切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15278阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 RJtSHiM2  
    vv%Di.V  
    Eda sGCo  
    :B=`^>RK  
    然后添加了默认公差分析,基本没变 h)A+5^:^  
    L{gFk{@W  
    e,1Jxz4QH  
    9 lA YCsX  
    然后运行分析的结果如下: Yq5}r?N  
    aty K^*aX  
    Analysis of Tolerances r-Dcc;+=Q  
    -F5U.6~`!  
    File : E:\光学设计资料\zemax练习\f500.ZMX f#X`e'1  
    Title: R^8Opf_UN  
    Date : TUE JUN 21 2011 _B W$?:)9  
    J`"1DlH  
    Units are Millimeters. !' sDqBZ&7  
    All changes are computed using linear differences. eJy@N  
    eMh:T@SN  
    Paraxial Focus compensation only. yUH8  
    x$s#';*  
    WARNING: Solves should be removed prior to tolerancing. wy Le3  
    =M(\R8  
    Mnemonics: _n{N3da  
    TFRN: Tolerance on curvature in fringes. G_AAE#r`  
    TTHI: Tolerance on thickness. .s2d  
    TSDX: Tolerance on surface decentering in x. XU SfOf(  
    TSDY: Tolerance on surface decentering in y. /!%P7F  
    TSTX: Tolerance on surface tilt in x (degrees). <D4)gRRo  
    TSTY: Tolerance on surface tilt in y (degrees). c\;} ov+  
    TIRR: Tolerance on irregularity (fringes). ~*2PmD"+:  
    TIND: Tolerance on Nd index of refraction. twO)b"0  
    TEDX: Tolerance on element decentering in x. _fa]2I  
    TEDY: Tolerance on element decentering in y. _$=xa6YA  
    TETX: Tolerance on element tilt in x (degrees). S?8q.59  
    TETY: Tolerance on element tilt in y (degrees). uHf~KYL  
    h_CeGl!M}  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. wh~~g qi9  
    LI nN-b#  
    WARNING: Boundary constraints on compensators will be ignored. Zn9w1ev  
    UiYA#m  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm {1SxM /  
    Mode                : Sensitivities zBjqYqZ<+  
    Sampling            : 2 @pG\5Jnf  
    Nominal Criterion   : 0.54403234 <MfB;M  
    Test Wavelength     : 0.6328 3\'.1p  
    m,.d< **  
    k| jC c  
    Fields: XY Symmetric Angle in degrees ~F' $p  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY "3hw]`a}  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 'Y&yt"cs  
    _;@kS<\N  
    Sensitivity Analysis: x]{h$yI  
    6,c,i;J_  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| H%sQVE7m  
    Type                      Value      Criterion        Change          Value      Criterion        Change hU4~`g p  
    Fringe tolerance on surface 1 O%+:fJz6wI  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374  vb70~k  
    Change in Focus                :      -0.000000                            0.000000 Nq9(O#}  
    Fringe tolerance on surface 2 |]`+@K,S  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 NGxii$F  
    Change in Focus                :       0.000000                            0.000000 l YZHM,"  
    Fringe tolerance on surface 3 ^qk$W? pX  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 D(r|sw  
    Change in Focus                :      -0.000000                            0.000000 VKs$J)6  
    Thickness tolerance on surface 1 /Fv1Z=:r  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 [I^SKvM  
    Change in Focus                :       0.000000                            0.000000 ]XP[tLY Y  
    Thickness tolerance on surface 2 $9l3 DJ  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 <~Y4JMr"  
    Change in Focus                :       0.000000                           -0.000000 Y{J/Oib  
    Decenter X tolerance on surfaces 1 through 3 ]#*@<T*[  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Z]Qm64^I  
    Change in Focus                :       0.000000                            0.000000 ]T*{M  
    Decenter Y tolerance on surfaces 1 through 3 2cmqtlW"  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 APLu?wy7s5  
    Change in Focus                :       0.000000                            0.000000 fI BLJ53  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ^iI^)  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 q,*IR*B:a  
    Change in Focus                :       0.000000                            0.000000 "?N`9J|j)~  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) Cw+ (,1  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 I{RktO;1  
    Change in Focus                :       0.000000                            0.000000 Z4(2&t^  
    Decenter X tolerance on surface 1 {$s:N&5  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ~ib#x~Db  
    Change in Focus                :       0.000000                            0.000000 f5yd2wKy6  
    Decenter Y tolerance on surface 1 7C 4Njei"  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 f?{Y<M~]  
    Change in Focus                :       0.000000                            0.000000 CId`6W  
    Tilt X tolerance on surface (degrees) 1 !W3Le$aL  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 *wSl~J|ZM%  
    Change in Focus                :       0.000000                            0.000000 9Qkww&VEk  
