切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16301阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 &R5M&IwL  
    F}AbA pTv  
    3FXMM&w  
    d|o"QYX  
    然后添加了默认公差分析,基本没变 pbzbh&Y  
    aJ}sYf^  
    J<BdIKCma  
    (D l"s`UH~  
    然后运行分析的结果如下: ks r5P~  
    EmUxM_ T/2  
    Analysis of Tolerances A0]o/IBz  
    #KK(Z \;  
    File : E:\光学设计资料\zemax练习\f500.ZMX e{} o:r  
    Title: f.f4<_v'h  
    Date : TUE JUN 21 2011 PaDT)RrEM  
    d#d~t[=  
    Units are Millimeters. xw-q)u  
    All changes are computed using linear differences. RdDcMZ  
    ZbrE m  
    Paraxial Focus compensation only. = ]@xXVf/  
    ua[\npz5  
    WARNING: Solves should be removed prior to tolerancing. !<LS4s;  
    qnS7z%H8  
    Mnemonics: q#a21~S<  
    TFRN: Tolerance on curvature in fringes. X,N@`  
    TTHI: Tolerance on thickness. UA9LI<Y  
    TSDX: Tolerance on surface decentering in x. 5&kR1Bp#-  
    TSDY: Tolerance on surface decentering in y. YHA[PF   
    TSTX: Tolerance on surface tilt in x (degrees). |{ [i M  
    TSTY: Tolerance on surface tilt in y (degrees). `o3d@Vc  
    TIRR: Tolerance on irregularity (fringes). yJL"uleRT  
    TIND: Tolerance on Nd index of refraction. {S}@P~H =  
    TEDX: Tolerance on element decentering in x. q kKABow  
    TEDY: Tolerance on element decentering in y. Sy'>JHx  
    TETX: Tolerance on element tilt in x (degrees). E\zhxiI  
    TETY: Tolerance on element tilt in y (degrees). bn`zI~WS  
    S|J8:-  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. -,;Ep'  
    5QSmim  
    WARNING: Boundary constraints on compensators will be ignored. Imw x~eo  
    iN*>Z(b"  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm kW~F*  
    Mode                : Sensitivities X^W> "q  
    Sampling            : 2 ^pjez+  
    Nominal Criterion   : 0.54403234 #K l2K4  
    Test Wavelength     : 0.6328 mqHt%RX  
    !LJ.L?9qw  
    AWDjj\Q4  
    Fields: XY Symmetric Angle in degrees _tk5?9Ykn  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY p~.@8r(  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 2T5xSpC  
    K;qZc\q  
    Sensitivity Analysis: &rl>{Uvq  
    9CNHjs+-}s  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| *o[%?$8T  
    Type                      Value      Criterion        Change          Value      Criterion        Change t0>{0 5  
    Fringe tolerance on surface 1 `Ek!;u>  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 X w8i l  
    Change in Focus                :      -0.000000                            0.000000 nsT|,O  
    Fringe tolerance on surface 2 ;Kf|a}m-  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 kOCxIJ!Xp=  
    Change in Focus                :       0.000000                            0.000000 8w&rj-  
    Fringe tolerance on surface 3 \uk#pL  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 FZ9<Q  
    Change in Focus                :      -0.000000                            0.000000 R`Lm"5w  
    Thickness tolerance on surface 1 qX(%Wn;n  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 [hL1 PWKs  
    Change in Focus                :       0.000000                            0.000000 +29\'w,  
    Thickness tolerance on surface 2 ?I'-C?(t@1  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 2eU[*x  
    Change in Focus                :       0.000000                           -0.000000 lX*;KHT)  
    Decenter X tolerance on surfaces 1 through 3 m GhJn  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 tFaE cP  
    Change in Focus                :       0.000000                            0.000000 Zir`IQ$  
    Decenter Y tolerance on surfaces 1 through 3 :\U3bkv+  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 H g`{9v  
    Change in Focus                :       0.000000                            0.000000 H/k W :k  
    Tilt X tolerance on surfaces 1 through 3 (degrees) .$0Ob<.  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 YfwJBz D  
    Change in Focus                :       0.000000                            0.000000 rcZ SC3  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) M0SH-0T;Z  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 X u):.0I  
    Change in Focus                :       0.000000                            0.000000 p'uz2/g  
    Decenter X tolerance on surface 1 ~(j'a!#Vvk  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 o# xg:m_py  
    Change in Focus                :       0.000000                            0.000000 Yp]G)}'R  
    Decenter Y tolerance on surface 1 3\n{,Q  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 r^t{Ii ~  
    Change in Focus                :       0.000000                            0.000000 8 %j{4$  
    Tilt X tolerance on surface (degrees) 1 s[q4K  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 c@-K  
    Change in Focus                :       0.000000                            0.000000 4nH91Z9=  
    Tilt Y tolerance on surface (degrees) 1 k |3(dXLG  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 1=Zw=ufqV  
    Change in Focus                :       0.000000                            0.000000 \( <{)GpBi  
    Decenter X tolerance on surface 2 9JV 3  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 :bRR(sP  
    Change in Focus                :       0.000000                            0.000000 Tud1xq  
