我现在在初学zemax的
公差分析,找了一个双胶合
透镜
"~'b 9-MUX^?u
I_RsYw ,cNLkoN 然后添加了默认公差分析,基本没变
h<$MyN4]g =ZqT3_
T?X_c"{8M Dc,I7F|% 然后运行分析的结果如下:
i-6Z"b{ Cg(Y&Gxf. Analysis of Tolerances
MG.`
r{5 )==Jfn y File : E:\光学设计资料\zemax练习\f500.ZMX
<u2 }i<# Title:
DY`kx2e! Date : TUE JUN 21 2011
wp&=$Aa)' soQ1X@"0 Units are Millimeters.
b9l;a+]d All changes are computed using linear differences.
Y=Kc'x[,Zj P?k0zwOlBl Paraxial Focus compensation only.
`^)jLuyu
_fKou2$yz WARNING: Solves should be removed prior to tolerancing.
V;v8=1t! [EKQR>s) Mnemonics:
]?(-[ TFRN: Tolerance on curvature in fringes.
s=;uc]9g TTHI: Tolerance on thickness.
qw^uPs7Uw TSDX: Tolerance on surface decentering in x.
[C'JH//q*t TSDY: Tolerance on surface decentering in y.
_WRFsDZ' TSTX: Tolerance on surface tilt in x (degrees).
5rU[Tir TSTY: Tolerance on surface tilt in y (degrees).
aJ>65RJ^= TIRR: Tolerance on irregularity (fringes).
jEZMUqGY! TIND: Tolerance on Nd index of refraction.
GaK-t*Q TEDX: Tolerance on element decentering in x.
h%uZYsK TEDY: Tolerance on element decentering in y.
`9BROZnq TETX: Tolerance on element tilt in x (degrees).
ATK_DEAu TETY: Tolerance on element tilt in y (degrees).
Kkm>e{0)AY BW$"`T@c6~ WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
MB~=f[cUnd XzEc2)0'v WARNING: Boundary constraints on compensators will be ignored.
0"pAN[=K@ GJ_7h_4 Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
0|{u{w@!` Mode : Sensitivities
c"B{/;A Sampling : 2
73/P&hT Nominal Criterion : 0.54403234
5?]hd*8 Test Wavelength : 0.6328
24z< gO 75XJL;W # ']2E {V Fields: XY Symmetric Angle in degrees
Gz,i~XX # X-Field Y-Field Weight VDX VDY VCX VCY
xe^Gs]fm 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
7+\+DujE$ ~?K ~L~f5 Sensitivity Analysis:
e,W%uH>X OCBgR4I |----------------- Minimum ----------------| |----------------- Maximum ----------------|
n(;|q&3 Type Value Criterion Change Value Criterion Change
SAy=WV Fringe tolerance on surface 1
EK6:~ TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
0Ziw_S\d&s Change in Focus :
-0.000000 0.000000
K/IWH[ Fringe tolerance on surface 2
HTX?,C_ TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
]~'5\58sP Change in Focus : 0.000000 0.000000
2AT5 Fringe tolerance on surface 3
b4[bL2J$h1 TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
LG9+y Change in Focus : -0.000000 0.000000
A#EDkU,
Thickness tolerance on surface 1
old(i:2 TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
J IUx Change in Focus : 0.000000 0.000000
`p2+&&]S Thickness tolerance on surface 2
*Q?tl\E TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
;$.J3! Change in Focus : 0.000000 -0.000000
3G}x;Cp\D Decenter X tolerance on surfaces 1 through 3
u)}$~E> TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
(k5We!4[1 Change in Focus : 0.000000 0.000000
L^@'q6*} Decenter Y tolerance on surfaces 1 through 3
~A'!2 TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
F \KjEl0 Change in Focus : 0.000000 0.000000
4T|b
Cs?e Tilt X tolerance on surfaces 1 through 3 (degrees)
c;Pe/ d TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
