切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16528阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 X-/Ban  
    D#0O[F@l##  
    I$j|Rq  
    e=>% ^F  
    然后添加了默认公差分析,基本没变 5[R?iSGL1  
    (STx$cya  
    1<,/ -H  
    >>7aw" 0  
    然后运行分析的结果如下: sE9Ckc5  
    BS2?!;,8  
    Analysis of Tolerances nk/vGa4  
    %5Rq1$D  
    File : E:\光学设计资料\zemax练习\f500.ZMX w}`3 d@  
    Title: 2w4MJ,Uw  
    Date : TUE JUN 21 2011 9o_- =>(  
    c;!9\1sr  
    Units are Millimeters. fj+O'X  
    All changes are computed using linear differences. ~L'nz quF  
    Zi{0-m6+  
    Paraxial Focus compensation only. +)gB9DoK  
    T4GW1NP  
    WARNING: Solves should be removed prior to tolerancing. e{!vNJ0`  
    @O/,a7Tt  
    Mnemonics: *rf$>8~$n  
    TFRN: Tolerance on curvature in fringes. 28oJFi]  
    TTHI: Tolerance on thickness. <[hz?:G"$  
    TSDX: Tolerance on surface decentering in x. /80YZ   
    TSDY: Tolerance on surface decentering in y. 8R4qU!M  
    TSTX: Tolerance on surface tilt in x (degrees). r\xXU~$9v  
    TSTY: Tolerance on surface tilt in y (degrees). ~ 5"J(  
    TIRR: Tolerance on irregularity (fringes). mHs:t{q  
    TIND: Tolerance on Nd index of refraction. GAp!nix6h  
    TEDX: Tolerance on element decentering in x. 6?o>{e7n^  
    TEDY: Tolerance on element decentering in y. Tl3"PIb  
    TETX: Tolerance on element tilt in x (degrees). zYr z08PJ  
    TETY: Tolerance on element tilt in y (degrees). 2 ~-( A  
    ' ^a!`"Bc  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 8*Zvr&B,G  
    @q)E=G1<o0  
    WARNING: Boundary constraints on compensators will be ignored. C +@ i  
    Pux)>q] C  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm xR}of"  
    Mode                : Sensitivities Tz` ,{k  
    Sampling            : 2 oEIqA  
    Nominal Criterion   : 0.54403234 r/Dd& x  
    Test Wavelength     : 0.6328 N-QCfDao  
    e /94y6*>  
    IG|\:Xz  
    Fields: XY Symmetric Angle in degrees 40.AM1Z0f  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY bl.EIyG>  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 TzrW   
    HNMBXXf, B  
    Sensitivity Analysis: ) ,Npv3(  
    6x4_b  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| kzi|$Gs<  
    Type                      Value      Criterion        Change          Value      Criterion        Change )!,@m>0v{  
    Fringe tolerance on surface 1 usH%dzKK  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 xA-jvu9@  
    Change in Focus                :      -0.000000                            0.000000 -tyaE  
    Fringe tolerance on surface 2 e5OVq ,  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ]!aUT&  
    Change in Focus                :       0.000000                            0.000000 SQ<f  
    Fringe tolerance on surface 3 jw4TLc7p  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 hr~.Lj5^W  
    Change in Focus                :      -0.000000                            0.000000 J6auUm` `  
    Thickness tolerance on surface 1 tJm{I)G  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ^c'f<<z|7r  
    Change in Focus                :       0.000000                            0.000000 u){S$</  
    Thickness tolerance on surface 2 }) 7K S?  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ccMd/  
    Change in Focus                :       0.000000                           -0.000000 FG# nap{  
    Decenter X tolerance on surfaces 1 through 3 ,qu:<  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 w4A#>;Qu*  
    Change in Focus                :       0.000000                            0.000000 `^e*T'UPl  
    Decenter Y tolerance on surfaces 1 through 3 y5%5O xB  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }4KW@L[g  
    Change in Focus                :       0.000000                            0.000000 !Bj^i cR  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Gh+f1)\FA"  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 A]xCF{*)&  
    Change in Focus                :       0.000000                            0.000000 Z@oKz:U  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) JWWInuH  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 -XW8 LaQB  
    Change in Focus                :       0.000000                            0.000000 uMpl#N p  
    Decenter X tolerance on surface 1 ArX]L$ D  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 xT=ySa$|>  
    Change in Focus                :       0.000000                            0.000000 KBj@V6Q  
    Decenter Y tolerance on surface 1 l7~Pa0qD  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 |0]YA  
    Change in Focus                :       0.000000                            0.000000 hXTYTbTX  
    Tilt X tolerance on surface (degrees) 1 kQ[Jo%YT?E  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 `u=oeM :  
    Change in Focus                :       0.000000                            0.000000 #G~wE*VR$  
    Tilt Y tolerance on surface (degrees) 1 tvCcyD%w  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 f}blB?e  
    Change in Focus                :       0.000000                            0.000000 t%HI1eO7h  
    Decenter X tolerance on surface 2 b=G4MZQ  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ogp{rY  
    Change in Focus                :       0.000000                            0.000000 B,MQ.|s[  
    Decenter Y tolerance on surface 2 m{O Dz :  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ?sE@]]z  
