切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16515阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ZC\mxBy  
    2lz {_9  
    ic~Z_?p  
    ^HFo3V }h  
    然后添加了默认公差分析,基本没变 QAaF@Do  
    c/$*%J<  
    B8 2,.?  
    vo b$iS`>=  
    然后运行分析的结果如下: 7s]Wq6  
    R@ QQNYU.D  
    Analysis of Tolerances UA0tFeH  
    W'G{K\(/  
    File : E:\光学设计资料\zemax练习\f500.ZMX %1jdiHTaL  
    Title: rUFFF'm\*a  
    Date : TUE JUN 21 2011 (n=Aa;  
    i ^S2%qz  
    Units are Millimeters. |4xo4%BQ>  
    All changes are computed using linear differences. T 'i~_R6  
    ;tN4HiN  
    Paraxial Focus compensation only. .v7`$(T  
    o_:Qk;t  
    WARNING: Solves should be removed prior to tolerancing. Zi3T~:0p:  
     ("F)  
    Mnemonics: & >b+loF  
    TFRN: Tolerance on curvature in fringes. =L16hDk o  
    TTHI: Tolerance on thickness. foyB{6q8  
    TSDX: Tolerance on surface decentering in x. A5+5J_)*  
    TSDY: Tolerance on surface decentering in y. DrFur(=T  
    TSTX: Tolerance on surface tilt in x (degrees). FAd``9kRT  
    TSTY: Tolerance on surface tilt in y (degrees). Gy^FrF   
    TIRR: Tolerance on irregularity (fringes). afy/K'~  
    TIND: Tolerance on Nd index of refraction. KZi' v6  
    TEDX: Tolerance on element decentering in x. ^teaJy%  
    TEDY: Tolerance on element decentering in y. G:hU{S7  
    TETX: Tolerance on element tilt in x (degrees). *zSxG[s  
    TETY: Tolerance on element tilt in y (degrees). ??+:vai2  
    7AeP Gr  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. |Pf(J;'[  
    2|s<[V3rP-  
    WARNING: Boundary constraints on compensators will be ignored. AI R{s7N  
    y;,y"W  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 0k.v0a7%  
    Mode                : Sensitivities mLULd}g/o  
    Sampling            : 2 Q4 CJ]J`  
    Nominal Criterion   : 0.54403234 1 Xa+%n9  
    Test Wavelength     : 0.6328 ,M{Q}:$+4  
    :r^klJ(m  
    ?to1rFrU  
    Fields: XY Symmetric Angle in degrees !(yT7#?hP  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 9 c6'  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 !3QRzkJX~  
    hafECs  
    Sensitivity Analysis: qlEFJ5;  
    iW;}%$lVX  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| m1i4,  
    Type                      Value      Criterion        Change          Value      Criterion        Change ])S$x{.g  
    Fringe tolerance on surface 1 G#'Q~N  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 +>u>`|  
    Change in Focus                :      -0.000000                            0.000000 Y}K!`~n1S  
    Fringe tolerance on surface 2 '6+Edu~Ho)  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 ki`8(u6l  
    Change in Focus                :       0.000000                            0.000000 iT[o KD0)  
    Fringe tolerance on surface 3 Wge ho  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 }D Z)W0RDe  
    Change in Focus                :      -0.000000                            0.000000 OH0S2?,{>  
    Thickness tolerance on surface 1 [jy0@Q9  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 =g >.X9lr  
    Change in Focus                :       0.000000                            0.000000 ]79~:m[C  
    Thickness tolerance on surface 2 x'zihDOI  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 JxnuGkE0[#  
    Change in Focus                :       0.000000                           -0.000000 D{Oq\*  
    Decenter X tolerance on surfaces 1 through 3 RrKfTiK H  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 TbMdQbj}  
    Change in Focus                :       0.000000                            0.000000 .<HC[ls  
    Decenter Y tolerance on surfaces 1 through 3 #n=A)#'my  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 pFEZDf}:  
    Change in Focus                :       0.000000                            0.000000 A3z/Bz4]:#  
    Tilt X tolerance on surfaces 1 through 3 (degrees) nW~$ (Qnd  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 gA{'Q\  
    Change in Focus                :       0.000000                            0.000000 Yg[ v/[]  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 0~qf-x  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 %V31B\]Nz7  
    Change in Focus                :       0.000000                            0.000000 %v_IX2'  
    Decenter X tolerance on surface 1 {s,^b|I2#U  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 eN2dy-0  
    Change in Focus                :       0.000000                            0.000000 C1KfXC*|L  
    Decenter Y tolerance on surface 1 qw5&Y$((  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 "Wo.8  
    Change in Focus                :       0.000000                            0.000000 Y~:}l9Qs  
    Tilt X tolerance on surface (degrees) 1 OI*ZVD)J  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 KS b(R/T  
    Change in Focus                :       0.000000                            0.000000 1B6C<cL:sU  
    Tilt Y tolerance on surface (degrees) 1 A%h~Z a  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ;]{{)dst  
    Change in Focus                :       0.000000                            0.000000 | O57N'/  
    Decenter X tolerance on surface 2 ;CA ?eI  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 pF|8OB%  
