切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16099阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 y%}Po)X]f  
    zUIh8cAoE  
    _6^vxlF  
    n*@^c$&P  
    然后添加了默认公差分析,基本没变 4U C/pGZY  
    \qV5mD]"M  
    HBo^8wN  
    '1=/G7g  
    然后运行分析的结果如下: 4#;rv$ {  
     L~I<y;x  
    Analysis of Tolerances <s]K~ Vo  
    A$Es(<'9g  
    File : E:\光学设计资料\zemax练习\f500.ZMX u0w2v+  
    Title: V*U"OJ%  
    Date : TUE JUN 21 2011 i*W8_C:S  
    ^ylJ_lN&=1  
    Units are Millimeters. =h5&\4r=  
    All changes are computed using linear differences. sjWhtd[fgG  
    r7JILk  
    Paraxial Focus compensation only. OtY.s\m y  
    92+({ fg W  
    WARNING: Solves should be removed prior to tolerancing. u2JkPh&!rq  
    0wAZ9AxA{  
    Mnemonics: {nm#aA%,  
    TFRN: Tolerance on curvature in fringes. 6\OSIxJZF  
    TTHI: Tolerance on thickness. [3t N-aj[  
    TSDX: Tolerance on surface decentering in x. ^dYFFKQ  
    TSDY: Tolerance on surface decentering in y. F@"X d9q?  
    TSTX: Tolerance on surface tilt in x (degrees). H,:Cg:E/^  
    TSTY: Tolerance on surface tilt in y (degrees). s-k~_C>Fw  
    TIRR: Tolerance on irregularity (fringes). y !47!Dn  
    TIND: Tolerance on Nd index of refraction. R 4E0avt  
    TEDX: Tolerance on element decentering in x. j05ahquI  
    TEDY: Tolerance on element decentering in y.  ZMg%/C  
    TETX: Tolerance on element tilt in x (degrees). J);1Tpm  
    TETY: Tolerance on element tilt in y (degrees). jEit^5^5|  
    A6q,"BS^d  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Ibd7[A\  
    #wx0xQ~,J  
    WARNING: Boundary constraints on compensators will be ignored. JEU?@J71O  
    e>uV8!u  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm &zb_8y,  
    Mode                : Sensitivities T 7Lk4cU  
    Sampling            : 2 >fdS$,`A  
    Nominal Criterion   : 0.54403234 j 7a;g7.  
    Test Wavelength     : 0.6328 Y\dK- M{$  
    F! c%&Z  
    xO"5bj  
    Fields: XY Symmetric Angle in degrees IDdhBdQ  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 1p+2*c  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 Fm*n>^P@Y  
    XH1so1h  
    Sensitivity Analysis: PKwHq<vAsB  
    frc>0\  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| csH1X/3ha\  
    Type                      Value      Criterion        Change          Value      Criterion        Change :pDwg d  
    Fringe tolerance on surface 1 ~Jp\'P7*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 v|t^th,  
    Change in Focus                :      -0.000000                            0.000000 v;?t=}NwF  
    Fringe tolerance on surface 2 bveNd0hN  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 '`/1?,=  
    Change in Focus                :       0.000000                            0.000000 QIBv}hgcy  
    Fringe tolerance on surface 3 7{."Y@  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 .;/@k%>   
    Change in Focus                :      -0.000000                            0.000000 yY`<t  
    Thickness tolerance on surface 1 hh <=D.u  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7!<cU  
    Change in Focus                :       0.000000                            0.000000 <3Co/.VQd  
    Thickness tolerance on surface 2 2ai \("?  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675  6>Lr  
    Change in Focus                :       0.000000                           -0.000000 xJ^Gtq Um  
    Decenter X tolerance on surfaces 1 through 3 &P[eA u  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 -;Cl0O%  
    Change in Focus                :       0.000000                            0.000000 kp xd+w  
    Decenter Y tolerance on surfaces 1 through 3 E-.M+[   
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 WASs'Gx  
    Change in Focus                :       0.000000                            0.000000 e u^z&R!um  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Q4CxtY  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 FyZw='D  
    Change in Focus                :       0.000000                            0.000000 %$!}MxUM  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) jP@H$$-=wH  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 bYgrKz@uK  
    Change in Focus                :       0.000000                            0.000000 Ur?a%]  
    Decenter X tolerance on surface 1 !;zacw  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 5a5 I+* c  
    Change in Focus                :       0.000000                            0.000000 %CD}A%~  
    Decenter Y tolerance on surface 1 uDQ d48>  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 H5^ 'J`0\  
    Change in Focus                :       0.000000                            0.000000 Co[  rhs  
    Tilt X tolerance on surface (degrees) 1 B=u@u([.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 /NMd GKr  
    Change in Focus                :       0.000000                            0.000000 }y x'U 3  
    Tilt Y tolerance on surface (degrees) 1 PZeVjL?E  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 o-GlBXI;  
    Change in Focus                :       0.000000                            0.000000 hgfCM  
    Decenter X tolerance on surface 2 5~aSkg,MD  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 `| L+a~~  
    Change in Focus                :       0.000000                            0.000000 %]r@vjeyd  
    Decenter Y tolerance on surface 2 :&&Ps4\Sq  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 wrac\.  
