我现在在初学zemax的
公差分析,找了一个双胶合
透镜 W;?e @} $LVzhQlD
xnHB
<xrE} Ygc|9} 然后添加了默认公差分析,基本没变
[I}z\3Z
% QD-`jV3
tX6_n%/L b[J0+l\!" 然后运行分析的结果如下:
2"c 5< U4qk<! Analysis of Tolerances
8nwps(3 Zv(6VVj File : E:\光学设计资料\zemax练习\f500.ZMX
c
Qe3 Title:
ozKS<< Date : TUE JUN 21 2011
>+DMTV[O "]|7%] Units are Millimeters.
SgssNv All changes are computed using linear differences.
^7yaMB! x_CY`Y Paraxial Focus compensation only.
*5{1.7 eAStpG"* WARNING: Solves should be removed prior to tolerancing.
Tv6y+l Yr>0Qg], Mnemonics:
DF
UTQ:N TFRN: Tolerance on curvature in fringes.
\01 kK) TTHI: Tolerance on thickness.
bGkLa/?S TSDX: Tolerance on surface decentering in x.
`z$P,^g` TSDY: Tolerance on surface decentering in y.
.PV(MV TSTX: Tolerance on surface tilt in x (degrees).
qOIVuzi* TSTY: Tolerance on surface tilt in y (degrees).
7!wc'~; TIRR: Tolerance on irregularity (fringes).
8nWPt!U: TIND: Tolerance on Nd index of refraction.
Fv$A%6;W TEDX: Tolerance on element decentering in x.
qoZ)"M TEDY: Tolerance on element decentering in y.
97~>gFU77# TETX: Tolerance on element tilt in x (degrees).
O<#8R\v TETY: Tolerance on element tilt in y (degrees).
|6;-P&_n jGT|Xo>t WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
u-tD_UIck 5=I"bnIU WARNING: Boundary constraints on compensators will be ignored.
y0-UO+; H_Xk;fM Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
eoXbZ Mode : Sensitivities
1z0|uc
Sampling : 2
><S(n#EB Nominal Criterion : 0.54403234
g*`xEb=' Test Wavelength : 0.6328
hn\d{HP .Z#/%y3S qHtIjtt[q Fields: XY Symmetric Angle in degrees
R$66F>Jz^ # X-Field Y-Field Weight VDX VDY VCX VCY
wX_~H*m? 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
t&NpC;>v ,7k-LAA Sensitivity Analysis:
[^7P ]olW QPh3(K1w^ |----------------- Minimum ----------------| |----------------- Maximum ----------------|
cx ("F/Jm Type Value Criterion Change Value Criterion Change
3o0ZS^#eB Fringe tolerance on surface 1
LAY:R{vI TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
n>7aZ1Qa Change in Focus :
-0.000000 0.000000
cD=IFOB*GD Fringe tolerance on surface 2
sOiM/}O] TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
z+{+Q9j Change in Focus : 0.000000 0.000000
u~2]$ /U Fringe tolerance on surface 3
5pC}ZgEa< TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
}}ic{931 Change in Focus : -0.000000 0.000000
13w(Tf Thickness tolerance on surface 1
BFg&@7.X TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
HTz`$9 Change in Focus : 0.000000 0.000000
bM5o-U#^ C Thickness tolerance on surface 2
(CgvI*O TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
W amOg0 Change in Focus : 0.000000 -0.000000
X/90S2=P Decenter X tolerance on surfaces 1 through 3
F#M(#!)Y" TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
Lq1?Y
Change in Focus : 0.000000 0.000000
eB=&(ZT Decenter Y tolerance on surfaces 1 through 3
gu%i|-} TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
;ISe@yR; Change in Focus : 0.000000 0.000000
So8
Dwz? Tilt X tolerance on surfaces 1 through 3 (degrees)
!c{F{t-a TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
^6R(K'E} Change in Focus : 0.000000 0.000000
m(}}%VeR"z Tilt Y tolerance on surfaces 1 through 3 (degrees)
S D{ )Sq TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
$COjC!M Change in Focus : 0.000000 0.000000
7S&$M-k Decenter X tolerance on surface 1
&"I csxG TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