    Decenter Y tolerance on surface 2 h.$__Gs  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 %hbLT{w  
    Change in Focus                :       0.000000                            0.000000 +MZO%4  
    Tilt X tolerance on surface (degrees) 2 /iy*3P,`  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 5^K#Tj ;2  
    Change in Focus                :       0.000000                            0.000000 ~H|LWCU)K8  
    Tilt Y tolerance on surface (degrees) 2 loUwR z  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 SP*JleQN  
    Change in Focus                :       0.000000                            0.000000 h ^h-pd  
    Decenter X tolerance on surface 3 +;*(a3Gp  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 0BB @E(*  
    Change in Focus                :       0.000000                            0.000000 BZ+ mO  
    Decenter Y tolerance on surface 3 r!$NZ2I  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 tOg 8L2  
    Change in Focus                :       0.000000                            0.000000 k!/ _/^{  
    Tilt X tolerance on surface (degrees) 3 46Q; F  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 pLQSG}N  
    Change in Focus                :       0.000000                            0.000000 zQ5jx5B":  
    Tilt Y tolerance on surface (degrees) 3 z8(R.TB  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 F|Dz]ar  
    Change in Focus                :       0.000000                            0.000000 tnF9Vj[#%_  
    Irregularity of surface 1 in fringes ' ?G[T28  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 3y=<w|4F  
    Change in Focus                :       0.000000                            0.000000 Flujwh@rg  
    Irregularity of surface 2 in fringes [du>ff  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 >3`ctbe  
    Change in Focus                :       0.000000                            0.000000 |5IY`;+9  
    Irregularity of surface 3 in fringes gQh Ccv  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 2v9s@k/k)6  
    Change in Focus                :       0.000000                            0.000000 v^],loi<V  
    Index tolerance on surface 1 G#n^@kc*,  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 gLaO#cQ%  
    Change in Focus                :       0.000000                            0.000000 nn)`eR&  
    Index tolerance on surface 2 ^s@*ISY  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 6l\UNG7  
    Change in Focus                :       0.000000                           -0.000000 UI<PNQvo9  
    CoUd16*"JM  
    Worst offenders: wEfz2Eq  
    Type                      Value      Criterion        Change (: TGev  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 9{%g-u \  
    TSTY   2             0.20000000     0.35349910    -0.19053324 !UBDx$]^  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 y/}VtD  
    TSTX   2             0.20000000     0.35349910    -0.19053324 a4jnu:e  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 L_~I ~  
    TSTY   1             0.20000000     0.42678383    -0.11724851 pl#o!j(i  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 QK?2E   
    TSTX   1             0.20000000     0.42678383    -0.11724851 7c29Ua~[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 hdf8U  
    TSTY   3             0.20000000     0.42861670    -0.11541563 *)NR$9lGv  
    XW~ BEa  
    Estimated Performance Changes based upon Root-Sum-Square method: zK>'tFU  
    Nominal MTF                 :     0.54403234 XJJ[F|k~  
    Estimated change            :    -0.36299231 l<aqiZSY  
    Estimated MTF               :     0.18104003 HhWwc#B  
    Vgqvvq<S  
    Compensator Statistics: u_4:#~b  
    Change in back focus: 5S\][;u  
    Minimum            :        -0.000000 Y*kh$E%<#  
    Maximum            :         0.000000 Lf; ta  
    Mean               :        -0.000000 @7Rt4}g  
    Standard Deviation :         0.000000 3%[)!zKv  
    5xMA~I0c  
    Monte Carlo Analysis: T+K` ^xv_L  
    Number of trials: 20 UU.mdSL  
    *CH!<VB/  
    Initial Statistics: Normal Distribution 4aalhy<j  
    vNC$f(cQ  
      Trial       Criterion        Change wsf Hd<Z_  
          1     0.42804416    -0.11598818 )4!CR/ao  
    Change in Focus                :      -0.400171 rysP)e  
          2     0.54384387    -0.00018847 + 9\:$wMN  
    Change in Focus                :       1.018470 NoJnchiU  
          3     0.44510003    -0.09893230 +H[}T ]  
    Change in Focus                :      -0.601922 iJ`%yg,  
          4     0.18154684    -0.36248550 agU%z:M{  
    Change in Focus                :       0.920681 b:FEp'ZS  
          5     0.28665820    -0.25737414 ;!l*7}5X=  
    Change in Focus                :       1.253875 'ZGT`'ri  
          6     0.21263372    -0.33139862 6z9R1&~%  
    Change in Focus                :      -0.903878 a%Z4_ToLZ  
          7     0.40051424    -0.14351809 `W"a! ,s2  
    Change in Focus                :      -1.354815 Vq3]7l  
          8     0.48754161    -0.05649072 ]k'#g Z$  
    Change in Focus                :       0.215922 4;BW  
          9     0.40357468    -0.14045766 =E [4H  
    Change in Focus                :       0.281783 'w`SBYQ5  
         10     0.26315315    -0.28087919 .Bb$j=  
    Change in Focus                :      -1.048393 Q$xa  
         11     0.26120585    -0.28282649 <[Tq7cO0  
    Change in Focus                :       1.017611 Qb!!J4| !  