    Change in Focus                :       0.000000                            0.000000 ?9OiF-:n  
    Tilt X tolerance on surface (degrees) 2 0rsdDME[  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 na(@`(j[  
    Change in Focus                :       0.000000                            0.000000 )O#>ONm^  
    Tilt Y tolerance on surface (degrees) 2 g=o)=sQd  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 K$R1x1lc2  
    Change in Focus                :       0.000000                            0.000000 ~y$B #.l  
    Decenter X tolerance on surface 3 @Zjy"u  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 J0C,K U(  
    Change in Focus                :       0.000000                            0.000000 b H?dyS6Bx  
    Decenter Y tolerance on surface 3 kNd[M =%  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195  H.'MQ  
    Change in Focus                :       0.000000                            0.000000 {S'xZ._=  
    Tilt X tolerance on surface (degrees) 3 ?VCb@&*  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 kJZBQ<^  
    Change in Focus                :       0.000000                            0.000000 ncu &<j}U  
    Tilt Y tolerance on surface (degrees) 3 4F??9o8}  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 N&-d8[~  
    Change in Focus                :       0.000000                            0.000000 x\*`i)su  
    Irregularity of surface 1 in fringes LXJ"ct  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ^ :6v- Yx  
    Change in Focus                :       0.000000                            0.000000 VkRvmKYl  
    Irregularity of surface 2 in fringes UF|v=|*{#  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 eH(8T  
    Change in Focus                :       0.000000                            0.000000 )?K3nr  
    Irregularity of surface 3 in fringes  Ae <v  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ++5W_Ooep  
    Change in Focus                :       0.000000                            0.000000 Pi40w+/  
    Index tolerance on surface 1 %h4pIA  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 O<)"k j 7  
    Change in Focus                :       0.000000                            0.000000 x5c pv  
    Index tolerance on surface 2 M$FQoRwH  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 4 "@BbVYR  
    Change in Focus                :       0.000000                           -0.000000 NMJ230?  
    dSS_^E[{  
    Worst offenders: Q|"{<2"]U0  
    Type                      Value      Criterion        Change 8N'`kd~6[  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 iKv{)5  
    TSTY   2             0.20000000     0.35349910    -0.19053324 U*(m'Ea  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 vMRM/.  
    TSTX   2             0.20000000     0.35349910    -0.19053324 <fJoHS  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 /=FQ {tLr  
    TSTY   1             0.20000000     0.42678383    -0.11724851 AVZ-g/<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 15)=>=1mR.  
    TSTX   1             0.20000000     0.42678383    -0.11724851 CD +,&id  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ]RML;]^  
    TSTY   3             0.20000000     0.42861670    -0.11541563 .o]vjNrd/  
    lw\OsB$  
    Estimated Performance Changes based upon Root-Sum-Square method: Hd U1gV>  
    Nominal MTF                 :     0.54403234 eg3zp gZ  
    Estimated change            :    -0.36299231 k =ru) _$2  
    Estimated MTF               :     0.18104003 QukLsl]U  
    v< xe(dC  
    Compensator Statistics: 7;dV]N  
    Change in back focus: ^; Nu\c  
    Minimum            :        -0.000000 @-NdgM<  
    Maximum            :         0.000000 _W@q%L>  
    Mean               :        -0.000000 ^}ngb Dn  
    Standard Deviation :         0.000000 )U6T]1  
    JcvWE $  
    Monte Carlo Analysis: [@eNb^ R  
    Number of trials: 20 </5uB' B ^  
    w[^s) 1  
    Initial Statistics: Normal Distribution NJ/6_e  
    yxf|Njo0  
      Trial       Criterion        Change RnE=T/VZJ  
          1     0.42804416    -0.11598818 d(jd{L4d  
    Change in Focus                :      -0.400171 aW$sd)  
          2     0.54384387    -0.00018847 7i`@`0   
    Change in Focus                :       1.018470 ac6L3=u\  
          3     0.44510003    -0.09893230 t,]r%  
