切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16484阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 *(icR  
    5:$Xtq  
    :Z[(A"dA  
    $5x]%1 R  
    然后添加了默认公差分析,基本没变 >d97l&W  
    Uh}+"h5  
    o~;M"  
    4j^bpfb,  
    然后运行分析的结果如下: N2T&,&, t  
    J]dW1boT@  
    Analysis of Tolerances /w0w* n H  
    [ T-*/}4$  
    File : E:\光学设计资料\zemax练习\f500.ZMX gn^!"MN+g  
    Title: -8/JP  
    Date : TUE JUN 21 2011 k&!6fZ)  
    \ZsP]};*  
    Units are Millimeters. ZB$NVY  
    All changes are computed using linear differences. oJh"@6u6K  
    %P;[fJ `G  
    Paraxial Focus compensation only. :kt/$S^-  
    R1Yqz $#  
    WARNING: Solves should be removed prior to tolerancing. ncj!KyU  
    >C*4_J7  
    Mnemonics: ^\T]r<rCY  
    TFRN: Tolerance on curvature in fringes. <n\i>A3`,S  
    TTHI: Tolerance on thickness. m d_g}N(C  
    TSDX: Tolerance on surface decentering in x. bLco:-G1E1  
    TSDY: Tolerance on surface decentering in y. R B%:h-t4  
    TSTX: Tolerance on surface tilt in x (degrees). l/ QhD?)9  
    TSTY: Tolerance on surface tilt in y (degrees). [Teh*CV  
    TIRR: Tolerance on irregularity (fringes). @i{]4rk lv  
    TIND: Tolerance on Nd index of refraction.  pr/'J!{^  
    TEDX: Tolerance on element decentering in x. zQ_z7FJCB  
    TEDY: Tolerance on element decentering in y. cf\&No?-p  
    TETX: Tolerance on element tilt in x (degrees). _Z$?^gn  
    TETY: Tolerance on element tilt in y (degrees). NNmM#eB:4  
    ~U3S eo }  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. o[oqPN3$Y  
    ##GY<\",;  
    WARNING: Boundary constraints on compensators will be ignored. %jT w  
    Fv A8T 2-v  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm e,"FnW  
    Mode                : Sensitivities w,/6B&|  
    Sampling            : 2 J 3B`Krh  
    Nominal Criterion   : 0.54403234 fdLBhe#9M  
    Test Wavelength     : 0.6328 pZjpc#*9N  
    1fRP1  
    ,\x$q'  
    Fields: XY Symmetric Angle in degrees ntZ~m  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY x9D/s`!  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 _@K YF)  
    {[tZ.1.w  
    Sensitivity Analysis: lC4PKm no  
    bS%C?8  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| {Xv3:"E"O  
    Type                      Value      Criterion        Change          Value      Criterion        Change e5 3,Rqi)@  
    Fringe tolerance on surface 1 e[8UH=`|  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 gH'3 dS!{  
    Change in Focus                :      -0.000000                            0.000000 {Zl4C;c  
    Fringe tolerance on surface 2 t#~XLCE  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 |T y=7d,  
    Change in Focus                :       0.000000                            0.000000 *uU4^E(  
    Fringe tolerance on surface 3 59Nd}wPO;  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 +q-c 8z  
    Change in Focus                :      -0.000000                            0.000000 sG1BNb_  
    Thickness tolerance on surface 1 c=aO5(i0  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 t\%%d)d9  
    Change in Focus                :       0.000000                            0.000000 [T]Bfo  
    Thickness tolerance on surface 2 d"GDZ[6  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 32^#RlSu8  
    Change in Focus                :       0.000000                           -0.000000 aj v}JV&:  
    Decenter X tolerance on surfaces 1 through 3 ju.OW`GM  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ~bGC/I;W>  
    Change in Focus                :       0.000000                            0.000000 )qd= {  
    Decenter Y tolerance on surfaces 1 through 3 37jQ'O U  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 x`L+7,&n  
    Change in Focus                :       0.000000                            0.000000 2LZS|fB9o  
    Tilt X tolerance on surfaces 1 through 3 (degrees) S(tEw Xy  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ckWkZ 78\  
    Change in Focus                :       0.000000                            0.000000 #g{Mne  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) aaT5u14%  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 }^9paU  
    Change in Focus                :       0.000000                            0.000000 73)Ll"(  
    Decenter X tolerance on surface 1 %"+4 D,'l  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 &?r*p0MQC  
    Change in Focus                :       0.000000                            0.000000 ,5w]\z  
    Decenter Y tolerance on surface 1 ~#4~_d.=L  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 rKT)!o'  
    Change in Focus                :       0.000000                            0.000000 xEC 2@J  
