切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15488阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    958
    光币
    1062
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 O>~ozW &  
    CEMe2~  
    5Y}=,v*h}  
    u&7c2|Q  
    然后添加了默认公差分析,基本没变 KgCQ4w9  
    {B d 0  
    9[7Gxmf  
    8<w8"B.i  
    然后运行分析的结果如下: THXG~3J<  
    ybNy"2Wk  
    Analysis of Tolerances FfET 45"l  
    g~Hmka_fD1  
    File : E:\光学设计资料\zemax练习\f500.ZMX `& rt>Bk /  
    Title: |mO4+:-~D+  
    Date : TUE JUN 21 2011 x 8v2mnk  
    /"LcW"2;N  
    Units are Millimeters. k5X& |L/  
    All changes are computed using linear differences. D) my@W0,  
    ns/L./z  
    Paraxial Focus compensation only. OY?x'h  
    Co%EJb"tk  
    WARNING: Solves should be removed prior to tolerancing. tPb$ua|  
    teDO,$  
    Mnemonics: 8E:d!?<^&I  
    TFRN: Tolerance on curvature in fringes. F\"`^`(O  
    TTHI: Tolerance on thickness. Bf-KCqC".  
    TSDX: Tolerance on surface decentering in x. l^,"^ vz  
    TSDY: Tolerance on surface decentering in y. j1 Q"s(  
    TSTX: Tolerance on surface tilt in x (degrees). WdvXVF  
    TSTY: Tolerance on surface tilt in y (degrees).  $w@0}5Q  
    TIRR: Tolerance on irregularity (fringes). Y8$,So>~  
    TIND: Tolerance on Nd index of refraction. <JyF5  
    TEDX: Tolerance on element decentering in x. ,^#{k!uaC{  
    TEDY: Tolerance on element decentering in y. ]= EYju@  
    TETX: Tolerance on element tilt in x (degrees). =SEgv;#KZ~  
    TETY: Tolerance on element tilt in y (degrees). tXWh q  
    2xEG s Q  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. '9R.$,N  
    k9|8@3(h  
    WARNING: Boundary constraints on compensators will be ignored. =,4iMENm!  
    =Co[pt  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ?-HLP%C('  
    Mode                : Sensitivities m+7/ebj{A  
    Sampling            : 2 0qPbmLMK  
    Nominal Criterion   : 0.54403234 zP(UaSXz/  
    Test Wavelength     : 0.6328 %Uz 5Ve  
    ^zs]cFN#%  
    6bXP{,}Gp  
    Fields: XY Symmetric Angle in degrees bWe_<'N  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY /`b(} m  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 *Mg. * N  
    ]LE  
    Sensitivity Analysis: `YinhO:Z  
    1m5 =Nu  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| c%bGVRhE  
    Type                      Value      Criterion        Change          Value      Criterion        Change GqT 0SP  
    Fringe tolerance on surface 1 #XaTUT  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 MS~|F^g  
    Change in Focus                :      -0.000000                            0.000000 <PayP3E  
    Fringe tolerance on surface 2 `c )//o  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 0M=U >g)  
    Change in Focus                :       0.000000                            0.000000 AzmISm  
    Fringe tolerance on surface 3 eInx\/  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 km(Mv  
    Change in Focus                :      -0.000000                            0.000000 hj_%'kk-A  
    Thickness tolerance on surface 1 wj$J} F  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 42Vz6 k:  
    Change in Focus                :       0.000000                            0.000000 CI~P3"`]  
    Thickness tolerance on surface 2 XC D&Im  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 pFZ2(b&  
    Change in Focus                :       0.000000                           -0.000000 7Y?=ijXXx\  
    Decenter X tolerance on surfaces 1 through 3 ~ }g"Fe  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 .-[d6Pnw  
    Change in Focus                :       0.000000                            0.000000 rpZ^R}B%*v  
    Decenter Y tolerance on surfaces 1 through 3 bhqs%B!:  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 o_K. +^$  
    Change in Focus                :       0.000000                            0.000000 Bn5O;I13  
    Tilt X tolerance on surfaces 1 through 3 (degrees) 9PM\D@A{  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Uo7V)I;o  
    Change in Focus                :       0.000000                            0.000000 n> >!dg Og  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) @/w ($w"  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 "0&+ `7  
    Change in Focus                :       0.000000                            0.000000 bc{ {a  
    Decenter X tolerance on surface 1 ;Az9p h  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 &QoV(%:]  
    Change in Focus                :       0.000000                            0.000000 jYv`kt  
    Decenter Y tolerance on surface 1 W_C#a'$  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 x2KIGG ^  
    Change in Focus                :       0.000000                            0.000000 xXJl Qbs  
    Tilt X tolerance on surface (degrees) 1 QQB\$[M!Z  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 EzXGb  
    Change in Focus                :       0.000000                            0.000000 rerl-T<3  
    Tilt Y tolerance on surface (degrees) 1 ~ e4Pj`?=K  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 .+'`A"$8  
    Change in Focus                :       0.000000                            0.000000 &f:"p*=a\  
    Decenter X tolerance on surface 2 SG)hrd  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 T"NDL[*  
    Change in Focus                :       0.000000                            0.000000 n&51_.@Q  
    Decenter Y tolerance on surface 2 4Hk eXS.  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 BfcpB)N&.K  
    Change in Focus                :       0.000000                            0.000000 O=9mLI6  
    Tilt X tolerance on surface (degrees) 2 !D_Qat  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 -j6&W`  
    Change in Focus                :       0.000000                            0.000000 _9^  
    Tilt Y tolerance on surface (degrees) 2 lhyWlO  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 RkrZncBgV<  
    Change in Focus                :       0.000000                            0.000000 |@rPd=G^(/  
    Decenter X tolerance on surface 3 4^KeA".  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 iEtnwSt  
    Change in Focus                :       0.000000                            0.000000 [xTu29X.  
