切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16211阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    在线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 QO0T<V  
    H=EvT'g  
    pS9CtQqvgy  
    B2VUH..am  
    然后添加了默认公差分析,基本没变 jRzR`>5  
    A-uEZj_RD=  
    co#%~KqMu  
    wC;N*0Th  
    然后运行分析的结果如下: SxNs  
    e%#9|/uP  
    Analysis of Tolerances _<&IpT{w+  
    mq >Ag  
    File : E:\光学设计资料\zemax练习\f500.ZMX 9_oIAn:<  
    Title: V\^?V|  
    Date : TUE JUN 21 2011 Sw>AgES  
    :43K)O"  
    Units are Millimeters. \%f4)Qb  
    All changes are computed using linear differences. o^2.&e+dQ  
    OP{ d(~+  
    Paraxial Focus compensation only. sLPFeibof5  
    IKH#[jW'IB  
    WARNING: Solves should be removed prior to tolerancing. }>fL{};Z"  
    q#F;GD  
    Mnemonics: c(i-~_  
    TFRN: Tolerance on curvature in fringes. O]90 F  
    TTHI: Tolerance on thickness. UPA))Iv>  
    TSDX: Tolerance on surface decentering in x. 9["yL{IPe  
    TSDY: Tolerance on surface decentering in y. E XEae ?  
    TSTX: Tolerance on surface tilt in x (degrees). /\(0@To  
    TSTY: Tolerance on surface tilt in y (degrees). Q];+?Pu.  
    TIRR: Tolerance on irregularity (fringes). 8 }nA8J  
    TIND: Tolerance on Nd index of refraction. P.=&:ay7?  
    TEDX: Tolerance on element decentering in x. \,oT(p4N%M  
    TEDY: Tolerance on element decentering in y. ;VNwx(1l`  
    TETX: Tolerance on element tilt in x (degrees). 79z(n[^  
    TETY: Tolerance on element tilt in y (degrees). +(QGlRd  
    bw ' yX  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. -aXV}ZY"  
    !zVuO*+  
    WARNING: Boundary constraints on compensators will be ignored. Kw+?Lowp  
    L00,{g6wqb  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ;XRLp:y  
    Mode                : Sensitivities \M'b %  
    Sampling            : 2 #92 :h6  
    Nominal Criterion   : 0.54403234 <G/O!02  
    Test Wavelength     : 0.6328 !i2=zlpb[  
    pTX{j=n!  
    s-J>(|  
    Fields: XY Symmetric Angle in degrees z<hy#BIjnd  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY  ZOi8)Y~  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Ul)2A  
    oOnk,U  
    Sensitivity Analysis: h 1:uTrtA  
    p9y "0A|  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| IF(W[J  
    Type                      Value      Criterion        Change          Value      Criterion        Change Yy@;U]R  
    Fringe tolerance on surface 1 w$u=_  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 :w_Zr5H]  
    Change in Focus                :      -0.000000                            0.000000 s 'u6Ep/V  
    Fringe tolerance on surface 2 j]6 Z*AxQ  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ![18+Q\  
    Change in Focus                :       0.000000                            0.000000 SL? ! RQ  
    Fringe tolerance on surface 3 e%afK@c  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 1>[3(o3t  
    Change in Focus                :      -0.000000                            0.000000 m1heU3BUWU  
    Thickness tolerance on surface 1 kS%FV;9>(  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 G!C2[:[g  
    Change in Focus                :       0.000000                            0.000000 u`xmF/jhQ  
    Thickness tolerance on surface 2 !vHnMY~AG  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 yNoJrA  
    Change in Focus                :       0.000000                           -0.000000 pn{Mj  
    Decenter X tolerance on surfaces 1 through 3 *!ZU" q}i  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 pLE|#58I  
    Change in Focus                :       0.000000                            0.000000 zQMsS  
    Decenter Y tolerance on surfaces 1 through 3 y+)][Wa0  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 )O#]Wvr  
    Change in Focus                :       0.000000                            0.000000 Zz'(!h Uy  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ;XMbjWc  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 MMqkNe  
    Change in Focus                :       0.000000                            0.000000 {OL*E0  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) vQ#$.*Cvn  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 gLa# y  
    Change in Focus                :       0.000000                            0.000000 x$Ko|:-  
    Decenter X tolerance on surface 1 Mc#uWmc 7  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 |FHeT*"  
    Change in Focus                :       0.000000                            0.000000 sU^2I v\%  
    Decenter Y tolerance on surface 1 UeIu -[R  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 hPE#l?H@A  
    Change in Focus                :       0.000000                            0.000000 Ok/~E  
    Tilt X tolerance on surface (degrees) 1 @Y 1iEL%\y  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 AyB-+oTf(  
    Change in Focus                :       0.000000                            0.000000 9<I@}w  
    Tilt Y tolerance on surface (degrees) 1 QXY-?0RO#  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 #o SQWC=T  
    Change in Focus                :       0.000000                            0.000000 G"T)+! 6t  
    Decenter X tolerance on surface 2 PspH[db  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Qw!cd-zc  
    Change in Focus                :       0.000000                            0.000000 ^>gRK*,  
    Decenter Y tolerance on surface 2 p+ SFeUp  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 nyWA(%N1  
    Change in Focus                :       0.000000                            0.000000 %6j|/|#]  
    Tilt X tolerance on surface (degrees) 2 odMjxWY  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 &W:Wv,3  
    Change in Focus                :       0.000000                            0.000000 V@&zn8?  