    Change in Focus                :       0.000000                            0.000000 W1`Dx(g  
    Tilt X tolerance on surface (degrees) 2 4v>o%  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 jm+ blB^%K  
    Change in Focus                :       0.000000                            0.000000 T+(M8 qb  
    Tilt Y tolerance on surface (degrees) 2 G g(NGT  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 9BO|1{  
    Change in Focus                :       0.000000                            0.000000 r;'i<t{P  
    Decenter X tolerance on surface 3 ;Rs.rl>;t/  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 []=_<]{  
    Change in Focus                :       0.000000                            0.000000 bl`D+/V   
    Decenter Y tolerance on surface 3 Qxky^:B  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 !YY 6o V  
    Change in Focus                :       0.000000                            0.000000 %rw}u"3T  
    Tilt X tolerance on surface (degrees) 3 "R8.P/ 3  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 y]7%$* <  
    Change in Focus                :       0.000000                            0.000000 @"0uM?_)-  
    Tilt Y tolerance on surface (degrees) 3 fw:7U %MGv  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 HS(U4   
    Change in Focus                :       0.000000                            0.000000 J ZA*{n2  
    Irregularity of surface 1 in fringes 'H!V54 \j  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 !"`Jqs  
    Change in Focus                :       0.000000                            0.000000 G~S))p  
    Irregularity of surface 2 in fringes df^0{gNHx  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 <8*A\&  
    Change in Focus                :       0.000000                            0.000000 :q(D(mK  
    Irregularity of surface 3 in fringes 8-A:k E  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 %uj[`  
    Change in Focus                :       0.000000                            0.000000 WX ,p`>n  
    Index tolerance on surface 1 =pyVn_dg  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 k?< i*;7  
    Change in Focus                :       0.000000                            0.000000 ?P%|P   
    Index tolerance on surface 2 ]W+)ee|D  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 El{r$-}  
    Change in Focus                :       0.000000                           -0.000000 J}:&eS  
    k{_1r;  
    Worst offenders: C0gfJ~M )  
    Type                      Value      Criterion        Change \|blRm;  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 gU~ L@R_D  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ' 4,y  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 b-2pzcK{#  
    TSTX   2             0.20000000     0.35349910    -0.19053324 )y(oHRCp->  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ]9#CVv[rq  
    TSTY   1             0.20000000     0.42678383    -0.11724851 U&`6&$]  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Ywmyr[Uh'  
    TSTX   1             0.20000000     0.42678383    -0.11724851 z/)$D  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 :,jPNuOA  
    TSTY   3             0.20000000     0.42861670    -0.11541563 EG%I1F%  
    DQ%`v =  
    Estimated Performance Changes based upon Root-Sum-Square method: ix:2Z-  
    Nominal MTF                 :     0.54403234 '^8g9E .4K  
    Estimated change            :    -0.36299231 c$.UE  
    Estimated MTF               :     0.18104003 93 [rL+l.Y  
    [TP  
    Compensator Statistics: [+y &HNf  
    Change in back focus: ,|6Y\L  
    Minimum            :        -0.000000 1X[ 73  
    Maximum            :         0.000000 3T"2S[gT  
    Mean               :        -0.000000 J 0&zb'1  
    Standard Deviation :         0.000000 3(MoXA*  
    j'\>Nn+  
    Monte Carlo Analysis: d:A\<F  
    Number of trials: 20 H3!,d`D.N  
    pi|\0lH6W  
    Initial Statistics: Normal Distribution 52da]BW<  
    ,<7"K&  
      Trial       Criterion        Change :b.3CL\.6  
          1     0.42804416    -0.11598818 ,;9ak-$8p  
    Change in Focus                :      -0.400171 #c6ui0E%;t  
          2     0.54384387    -0.00018847 X";TZk  
    Change in Focus                :       1.018470 7F,07\c  
          3     0.44510003    -0.09893230 iz Xbp02  
    Change in Focus                :      -0.601922 Tw2Xe S  
          4     0.18154684    -0.36248550 dz{#"No0  
    Change in Focus                :       0.920681 Dq{:R  
          5     0.28665820    -0.25737414 (}9cD^F0n  
    Change in Focus                :       1.253875 +G<}JJ'V  
          6     0.21263372    -0.33139862 &/ \O2Aw8  
    Change in Focus                :      -0.903878 Cw6>^  
          7     0.40051424    -0.14351809 -FQC9~rR;g  
    Change in Focus                :      -1.354815 Q1aHIc  
          8     0.48754161    -0.05649072 1R5Yn(  
    Change in Focus                :       0.215922 XPar_8I  
          9     0.40357468    -0.14045766 3X,]=f@_  
    Change in Focus                :       0.281783 eL<m.06cfY  
         10     0.26315315    -0.28087919 ~D<7W4c  
    Change in Focus                :      -1.048393 E~'q?LJOB  
         11     0.26120585    -0.28282649 98X!uh'  
    Change in Focus                :       1.017611 oxUE79  
         12     0.24033815    -0.30369419 >`<Ued  
    Change in Focus                :      -0.109292 X(4s;i  
         13     0.37164046    -0.17239188 v]B0!k&4.  
