切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16519阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 JD0s0>q_  
    \9OKf|#j  
    =,;$d&#*h  
    ?2da6v,t  
    然后添加了默认公差分析,基本没变 R|8L'H+1x  
    ~K#92  
    X9|*`h<  
    X41Qkf{  
    然后运行分析的结果如下: 4[x` \  
    AQ(n?1LU  
    Analysis of Tolerances 7glf?oE  
    W`vPf  
    File : E:\光学设计资料\zemax练习\f500.ZMX Ewr2popK  
    Title: 2e1%L,y{W  
    Date : TUE JUN 21 2011 TO5y.M|7  
    nlhv  
    Units are Millimeters. _;5zA"~c#@  
    All changes are computed using linear differences. N".BC|r  
    " ]G'^  
    Paraxial Focus compensation only. IoJI|lP  
    cq?,v?m  
    WARNING: Solves should be removed prior to tolerancing. Z7pX%nj_  
    C}<e3BXc  
    Mnemonics: !2HF|x$  
    TFRN: Tolerance on curvature in fringes. ^&86VBP  
    TTHI: Tolerance on thickness. ]!^wB 3j  
    TSDX: Tolerance on surface decentering in x. ;}f {o^]'  
    TSDY: Tolerance on surface decentering in y. k"gm;,`  
    TSTX: Tolerance on surface tilt in x (degrees). hy;V~J#  
    TSTY: Tolerance on surface tilt in y (degrees). eDP&W$s#  
    TIRR: Tolerance on irregularity (fringes). +U J~/XV  
    TIND: Tolerance on Nd index of refraction. uwI"V|g%a&  
    TEDX: Tolerance on element decentering in x. tzd !r7  
    TEDY: Tolerance on element decentering in y. C.#Ha-@uz  
    TETX: Tolerance on element tilt in x (degrees). H'udxPF  
    TETY: Tolerance on element tilt in y (degrees). $eT[`r  
    6l2O>V  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. l3^'bp6HQ  
    8$]SvfX  
    WARNING: Boundary constraints on compensators will be ignored. Q%q;=a  
    J5jI/P  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Tf!6N<dRXR  
    Mode                : Sensitivities `u_MdB}<x;  
    Sampling            : 2 %7`eT^  
    Nominal Criterion   : 0.54403234 ;PG= 3j_  
    Test Wavelength     : 0.6328 MHt ~ZVH  
    "2-D[rYZ  
    !mqIq} h  
    Fields: XY Symmetric Angle in degrees Ws2?sn#x  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY EX!`Zejf  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 G#`  
    2i #Ekon  
    Sensitivity Analysis: $Lbamg->E  
    =2( 52#pT  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| Hp ;$fQ  
    Type                      Value      Criterion        Change          Value      Criterion        Change seAPVzWUU  
    Fringe tolerance on surface 1 \}n_Sk  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ?8s$RYp14  
    Change in Focus                :      -0.000000                            0.000000 x\ # K2  
    Fringe tolerance on surface 2 X!~y&[;[C  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 p`\>GWuT!  
    Change in Focus                :       0.000000                            0.000000 xH` VX-X3  
    Fringe tolerance on surface 3 |%|Vlu  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 Tr}XG  
    Change in Focus                :      -0.000000                            0.000000 <6;@@  
    Thickness tolerance on surface 1 ?-2s}IJO  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 wE<r'  
    Change in Focus                :       0.000000                            0.000000 IIGx+>  
    Thickness tolerance on surface 2 iT| 7**+3  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 icIWv  
    Change in Focus                :       0.000000                           -0.000000 hg<[@Q%$o  
    Decenter X tolerance on surfaces 1 through 3 *fj]L?,  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ;K>'Gl  
    Change in Focus                :       0.000000                            0.000000 NLx TiyQy  
    Decenter Y tolerance on surfaces 1 through 3 {0a\<l  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 h:G>w`X  
    Change in Focus                :       0.000000                            0.000000 <2<2[F5Q%  
    Tilt X tolerance on surfaces 1 through 3 (degrees) KlS#f  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 \5j}6Wj  
    Change in Focus                :       0.000000                            0.000000 4bw4!z9G  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) W?wt$'  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 | X#!5u  
    Change in Focus                :       0.000000                            0.000000 ^ZS!1%1  
    Decenter X tolerance on surface 1 hP.Km%C)0n  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 #U w X~  
    Change in Focus                :       0.000000                            0.000000 (dyY@={q  
    Decenter Y tolerance on surface 1 b+arnKo1fk  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 +03/A`PKrB  
    Change in Focus                :       0.000000                            0.000000 o+XQMg  
    Tilt X tolerance on surface (degrees) 1 GNrRc3dr$  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 +C,/BuG  
    Change in Focus                :       0.000000                            0.000000 z>y# ^f)r  
    Tilt Y tolerance on surface (degrees) 1 ?>V>6cDQ  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 t54?<-  
    Change in Focus                :       0.000000                            0.000000 a%kvC#B  