         12     0.24033815    -0.30369419 KjFZ  
    Change in Focus                :      -0.109292 BKE\SWu  
         13     0.37164046    -0.17239188 ( oQ'4,F  
    Change in Focus                :      -0.692430 RNv{n mf  
         14     0.48597489    -0.05805744 bGZ hUEq  
    Change in Focus                :      -0.662040 DO7- =74=  
         15     0.21462327    -0.32940907 aUypt(dv  
    Change in Focus                :       1.611296 xb4Pt`x)rS  
         16     0.43378226    -0.11025008 <Jwi ~I=^  
    Change in Focus                :      -0.640081 IvEMg2f}  
         17     0.39321881    -0.15081353 ]regi- LGU  
    Change in Focus                :       0.914906 y 2z{rd  
         18     0.20692530    -0.33710703 "XGD:>Q.  
    Change in Focus                :       0.801607 h]kn%?fpmB  
         19     0.51374068    -0.03029165 42b.7E  
    Change in Focus                :       0.947293 dV5PhP>6  
         20     0.38013374    -0.16389860 DNm(:%)0  
    Change in Focus                :       0.667010 q%OcLZ<,  
    6uu^A9x  
    Number of traceable Monte Carlo files generated: 20 ad"'O]  
    x`]Of r'  
    Nominal     0.54403234 ^~ Ekg:`  
    Best        0.54384387    Trial     2 M0cd-Dn  
    Worst       0.18154684    Trial     4 %*$5!;  
    Mean        0.35770970 zWy ,Om8P  
    Std Dev     0.11156454 mSU@UD|'  
    6N9 c<JC  
    7V~ "x&Eu  
    Compensator Statistics: P7's8KOoS  
    Change in back focus: &}vR(y*#c  
    Minimum            :        -1.354815 \:]DFZ=!  
    Maximum            :         1.611296 f'1(y\_fb  
    Mean               :         0.161872 ~c9>Nr9|`  
    Standard Deviation :         0.869664 xU@1!%l@  
    seu ~'s-  
    90% >       0.20977951               j_!bT!8  
    80% >       0.22748071               DW1@<X  
    50% >       0.38667627               TNh=4xQ}  
    20% >       0.46553746               x|.v{tQa  
    10% >       0.50064115                Ba/RO36&c  
    9GO}&7   
    End of Run. 6tOCZ'f  
    A[RHw<  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 0yn[L3x7  
    uCw>}3  
    z<a$q3!#  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 i*X{^A73"  
    /r276Q  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Tp?-* K  
    80% >       0.22748071                 dByjcTPA  
    50% >       0.38667627                 -^Xy%  
    20% >       0.46553746                 .$Y? W<  
    10% >       0.50064115 1SUzzlRx  
    ZZ("-#?  
    最后这个数值是MTF值呢,还是MTF的公差? i E9\_MA  
    je,c7ZFO  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Yrxk Kw#  
    09d9S`cS\  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : W~ruN4q.  
    90% >       0.20977951                 $a(`ve|  
    80% >       0.22748071                 dv!r.  
    50% >       0.38667627                 M0w/wt|  
    20% >       0.46553746                 xu\eXx6H  
    10% >       0.50064115 bL1m'^r  
    ....... BBnq_w"a  
    ;:]\KJm}?  
    Y#HI;Y^RP  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   R_N:#K.M  
    Mode                : Sensitivities lzhqcL"  
    Sampling            : 2 )T|L,Lp  
    Nominal Criterion   : 0.54403234 j0mM>X HB  
    Test Wavelength     : 0.6328 qCPmbg  
    W Zn.;  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? -{jdn%Y7CK  
    ytAWOt}`  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试