    Decenter Y tolerance on surface 3 *gJ:irah  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ~ PO)>;  
    Change in Focus                :       0.000000                            0.000000 *G<K@k  
    Tilt X tolerance on surface (degrees) 3 3Pj 6(cf  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ~ .FZF  
    Change in Focus                :       0.000000                            0.000000 rhLm2q  
    Tilt Y tolerance on surface (degrees) 3 s Y^#I  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 +E{'A7im8=  
    Change in Focus                :       0.000000                            0.000000 )_|;h2I  
    Irregularity of surface 1 in fringes O e-FI+7  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634  &Ow[  
    Change in Focus                :       0.000000                            0.000000 u; c)T t  
    Irregularity of surface 2 in fringes E&}@P0^  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 #LGAvFA*_F  
    Change in Focus                :       0.000000                            0.000000 rYp]RX>  
    Irregularity of surface 3 in fringes L=ala1{O  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Q*W`mFul  
    Change in Focus                :       0.000000                            0.000000 v(=?ge YLo  
    Index tolerance on surface 1 g3} K  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 KfSI6 Y _  
    Change in Focus                :       0.000000                            0.000000 j J}3WJ  
    Index tolerance on surface 2 LQ7.RK  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 6@"lIKeP  
    Change in Focus                :       0.000000                           -0.000000 th$?#4SbR  
    ?"d25LyN  
    Worst offenders: *?'^R c  
    Type                      Value      Criterion        Change QO0#p1fom'  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 {z4v_[-2CF  
    TSTY   2             0.20000000     0.35349910    -0.19053324 9]{(~=D7  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 IQ${2Dpg[  
    TSTX   2             0.20000000     0.35349910    -0.19053324 r34q9NFT5  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 oj|\NlR  
    TSTY   1             0.20000000     0.42678383    -0.11724851 /M}jF*5N  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 D*Cn!v$  
    TSTX   1             0.20000000     0.42678383    -0.11724851 0/1Ay{ns  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 &!@7+'])  
    TSTY   3             0.20000000     0.42861670    -0.11541563 X ^ ?M4  
    :sf(=Y.qA  
    Estimated Performance Changes based upon Root-Sum-Square method: b,Z\{M:f;F  
    Nominal MTF                 :     0.54403234 :y>$N(.8f  
    Estimated change            :    -0.36299231 b3>`%?A  
    Estimated MTF               :     0.18104003 d".Xp4}f  
    Ewfzjc  
    Compensator Statistics: "sM 3NY  
    Change in back focus: C J@G8>  
    Minimum            :        -0.000000 @v#]+9F  
    Maximum            :         0.000000 Pjs L{,  
    Mean               :        -0.000000 7a,/DI2o  
    Standard Deviation :         0.000000 u%o2BLx  
    lURL;h  
    Monte Carlo Analysis: 0Gq}x;8H&  
    Number of trials: 20 1>KZ1Kf  
    _P^ xX'v  
    Initial Statistics: Normal Distribution wM]j#  
    ^}F@*A;o  
      Trial       Criterion        Change 6 lp.0B  
          1     0.42804416    -0.11598818 ceW,A`J  
    Change in Focus                :      -0.400171 >~nc7j u  
          2     0.54384387    -0.00018847 ^Yz.}a##w2  
    Change in Focus                :       1.018470 I6q]bQ="  
          3     0.44510003    -0.09893230 ySS kw7  
    Change in Focus                :      -0.601922 ?`,Rkg0fe  
          4     0.18154684    -0.36248550 Cwb }$=p'  
    Change in Focus                :       0.920681 55mDLiA  
          5     0.28665820    -0.25737414 T6P9Icv?@7  
    Change in Focus                :       1.253875 ^lt;K{  
          6     0.21263372    -0.33139862 SR+<v=i  
    Change in Focus                :      -0.903878 62}rZVJq  
          7     0.40051424    -0.14351809 -W#-m'Lvu  
    Change in Focus                :      -1.354815 q1|! oQ  
          8     0.48754161    -0.05649072 /C'dW  
    Change in Focus                :       0.215922 `egyk)"aM  
          9     0.40357468    -0.14045766 ~h:/9q  
    Change in Focus                :       0.281783 B{In "R8  
         10     0.26315315    -0.28087919 J:N4F.o&K  
    Change in Focus                :      -1.048393 R*DQm  
         11     0.26120585    -0.28282649 /5PV|o nO  
    Change in Focus                :       1.017611 ]0 g$3  
         12     0.24033815    -0.30369419 i uNBw]  
    Change in Focus                :      -0.109292 zFR=inI  
         13     0.37164046    -0.17239188 r"%uP[H  
    Change in Focus                :      -0.692430 cAL*Md8+  
         14     0.48597489    -0.05805744 5Tb3Yy< .  
