切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16472阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 vq *N  
    R2Fh WiL  
    QBa1c-Y  
    ~=HN30  
    然后添加了默认公差分析,基本没变 H,qIHQW#  
    gZgb-$b  
    9|T%q2O  
    i TY4X:x  
    然后运行分析的结果如下: 38! $9)  
    {*H&NI  
    Analysis of Tolerances T#^   
    s)"C~w^  
    File : E:\光学设计资料\zemax练习\f500.ZMX %'j)~  
    Title: Y((s<]7  
    Date : TUE JUN 21 2011 K1Nhz'^=D  
    / Dj6Bj }  
    Units are Millimeters. gF1q Z=<  
    All changes are computed using linear differences. & |u  
    J_R54Y~vu  
    Paraxial Focus compensation only. r00waw>C\  
    Ev IL[\Dy  
    WARNING: Solves should be removed prior to tolerancing. .ps'{rl8  
    Mw@T!)(  
    Mnemonics: 9@Yk8  
    TFRN: Tolerance on curvature in fringes. XJsHy_6  
    TTHI: Tolerance on thickness. +Y,>ftN  
    TSDX: Tolerance on surface decentering in x. !v^D}P 3Y  
    TSDY: Tolerance on surface decentering in y. Kxz<f>`b/  
    TSTX: Tolerance on surface tilt in x (degrees). QRXsLdf$$  
    TSTY: Tolerance on surface tilt in y (degrees). elb|=J`M0  
    TIRR: Tolerance on irregularity (fringes). ,"  
    TIND: Tolerance on Nd index of refraction. O^hWG ~o  
    TEDX: Tolerance on element decentering in x. B2VC:TG>  
    TEDY: Tolerance on element decentering in y. F{ J>=TC  
    TETX: Tolerance on element tilt in x (degrees). Dna0M0   
    TETY: Tolerance on element tilt in y (degrees). 0 V*Di2  
    ?8. $A2(Xw  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. n>jb<uz  
    ,Cj1S7GFR  
    WARNING: Boundary constraints on compensators will be ignored. ]uX'[Z}t  
    0P sp/H%  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm MhNzmI&`  
    Mode                : Sensitivities 8I04Nx  
    Sampling            : 2 BFt?%E/]  
    Nominal Criterion   : 0.54403234 <Bb $d@c  
    Test Wavelength     : 0.6328 V0z.w:-  
    !HL7a]PB  
    *W,"UL6U8y  
    Fields: XY Symmetric Angle in degrees 8AT;9wZqt  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY Hv(0<k6oH  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 R!;tF|]  
    g}0}$WgH:  
    Sensitivity Analysis: FGu:8`c9  
    ej>8$^y  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| CE-ySIa  
    Type                      Value      Criterion        Change          Value      Criterion        Change *qYcb} ]  
    Fringe tolerance on surface 1 ibex:W^  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 iU{bPyz ,  
    Change in Focus                :      -0.000000                            0.000000 {M U>5\  
    Fringe tolerance on surface 2 bKj#HHy\I  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 XP *pYN  
    Change in Focus                :       0.000000                            0.000000 /E$"\md  
    Fringe tolerance on surface 3 mm\Jf  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 w|gtb~oh  
    Change in Focus                :      -0.000000                            0.000000 X{\>TOk   
    Thickness tolerance on surface 1 G!T)V2y  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 0[TZ$<v"  
    Change in Focus                :       0.000000                            0.000000 #sdW3m_%  
    Thickness tolerance on surface 2 E{sTxO I$  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 GM|gm-t<@  
    Change in Focus                :       0.000000                           -0.000000 |Y|{9Osus  
    Decenter X tolerance on surfaces 1 through 3 RS!~5nk5  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 G*uy@s:  
    Change in Focus                :       0.000000                            0.000000 Teu4;  
    Decenter Y tolerance on surfaces 1 through 3 D`0II=  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 dQ@ e+u5  
    Change in Focus                :       0.000000                            0.000000 G*2bYsnhX  
    Tilt X tolerance on surfaces 1 through 3 (degrees) (p26TN;*$5  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 KG)7hja<6g  
    Change in Focus                :       0.000000                            0.000000 7lY&/-V  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) A>(m}P  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ]Gm,sp.x  
    Change in Focus                :       0.000000                            0.000000 [[P?T^KT  
    Decenter X tolerance on surface 1 &^FCp'J-  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 !/ TeTmo  
    Change in Focus                :       0.000000                            0.000000 K/79Tb-  
    Decenter Y tolerance on surface 1 p8hF`D~  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 v' .:?9  
    Change in Focus                :       0.000000                            0.000000 96T.xT>&  
    Tilt X tolerance on surface (degrees) 1 ~?m';  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 %/b?T]{  
    Change in Focus                :       0.000000                            0.000000 [5,aBf) X  
    Tilt Y tolerance on surface (degrees) 1 |lOxRUf~  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 &}@U#w]l  