M2OIBH4! Change in Focus : 0.000000 0.000000
a_f~N1kq Tilt Y tolerance on surfaces 1 through 3 (degrees)
PgtJ3oq[} TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
ON=@O Change in Focus : 0.000000 0.000000
"{@A5A Decenter X tolerance on surface 1
kMi/>gpQ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
K1 EynU
I Change in Focus : 0.000000 0.000000
9g'LkP Decenter Y tolerance on surface 1
g{OwuAC_ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
l;R%= P?'F Change in Focus : 0.000000 0.000000
<D<4BnZ( Tilt X tolerance on surface (degrees) 1
I*{4rDt TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
CZud&
< Change in Focus : 0.000000 0.000000
\^L`7cBL Tilt Y tolerance on surface (degrees) 1
8m2Tk\;: TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
,?8qpEG~#+ Change in Focus : 0.000000 0.000000
>s>1[W @* Decenter X tolerance on surface 2
b=yx7v"r TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
8!O5quEc Change in Focus : 0.000000 0.000000
8@i7pBl@ Decenter Y tolerance on surface 2
,k )w6) TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
iU$] {c2;A Change in Focus : 0.000000 0.000000
re/@D@% Tilt X tolerance on surface (degrees) 2
:ubV }; TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
S?1AFI9{ Change in Focus : 0.000000 0.000000
k1w_[w[ Tilt Y tolerance on surface (degrees) 2
#hfXZVD TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
*X'Y$x>f Change in Focus : 0.000000 0.000000
F
U_jGwD Decenter X tolerance on surface 3
}zkHJxZgE TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
Tl(^ Change in Focus : 0.000000 0.000000
}\tdcTMgS Decenter Y tolerance on surface 3
QdT}wkX TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
=mS\i663 Change in Focus : 0.000000 0.000000
SQBa;hvgM Tilt X tolerance on surface (degrees) 3
0
HGM4[)= TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
hn5h\M? Change in Focus : 0.000000 0.000000
RQ vft Tilt Y tolerance on surface (degrees) 3
2`7==? TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
5]KW^sL Change in Focus : 0.000000 0.000000
z:8eEq3w Irregularity of surface 1 in fringes
H$=e
-L`@ TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
)Xk0VDNp$/ Change in Focus : 0.000000 0.000000
.`HYA*8_ Irregularity of surface 2 in fringes
.{ocV#{s TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
R)_%i<nq\ Change in Focus : 0.000000 0.000000
~zHjMo2 Irregularity of surface 3 in fringes
F_w
Z"e6 TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
)WRLBFi3 Change in Focus : 0.000000 0.000000
R<\F:9 Index tolerance on surface 1
C7rNV0.Fq TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
q*U*Fu+ Change in Focus : 0.000000 0.000000
~HTmO;HNf" Index tolerance on surface 2
'n{Nvt.c TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
`|6'9 Change in Focus : 0.000000 -0.000000
:o|\"3 1C<uz29 Worst offenders:
AqWUwK9T Type Value Criterion Change
-}nxJH ) TSTY 2 -0.20000000 0.35349910 -0.19053324
>6NRi /[ TSTY 2 0.20000000 0.35349910 -0.19053324
}#L^! \V} TSTX 2 -0.20000000 0.35349910 -0.19053324