;,e16^\' & Change in Focus : 0.000000 0.000000
?FjnG_Uz`D Decenter Y tolerance on surface 1
y22DBB8 TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
bk;uKV+< Change in Focus : 0.000000 0.000000
#.[eZ[ Tilt X tolerance on surface (degrees) 1
?@;)2B|q TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
g>;@(:e^/ Change in Focus : 0.000000 0.000000
ZTz07Jt Tilt Y tolerance on surface (degrees) 1
ciiI{T[Z TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
-W<1BJE Change in Focus : 0.000000 0.000000
%=Z/Frd Decenter X tolerance on surface 2
DcdEt=\)h TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
hV0fkQ.| Change in Focus : 0.000000 0.000000
3+s$K(% I Decenter Y tolerance on surface 2
D>@NYqMF TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
'L-DMNxBr Change in Focus : 0.000000 0.000000
QkW'tU\^ Tilt X tolerance on surface (degrees) 2
Y&8,f|{R TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
3
V>$H\H Change in Focus : 0.000000 0.000000
rF"p7 Tilt Y tolerance on surface (degrees) 2
qP<D9k> TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
4oueLT(zc Change in Focus : 0.000000 0.000000
gGUKB2) Decenter X tolerance on surface 3
>5:O%zQ@ TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
$7c,<= Change in Focus : 0.000000 0.000000
!|i #g$ Decenter Y tolerance on surface 3
+kQ=2dva TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
uf9&o# Change in Focus : 0.000000 0.000000
5Gy#$'kdf Tilt X tolerance on surface (degrees) 3
LybaE~=
TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
%K-8DL8|( Change in Focus : 0.000000 0.000000
h_S>Q Tilt Y tolerance on surface (degrees) 3
la_c:#ho TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
&JqaIJh
Change in Focus : 0.000000 0.000000
,xVAJ6_# Irregularity of surface 1 in fringes
megTp TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
i2c|_B Change in Focus : 0.000000 0.000000
0
}od Q# Irregularity of surface 2 in fringes
],S {?!'1 TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
I4?oBq Change in Focus : 0.000000 0.000000
0V(}Zj> Irregularity of surface 3 in fringes
?z&%VU" TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
S7Ty}?E@ Change in Focus : 0.000000 0.000000
=3w;<1 ?'
Index tolerance on surface 1
Cp"7R&s TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
,&WwADZ-s Change in Focus : 0.000000 0.000000
Cd"{7<OyM4 Index tolerance on surface 2
Y.]$T8 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
7g(Z@ Change in Focus : 0.000000 -0.000000
0FI
|7 J:glJ'4E Worst offenders:
BDWbWA
6 Type Value Criterion Change
>>$`]]7 TSTY 2 -0.20000000 0.35349910 -0.19053324
X(*O$B{
R TSTY 2 0.20000000 0.35349910 -0.19053324
adX"Yg!`{c TSTX 2 -0.20000000 0.35349910 -0.19053324
9yC22C: TSTX 2 0.20000000 0.35349910 -0.19053324
|&rCXfC TSTY 1 -0.20000000 0.42678383 -0.11724851
I*3}erT TSTY 1 0.20000000 0.42678383 -0.11724851
QR'# ]k;>% TSTX 1 -0.20000000 0.42678383 -0.11724851
;VAyH('~ TSTX 1 0.20000000 0.42678383 -0.11724851
SnmUh~`L~ TSTY 3 -0.20000000 0.42861670 -0.11541563
o25rKC=o TSTY 3 0.20000000 0.42861670 -0.11541563
!h7.xl OpN Gw$ 5<%sB Estimated Performance Changes based upon Root-Sum-Square method:
aYb97}kI Nominal MTF : 0.54403234
;ISnI Estimated change : -0.36299231
3yKmuu! Estimated MTF : 0.18104003
Tgr,1)T 2icQ (H; Compensator Statistics: U\tx{CsSz Change in back focus: yW=+6@A4 Minimum : -0.000000 O.( 2 Maximum : 0.000000 tj[E!