    Change in Focus                :       0.000000                            0.000000 su/l'p'  
    Decenter X tolerance on surface 2 CdlE"Ye  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 B-ReBtN  
    Change in Focus                :       0.000000                            0.000000 LOpn PH`  
    Decenter Y tolerance on surface 2 cOcF VPQ  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ;0O3b  
    Change in Focus                :       0.000000                            0.000000 dX{|-;6vm  
    Tilt X tolerance on surface (degrees) 2 &Z/aM?  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 <KqZ.7XfB  
    Change in Focus                :       0.000000                            0.000000 h2ewYe<87`  
    Tilt Y tolerance on surface (degrees) 2 S-WD?BF C  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 TKj8a(R_  
    Change in Focus                :       0.000000                            0.000000 ' Dv `Gj  
    Decenter X tolerance on surface 3 &1YqPk  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 /+pbO-rW*  
    Change in Focus                :       0.000000                            0.000000 $cEl6(66iX  
    Decenter Y tolerance on surface 3 z(d@!Cd  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 &$tBD@7  
    Change in Focus                :       0.000000                            0.000000 K@Q_q/(%;  
    Tilt X tolerance on surface (degrees) 3 )(~4fA5j)  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 mv|eEz)r  
    Change in Focus                :       0.000000                            0.000000 Wz}RJC7p  
    Tilt Y tolerance on surface (degrees) 3 $D +6=m[  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 N ncur]  
    Change in Focus                :       0.000000                            0.000000 l-xKfp`  
    Irregularity of surface 1 in fringes ~[d U%I>L^  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 >Lp^QP1gU  
    Change in Focus                :       0.000000                            0.000000 W&ya_iP~C  
    Irregularity of surface 2 in fringes ."Wdpf`~  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 u"XqWLTV  
    Change in Focus                :       0.000000                            0.000000 =k6zUw;5 U  
    Irregularity of surface 3 in fringes "-Gjw B  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 GY,l&.&  
    Change in Focus                :       0.000000                            0.000000 r,X5@/  
    Index tolerance on surface 1 {%5k1,/(  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 $7eO33Bm  
    Change in Focus                :       0.000000                            0.000000 eBX#^  
    Index tolerance on surface 2 .ii9-+_  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 Y~EKMowI&e  
    Change in Focus                :       0.000000                           -0.000000 VXXo\LQUU  
    jOj`S%7  
    Worst offenders: Yh)yp?  
    Type                      Value      Criterion        Change Wm$( b2t  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 90L,.  
    TSTY   2             0.20000000     0.35349910    -0.19053324 QEK,mc3  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 n.jF:  
    TSTX   2             0.20000000     0.35349910    -0.19053324 {E1g+><  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 H_KE^1  
    TSTY   1             0.20000000     0.42678383    -0.11724851 ;SoKX?up5  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ln%xp)t  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Dw{rjK\TT'  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 \9;u.&$mNB  
    TSTY   3             0.20000000     0.42861670    -0.11541563 )k@W 6N  
    6wC|/J^  
    Estimated Performance Changes based upon Root-Sum-Square method: yPrp:%PS  
    Nominal MTF                 :     0.54403234 u H[d%y/  
    Estimated change            :    -0.36299231 /3->TS  
    Estimated MTF               :     0.18104003 E;$)Oz  
    }[XzM /t  
    Compensator Statistics: im{'PgiR  
    Change in back focus: R2WEPMH%  
    Minimum            :        -0.000000 }MAQhXI^O|  
    Maximum            :         0.000000 rOQhS]TP*  
    Mean               :        -0.000000 S'M=P_-7  
    Standard Deviation :         0.000000 ks|[`FH  
    jV Yt=j*"V  
    Monte Carlo Analysis: 834(kw+#9  
    Number of trials: 20 Q<W9<&VZe  
    @Aa$k:_  
    Initial Statistics: Normal Distribution Z&FC:4!!  
    meunAEe  
      Trial       Criterion        Change H?98^y7  
          1     0.42804416    -0.11598818 n B4)%  
    Change in Focus                :      -0.400171 S!Ue+jW  
          2     0.54384387    -0.00018847 G0Zq:kJ  
    Change in Focus                :       1.018470 @/h_v#W  
          3     0.44510003    -0.09893230 Jcf'Zw"\  
    Change in Focus                :      -0.601922 a7'.*H]  
          4     0.18154684    -0.36248550 $O"S*)9  
    Change in Focus                :       0.920681 c#sPM!!  