,F79xx9ufg TSTX 2 0.20000000 0.35349910 -0.19053324
61SlVec*o8 TSTY 1 -0.20000000 0.42678383 -0.11724851
Z>QF#."m TSTY 1 0.20000000 0.42678383 -0.11724851
2/vMoVT, TSTX 1 -0.20000000 0.42678383 -0.11724851
f[@77m* TSTX 1 0.20000000 0.42678383 -0.11724851
x.7]/) TSTY 3 -0.20000000 0.42861670 -0.11541563
_wTOmz%|R TSTY 3 0.20000000 0.42861670 -0.11541563
v=0(~<7B 6N!Q:x^4(T Estimated Performance Changes based upon Root-Sum-Square method:
\]</w5 Pi, Nominal MTF : 0.54403234
C`$n[kCJ Estimated change : -0.36299231
kh
{p%<r{ Estimated MTF : 0.18104003
$w)!3c4 Wr<j!>J6Ki Compensator Statistics: iIMd!Q.)@ Change in back focus: n,jKmA Minimum : -0.000000 p2ogn}` Maximum : 0.000000 T ?$:'XJ Mean : -0.000000 s%qF/70' Standard Deviation : 0.000000 !Y$h"<M W}m)cn3@ Monte Carlo Analysis:
@OV|]u Number of trials: 20
k_sg
?(-!o 5*j?E Initial Statistics: Normal Distribution
`7[EKOJ3g ,=UK}*e" Trial Criterion Change
rX4j*u2u 1 0.42804416 -0.11598818
U}6B*Xx' Change in Focus : -0.400171
k,85Y$`' 2 0.54384387 -0.00018847
Fpm|_f7 Change in Focus : 1.018470
syWG'(> 3 0.44510003 -0.09893230
",^Mxm{ Change in Focus : -0.601922
Sx708`/Ep 4 0.18154684 -0.36248550
|uX,5Q#6 Change in Focus : 0.920681
W?qmp|YD 5 0.28665820 -0.25737414
5 xppKt Change in Focus : 1.253875
M^O2\G#B 6 0.21263372 -0.33139862
=8t]\Y? Change in Focus : -0.903878
:# .<[ 7 0.40051424 -0.14351809
[Yo,*,y31 Change in Focus : -1.354815
9Xj7~, 8 0.48754161 -0.05649072
RZHd9v$ Change in Focus : 0.215922
N9jH\0nG 9 0.40357468 -0.14045766
T;L>;E>B Change in Focus : 0.281783
x,rlrxI 10 0.26315315 -0.28087919
'_GrD>P)- Change in Focus : -1.048393
wj,:"ESb4 11 0.26120585 -0.28282649
>d,jKlh^.% Change in Focus : 1.017611
T+*%?2>q" 12 0.24033815 -0.30369419
v:!Z=I}> Change in Focus : -0.109292
byLft1 13 0.37164046 -0.17239188
{ &"CH]r Change in Focus : -0.692430
GO__$%~ 14 0.48597489 -0.05805744
B.dH(um Change in Focus : -0.662040
N.\-
8?> 15 0.21462327 -0.32940907
{_`^R>"\&w Change in Focus : 1.611296
4? ICy/,U- 16 0.43378226 -0.11025008
bL'aB{s Change in Focus : -0.640081
S'4(0j 17 0.39321881 -0.15081353
Jz7!4mu Change in Focus : 0.914906
)\eI;8 18 0.20692530 -0.33710703
t/cY=Wp Change in Focus : 0.801607
1`(tf6op 19 0.51374068 -0.03029165
lwrCpD. Change in Focus : 0.947293
=<{np 20 0.38013374 -0.16389860
?$*SjZt Change in Focus : 0.667010
j/fzzI0@ 6G
#}Q/ Number of traceable Monte Carlo files generated: 20
cl]Mi
"3_ kS_(wpA Nominal 0.54403234
=T(6#" Best 0.54384387 Trial 2
*VFf.aPwYi Worst 0.18154684 Trial 4
r[BVvX/,F Mean 0.35770970
x[$z({Yf Std Dev 0.11156454
vgsJeV`}I [P&7i57 1DE1.1 Compensator Statistics:
]L9s%]o Change in back focus:
MCS8y+QK Minimum : -1.354815
KVn []@# Maximum : 1.611296
#73F}
tZ^ Mean : 0.161872
5Ow[~p"l< Standard Deviation : 0.869664
tnPv70m d/[;
`ZD+ 90% > 0.20977951 :c8&N-` 80% > 0.22748071 |y0(Q V 50% > 0.38667627 |N%fMPKa 20% > 0.46553746 ~yH?=:>U 10% > 0.50064115 :-/M?,Q" -( End of Run.
9aze>nxh. .NYbi@bk(< 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
ldiD2
Q
bn!HUM, {u#;?u=| 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
t
m7^yn: SKkUU^\#R` 不吝赐教