    Change in Focus                :       0.000000                            0.000000 qZXyi'(d  
    Decenter Y tolerance on surface 2 v#iFQVBq  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 $p jf#P8U  
    Change in Focus                :       0.000000                            0.000000 {,i=>%X*  
    Tilt X tolerance on surface (degrees) 2 4sb )^3T  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 XO0>t{G  
    Change in Focus                :       0.000000                            0.000000 6`_!?u7  
    Tilt Y tolerance on surface (degrees) 2 IY V-*/ |  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 =x=1uXQv5  
    Change in Focus                :       0.000000                            0.000000 "!xvpsy  
    Decenter X tolerance on surface 3 "|F. 'qZrm  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 #m[vn^8B]y  
    Change in Focus                :       0.000000                            0.000000 m{vT_ei  
    Decenter Y tolerance on surface 3 tvTWZ`  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 "fRlEO[9  
    Change in Focus                :       0.000000                            0.000000 'CS^2Z  
    Tilt X tolerance on surface (degrees) 3 3aEt>x  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 1a5?)D  
    Change in Focus                :       0.000000                            0.000000 03~+-h& n  
    Tilt Y tolerance on surface (degrees) 3 Ok*VQKyDLH  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 'uPxEu4 >4  
    Change in Focus                :       0.000000                            0.000000 P)Z/JHB  
    Irregularity of surface 1 in fringes v$[ @]`  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 `oB'(  
    Change in Focus                :       0.000000                            0.000000 Uy(vELB  
    Irregularity of surface 2 in fringes B"7$!Co  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 2^cAK t6bC  
    Change in Focus                :       0.000000                            0.000000 +]A+!8%Z  
    Irregularity of surface 3 in fringes uG2Xkj  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 -" 2<h:#  
    Change in Focus                :       0.000000                            0.000000 o~Bk0V=  
    Index tolerance on surface 1 ]&&I|K_  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 8dr0 DF$c  
    Change in Focus                :       0.000000                            0.000000 X QI.0L"  
    Index tolerance on surface 2 ,@}W@GGP)  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 'Y hA  
    Change in Focus                :       0.000000                           -0.000000 UN,<6D3\b  
    D9}d]9]$  
    Worst offenders: !}iL O0  
    Type                      Value      Criterion        Change %T3j8fC{s  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 -X`~;=m>U  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ;~}- AI-  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 b%=1"&JI:  
    TSTX   2             0.20000000     0.35349910    -0.19053324 \7|s$ XQ\  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 j'G"ZPw1  
    TSTY   1             0.20000000     0.42678383    -0.11724851 &z./4X  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 + #|'|}j  
    TSTX   1             0.20000000     0.42678383    -0.11724851 on]\J  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 &Tf=~6  
    TSTY   3             0.20000000     0.42861670    -0.11541563 B=Xnv*e  
    RH<@c^ S  
    Estimated Performance Changes based upon Root-Sum-Square method: Q{%HW4lg  
    Nominal MTF                 :     0.54403234 RA*_&Ll&!C  
    Estimated change            :    -0.36299231 9`ri J4zl  
    Estimated MTF               :     0.18104003 PFImqojHd  
    2z.k)Qx!Z  
    Compensator Statistics: 9)G:::8u7  
    Change in back focus: Ln"+nKr  
    Minimum            :        -0.000000 ~J8cS  
    Maximum            :         0.000000 ?9o#%?6k  
    Mean               :        -0.000000 @)aXNQY  
    Standard Deviation :         0.000000 ,\|n=T,  
    &M!4]p ow  
    Monte Carlo Analysis: yC9:sQ'k  
    Number of trials: 20 X;K8,A7`  
    *T.={>HE8  
    Initial Statistics: Normal Distribution uf{SxEa  
    Ig40#pA  
      Trial       Criterion        Change jD&}}:Dj  
          1     0.42804416    -0.11598818 U p]VU9z  
    Change in Focus                :      -0.400171 oN1!>S9m  
          2     0.54384387    -0.00018847 "uV0Oj9:  
    Change in Focus                :       1.018470 :vn0|7W4  
          3     0.44510003    -0.09893230 |YG)NO  
    Change in Focus                :      -0.601922 w3>Y7vxiz`  
          4     0.18154684    -0.36248550 asm[-IB2u  
    Change in Focus                :       0.920681 UiGUaBmF*  
          5     0.28665820    -0.25737414 htdn$kqG   
    Change in Focus                :       1.253875 -~rr<D\  
          6     0.21263372    -0.33139862 sqq/b9 uL/  
    Change in Focus                :      -0.903878 kMwIuy  
          7     0.40051424    -0.14351809 :kf3_?9rc  
    Change in Focus                :      -1.354815 jzu l{'g  
          8     0.48754161    -0.05649072 Apw-7*/  
    Change in Focus                :       0.215922 b&U5VA0=1  
          9     0.40357468    -0.14045766 d\1:1ucV  
    Change in Focus                :       0.281783 [T$$od[.  