    Tilt Y tolerance on surface (degrees) 1 0<s)xaN>Y  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 =W4cWG?+  
    Change in Focus                :       0.000000                            0.000000 Y8AU<M  
    Decenter X tolerance on surface 2 o%|1D'f^  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 t4JGd)r  
    Change in Focus                :       0.000000                            0.000000 j"NqNv  
    Decenter Y tolerance on surface 2 > *_?^F_  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 <<A@69"4n  
    Change in Focus                :       0.000000                            0.000000 yV]-![`D  
    Tilt X tolerance on surface (degrees) 2 {bNnhW*qOu  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 oZ8SEC "]  
    Change in Focus                :       0.000000                            0.000000 )kd)v4#  
    Tilt Y tolerance on surface (degrees) 2 bh_ALu^CSX  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 "Srp/g]a  
    Change in Focus                :       0.000000                            0.000000 |Jq/kmn  
    Decenter X tolerance on surface 3 ck@[% ?  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 }U(^QB  
    Change in Focus                :       0.000000                            0.000000 =_UPZ]  
    Decenter Y tolerance on surface 3 -~aVt~{k/  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 #A))#sT'R  
    Change in Focus                :       0.000000                            0.000000 M9N|Ql  
    Tilt X tolerance on surface (degrees) 3 2+^#<Uok  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 $rlIJwqn  
    Change in Focus                :       0.000000                            0.000000 :4Y|%7[  
    Tilt Y tolerance on surface (degrees) 3 7v?Ygtv  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 x/Ds`\  
    Change in Focus                :       0.000000                            0.000000 G?"1 z;  
    Irregularity of surface 1 in fringes t4<#k=  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 o/[NUQSI  
    Change in Focus                :       0.000000                            0.000000 $6J5yE  
    Irregularity of surface 2 in fringes RM`8P5i]sF  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 0qTa @y  
    Change in Focus                :       0.000000                            0.000000 NKMB,b  
    Irregularity of surface 3 in fringes c '(]n]a%  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 :N[2*.c[  
    Change in Focus                :       0.000000                            0.000000 %_ z]iz4  
    Index tolerance on surface 1 t=pG6U  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 yrIT4y  
    Change in Focus                :       0.000000                            0.000000 I|PiZ1]2 Y  
    Index tolerance on surface 2 ;w+A38N$J  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 @-7K~in?^  
    Change in Focus                :       0.000000                           -0.000000 'shOSB  
    NH?s  
    Worst offenders: x##Iv|$  
    Type                      Value      Criterion        Change p1&d@PF&&  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 F>}).qx  
    TSTY   2             0.20000000     0.35349910    -0.19053324 oZ=e/\[K  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 p"X\]g^jA>  
    TSTX   2             0.20000000     0.35349910    -0.19053324 }W YY5L8^  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 bVVa5? HP  
    TSTY   1             0.20000000     0.42678383    -0.11724851 *$s)p>  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 [&39Yv.k,7  
    TSTX   1             0.20000000     0.42678383    -0.11724851 p]>bN  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 :4 ;>).  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ( {8Q=Gh  
    S=my;M-  
    Estimated Performance Changes based upon Root-Sum-Square method: zxj!ihs<  
    Nominal MTF                 :     0.54403234 YnNei 7R  
    Estimated change            :    -0.36299231 g$:2c7uL  
    Estimated MTF               :     0.18104003 c8yD-U/-  
     (0k0gq;  
    Compensator Statistics: bEy%S "\<  
    Change in back focus: UIyOn` d"  
    Minimum            :        -0.000000 O ,DX%wk,  
    Maximum            :         0.000000 @!F9}n AP  
    Mean               :        -0.000000 6qw_|A&g  
    Standard Deviation :         0.000000 Gis'IX(  
    l"vT@ g|  
    Monte Carlo Analysis: k"n#4o:  
    Number of trials: 20 ).&$pXj  
    YV2^eGr.  
    Initial Statistics: Normal Distribution %+'&$  
    CsE|pXVG  
      Trial       Criterion        Change n XQg(!  
          1     0.42804416    -0.11598818 ~L1N1Z)Kk  
    Change in Focus                :      -0.400171 9 np<r82  
          2     0.54384387    -0.00018847 tG{Vn+~/  
    Change in Focus                :       1.018470 G3e%~  
          3     0.44510003    -0.09893230 /wK7l-S  
    Change in Focus                :      -0.601922 V*/))n?  