    Tilt Y tolerance on surface (degrees) 2 VO] Jvf  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 TviC1 {2  
    Change in Focus                :       0.000000                            0.000000 QU|{(c  
    Decenter X tolerance on surface 3 c[}h( jkP  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 =24)`Lyb  
    Change in Focus                :       0.000000                            0.000000 .;ml[DXH  
    Decenter Y tolerance on surface 3 XAR~d6iZ  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 y8HLrBTza  
    Change in Focus                :       0.000000                            0.000000 \[Op:^S  
    Tilt X tolerance on surface (degrees) 3 mf=,6fx28  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 8W)3rD>  
    Change in Focus                :       0.000000                            0.000000 .'mmn5E  
    Tilt Y tolerance on surface (degrees) 3 <?kr"[cQeP  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 HK) $ls  
    Change in Focus                :       0.000000                            0.000000 I~\j%zD  
    Irregularity of surface 1 in fringes .\= GfF'  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 gRIRc4p  
    Change in Focus                :       0.000000                            0.000000 IzF7W?k  
    Irregularity of surface 2 in fringes ;X<#y2`  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 2hdi)C,7Y  
    Change in Focus                :       0.000000                            0.000000 h@=H7oV7k  
    Irregularity of surface 3 in fringes zDeh#  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 EKZ40z`  
    Change in Focus                :       0.000000                            0.000000 dRTtDH"%  
    Index tolerance on surface 1 !SEHDRp  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 .%_scNP  
    Change in Focus                :       0.000000                            0.000000 U~-Z`_@^-  
    Index tolerance on surface 2 4SCb9| /Q  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 S!A)kK+  
    Change in Focus                :       0.000000                           -0.000000 {\ [u2{  
    <Z{\3X^  
    Worst offenders: +6@".<  
    Type                      Value      Criterion        Change 8fFURk  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 Ay;=1g)8+f  
    TSTY   2             0.20000000     0.35349910    -0.19053324 u6IEBYG ((  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 y;<^[  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ]^$&Ejpe#  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 A1e|Y  
    TSTY   1             0.20000000     0.42678383    -0.11724851 H>AQlO+J  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 >e :&kp  
    TSTX   1             0.20000000     0.42678383    -0.11724851 c) Zid1  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 jG)fM?  
    TSTY   3             0.20000000     0.42861670    -0.11541563 u:& gp  
    J @C8;]  
    Estimated Performance Changes based upon Root-Sum-Square method: XFeHkU`C  
    Nominal MTF                 :     0.54403234 s`GwRH<#  
    Estimated change            :    -0.36299231 Sq8` )$\  
    Estimated MTF               :     0.18104003 .>DqdtP[  
    <\eHK[_*  
    Compensator Statistics: mG@xehH  
    Change in back focus: vS%o>"P  
    Minimum            :        -0.000000 jjL(=n<J<"  
    Maximum            :         0.000000 W4Rs9NA}  
    Mean               :        -0.000000 ' Z:FGSwT  
    Standard Deviation :         0.000000 9i GUE  
    A+w51Q  
    Monte Carlo Analysis: Q!(16  
    Number of trials: 20 ))V)]+  
    f?kA,!  
    Initial Statistics: Normal Distribution sYM3&ikyHI  
    "f/lm 2<  
      Trial       Criterion        Change [}q6bXM*  
          1     0.42804416    -0.11598818 4CVtXi_Y  
    Change in Focus                :      -0.400171 5xX*68]%  
          2     0.54384387    -0.00018847 U">w3o|  
    Change in Focus                :       1.018470 Cp=DdmR  
          3     0.44510003    -0.09893230 vggyQf%  
    Change in Focus                :      -0.601922 zY_BnJ^  
          4     0.18154684    -0.36248550 S]mXfB(mh  
    Change in Focus                :       0.920681 +#7 e?B  
          5     0.28665820    -0.25737414 ukb2[mb*u  
    Change in Focus                :       1.253875 'AU(WHf  
          6     0.21263372    -0.33139862 8sjAr.iT.  
