJv  
    20% >       0.46553746               s4~[GO6>  
    10% >       0.50064115                \ l#eW x  
    X!p`|i  
    End of Run. FO5a<6  
    aL( hWE  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 sVK?sBs]  
    =29IHL3  
    S0)JIrrHC  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 w y|^=#k  
    Q-n8~Ey1a  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 "XR=P> xk  
    80% >       0.22748071                 STp9Gh-  
    50% >       0.38667627                 V4n~Z+k  
    20% >       0.46553746                 +;?mg(:  
    10% >       0.50064115 kAQ(8xV  
    V4:/LNq_]  
    最后这个数值是MTF值呢,还是MTF的公差? v;x0=I&%  
    v Y0bK-  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   P:"R;YCvE  
    C\EIaLN<  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : E`)e ;^  
    90% >       0.20977951                 [k7( t|Q{  
    80% >       0.22748071                 8W&1"h`  
    50% >       0.38667627                 'V&g"Pb  
    20% >       0.46553746                 $H<_P'h-B  
    10% >       0.50064115 V IzIl\<aM  
    ....... 0~nX7  
    Zux L2W  
    7P$*qj~Vh  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   4rhHvp  
    Mode                : Sensitivities !!.@F;]W  
    Sampling            : 2 7{r7  
    Nominal Criterion   : 0.54403234 >l0Qd1   
    Test Wavelength     : 0.6328 {L$$"r,  
    "-:H$  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 4l0>['K&{  
    1 Ne;U/  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试