    Change in Focus                :      -0.692430 ^RYn8I  
         14     0.48597489    -0.05805744 _cW_u?0X:  
    Change in Focus                :      -0.662040 t.3Ct@wK  
         15     0.21462327    -0.32940907 <FCj)CP%  
    Change in Focus                :       1.611296 l\q*%'Pe  
         16     0.43378226    -0.11025008 Q&oC]u(="&  
    Change in Focus                :      -0.640081 l0qdk #v  
         17     0.39321881    -0.15081353 k\sc }z8X  
    Change in Focus                :       0.914906 xnJjCEZ  
         18     0.20692530    -0.33710703 j)g_*\tQ  
    Change in Focus                :       0.801607 C!oS=qK?]  
         19     0.51374068    -0.03029165 it(LphB8  
    Change in Focus                :       0.947293 ^</65+OT+  
         20     0.38013374    -0.16389860 lt@  
    Change in Focus                :       0.667010 _<u8%\  
    aR`_h=a  
    Number of traceable Monte Carlo files generated: 20  f$:7A0  
    s-QM 6*  
    Nominal     0.54403234 {Q{lb(6Ba  
    Best        0.54384387    Trial     2 #Tr;JAzVjG  
    Worst       0.18154684    Trial     4 o?:;8]sr!  
    Mean        0.35770970 *>H M$.?Q  
    Std Dev     0.11156454 $sU5=,  
    =gxgS<bde  
    ;cM8EU^.  
    Compensator Statistics: t/l!KdY$  
    Change in back focus: AyQS4A.s[  
    Minimum            :        -1.354815 Qv9*p('~A  
    Maximum            :         1.611296 2rK-X_}  
    Mean               :         0.161872 [W^6u7~  
    Standard Deviation :         0.869664 \>*MMe  
    'Qm` A=  
    90% >       0.20977951               T0@](g  
    80% >       0.22748071               /e-ka{WS  
    50% >       0.38667627               8>C; >v  
    20% >       0.46553746               />dB%*  
    10% >       0.50064115                kx"hWG4  
     l 'AK  
    End of Run. 3::3r}g  
    DFt=%aV[  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 &{-oA_@  
    =]_d pEEQ  
    6vD]@AF  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 k| _$R?  
    *G%1_   
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 jQ.>2-;H9  
    80% >       0.22748071                 ! /|0:QQi  
    50% >       0.38667627                 Vze!/ED  
    20% >       0.46553746                 L:t)$iF5+  
    10% >       0.50064115 ^D ]7pe  
    ({d,oU$>y  
    最后这个数值是MTF值呢,还是MTF的公差? }$&T O$LX  
    p"hm.=,  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   `@f hge  
    bl:a&<F  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 0-t4+T  
    90% >       0.20977951                 P5 <85t  
    80% >       0.22748071                 -+ IX[  
    50% >       0.38667627                 d9[6kQ]  
    20% >       0.46553746                 rvoS52XG,  
    10% >       0.50064115 eLt Cxe  
    ....... Tl/Dq(8JH  
    . f.j >  
    AP?{N:+  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   i_ODgc`H  
    Mode                : Sensitivities u7y7  
    Sampling            : 2 R=Ly49  
    Nominal Criterion   : 0.54403234 uy*x~v*I]  
    Test Wavelength     : 0.6328 woH3?zR  
    {If2[4!z  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? vM4`u5  
    sp |y/r#  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试