    Change in Focus                :      -0.903878 PB00\&6H  
          7     0.40051424    -0.14351809 'MH WNPG0  
    Change in Focus                :      -1.354815 4^\5]d!  
          8     0.48754161    -0.05649072 !4TMgM  
    Change in Focus                :       0.215922 Lb;:<  
          9     0.40357468    -0.14045766 mlc0XDS%  
    Change in Focus                :       0.281783 H!mNHY_fA  
         10     0.26315315    -0.28087919 {^zieP!  
    Change in Focus                :      -1.048393 _]:wltPv  
         11     0.26120585    -0.28282649 Z~)Bh~^A  
    Change in Focus                :       1.017611 k"X<gA  
         12     0.24033815    -0.30369419 gBb+Q,  
    Change in Focus                :      -0.109292 :@# '&(#~  
         13     0.37164046    -0.17239188 8$9<z  
    Change in Focus                :      -0.692430 !j[Oy r|  
         14     0.48597489    -0.05805744 Hh`x>{,|S  
    Change in Focus                :      -0.662040 de{@u<Y Zb  
         15     0.21462327    -0.32940907 5/4N  Y  
    Change in Focus                :       1.611296 0.C[/u[  
         16     0.43378226    -0.11025008 @)=\q`vV  
    Change in Focus                :      -0.640081 cnJ(Fv_F$  
         17     0.39321881    -0.15081353 `%_yRJd|;  
    Change in Focus                :       0.914906 kSj,Pl\NC  
         18     0.20692530    -0.33710703 [)UL}vAO\q  
    Change in Focus                :       0.801607 A3D"b9<D  
         19     0.51374068    -0.03029165 X:Z4QqT  
    Change in Focus                :       0.947293 %_Gc9SI  
         20     0.38013374    -0.16389860 7`-fN|  
    Change in Focus                :       0.667010 Q${0(#Nu  
    1}nrVn[B9  
    Number of traceable Monte Carlo files generated: 20 -DD2   
    46`(u"RP  
    Nominal     0.54403234 9>,$q"M}?  
    Best        0.54384387    Trial     2 ?/"Fwjau  
    Worst       0.18154684    Trial     4 C3 >X1nU  
    Mean        0.35770970 T= Q"| S]V  
    Std Dev     0.11156454 &L6xagR7M  
    %%`Q5I  
    p2T<nP<Pt  
    Compensator Statistics: ('k;Ikut  
    Change in back focus: n<RvL^T=  
    Minimum            :        -1.354815 a&oz<4oT  
    Maximum            :         1.611296 }i,LP1R  
    Mean               :         0.161872  <sdC#j  
    Standard Deviation :         0.869664 d +0(H   
    2P)*Y5`KBH  
    90% >       0.20977951               z+IHt(  
    80% >       0.22748071               Si=zxy T  
    50% >       0.38667627               0'&N?rS  
    20% >       0.46553746               n:QFwwQ`Q;  
    10% >       0.50064115                ]6JI((  
    'u"r^o?  
    End of Run. cTlitf9  
    |VC|@ Q  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 7nr+X Os  
    &oi*]:<FNe  
    Gp*U2LB  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 *\W *,D.I  
    rqa?A }'  
    不吝赐教
     
    分享到
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 {~cG'S Y%  
    80% >       0.22748071                 3RYg-$NK[  
    50% >       0.38667627                 <|qh5Scp  
    20% >       0.46553746                 'ju  
    10% >       0.50064115 ykq9]Xqhv  
    =2sj$  
    最后这个数值是MTF值呢,还是MTF的公差? q ERdQ~M,  
    > J!J:  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   .Ioj]r  
    *^h$%<QI  
    怎么没人啊,大家讨论讨论吗
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Sk'S`vH  
    90% >       0.20977951                 gEejLyOag  
    80% >       0.22748071                 Z$8 X1(o  
    50% >       0.38667627                 8SG*7[T7  
    20% >       0.46553746                 Z(' iZ'55F  
    10% >       0.50064115 ?<Tt1fpG  
    ....... RsY7F;  
    |'C {nTX  
    Pf?*bI  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   %:^|Q;xe  
    Mode                : Sensitivities >&1MD}  
    Sampling            : 2 hXvg<Rf  
    Nominal Criterion   : 0.54403234 $@[`/Uh   
    Test Wavelength     : 0.6328 Anpx%NVo  
    ^>g7Kg"0  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ur'a{BI2R  
    1>JUI5 {  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    在线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试