Mean : -0.000000 r.\L@Y< Standard Deviation : 0.000000 V)>?[ ngl +`|u Monte Carlo Analysis:
@i; )`k5b Number of trials: 20
qGV_oa74 <SI|)M,, 3 Initial Statistics: Normal Distribution
~EPVu yQN{)rv Trial Criterion Change
UE.kR+1 1 0.42804416 -0.11598818
_o$jk8jOjW Change in Focus : -0.400171
aY>v 2 0.54384387 -0.00018847
2.Qz"YDh
= Change in Focus : 1.018470
I1U2wD 3 0.44510003 -0.09893230
=x\`yxsG Change in Focus : -0.601922
LD}~] 4 0.18154684 -0.36248550
bH e'
U> Change in Focus : 0.920681
njaMI8|Pa 5 0.28665820 -0.25737414
hDW!pnj1 Change in Focus : 1.253875
V^5d5Ao 6 0.21263372 -0.33139862
K8sRan[4} Change in Focus : -0.903878
#;j:;LRU 7 0.40051424 -0.14351809
Qw}1q!89 Change in Focus : -1.354815
T"_'sSI>tF 8 0.48754161 -0.05649072
,
,{UGe3 Change in Focus : 0.215922
_xp8*2~- 9 0.40357468 -0.14045766
MVsFi]- Change in Focus : 0.281783
9_?xAJ 10 0.26315315 -0.28087919
Z,.Hz\y1D Change in Focus : -1.048393
^!&6=rb 11 0.26120585 -0.28282649
Gs,:$Im Change in Focus : 1.017611
]$@D=g,r 12 0.24033815 -0.30369419
Kf[d@L Change in Focus : -0.109292
&xQM!f 13 0.37164046 -0.17239188
+O.-o/ Change in Focus : -0.692430
KkA)p/ 14 0.48597489 -0.05805744
&3[oM)-V Change in Focus : -0.662040
-Lh7!d 15 0.21462327 -0.32940907
4VwF\ Change in Focus : 1.611296
%M@K(Qu 16 0.43378226 -0.11025008
`GCoi ?n7 Change in Focus : -0.640081
~P1~:AT 17 0.39321881 -0.15081353
6:7[>|okQ Change in Focus : 0.914906
Cku"vVw, 18 0.20692530 -0.33710703
"d_wu#fO) Change in Focus : 0.801607
>%j%Mj@8q| 19 0.51374068 -0.03029165
v _MQ]X Change in Focus : 0.947293
:CyHo6o9 20 0.38013374 -0.16389860
\!-BR0+y; Change in Focus : 0.667010
hw^&{x y2G Us&09 Number of traceable Monte Carlo files generated: 20
?l0Qi +(3_V$|Dv Nominal 0.54403234
Rm} ym9 Best 0.54384387 Trial 2
6}"c4^k6 Worst 0.18154684 Trial 4
}X&rJV Mean 0.35770970
U#` e~d t< Std Dev 0.11156454
'dLw8&T+W 0@
Y#P|QF @%]A,\ Compensator Statistics:
HeRi67 Change in back focus:
BNu >/zGpB Minimum : -1.354815
%=`JWLLG Maximum : 1.611296
ysW})#7X Mean : 0.161872
dZU#lg Standard Deviation : 0.869664
)(G9[DG z%82Vt!a5 90% > 0.20977951 P0m3IH) 80% > 0.22748071 HEF
e? 50% > 0.38667627 L8VOiK=, 20% > 0.46553746 ZSC*{dD$E 10% > 0.50064115 Ax;[ Em?I ju"z End of Run.
m9 h '!X< U lYFloZ 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
g4IF~\QRVi
h.jJAVPi UerbNz| 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
4b8G 1fm l|P"^;*zq 不吝赐教