切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16156阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ==ZL0 ][  
    XwlF[3VbiX  
    .@kjC4m  
    "<=HmE-;  
    然后添加了默认公差分析,基本没变 tD j/!L`  
    !zW22M  
    UXdnN;0  
    b" PRa|]  
    然后运行分析的结果如下: IE0hC\C}  
    4?c4GT9(6S  
    Analysis of Tolerances ; `Vbl_"L  
    )J>-;EYb8  
    File : E:\光学设计资料\zemax练习\f500.ZMX _@/nc:)H  
    Title: nX>HRdC  
    Date : TUE JUN 21 2011 7lH.>n  
    [vNaX%o  
    Units are Millimeters. /4 M~ 6LT`  
    All changes are computed using linear differences. ,?KN;~t#vz  
    >S[NI<=8S  
    Paraxial Focus compensation only. Zk*!,,P!  
    ^!j,d_)b!  
    WARNING: Solves should be removed prior to tolerancing. 5bHS|<  
    0Q)m>oL.  
    Mnemonics: 1$toowb"Zy  
    TFRN: Tolerance on curvature in fringes. py':UQS*q  
    TTHI: Tolerance on thickness. ?}Y;/Lwx  
    TSDX: Tolerance on surface decentering in x. C_rA'Hy  
    TSDY: Tolerance on surface decentering in y. \-nbV#{  
    TSTX: Tolerance on surface tilt in x (degrees). p O O4fc  
    TSTY: Tolerance on surface tilt in y (degrees). 6^#@y|.  
    TIRR: Tolerance on irregularity (fringes). <ZXK}5SZ#  
    TIND: Tolerance on Nd index of refraction. =hq+9 R8=  
    TEDX: Tolerance on element decentering in x. ?Mj@;O9>'  
    TEDY: Tolerance on element decentering in y. 6)#=@i` \  
    TETX: Tolerance on element tilt in x (degrees). C#tY};t  
    TETY: Tolerance on element tilt in y (degrees). {IG5qi?/E)  
    e:T8={LU2W  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. [R%Pf/[Fr  
    0w9[Z  
    WARNING: Boundary constraints on compensators will be ignored. |<Rf^"T  
    ^,sKj-  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm V")u y&Ob  
    Mode                : Sensitivities V 3yt{3Or  
    Sampling            : 2 a`E1rK'  
    Nominal Criterion   : 0.54403234 %VsIg  
    Test Wavelength     : 0.6328 Sf"]enwB  
    Uf`~0=w  
    +/|t8zFWs  
    Fields: XY Symmetric Angle in degrees 1 [D,Mu%E  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY y=q iGi[Nc  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Ns#R`WG)  
    rL3 f%L  
    Sensitivity Analysis: ]`H8r y2  
    \ QE?.Fx  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| t{g7 :A  
    Type                      Value      Criterion        Change          Value      Criterion        Change SMIr@*R  
    Fringe tolerance on surface 1 >u/ T`$  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 N799@:.  
    Change in Focus                :      -0.000000                            0.000000 i&',g  
    Fringe tolerance on surface 2 a%NSL6  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 =ec"G2$?"  
    Change in Focus                :       0.000000                            0.000000 jFPD SR5  
    Fringe tolerance on surface 3 j" ~gEGfK  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 g|V md  
    Change in Focus                :      -0.000000                            0.000000 (N/KP+J$n  
    Thickness tolerance on surface 1 ]O 8hkGa  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 -V 'h>K  
    Change in Focus                :       0.000000                            0.000000 9TZ4ffXV*  
    Thickness tolerance on surface 2 v#`7,::  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 K'u66%wAL  
    Change in Focus                :       0.000000                           -0.000000 Ow f:Kife  
    Decenter X tolerance on surfaces 1 through 3 ? ht;ZP  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 9%6W_ 0>  
    Change in Focus                :       0.000000                            0.000000 I] vCra  
    Decenter Y tolerance on surfaces 1 through 3 Jo Ih2PD  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Y2 QX9RN  
    Change in Focus                :       0.000000                            0.000000 j _p|>f<}  
    Tilt X tolerance on surfaces 1 through 3 (degrees) }Gi4`Es  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 #a|.cm>6  
    Change in Focus                :       0.000000                            0.000000 d%w#a3(  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) CTh!|mG  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 %wk3&EC.  
