切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16080阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 %+e% RZ3  
    a2\r^fY/  
    QvjOOc@k~n  
    yi$Jk}w  
    然后添加了默认公差分析,基本没变 AEr8^6  
    dyMj=e  
    'k(aZ"  
    !<I3^q  
    然后运行分析的结果如下: `U[s d*C"  
    Eggdj+  
    Analysis of Tolerances 6e.?L  
    {Mx3G*hr  
    File : E:\光学设计资料\zemax练习\f500.ZMX ?,0 5!]  
    Title: |'" 17c&  
    Date : TUE JUN 21 2011 zOzobd   
    +X&b  
    Units are Millimeters. "ZU CYYre  
    All changes are computed using linear differences. 3A>Bnb  
    KaGG4?=V  
    Paraxial Focus compensation only. Yl!~w:O!o  
    GN%|'eU  
    WARNING: Solves should be removed prior to tolerancing. leSR2os  
    vPbmQh ex  
    Mnemonics: pk,]yi,ZF  
    TFRN: Tolerance on curvature in fringes. Hp!c\z;  
    TTHI: Tolerance on thickness. mcB8xE  
    TSDX: Tolerance on surface decentering in x. ]-b`uYb  
    TSDY: Tolerance on surface decentering in y. 8kwe._&)  
    TSTX: Tolerance on surface tilt in x (degrees). A:-r 2;xB  
    TSTY: Tolerance on surface tilt in y (degrees).  [ijK ~  
    TIRR: Tolerance on irregularity (fringes). |0e7<[  
    TIND: Tolerance on Nd index of refraction. 8Q2qroT  
    TEDX: Tolerance on element decentering in x. .3 JLa8y  
    TEDY: Tolerance on element decentering in y. 'ixu+.ZL/  
    TETX: Tolerance on element tilt in x (degrees). jR[3{ Reo  
    TETY: Tolerance on element tilt in y (degrees). 8vL2<VT;  
    .3QX*]{  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. F}Kkhs {  
    sKK*{+,kh;  
    WARNING: Boundary constraints on compensators will be ignored. _R 6+bB$  
    ?=\&O=_ln  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 6~@S,i1  
    Mode                : Sensitivities vL,:Yn@b  
    Sampling            : 2 ^OWA   
    Nominal Criterion   : 0.54403234 ,fa'  
    Test Wavelength     : 0.6328 [G/ti&Od^  
    >.)m|,  
    c'8pTP%[  
    Fields: XY Symmetric Angle in degrees IW<nfg  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY X>W2aDuEZ  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 ?Dr K2;q  
    RMfKM! vE  
    Sensitivity Analysis: ?mCino  
    wcI? .  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| O ^+H:Y|  
    Type                      Value      Criterion        Change          Value      Criterion        Change (v'#~)R_`  
    Fringe tolerance on surface 1 c6@7>PM  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 c\\'x\J7  
    Change in Focus                :      -0.000000                            0.000000 #!i&  
    Fringe tolerance on surface 2 bkvm-$/  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 +"i|)yUYy}  
    Change in Focus                :       0.000000                            0.000000 i6Kcj  
    Fringe tolerance on surface 3 CC8)yO  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 bz1+AJG  
    Change in Focus                :      -0.000000                            0.000000 Tt.#O~2:9  
    Thickness tolerance on surface 1 ;;#_[Zl  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 +6$|No  
    Change in Focus                :       0.000000                            0.000000 'Cv>V"X: `  
    Thickness tolerance on surface 2 = @EN]u  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 y| 7sh  
    Change in Focus                :       0.000000                           -0.000000 p!OCF]r  
    Decenter X tolerance on surfaces 1 through 3 ]#fmih^  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 #BZ2%\  
    Change in Focus                :       0.000000                            0.000000 1ab_^P  
    Decenter Y tolerance on surfaces 1 through 3 Sl!#!FGI  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 hN5?u:  
    Change in Focus                :       0.000000                            0.000000 1j!LK-  
    Tilt X tolerance on surfaces 1 through 3 (degrees) y_7lSo8<  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ]"2;x  
    Change in Focus                :       0.000000                            0.000000 \Xr Sn_p-  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) jgW-&nK!  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 @  gv^  
    Change in Focus                :       0.000000                            0.000000 fVXZfq6  
    Decenter X tolerance on surface 1 @5rl;C  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 o^!_S5zKe.  