          4     0.18154684    -0.36248550 f.u{;W  
    Change in Focus                :       0.920681 "=RB #  
          5     0.28665820    -0.25737414 {=(4  
    Change in Focus                :       1.253875 }x8fXdd  
          6     0.21263372    -0.33139862 z=u4&x|xA  
    Change in Focus                :      -0.903878 #VrT)po+  
          7     0.40051424    -0.14351809 qVY\5`f@  
    Change in Focus                :      -1.354815 H37Z\xS  
          8     0.48754161    -0.05649072 t?{ B*  
    Change in Focus                :       0.215922 X)|%[aX}q  
          9     0.40357468    -0.14045766 c1z5t]d   
    Change in Focus                :       0.281783 Q/+a{m0 f  
         10     0.26315315    -0.28087919 !YoKKG~_0  
    Change in Focus                :      -1.048393 |UBJu `%  
         11     0.26120585    -0.28282649  d,H%  
    Change in Focus                :       1.017611 E+>;tLw3j  
         12     0.24033815    -0.30369419 g-]td8}#  
    Change in Focus                :      -0.109292 Z-~^)lo  
         13     0.37164046    -0.17239188 }\irr9,  
    Change in Focus                :      -0.692430  ^@ux  
         14     0.48597489    -0.05805744 )/=J=xw2  
    Change in Focus                :      -0.662040 2ru6 bIb;  
         15     0.21462327    -0.32940907 !cq4+0{O;&  
    Change in Focus                :       1.611296 P_Z o}.{  
         16     0.43378226    -0.11025008 9 V;m;sz  
    Change in Focus                :      -0.640081 G(4k#jB  
         17     0.39321881    -0.15081353 Wqqo8Y~fq  
    Change in Focus                :       0.914906 LD5'4,%-  
         18     0.20692530    -0.33710703 7X.1QSuE  
    Change in Focus                :       0.801607 EYQ!ELuF  
         19     0.51374068    -0.03029165 ?^7~|?v  
    Change in Focus                :       0.947293 QoW3*1o  
         20     0.38013374    -0.16389860 >y=%o~  
    Change in Focus                :       0.667010 Zaj<*?\  
    *R:nB)(6<  
    Number of traceable Monte Carlo files generated: 20 H4pjtVBr  
    ~7k b4[  
    Nominal     0.54403234 j@:L MR>  
    Best        0.54384387    Trial     2 7Jqp2\  
    Worst       0.18154684    Trial     4 NT nn!k  
    Mean        0.35770970 gf!j|O;  
    Std Dev     0.11156454 !F%dE!  
    H#ihU3q  
    CUtk4;^y#  
    Compensator Statistics: HgMDw/D(  
    Change in back focus: d,>l;l  
    Minimum            :        -1.354815 \GkcK$Y  
    Maximum            :         1.611296 U9 If%0P  
    Mean               :         0.161872 dzcPSbbpt  
    Standard Deviation :         0.869664 $@<\$I2s  
    >!wwXhH(  
    90% >       0.20977951               =*'` \}];"  
    80% >       0.22748071               FkS{Z s  
    50% >       0.38667627               )Y:CV,`  
    20% >       0.46553746               q80?C.,`  
    10% >       0.50064115                \0:l9;^4  
    g"!B |  
    End of Run. yf$7<gwX  
    59)PJ0E  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 %URyGS]*  
    2{%BQq>C  
    #8(@a Y  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 3j3AI 7c  
    Ufk7%`  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 {!<zk+h$  
    80% >       0.22748071                 -m-~  
    50% >       0.38667627                 x&7!m  
    20% >       0.46553746                 \oaO7w,:"  
    10% >       0.50064115 0uj3kr?cv  
    'Yj/M  
    最后这个数值是MTF值呢,还是MTF的公差? M,7v}[Tbl  
    uRp-yu[nt%  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   RCsd  
    C7nLa@  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : /0A9d-Qd<  
    90% >       0.20977951                 XShi[7  
    80% >       0.22748071                 [vrM,?X  
    50% >       0.38667627                 OWx-I\:  
    20% >       0.46553746                 J>y}kzCz  
    10% >       0.50064115 49W@?: b  
    ....... u $O` \=  
    $SQ UN*/>  
    2<q>]G-nN  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Pu>jECcz  
    Mode                : Sensitivities PDQEI55  
    Sampling            : 2 ,Pi!%an w  
    Nominal Criterion   : 0.54403234 Y &wtF8  
    Test Wavelength     : 0.6328 CiF(   
    1*U)\vK~  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? # RoJD:9  
    G.")Bg  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试