    Change in Focus                :       0.000000                            0.000000 au~}s |#  
    Decenter X tolerance on surface 1 XPd@>2  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 p*OpO&oodu  
    Change in Focus                :       0.000000                            0.000000 gkRbb   
    Decenter Y tolerance on surface 1 "79"SSfOc  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 MzX4/*ba  
    Change in Focus                :       0.000000                            0.000000 } Rs@  
    Tilt X tolerance on surface (degrees) 1 j c-$l  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 b@?pofZ`k  
    Change in Focus                :       0.000000                            0.000000 V+- ]txu|  
    Tilt Y tolerance on surface (degrees) 1 y>jP]LR4  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ,,o5hD0V9  
    Change in Focus                :       0.000000                            0.000000 b@  S.  
    Decenter X tolerance on surface 2 .Mz'h 9@  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 4b<>gpQ  
    Change in Focus                :       0.000000                            0.000000 +#=l{_Z,ZJ  
    Decenter Y tolerance on surface 2 Yj/[I\I"m  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 29~Bu5  
    Change in Focus                :       0.000000                            0.000000 >cYYr@S  
    Tilt X tolerance on surface (degrees) 2 Ks_B%d  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 Tn"/EO^N  
    Change in Focus                :       0.000000                            0.000000 #V#sg}IhM?  
    Tilt Y tolerance on surface (degrees) 2 Uk@'[_1z  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ne-; gTP;  
    Change in Focus                :       0.000000                            0.000000 Vb$4'K '  
    Decenter X tolerance on surface 3 `%nj$-W:  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 j$mCU?  
    Change in Focus                :       0.000000                            0.000000 OS7^S1r-  
    Decenter Y tolerance on surface 3 hUO&rov3@  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 @24)*d^1  
    Change in Focus                :       0.000000                            0.000000 g+  P  
    Tilt X tolerance on surface (degrees) 3 \2huDNW& !  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 [zMnlO  
    Change in Focus                :       0.000000                            0.000000 nBo?r}t4  
    Tilt Y tolerance on surface (degrees) 3 q[Ed6FM$~  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 @kmOz(  
    Change in Focus                :       0.000000                            0.000000 2ms@CQy(00  
    Irregularity of surface 1 in fringes [t}\8^y  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 N,F$^ q6  
    Change in Focus                :       0.000000                            0.000000 GO<,zOqvU  
    Irregularity of surface 2 in fringes ~]LkQQ'  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 2?./S)x)  
    Change in Focus                :       0.000000                            0.000000 yhzZ[vw7k  
    Irregularity of surface 3 in fringes IqrT@jgN-  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 NPY\ >pf  
    Change in Focus                :       0.000000                            0.000000 io^ L[  
    Index tolerance on surface 1 _dk/SWb)  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Htn''adg5  
    Change in Focus                :       0.000000                            0.000000 zvAUF8'_  
    Index tolerance on surface 2 KYN{Dh]-}  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 RP|/rd]-k  
    Change in Focus                :       0.000000                           -0.000000 -H-:b7  
    &K@ RTgb  
    Worst offenders: rD":Gac  
    Type                      Value      Criterion        Change ]sL)[o  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 &U7INUL  
    TSTY   2             0.20000000     0.35349910    -0.19053324 YOE!+MiO  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 PTZ/j g@71  
    TSTX   2             0.20000000     0.35349910    -0.19053324 wcW8"J'AH  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 <A+n[h  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ;2\+O"}4H  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ?vn9HhTD  
    TSTX   1             0.20000000     0.42678383    -0.11724851 .`@)c/<0  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 :+*q,lX8  
    TSTY   3             0.20000000     0.42861670    -0.11541563 i$ CN{c*  
    6G0Y,B7&  
    Estimated Performance Changes based upon Root-Sum-Square method: YRRsbm{  
    Nominal MTF                 :     0.54403234 TpIx!R9  
    Estimated change            :    -0.36299231 pB0p?D)n  
    Estimated MTF               :     0.18104003 $vjl-1x&  
    {2,vxGi  
    Compensator Statistics: YggeKN  
    Change in back focus: _`-trE.  
    Minimum            :        -0.000000 ":!7R<t  
    Maximum            :         0.000000 g*]/HS>e<G  
    Mean               :        -0.000000 CaE1h9  
    Standard Deviation :         0.000000 /|MHZ$Y9w?  
