切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16500阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 "~'b  
    9-MUX^?u  
    I_RsYw  
    ,c NLkoN  
    然后添加了默认公差分析,基本没变 h<$MyN4]g  
    =ZqT3_  
    T?X_c"{8M  
    Dc,I7F|%  
    然后运行分析的结果如下: i-6 Z"b{  
    Cg(Y&Gxf.  
    Analysis of Tolerances MG.` r{5  
    )= =Jfn y  
    File : E:\光学设计资料\zemax练习\f500.ZMX <u2}i<#  
    Title: DY`kx2e!  
    Date : TUE JUN 21 2011 wp&=$Aa)'  
    soQ1X@"0  
    Units are Millimeters. b9l;a+]d  
    All changes are computed using linear differences. Y=Kc'x[,Zj  
    P?k0zwOlBl  
    Paraxial Focus compensation only. `^)jLuyu  
    _fKou2$yz  
    WARNING: Solves should be removed prior to tolerancing. V;v8=1t!  
    [EKQR>s)  
    Mnemonics: ]?(-[  
    TFRN: Tolerance on curvature in fringes. s=;uc] 9g  
    TTHI: Tolerance on thickness. qw^uPs7Uw  
    TSDX: Tolerance on surface decentering in x. [C'JH//q*t  
    TSDY: Tolerance on surface decentering in y. _WRFsDZ'  
    TSTX: Tolerance on surface tilt in x (degrees). 5rU[ T ir  
    TSTY: Tolerance on surface tilt in y (degrees). aJ>65RJ^=  
    TIRR: Tolerance on irregularity (fringes). jEZMUqGY!  
    TIND: Tolerance on Nd index of refraction. GaK-t*Q  
    TEDX: Tolerance on element decentering in x. h%uZYsK  
    TEDY: Tolerance on element decentering in y. `9BROZnq  
    TETX: Tolerance on element tilt in x (degrees). ATK_DE Au  
    TETY: Tolerance on element tilt in y (degrees). Kkm>e{0)AY  
    BW$"`T@c6~  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. MB~=f[cUnd  
    XzEc2)0'v  
    WARNING: Boundary constraints on compensators will be ignored. 0"pAN[=K@  
    GJ_7h_4  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 0|{u{w@!`  
    Mode                : Sensitivities c"B{/;A  
    Sampling            : 2 73/P&hT  
    Nominal Criterion   : 0.54403234 5?]hd*8   
    Test Wavelength     : 0.6328 24z< gO  
    75XJL;W #  
     ']2E {V  
    Fields: XY Symmetric Angle in degrees Gz,i~XX  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY xe^Gs]fm  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 7+\+DujE$  
    ~?K~L~f5  
    Sensitivity Analysis: e,W%uH>X  
    OC BgR4I  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| n(;|q&3  
    Type                      Value      Criterion        Change          Value      Criterion        Change SAy=WV  
    Fringe tolerance on surface 1 EK6:~  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 0Ziw_S\d&s  
    Change in Focus                :      -0.000000                            0.000000 K/IWH[  
    Fringe tolerance on surface 2 HTX?,C_  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ]~'5\58sP  
    Change in Focus                :       0.000000                            0.000000 2AT5  
    Fringe tolerance on surface 3 b4[bL2J$h1  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 LG9+y  
    Change in Focus                :      -0.000000                            0.000000 A#EDk U,  
    Thickness tolerance on surface 1 old(i:2  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 J  IUx  
    Change in Focus                :       0.000000                            0.000000 `p2+&&]S  
    Thickness tolerance on surface 2 *Q ?tl\E  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ;$.J3!  
    Change in Focus                :       0.000000                           -0.000000 3G}x;Cp\D  
    Decenter X tolerance on surfaces 1 through 3 u)}$~E>  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 (k5We!4[1  
    Change in Focus                :       0.000000                            0.000000 L^@'q6*}  
    Decenter Y tolerance on surfaces 1 through 3 ~A'!2  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 F\KjEl0  
    Change in Focus                :       0.000000                            0.000000 4T|b Cs?e  
    Tilt X tolerance on surfaces 1 through 3 (degrees) c;Pe/d  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 M2OIBH4!  