          5     0.28665820    -0.25737414 V_f}Y8>e  
    Change in Focus                :       1.253875 @s!9 T  
          6     0.21263372    -0.33139862 (+7gS_c  
    Change in Focus                :      -0.903878 @w&VI6  
          7     0.40051424    -0.14351809 hZ2!UW4'  
    Change in Focus                :      -1.354815 "&?F 6Pi  
          8     0.48754161    -0.05649072 bK;I:JK3  
    Change in Focus                :       0.215922 "3o{@TdU  
          9     0.40357468    -0.14045766 wy6>^_z  
    Change in Focus                :       0.281783 N),bhYS]  
         10     0.26315315    -0.28087919 ~$XbYR-  
    Change in Focus                :      -1.048393 fP>_P# gZ  
         11     0.26120585    -0.28282649 |_L\^T|6  
    Change in Focus                :       1.017611 `:cnu;  
         12     0.24033815    -0.30369419 p\I,P2on  
    Change in Focus                :      -0.109292 #mg6F$E  
         13     0.37164046    -0.17239188 x*td nor&  
    Change in Focus                :      -0.692430 tdSy&]P  
         14     0.48597489    -0.05805744 9EzXf+f  
    Change in Focus                :      -0.662040 IJHNb_Cku  
         15     0.21462327    -0.32940907 lx*"Pj9hho  
    Change in Focus                :       1.611296 5=%:CN!/@p  
         16     0.43378226    -0.11025008 !|6M,Rk_  
    Change in Focus                :      -0.640081 G)5w_^&%  
         17     0.39321881    -0.15081353  z}\TS.  
    Change in Focus                :       0.914906 q[p+OpA  
         18     0.20692530    -0.33710703 ;okFm  
    Change in Focus                :       0.801607 *sK")Q4N  
         19     0.51374068    -0.03029165 8 tMfh  
    Change in Focus                :       0.947293 am.}2 QZU  
         20     0.38013374    -0.16389860 WLGk  
    Change in Focus                :       0.667010 i zJa`K  
    = Q|_v}  
    Number of traceable Monte Carlo files generated: 20 o C0K!{R*  
    7U68|\fI!  
    Nominal     0.54403234 v0euvs  
    Best        0.54384387    Trial     2 P0O5CaR  
    Worst       0.18154684    Trial     4 2mUq$kws  
    Mean        0.35770970 I;iJa@HWQ  
    Std Dev     0.11156454 '>dsROB->  
    S*;8z}5<\  
    )]x/MC:9r  
    Compensator Statistics: /V@~Vlww  
    Change in back focus: }T=0]u4,  
    Minimum            :        -1.354815 cU <T;1VQ  
    Maximum            :         1.611296 dw{L,u`68  
    Mean               :         0.161872 vi?{H*H4c  
    Standard Deviation :         0.869664 9sYN7x  
    r.1/ * i  
    90% >       0.20977951               RbB y8ZVM  
    80% >       0.22748071               )>,; GVu"  
    50% >       0.38667627               5bU[uT,`6  
    20% >       0.46553746                d(PS  
    10% >       0.50064115                IG@.WsM_  
    P5 GM s  
    End of Run. A0{ !m  
    ={& }8VA  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 dXr=&@ 1  
    4+&4  
    +~~FfIzf#  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 xb/L AlJ  
    iW.4'9   
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Q'?{_  
    80% >       0.22748071                 {&tbp Bl#  
    50% >       0.38667627                 o$dnp`E  
    20% >       0.46553746                 r\6 "mU  
    10% >       0.50064115 E]G#"EV!Y  
    ]ZJu  
    最后这个数值是MTF值呢,还是MTF的公差? "[ f"h  
    cYBv}ylw}R  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   a.P7O!2Lp  
    6Y!hz7D  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : <uGc=Du  
    90% >       0.20977951                 _M n7zt1^  
    80% >       0.22748071                 u&)+~X  
    50% >       0.38667627                 rCGyr}(NC  
    20% >       0.46553746                 20[_eu)  
    10% >       0.50064115 &A=>x  
    ....... O`2;n.>\  
    _c*0Rr  
    #K A,=J  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   YXCfP~i  
    Mode                : Sensitivities 9F8"(  
    Sampling            : 2 gC-3ghmgS  
    Nominal Criterion   : 0.54403234 zcCX;N  
    Test Wavelength     : 0.6328 \(9hg.E  
    B4k ~~;|  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ZTV|rzE   
    d+ P<nI/|  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试