    Decenter X tolerance on surface 2 z6B#F<h  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 tq'ri-c&b  
    Change in Focus                :       0.000000                            0.000000 FZ]+(Q"]:  
    Decenter Y tolerance on surface 2 #M'V%^xP  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 l.g.O>1   
    Change in Focus                :       0.000000                            0.000000 Y}2Sr-@u  
    Tilt X tolerance on surface (degrees) 2 HIE8@Rv/3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 yw7(!1j=  
    Change in Focus                :       0.000000                            0.000000 {{M/=WqC  
    Tilt Y tolerance on surface (degrees) 2 :Ru8Nm  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 6L\]Ee  
    Change in Focus                :       0.000000                            0.000000 GB pdj}2=  
    Decenter X tolerance on surface 3 Os9 EMU$  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 LCj3{>{/=  
    Change in Focus                :       0.000000                            0.000000 +|X`cmnuU  
    Decenter Y tolerance on surface 3 &!WRa@x0I  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Qmo}esb'(  
    Change in Focus                :       0.000000                            0.000000 r1vS~ 4Z  
    Tilt X tolerance on surface (degrees) 3 @+p(%  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 M?}:N_9<J  
    Change in Focus                :       0.000000                            0.000000 o37oRv]  
    Tilt Y tolerance on surface (degrees) 3 {=Jo!t;f  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ?Y8hy|`  
    Change in Focus                :       0.000000                            0.000000 C$C>RYE?.  
    Irregularity of surface 1 in fringes :X-S&S X0  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 iOb7g@=  
    Change in Focus                :       0.000000                            0.000000 8 qw{e`c  
    Irregularity of surface 2 in fringes ,~1k:>njY~  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 _Ds,91<muQ  
    Change in Focus                :       0.000000                            0.000000 P*|=Z>%[0  
    Irregularity of surface 3 in fringes LdNpb;*  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 %t!S 7UD  
    Change in Focus                :       0.000000                            0.000000 VMJaL}J]  
    Index tolerance on surface 1 (>x05nh  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ^^B_z|;Aa  
    Change in Focus                :       0.000000                            0.000000 ;]>)6  
    Index tolerance on surface 2 Z^4+ 88  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 kRX?o'U~C  
    Change in Focus                :       0.000000                           -0.000000 (/]#G8  
    h2Th)&Fb>  
    Worst offenders: <`; {gX1  
    Type                      Value      Criterion        Change % C2Vga#  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 nIfAG^?|*  
    TSTY   2             0.20000000     0.35349910    -0.19053324 7_)38  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 gg%)#0Zi  
    TSTX   2             0.20000000     0.35349910    -0.19053324 _JNYvng m  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ]a~sJz!  
    TSTY   1             0.20000000     0.42678383    -0.11724851 n4+q7  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 vZ srlHb  
    TSTX   1             0.20000000     0.42678383    -0.11724851 * O?Yp%5NH  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 \>lA2^E f  
    TSTY   3             0.20000000     0.42861670    -0.11541563 wJq$yqos{  
    .S/zxf~h  
    Estimated Performance Changes based upon Root-Sum-Square method: 5*YvgB;  
    Nominal MTF                 :     0.54403234 "gm5 DE  
    Estimated change            :    -0.36299231 em0Y'J  
    Estimated MTF               :     0.18104003 1%N*GJlwJ  
    U Xpp1/d|e  
    Compensator Statistics: ]Z6? m  
    Change in back focus: ."B{U_P&  
    Minimum            :        -0.000000 dc1Zh W4  
    Maximum            :         0.000000 "Z,T%]  
    Mean               :        -0.000000 X~"p]V_  
    Standard Deviation :         0.000000 `Z5dRLrd  
    s>L.V2!$0  
    Monte Carlo Analysis: &V <f;PF(I  
    Number of trials: 20 S1y6G/e9  
    N_iy4W(NU  
    Initial Statistics: Normal Distribution wi jO2F  
    F4z#u2~TC  
      Trial       Criterion        Change 2/s42 FoG  
          1     0.42804416    -0.11598818 ,3f>-mP  
    Change in Focus                :      -0.400171 YCxwIzIR  
          2     0.54384387    -0.00018847 :0 n+RL*5  
    Change in Focus                :       1.018470 IHd W!q  
          3     0.44510003    -0.09893230 Tjrb.+cua  
    Change in Focus                :      -0.601922 QdQ1+*/+U  
          4     0.18154684    -0.36248550 1kL8EPT%o  
    Change in Focus                :       0.920681 \( {'Xo >(  
          5     0.28665820    -0.25737414 3Xd:LDZ{  
    Change in Focus                :       1.253875 4E=v)C'  
          6     0.21263372    -0.33139862 {dpDQP +!  