    Change in Focus                :       0.000000                            0.000000 a_f~N1kq  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) PgtJ3oq [}  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ON=@ O  
    Change in Focus                :       0.000000                            0.000000 "{@A5A  
    Decenter X tolerance on surface 1 kMi/>gpQ  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 K1 EynU I  
    Change in Focus                :       0.000000                            0.000000 9g'LkP  
    Decenter Y tolerance on surface 1 g{OwuAC_  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 l;R%= P?'F  
    Change in Focus                :       0.000000                            0.000000 <D<4BnZ(  
    Tilt X tolerance on surface (degrees) 1 I*{4rDt  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 CZud& <  
    Change in Focus                :       0.000000                            0.000000 \^L`7cBL  
    Tilt Y tolerance on surface (degrees) 1 8m2Tk\;:  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ,?8qpEG~#+  
    Change in Focus                :       0.000000                            0.000000 >s>1[W@*  
    Decenter X tolerance on surface 2 b=yx7v"r  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 8!O5quEc  
    Change in Focus                :       0.000000                            0.000000 8@i7pBl@  
    Decenter Y tolerance on surface 2 ,k )w6)  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 iU$] {c2;A  
    Change in Focus                :       0.000000                            0.000000 r e/@D@%  
    Tilt X tolerance on surface (degrees) 2 :ubV};  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 S?1AFI9{   
    Change in Focus                :       0.000000                            0.000000 k1w_[w [  
    Tilt Y tolerance on surface (degrees) 2 #hfXZVD  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 *X'Y$x>f  
    Change in Focus                :       0.000000                            0.000000 F U_jGwD  
    Decenter X tolerance on surface 3 }zkHJxZgE  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Tl(^  
    Change in Focus                :       0.000000                            0.000000 }\tdcTMgS  
    Decenter Y tolerance on surface 3 QdT}wkX  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 =mS\i663  
    Change in Focus                :       0.000000                            0.000000 SQBa;hvgM  
    Tilt X tolerance on surface (degrees) 3 0 HGM4[)=  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 hn5h\M?  
    Change in Focus                :       0.000000                            0.000000 R Q vft  
    Tilt Y tolerance on surface (degrees) 3 2`7==?  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 5]KW^sL  
    Change in Focus                :       0.000000                            0.000000 z:8eEq3w  
    Irregularity of surface 1 in fringes H$=e -L`@  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 )Xk0VDNp$/  
    Change in Focus                :       0.000000                            0.000000 .`HYA*8_  
    Irregularity of surface 2 in fringes .{ocV#{s  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 R)_%i<nq\  
    Change in Focus                :       0.000000                            0.000000 ~zHjMo2  
    Irregularity of surface 3 in fringes F_w Z"e6  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 )WRLBFi3  
    Change in Focus                :       0.000000                            0.000000 R<\F:9  
    Index tolerance on surface 1 C7rNV0.Fq  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 q*U*Fu+  
    Change in Focus                :       0.000000                            0.000000 ~HTmO;HNf"  
    Index tolerance on surface 2 'n{Nvt.c  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 `|6'9  
    Change in Focus                :       0.000000                           -0.000000 :o|\"3  
    1C< uz29  
    Worst offenders: AqWUwK9T  
    Type                      Value      Criterion        Change -}nxJH)  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 >6NRi/[  
    TSTY   2             0.20000000     0.35349910    -0.19053324 }#L^!\V }  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ,F79xx9ufg  
    TSTX   2             0.20000000     0.35349910    -0.19053324 61SlVec*o8  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Z>QF#."m  
    TSTY   1             0.20000000     0.42678383    -0.11724851 2/vMoVT,  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 f[@77m*  
    TSTX   1             0.20000000     0.42678383    -0.11724851 x.7]/)  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 _wTOmz%|R  
    TSTY   3             0.20000000     0.42861670    -0.11541563 v=0(~<7B  
    6N!Q:x^4(T  
    Estimated Performance Changes based upon Root-Sum-Square method: \]</w5 Pi,  
    Nominal MTF                 :     0.54403234 C`$n[kCJ  
    Estimated change            :    -0.36299231 kh {p%<r{  
    Estimated MTF               :     0.18104003 $w)!3c4  
    Wr<j!>J6Ki  
    Compensator Statistics: iIMd!Q.)@  
    Change in back focus: n,jKmA  
    Minimum            :        -0.000000 p2ogn}`  
    Maximum            :         0.000000 T ? $:'XJ  
    Mean               :        -0.000000 s %qF/70'  
    Standard Deviation :         0.000000 !Y$h"<M  
    W}m)cn3@  
    Monte Carlo Analysis: @OV|]u  
    Number of trials: 20 k_sg ?(-!o  
    5* j?E  
    Initial Statistics: Normal Distribution `7[EKOJ3g  
    ,=UK}*e"  
      Trial       Criterion        Change rX4j*u2u  
          1     0.42804416    -0.11598818 U}6B*Xx'  
    Change in Focus                :      -0.400171 k,85Y$`'  
          2     0.54384387    -0.00018847 Fpm|_f7  
    Change in Focus                :       1.018470 syWG'( >  
          3     0.44510003    -0.09893230 ",^Mxm{  
    Change in Focus                :      -0.601922 Sx708`/Ep  
          4     0.18154684    -0.36248550 |uX,5Q#6  
    Change in Focus                :       0.920681 W ?qmp|YD  
          5     0.28665820    -0.25737414 5 xppKt  
    Change in Focus                :       1.253875 M^O2\G#B  
          6     0.21263372    -0.33139862 =8t]\Y?  