    Change in Focus                :       0.000000                            0.000000 RZgklEU  
    Decenter Y tolerance on surface 1 {#_CzI.0f  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 sT*D]J 2  
    Change in Focus                :       0.000000                            0.000000 hT0[O  
    Tilt X tolerance on surface (degrees) 1 J dK' ~-L  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 $\w<.)"#  
    Change in Focus                :       0.000000                            0.000000 EDA%qNd]j  
    Tilt Y tolerance on surface (degrees) 1 &&daQg4Ha  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 3tjF4C>h|  
    Change in Focus                :       0.000000                            0.000000 @BfJb[A#  
    Decenter X tolerance on surface 2 wigs1  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 q9h 3/uTv  
    Change in Focus                :       0.000000                            0.000000 J2BCaAwEP,  
    Decenter Y tolerance on surface 2 n`Y"b&  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ?^Q8#Y^M  
    Change in Focus                :       0.000000                            0.000000 V4 `  
    Tilt X tolerance on surface (degrees) 2 `k.Tfdu)K  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ]VkM)< +  
    Change in Focus                :       0.000000                            0.000000 J\@W+/#dF  
    Tilt Y tolerance on surface (degrees) 2 W0 n?S "  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 X"k:+  
    Change in Focus                :       0.000000                            0.000000 )/y7Fh  
    Decenter X tolerance on surface 3 'xP&u<(F  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 a7fFp 9l!  
    Change in Focus                :       0.000000                            0.000000 F{*h~7D-|  
    Decenter Y tolerance on surface 3 (2J\o  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 =.48^$LWx  
    Change in Focus                :       0.000000                            0.000000 a$AR  
    Tilt X tolerance on surface (degrees) 3 B@ xjwBUk  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 $SOFq+-T  
    Change in Focus                :       0.000000                            0.000000 F<+!28&h  
    Tilt Y tolerance on surface (degrees) 3 ]J(BaX4  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 lZr}F.7  
    Change in Focus                :       0.000000                            0.000000 4F`&W*x  
    Irregularity of surface 1 in fringes $A;%p6PO)  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 */6lyODf  
    Change in Focus                :       0.000000                            0.000000  CK"OHjR  
    Irregularity of surface 2 in fringes gJZH??b  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 dHsI<:T#  
    Change in Focus                :       0.000000                            0.000000 B" 0a5-pkr  
    Irregularity of surface 3 in fringes DuMzK%  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 ZamOYkRX  
    Change in Focus                :       0.000000                            0.000000 _m.w5nJ  
    Index tolerance on surface 1 z @21Z`,  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 c<a)Yqf"]  
    Change in Focus                :       0.000000                            0.000000 PNs*+/-S  
    Index tolerance on surface 2 jAcrXB*  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ! }>CEE  
    Change in Focus                :       0.000000                           -0.000000 0sA+5*mdM  
    S0' ACt`  
    Worst offenders: rQD^O4j R  
    Type                      Value      Criterion        Change {ew; /;  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 `x]`<kS;  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ^?8/9 o  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 3OB=D{$V  
    TSTX   2             0.20000000     0.35349910    -0.19053324 zMXQfR   
    TSTY   1            -0.20000000     0.42678383    -0.11724851 $3 =S\jyfK  
    TSTY   1             0.20000000     0.42678383    -0.11724851 3`TD>6rs  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 >i_ #q$o  
    TSTX   1             0.20000000     0.42678383    -0.11724851 %6W%-`  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ^m/7T wD  
    TSTY   3             0.20000000     0.42861670    -0.11541563 Miz?t*|{[  
    1N}vz(0"  
    Estimated Performance Changes based upon Root-Sum-Square method: Z0[d;m*  
    Nominal MTF                 :     0.54403234 TjE'X2/  
    Estimated change            :    -0.36299231 o1?S*  
    Estimated MTF               :     0.18104003 , .E>  
    mKBO<l{S  
    Compensator Statistics: )*XD"-9  
    Change in back focus: pft-.1py  
    Minimum            :        -0.000000 c;Gf$9?iC  
    Maximum            :         0.000000 UDT\Xc  
    Mean               :        -0.000000 U,K=(I7OBX  
    Standard Deviation :         0.000000 \^1S:z  
    ek"U q RY  
    Monte Carlo Analysis: iax0V  
    Number of trials: 20 aka)#0l .  
    }P'c8$  
    Initial Statistics: Normal Distribution f_2(`T#  
    `&9iC 4P  
      Trial       Criterion        Change v5\5:b {/  
          1     0.42804416    -0.11598818 Za,myuI+  
    Change in Focus                :      -0.400171 aJ QzM  
          2     0.54384387    -0.00018847 !z1\ #|>  
    Change in Focus                :       1.018470 b Rc,Y<  
          3     0.44510003    -0.09893230 +s;>@j()V  
    Change in Focus                :      -0.601922 $^_6,uBM[  
          4     0.18154684    -0.36248550 ^I KT!"J&?  