    Change in Focus                :      -0.662040 !9n!:"(r  
         15     0.21462327    -0.32940907 5ree3 quh  
    Change in Focus                :       1.611296 }"sZ)FE  
         16     0.43378226    -0.11025008 A`H&" A  
    Change in Focus                :      -0.640081 %Ob#GA+  
         17     0.39321881    -0.15081353 Ja*k |Rz~  
    Change in Focus                :       0.914906 bnm3 cR:h"  
         18     0.20692530    -0.33710703 "1-|ahW  
    Change in Focus                :       0.801607 ';CL;A;  
         19     0.51374068    -0.03029165 kOQq+_Y  
    Change in Focus                :       0.947293 7[b]%i  
         20     0.38013374    -0.16389860 b{Qg$ZJeR  
    Change in Focus                :       0.667010 _:0)uR LS  
    _w'N&#  
    Number of traceable Monte Carlo files generated: 20 W=$cQ(x4Z  
    B(omD3jzN  
    Nominal     0.54403234 _LOV&83O(  
    Best        0.54384387    Trial     2 bsn.HT"5  
    Worst       0.18154684    Trial     4 Zl:Z31  
    Mean        0.35770970 Mzbbr57n  
    Std Dev     0.11156454 JyfWy  
    a9w1Z4  
    ^EG@tB $<  
    Compensator Statistics: /F3bZ3F  
    Change in back focus: Bl >)GX\l  
    Minimum            :        -1.354815 gmU0/z3&  
    Maximum            :         1.611296 1 Ar6hA  
    Mean               :         0.161872 ,)CRozC\}K  
    Standard Deviation :         0.869664 Hy_}e"  
    Z,? T`[4B  
    90% >       0.20977951               RyJN=;5p  
    80% >       0.22748071               n*HRGJ  
    50% >       0.38667627               gOE3x^X*{  
    20% >       0.46553746               !OO{qw(*g  
    10% >       0.50064115                =LsW\.T6  
    <]/z45?  
    End of Run. mHnHB.OL  
    z;74(5?q  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 l$:.bwXXO  
    XQH wu  
    M< T[%)v  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 !GNLq.rQ  
    X53TFRxnT  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 #2F 6}  
    80% >       0.22748071                 e' `xU  
    50% >       0.38667627                 (f5v{S6b(  
    20% >       0.46553746                 aWLeyXsAu  
    10% >       0.50064115 f> u{e~Q,  
    +dkbt%7M  
    最后这个数值是MTF值呢,还是MTF的公差? Dm3/i |Y  
    bEXm@-ou  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   Wgh4DhAW  
    %7_c|G1  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : oZ O 6J-ea  
    90% >       0.20977951                 eNlE]W,=  
    80% >       0.22748071                 TEZ^Ia  
    50% >       0.38667627                 YJw9 d]  
    20% >       0.46553746                 PUB|XgQDY:  
    10% >       0.50064115 (o_fY.  
    ....... uQN8/Gy*J  
    j%iz>  
    y2V9!  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   b=a&!r5M  
    Mode                : Sensitivities ?H7*?HV  
    Sampling            : 2 oC>QJ(o,8  
    Nominal Criterion   : 0.54403234 Ebp^-I9.d  
    Test Wavelength     : 0.6328 9Ot;R?>(  
    *=L3bBu?  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ~$>l@> xX  
    9|dgmEd  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    958
    光币
    1062
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试