    Change in Focus                :      -0.903878 <anKw|  
          7     0.40051424    -0.14351809 r#)1/`h  
    Change in Focus                :      -1.354815 !Pnjr T  
          8     0.48754161    -0.05649072 a%b E}  
    Change in Focus                :       0.215922 5~IdWwG*w  
          9     0.40357468    -0.14045766 zN[& iKf  
    Change in Focus                :       0.281783 J-dB  
         10     0.26315315    -0.28087919 -/{FGbpR;  
    Change in Focus                :      -1.048393 x:!s+q` s  
         11     0.26120585    -0.28282649 #*_!Xc9f  
    Change in Focus                :       1.017611 |M5#jVXj  
         12     0.24033815    -0.30369419 g:JSy  
    Change in Focus                :      -0.109292 MSvZ3[5Io  
         13     0.37164046    -0.17239188 .|R4E  
    Change in Focus                :      -0.692430 p2t0 4p!  
         14     0.48597489    -0.05805744 QNU~G3  
    Change in Focus                :      -0.662040 &U|c=$!\  
         15     0.21462327    -0.32940907 p5or"tK  
    Change in Focus                :       1.611296 8/dMvAB1So  
         16     0.43378226    -0.11025008 h L [eA  
    Change in Focus                :      -0.640081 b=:ud[h  
         17     0.39321881    -0.15081353 OmBz'sp:  
    Change in Focus                :       0.914906 Z*mbhod  
         18     0.20692530    -0.33710703 R`a~8QVh&5  
    Change in Focus                :       0.801607 I]e+5 E0  
         19     0.51374068    -0.03029165 |>]@w\]  
    Change in Focus                :       0.947293 jUA~}DVD  
         20     0.38013374    -0.16389860 d:K\W[$Bz  
    Change in Focus                :       0.667010 0,ryy,2  
    <Jhd%O  
    Number of traceable Monte Carlo files generated: 20 SU~.baP?  
    vFR *3$ R  
    Nominal     0.54403234 Jk\-e`eE  
    Best        0.54384387    Trial     2 J}xM+l7uY  
    Worst       0.18154684    Trial     4 OriYt  
    Mean        0.35770970 -]zb3P  
    Std Dev     0.11156454 &Z]}rn  
    P%e7c,  
    '_.qhsS  
    Compensator Statistics: s~ 8 g  
    Change in back focus: e c]kt'  
    Minimum            :        -1.354815 1;=L] L?  
    Maximum            :         1.611296 >{Hg+/  
    Mean               :         0.161872 >bZ-mX)j\0  
    Standard Deviation :         0.869664 $-1ajSVJ  
    j%nN*ms  
    90% >       0.20977951               ZJBb% d1;  
    80% >       0.22748071               [h;I)ug[o(  
    50% >       0.38667627               a&b/C*R_  
    20% >       0.46553746               \~,\|  
    10% >       0.50064115                g-d{"ZXd J  
    {ac$4#Bp[B  
    End of Run. |@JTSz*Or  
    G'/G DN^j  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 a&8K5Z%0  
    I{(!h90  
    OU,FU@6,7w  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 *2a"2o  
    "PI;/(kR  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Gpxp8[ {  
    80% >       0.22748071                 ivo><"Y(r  
    50% >       0.38667627                 .Bl:hk\  
    20% >       0.46553746                 0<`qz |_h  
    10% >       0.50064115 j67a?0<C2U  
    8`+=~S  
    最后这个数值是MTF值呢,还是MTF的公差? cOP'ql{"  
    45.ks.  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   AJi+JO-  
    ?Sh]kJ O  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : u_NLgM7*  
    90% >       0.20977951                 q n-f&R  
    80% >       0.22748071                 vW eg1  
    50% >       0.38667627                 9 l~D}5e7  
    20% >       0.46553746                 dz+!yE\f$  
    10% >       0.50064115 PY_8*~Z  
    ....... }kQ{T:q4  
    RN 4?]8  
    _ab8z]H   
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   D)x^?!  
    Mode                : Sensitivities v3cMPN  
    Sampling            : 2 ;MNUT,U  
    Nominal Criterion   : 0.54403234 6oLOA}q   
    Test Wavelength     : 0.6328 ynM:]*~K  
    VK*_p EV,}  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? D$4GNeB+#  
    %XN;S29d5W  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试