    Change in Focus                :      -0.903878 :# .<[  
          7     0.40051424    -0.14351809 [Yo,*,y31  
    Change in Focus                :      -1.354815 9Xj7~,  
          8     0.48754161    -0.05649072 RZHd9v$  
    Change in Focus                :       0.215922 N9jH\0nG  
          9     0.40357468    -0.14045766 T;L>;E>B  
    Change in Focus                :       0.281783 x,rlrxI  
         10     0.26315315    -0.28087919 '_GrD>P)-  
    Change in Focus                :      -1.048393 wj,:"ESb4  
         11     0.26120585    -0.28282649 >d,jKlh^.%  
    Change in Focus                :       1.017611 T+*%?2>q"  
         12     0.24033815    -0.30369419 v:!Z=I}>  
    Change in Focus                :      -0.109292 byLft 1  
         13     0.37164046    -0.17239188 { &"CH]r  
    Change in Focus                :      -0.692430 GO__$%~  
         14     0.48597489    -0.05805744 B.dH(um  
    Change in Focus                :      -0.662040 N.\- 8?>  
         15     0.21462327    -0.32940907 {_`^R>"\&w  
    Change in Focus                :       1.611296 4?ICy/,U-  
         16     0.43378226    -0.11025008 bL'aB{s  
    Change in Focus                :      -0.640081 S'4(0j  
         17     0.39321881    -0.15081353 Jz7!4mu  
    Change in Focus                :       0.914906 )\eI;8  
         18     0.20692530    -0.33710703 t/cY=Wp  
    Change in Focus                :       0.801607 1`(tf6op  
         19     0.51374068    -0.03029165 lwrC pD .  
    Change in Focus                :       0.947293 =<{np  
         20     0.38013374    -0.16389860 ?$*SjZt  
    Change in Focus                :       0.667010 j/fzzI0@  
    6G #}Q/  
    Number of traceable Monte Carlo files generated: 20 cl]Mi "3_  
    kS_(wp A  
    Nominal     0.54403234 =T(6#"  
    Best        0.54384387    Trial     2 *VFf.aPwYi  
    Worst       0.18154684    Trial     4 r[BVvX/,F  
    Mean        0.35770970 x[$z({Yf  
    Std Dev     0.11156454 vgsJeV`}I  
    [P&7i57  
    1DE1.1  
    Compensator Statistics: ]L9s%]o  
    Change in back focus: MCS8y+QK  
    Minimum            :        -1.354815 KVn []@#  
    Maximum            :         1.611296 #73F} tZ^  
    Mean               :         0.161872 5Ow[~p"l<  
    Standard Deviation :         0.869664 tn Pv70m  
    d/[; `ZD+  
    90% >       0.20977951               :c8&N-`  
    80% >       0.22748071               |y0(Q V  
    50% >       0.38667627               |N%fMPKa  
    20% >       0.46553746               ~yH?=:>U  
    10% >       0.50064115                :-/M?,Q"  
    -(  
    End of Run. 9aze>nxh.  
    .NYbi@bk(<  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 ldiD2 Q  
    bn!HUM,  
    {u#;?u=|  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 t m7^yn:  
    SKkUU^\#R`  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 EfCx`3~EX  
    80% >       0.22748071                 B{'( L |  
    50% >       0.38667627                 Q9Kve3u-i  
    20% >       0.46553746                 }]lr>"~y}  
    10% >       0.50064115 {q `jDDM  
    ??M"6k  
    最后这个数值是MTF值呢,还是MTF的公差? ZWc]$H?  
    qz0;p=$8Z  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   .J)I | '  
    +n{#V;J  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : wQ^EYKD  
    90% >       0.20977951                 gp>3I!bo[K  
    80% >       0.22748071                 B* ?]H*K  
    50% >       0.38667627                 ar__ Pf6r  
    20% >       0.46553746                 )wC?T  
    10% >       0.50064115 B:'J `M"N  
    ....... yXSFjcoB  
    Y$Z x,  
    mq@6Q\Z+  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   zk$FkbX  
    Mode                : Sensitivities ojcA<60 '  
    Sampling            : 2 7m4ao K  
    Nominal Criterion   : 0.54403234 4!Fo$9  
    Test Wavelength     : 0.6328 |iakz|])  
    [xSF6  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? cz >V8  
    2;k*@k-t  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试