    su\iUi  
    Monte Carlo Analysis: e:uk``\  
    Number of trials: 20 SR8)4:aKW  
    K~6,xZlDWM  
    Initial Statistics: Normal Distribution bbe$6xwi  
    1r?hRJ:'  
      Trial       Criterion        Change ~4^~w#R  
          1     0.42804416    -0.11598818 K*id 1YY  
    Change in Focus                :      -0.400171 'JK"3m}nT  
          2     0.54384387    -0.00018847 l2Pry'3  
    Change in Focus                :       1.018470 G~ mLc  
          3     0.44510003    -0.09893230 ($or@lfs  
    Change in Focus                :      -0.601922 c0aXOG^  
          4     0.18154684    -0.36248550 ;eY.4/*R  
    Change in Focus                :       0.920681 K6d2}!5  
          5     0.28665820    -0.25737414 0* ^>/*  
    Change in Focus                :       1.253875 ' Ih f|;r  
          6     0.21263372    -0.33139862 kH'zTO1  
    Change in Focus                :      -0.903878 1Xn:B_pP  
          7     0.40051424    -0.14351809 0(|Yy/Yq  
    Change in Focus                :      -1.354815 6 @A'N(I=O  
          8     0.48754161    -0.05649072 *'to#_n&W  
    Change in Focus                :       0.215922 9,c_(%C  
          9     0.40357468    -0.14045766 6m$lK%P{1  
    Change in Focus                :       0.281783 `p'682xI  
         10     0.26315315    -0.28087919 !YVGT <  
    Change in Focus                :      -1.048393 #T3dfVWv  
         11     0.26120585    -0.28282649 6Q*Zy[=  
    Change in Focus                :       1.017611 xNOArb5e5  
         12     0.24033815    -0.30369419 u8Ak2:   
    Change in Focus                :      -0.109292 $H8B%rT]  
         13     0.37164046    -0.17239188 Mj<T+Ohz  
    Change in Focus                :      -0.692430 GTuxMg`  
         14     0.48597489    -0.05805744 Q&]f9j_  
    Change in Focus                :      -0.662040 |5TzRz  
         15     0.21462327    -0.32940907 U-U"RC>  
    Change in Focus                :       1.611296 ;_p$5GVR|  
         16     0.43378226    -0.11025008 Rl{e<>O\^  
    Change in Focus                :      -0.640081 v8l3{qq  
         17     0.39321881    -0.15081353 K 7 OIT2-  
    Change in Focus                :       0.914906 >r\q6f#J4  
         18     0.20692530    -0.33710703 =n<Lbl(7  
    Change in Focus                :       0.801607 YN}vAFR`  
         19     0.51374068    -0.03029165 Rn$[P.||  
    Change in Focus                :       0.947293 zI,z<-  
         20     0.38013374    -0.16389860 !rsGCw!Pg  
    Change in Focus                :       0.667010 nq5qUErew  
    JnIE6@g<y  
    Number of traceable Monte Carlo files generated: 20 J!\oH%FJp  
    *$Z,kZ^^  
    Nominal     0.54403234 IqAML|C  
    Best        0.54384387    Trial     2 rU9z? (  
    Worst       0.18154684    Trial     4 y|/[;  
    Mean        0.35770970 `Kbf]"4q  
    Std Dev     0.11156454 dym K@  
    /b7]NC%  
    |/;;uK,y  
    Compensator Statistics: 43?uTnX/  
    Change in back focus: J'C9}7G  
    Minimum            :        -1.354815 = glF6a  
    Maximum            :         1.611296 b/"gUYo  
    Mean               :         0.161872 i_(6} Y&  
    Standard Deviation :         0.869664 ShesJj  
    [\3W_jR  
    90% >       0.20977951               fSVb.MZa7  
    80% >       0.22748071               ,@kLH"a0  
    50% >       0.38667627               $p|Im,  
    20% >       0.46553746               s}F.D^^G  
    10% >       0.50064115                m6uFmU*<M}  
    k8c(|/7d  
    End of Run. #y-R*4G  
    JNv@MJb}  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Lpohc4d[V  
    7M)<Sv  
    xz Hb+1+p  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 f?$yxMw:@  
    h~lps?.#b  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 2}XxRJ0   
    80% >       0.22748071                 P%ThW9^vnj  
    50% >       0.38667627                 Jd~Mq9(  
    20% >       0.46553746                 &dPUd ~&EL  
    10% >       0.50064115 I@5$<SN  
    =d+`xN*  
    最后这个数值是MTF值呢,还是MTF的公差? y|=KrvMHJ  
    [nG[ x|;|  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   [)?9|yY"`  
    !L( )3=  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : uHRxV"@}[1  
    90% >       0.20977951                 K`60[bdp  
    80% >       0.22748071                 +WKN&@  
    50% >       0.38667627                 Ino]::ZJ/  
    20% >       0.46553746                 HV7f%U  
    10% >       0.50064115 ~;YkR'q0_  
    ....... G1*,~1i  
    _y sakn  
    g$vOWSI +  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   baL<|& c  
    Mode                : Sensitivities QC&,C}t,  
    Sampling            : 2 ?Iij[CbU  
    Nominal Criterion   : 0.54403234 ;Bw3@c  
    Test Wavelength     : 0.6328 2$VSH&  
    3`RI[%AN~  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? a<>cbP  
    J4z&J SY  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试