    Tilt X tolerance on surface (degrees) 1 mw"}8y  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 j.B>v\b_3  
    Change in Focus                :       0.000000                            0.000000 8t=3  
    Tilt Y tolerance on surface (degrees) 1 O{u[+g  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 i7s\CY  
    Change in Focus                :       0.000000                            0.000000 =]d^3bqN  
    Decenter X tolerance on surface 2 = hhvmo  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ~QCA -Yud  
    Change in Focus                :       0.000000                            0.000000 xU:4Y0y8  
    Decenter Y tolerance on surface 2 wE4;Rk1  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 v8  
    Change in Focus                :       0.000000                            0.000000 Ko+al{2  
    Tilt X tolerance on surface (degrees) 2 <r3Jf}%tT  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 dE GX3 -  
    Change in Focus                :       0.000000                            0.000000 wonYm27f  
    Tilt Y tolerance on surface (degrees) 2 3(o7co-f  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 1OP" 5f  
    Change in Focus                :       0.000000                            0.000000 dk8y>uLr_  
    Decenter X tolerance on surface 3 1 w17L]4  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ]!J<,f7W  
    Change in Focus                :       0.000000                            0.000000 + ~~ Z0.[  
    Decenter Y tolerance on surface 3 ]zcV]Qj$~  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 &rP~`4Mkp  
    Change in Focus                :       0.000000                            0.000000 kfRJ\"`   
    Tilt X tolerance on surface (degrees) 3 p+)C$2YK  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 #'8)u)!  
    Change in Focus                :       0.000000                            0.000000 D$$3fN.iEL  
    Tilt Y tolerance on surface (degrees) 3 O{nC^`X  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 {6:& %V  
    Change in Focus                :       0.000000                            0.000000 =E1tgrW  
    Irregularity of surface 1 in fringes p7$3`t 6u  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 *W%'Di  
    Change in Focus                :       0.000000                            0.000000 8F)=n \  
    Irregularity of surface 2 in fringes !?6.!2  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 W8VO)3nmD  
    Change in Focus                :       0.000000                            0.000000 $bFgsy*N2  
    Irregularity of surface 3 in fringes ,6RQvw  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 V_lGj  
    Change in Focus                :       0.000000                            0.000000 U1jSUkqb  
    Index tolerance on surface 1 Kk`<f d  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 A]#_"fayo  
    Change in Focus                :       0.000000                            0.000000 m|mG;8}pI  
    Index tolerance on surface 2 <ZV7|'^  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ~T7\8K+ $  
    Change in Focus                :       0.000000                           -0.000000 a}w&dE$!-  
    F=: c5z  
    Worst offenders: pLPd[a  
    Type                      Value      Criterion        Change ?`"<DH~:0B  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 &*jixqzvn  
    TSTY   2             0.20000000     0.35349910    -0.19053324 y+= \z*9  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 4L!e=>as"1  
    TSTX   2             0.20000000     0.35349910    -0.19053324 PB@-U.Z  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 B]i+,u  
    TSTY   1             0.20000000     0.42678383    -0.11724851 6kC)\ uy  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 sZT VM9<)  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ^>eFm8`N  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 f)WPOTEY  
    TSTY   3             0.20000000     0.42861670    -0.11541563 4 #G3ew  
    sE}sE=\  
    Estimated Performance Changes based upon Root-Sum-Square method: Xz" JY  
    Nominal MTF                 :     0.54403234 NXi ,5  
    Estimated change            :    -0.36299231 $:P[v+Uy  
    Estimated MTF               :     0.18104003 L^&do98  
    Sw[=S '(l  
    Compensator Statistics: >|(WS.n3C  
    Change in back focus: jD<9=B(g  
    Minimum            :        -0.000000 ,~iFEaV+  
    Maximum            :         0.000000 {<"[D([  
    Mean               :        -0.000000 =w t-YM  
    Standard Deviation :         0.000000 /1U,+g^O>  
    m[{nm95QZ  
    Monte Carlo Analysis: 3EO#EYAHiM  
    Number of trials: 20 b\H/-7<  
    =GLYDV  
    Initial Statistics: Normal Distribution []!tT-Gzy  