    Change in Focus                :       0.920681 UqD ]@s`  
          5     0.28665820    -0.25737414 Z (t7QFd  
    Change in Focus                :       1.253875 4.p:$/GTS  
          6     0.21263372    -0.33139862 NBL%5!'  
    Change in Focus                :      -0.903878 .8->n aj|  
          7     0.40051424    -0.14351809 g4u 6#.m(  
    Change in Focus                :      -1.354815 y 2)W"PuG  
          8     0.48754161    -0.05649072 Z9.0#Jnu  
    Change in Focus                :       0.215922 /xSFW7d1  
          9     0.40357468    -0.14045766 L~%7=]m  
    Change in Focus                :       0.281783 F{4v[WP)  
         10     0.26315315    -0.28087919 Gj?$HFa  
    Change in Focus                :      -1.048393 'b0r?A~c=  
         11     0.26120585    -0.28282649 CBv0fQtL  
    Change in Focus                :       1.017611  l5 ]  
         12     0.24033815    -0.30369419 9Z21|5  
    Change in Focus                :      -0.109292 HB{'MBs  
         13     0.37164046    -0.17239188 bZ_TW9mq  
    Change in Focus                :      -0.692430 %E5b }E#  
         14     0.48597489    -0.05805744 I(Z\$  
    Change in Focus                :      -0.662040 ):_@i  
         15     0.21462327    -0.32940907 RRXp9{x`  
    Change in Focus                :       1.611296 14"+ctq  
         16     0.43378226    -0.11025008 $}Ab R:z  
    Change in Focus                :      -0.640081 1BEs> Sm  
         17     0.39321881    -0.15081353 v2I? 5?j  
    Change in Focus                :       0.914906 xKl1DIN[  
         18     0.20692530    -0.33710703 $}.+}'7$  
    Change in Focus                :       0.801607 aL_/2/@X8  
         19     0.51374068    -0.03029165 BN `2UVH  
    Change in Focus                :       0.947293 ;*$e8y2  
         20     0.38013374    -0.16389860 KIi:5Y  
    Change in Focus                :       0.667010 L$ i:~6  
    c6lCF &  
    Number of traceable Monte Carlo files generated: 20 WQ}wQ:]  
    $4^SWT.  
    Nominal     0.54403234  4=ovm[  
    Best        0.54384387    Trial     2 co~NXpqg  
    Worst       0.18154684    Trial     4 T@=C2 1  
    Mean        0.35770970 S2e3d  
    Std Dev     0.11156454 =kfa1kD&{  
    6UqAs<c9  
    71y{Dwya  
    Compensator Statistics: BM/o7%]n  
    Change in back focus: - om9 Z0e  
    Minimum            :        -1.354815 "a= Hr4C*r  
    Maximum            :         1.611296 8>t,n,k  
    Mean               :         0.161872 E*u*LMm  
    Standard Deviation :         0.869664 Scx!h.\5  
    uDP:kM  
    90% >       0.20977951               J_ h.7V  
    80% >       0.22748071               oX8EY l  
    50% >       0.38667627               TIxOMYy  
    20% >       0.46553746               +8C }%6aX  
    10% >       0.50064115                t^KQ*8clG  
    s~].iQJ{B  
    End of Run. 3i7EF.  
    FGx)?  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 Z3weFbCH  
    uE41"?GS  
    u\Ylo.)b  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 L7Hv)  
    ",.f   
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 yws'}{8  
    80% >       0.22748071                 VKDOM0{V  
    50% >       0.38667627                 ~j'D%:[+VH  
    20% >       0.46553746                 0[l}@K?  
    10% >       0.50064115 k_,7#:+  
    Xx{| [2`  
    最后这个数值是MTF值呢,还是MTF的公差? ICN>kJ\;M  
    O~*i_t*i9{  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   &T,|?0>~=J  
    4{YA['  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ,&_H  
    90% >       0.20977951                 aJ+V]WmA  
    80% >       0.22748071                 9^}&PEl  
    50% >       0.38667627                 '0HOL)cIz  
    20% >       0.46553746                 N{v)pu.  
    10% >       0.50064115 B]X8KzLu  
    ....... [Z$H <m{c-  
    ;M3%t=KV  
    %zcA|SefP  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   ]DVr-f ~  
    Mode                : Sensitivities $XF$ n#ua  
    Sampling            : 2 p [Po*c.b  
    Nominal Criterion   : 0.54403234 @su<h\)  
    Test Wavelength     : 0.6328 iXMJ1\!q\|  
     lbHgxZ  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? Pe _O(  
    flmQNrC.8  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试