    Change in Focus                :      -0.601922 1 xm8w$%  
          4     0.18154684    -0.36248550 +?),BRCce  
    Change in Focus                :       0.920681 6#MIt:#  
          5     0.28665820    -0.25737414 /[#<@o  
    Change in Focus                :       1.253875 Ko]A}v\]  
          6     0.21263372    -0.33139862 *r6+Vz  
    Change in Focus                :      -0.903878 ^%@(> :)0  
          7     0.40051424    -0.14351809 "~:o#~F6  
    Change in Focus                :      -1.354815 VC:.ya|Z  
          8     0.48754161    -0.05649072 QeuIAs*_  
    Change in Focus                :       0.215922 ^w5`YI4<  
          9     0.40357468    -0.14045766 *)gbKXb  
    Change in Focus                :       0.281783 N?eWf +C  
         10     0.26315315    -0.28087919 )[|`-M~u  
    Change in Focus                :      -1.048393 ow,I|A  
         11     0.26120585    -0.28282649 Wsyq  
    Change in Focus                :       1.017611 y/Fv4<X  
         12     0.24033815    -0.30369419 `f,SY  
    Change in Focus                :      -0.109292 $vnshU8/v  
         13     0.37164046    -0.17239188 byR|L:L  
    Change in Focus                :      -0.692430 1@JAY!yoo_  
         14     0.48597489    -0.05805744 3K c  
    Change in Focus                :      -0.662040 8  ;y N  
         15     0.21462327    -0.32940907 NRe{0U}nO  
    Change in Focus                :       1.611296 |QHDg(   
         16     0.43378226    -0.11025008 R#eY@N}\  
    Change in Focus                :      -0.640081 w[~O@:`]<o  
         17     0.39321881    -0.15081353 O~N0JK_>  
    Change in Focus                :       0.914906 R#.FfWTZ  
         18     0.20692530    -0.33710703 ?xu5/r<  
    Change in Focus                :       0.801607 qn}4PVn4  
         19     0.51374068    -0.03029165 W-ErzX  
    Change in Focus                :       0.947293 ;N6Euiz  
         20     0.38013374    -0.16389860 vY&[=2=  
    Change in Focus                :       0.667010 w#_/CU L  
    FO#`}? R`  
    Number of traceable Monte Carlo files generated: 20 @iWql*K;m  
    8x#SpDI  
    Nominal     0.54403234 _]E H~;  
    Best        0.54384387    Trial     2 ^"WrE(3  
    Worst       0.18154684    Trial     4 G[z!;Zuf  
    Mean        0.35770970 N=]2vyh  
    Std Dev     0.11156454 ,_?P[~1  
    uH7 $/  
    :_E=&4&g  
    Compensator Statistics: T~@$WM(  
    Change in back focus: c193Or'6Y  
    Minimum            :        -1.354815 s{\USD6  
    Maximum            :         1.611296 4jMC E&<  
    Mean               :         0.161872 W9nmTz\8  
    Standard Deviation :         0.869664 MA1.I4dm  
    [(Ss^?AJW  
    90% >       0.20977951               #\U;,r  
    80% >       0.22748071               p2s*'dab7  
    50% >       0.38667627               wPdp!h7B~N  
    20% >       0.46553746               ;/T=ctIs  
    10% >       0.50064115                3m:[o`L  
    qP=4D 9 ]  
    End of Run. ^GMM%   
    &o@IMbJ8  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 `R]B<gp  
    ,)-7f|  
    '}3@D$YiM%  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 faH113nc  
    Al&)8x{p  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Y [8~M8QX  
    80% >       0.22748071                 J~dk4D\  
    50% >       0.38667627                 `yiw<9yp2  
    20% >       0.46553746                 ,D#ssxV  
    10% >       0.50064115 -n.ltgW@   
    G .PzpBA  
    最后这个数值是MTF值呢,还是MTF的公差? @nIoYT='  
    Ci{,e%  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   \jlem<&  
    !8'mIXZ$  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : g>L4N.ZH_v  
    90% >       0.20977951                 QL_vWG -  
    80% >       0.22748071                 A>C&`A=-  
    50% >       0.38667627                 2hD(zUSy  
    20% >       0.46553746                 8mrB_B5  
    10% >       0.50064115 )sONfn  
    ....... .m r& zq  
    blUnAu o~  
    !z EW)  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   YI877T9>  
    Mode                : Sensitivities 9)y7K%b0  
    Sampling            : 2 vZ&{   
    Nominal Criterion   : 0.54403234 j=q*b Qr  
    Test Wavelength     : 0.6328  xJ&E2Bf  
    4lVvs(W?  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? k=^~\$e  
    iNlY\67sW  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试