    - f+CyhR"*  
      Trial       Criterion        Change 2zwuvgiZ  
          1     0.42804416    -0.11598818 v#w4{.8)  
    Change in Focus                :      -0.400171 N c9<X  
          2     0.54384387    -0.00018847 !P+~ c0DF  
    Change in Focus                :       1.018470 0GF%~6  
          3     0.44510003    -0.09893230 3KbUHSx  
    Change in Focus                :      -0.601922 Idt@Hk5<&  
          4     0.18154684    -0.36248550 x[zKtX  
    Change in Focus                :       0.920681 P"U>tsHK:  
          5     0.28665820    -0.25737414 4{c`g$j>  
    Change in Focus                :       1.253875 ;9 lqSv/6  
          6     0.21263372    -0.33139862 l@ (t^68OD  
    Change in Focus                :      -0.903878 |P^ikx6f5  
          7     0.40051424    -0.14351809 9 <y/Wv  
    Change in Focus                :      -1.354815 <1v{[F_  
          8     0.48754161    -0.05649072 2nVuz9h  
    Change in Focus                :       0.215922 $eTv6B?m  
          9     0.40357468    -0.14045766 K%o6hBlk_  
    Change in Focus                :       0.281783 ':9%3Wq]j  
         10     0.26315315    -0.28087919 DX7Ou%P,mg  
    Change in Focus                :      -1.048393 3XMBu*  
         11     0.26120585    -0.28282649 f'8B[&@L  
    Change in Focus                :       1.017611 b6 J2*;XG  
         12     0.24033815    -0.30369419 zS#f%{   
    Change in Focus                :      -0.109292 q=(M!9cE  
         13     0.37164046    -0.17239188 +F#=`+V  
    Change in Focus                :      -0.692430 3^uL`ETm@  
         14     0.48597489    -0.05805744 ufHuI*  
    Change in Focus                :      -0.662040 btJ,dpir  
         15     0.21462327    -0.32940907 rerUM*0  
    Change in Focus                :       1.611296 :T8u?@ .  
         16     0.43378226    -0.11025008 ZP]2/;h  
    Change in Focus                :      -0.640081 WoC\a^V  
         17     0.39321881    -0.15081353 P*?d6v,r  
    Change in Focus                :       0.914906 x0N-[//YV  
         18     0.20692530    -0.33710703 E,"b*l.  
    Change in Focus                :       0.801607 /S-/SF:>g  
         19     0.51374068    -0.03029165 k:&?$  
    Change in Focus                :       0.947293 hnM9-hqm  
         20     0.38013374    -0.16389860 .2 N_?  
    Change in Focus                :       0.667010 o+PQ;Dl  
    xF\}.OfWG  
    Number of traceable Monte Carlo files generated: 20 BVwRPt  
    Fj4l %=  
    Nominal     0.54403234 ;@h'Mb  
    Best        0.54384387    Trial     2 IeqWR4Y  
    Worst       0.18154684    Trial     4 )j)y5_m  
    Mean        0.35770970 n]kQtjJ  
    Std Dev     0.11156454 q329z>  
    tIgCF?  
    i75?*ld  
    Compensator Statistics: ePIly)=X  
    Change in back focus: s~IA},F,\  
    Minimum            :        -1.354815 3\+[38 _  
    Maximum            :         1.611296 =X%R*~!#Of  
    Mean               :         0.161872 =B ,_d0Id  
    Standard Deviation :         0.869664 ]e#,\})Br  
    W? 6  
    90% >       0.20977951               :c+a-Py $E  
    80% >       0.22748071               oK(W)[u  
    50% >       0.38667627               .wt>.mUH  
    20% >       0.46553746               &})4?5  
    10% >       0.50064115                ajcPt]f  
    gn4g 43  
    End of Run. hCOy\[2$  
    80R= r  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 )KTWLr;  
    f(9$"Vi  
    i&SBW0)  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 F?+Uar|-a  
    }y -AoG  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 -fZShOBY`  
    80% >       0.22748071                 L^ jC& dF  
    50% >       0.38667627                 {u[K ^G  
    20% >       0.46553746                 /EAQ.vxI  
    10% >       0.50064115 4 *2>R8SX~  
    b3HTCO-,fC  
    最后这个数值是MTF值呢,还是MTF的公差? #.t$A9'  
    G4`sRaT.  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   YaE['a  
    <xh'@592  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 7?WBzo!!L  
    90% >       0.20977951                 o[W3/  
    80% >       0.22748071                 P&`r87J  
    50% >       0.38667627                 9F1stT0G%  
    20% >       0.46553746                 U jzz`!mz  
    10% >       0.50064115 +7OT`e %q  
    ....... +( (31l  
    \ OINzfbr  
     y, _3Ks  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   l<%~w U  
    Mode                : Sensitivities rM.<Gi05Qe  
    Sampling            : 2 / {~h?P}  
    Nominal Criterion   : 0.54403234 .g?,:$`0D?  
    Test Wavelength     : 0.6328 ^}\R]})w"  
    VjM uU"++@  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 4 Z)]Cq*3  
    dq(L1y870  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试