         10     0.26315315    -0.28087919 S2{ ?W  
    Change in Focus                :      -1.048393 EkfGw/WDw  
         11     0.26120585    -0.28282649 _umO)]Si  
    Change in Focus                :       1.017611 1xFhhncf  
         12     0.24033815    -0.30369419 P:zEx]Y%  
    Change in Focus                :      -0.109292 .R<s<]  
         13     0.37164046    -0.17239188 PBP J/puW  
    Change in Focus                :      -0.692430 } (GQDJp  
         14     0.48597489    -0.05805744 6`$,-(J=  
    Change in Focus                :      -0.662040 skmDsZzw  
         15     0.21462327    -0.32940907 1*x5/b  
    Change in Focus                :       1.611296 2Wc;hJ.1  
         16     0.43378226    -0.11025008 `*uuB;  
    Change in Focus                :      -0.640081 ~gzpX,{ n  
         17     0.39321881    -0.15081353 nKZRq&~^E  
    Change in Focus                :       0.914906 D@YM}HXuj  
         18     0.20692530    -0.33710703 ^<5^9]x  
    Change in Focus                :       0.801607 FZ}C;yUPD  
         19     0.51374068    -0.03029165 $fU/9jTa  
    Change in Focus                :       0.947293 R - ?0k:  
         20     0.38013374    -0.16389860 c,[qjr#\>  
    Change in Focus                :       0.667010 $[^ KCNB  
    q4IjCu+  
    Number of traceable Monte Carlo files generated: 20 LcQ\?]w`]  
    _UbR8  
    Nominal     0.54403234 o^.s!C%j  
    Best        0.54384387    Trial     2 TF ([yZO'  
    Worst       0.18154684    Trial     4 EC\rh](d 1  
    Mean        0.35770970 X\^3,k."  
    Std Dev     0.11156454 \:f}X?:  
    9N3oVHc?  
    Zj /H3,7  
    Compensator Statistics: =f{Z~`3  
    Change in back focus: \-`oFe"  
    Minimum            :        -1.354815 A.'`FtV  
    Maximum            :         1.611296 !Z9ikn4A  
    Mean               :         0.161872 2Dwt4V  
    Standard Deviation :         0.869664 Nr*ibtz|D  
    ">4[+'  
    90% >       0.20977951               c9_4 ohB  
    80% >       0.22748071               qLktMp_  
    50% >       0.38667627               e\bF_ N2VA  
    20% >       0.46553746               fb S.  
    10% >       0.50064115                kY |=a  
    {t IoC;Y  
    End of Run. khO<Z^wi[  
    4VL!U?dk  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 x:D<Mu#  
    f@V{}&ZWp  
    |GLn 9vw7S  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ,r)d#8  
    !z&seG]@  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 q\b9e&2Y  
    80% >       0.22748071                 5;%xqdD  
    50% >       0.38667627                 (6_/n&mF  
    20% >       0.46553746                 5Szo5  
    10% >       0.50064115 m`w6wz  
    53#5p;k  
    最后这个数值是MTF值呢,还是MTF的公差? X=7vUb,\gB  
    Wh&Z *J  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   ="*C&wB^  
    e @MCumc~+  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : BAed [  
    90% >       0.20977951                 '\qr=0aW  
    80% >       0.22748071                 3hjwwLKG$  
    50% >       0.38667627                 4IpFT;`q  
    20% >       0.46553746                 vIv3rN=5vB  
    10% >       0.50064115 G->@   
    ....... uU"s50m  
    'KrkC A  
    k}7)pJNj  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   EPfVS  
    Mode                : Sensitivities M6n.uho/  
    Sampling            : 2 =-Tetp  
    Nominal Criterion   : 0.54403234 I>|?B( F  
    Test Wavelength     : 0.6328 epe}^Pl  
    ]>j_ Y ,  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 0cVXUTJ|W  
    s6IuM )x  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试