我现在在初学zemax的
公差分析,找了一个双胶合
透镜 h-].?X,]Q =e$<[" 0r*E$|zZ F w)#[ 然后添加了默认公差分析,基本没变
-r@fLkwg zogw1g&C |D~mLs;& bC{}&a 然后运行分析的结果如下:
"3(""0Q iP]KV.e'/C Analysis of Tolerances
~k^rI jR 3X=9$xw_ File : E:\光学设计资料\zemax练习\f500.ZMX
lmi,P-Q Title:
LP-~; Date : TUE JUN 21 2011
T~8= =Z{[ -GCC Units are Millimeters.
MHeUh[%( All changes are computed using linear differences.
w9<<|ZaU {p[{5k 0 Paraxial Focus compensation only.
Ti$G2dBO 2Tec#eYe WARNING: Solves should be removed prior to tolerancing.
aMe]6cWHV> r'/&{?Je/ Mnemonics:
Kkcb'aDR TFRN: Tolerance on curvature in fringes.
K|,P TTHI: Tolerance on thickness.
=PYfk6j9 TSDX: Tolerance on surface decentering in x.
Y3=5J\d!a TSDY: Tolerance on surface decentering in y.
H=RzY-\a% TSTX: Tolerance on surface tilt in x (degrees).
u1a0w TSTY: Tolerance on surface tilt in y (degrees).
/Jj7+? TIRR: Tolerance on irregularity (fringes).
%A64AJZ TIND: Tolerance on Nd index of refraction.
<:/Lap#D^ TEDX: Tolerance on element decentering in x.
Ne#FBRu5 TEDY: Tolerance on element decentering in y.
M(8dKj1+ TETX: Tolerance on element tilt in x (degrees).
h;cl+c|B TETY: Tolerance on element tilt in y (degrees).
Q]$gw,H"6 xY4g2Q
J WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
IJa6W`} fIe';a WARNING: Boundary constraints on compensators will be ignored.
>M~1{ D+m#_'ocL Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
A0X'|4I Mode : Sensitivities
VaP9&tWXj Sampling : 2
epN>;e z Nominal Criterion : 0.54403234
uPCzs$R Test Wavelength : 0.6328
6$/Z.8 3E9 )~$ M^IEu} Fields: XY Symmetric Angle in degrees
K|L&mL&8 # X-Field Y-Field Weight VDX VDY VCX VCY
ncTPFv
H5 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
bUvVt3cm J([Y4Em5 Sensitivity Analysis:
Ig&H0S k_;g-r, |----------------- Minimum ----------------| |----------------- Maximum ----------------|
eJbZA&: Type Value Criterion Change Value Criterion Change
I+2#k\y Fringe tolerance on surface 1
gy5 ^JL TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
1.24ZX Change in Focus :
-0.000000 0.000000
T*o!#E. Fringe tolerance on surface 2
~:FF"T> TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
5 EhOvt8 Change in Focus : 0.000000 0.000000
L a>fvm Fringe tolerance on surface 3
^_\S)P2c TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
TOT#l6yqdd Change in Focus : -0.000000 0.000000
u,RR|/@ Thickness tolerance on surface 1
.*}!XKp0j TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
Nk63F&J7e Change in Focus : 0.000000 0.000000
f \ E9u} Thickness tolerance on surface 2
='A VI-go5 TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
H!'Ek[s+ Change in Focus : 0.000000 -0.000000
3d>8~ANi=% Decenter X tolerance on surfaces 1 through 3
wqxChTbs TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
YCl&}/.pA Change in Focus : 0.000000 0.000000
1X5MknA Decenter Y tolerance on surfaces 1 through 3
3vXa#f>P< TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
|N5r_V Change in Focus : 0.000000 0.000000
h;Hg/jv Tilt X tolerance on surfaces 1 through 3 (degrees)
F(O"S@ TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
joz0D!-"# Change in Focus : 0.000000 0.000000
3</W}]$)p Tilt Y tolerance on surfaces 1 through 3 (degrees)
s(Y2]X4
( TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Ab
#}BHI Change in Focus : 0.000000 0.000000
>:Y"DX- Decenter X tolerance on surface 1
Nl]_Ie6 TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
~P7zg!p/q Change in Focus : 0.000000 0.000000
B>}B{qi| Decenter Y tolerance on surface 1
aT4I sPA?_ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
4A0v>G`E*# Change in Focus : 0.000000 0.000000
YsO3( HS Tilt X tolerance on surface (degrees) 1
3AcS$.G TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
a B$x(8pP@ Change in Focus : 0.000000 0.000000
]z O6ESH Tilt Y tolerance on surface (degrees) 1
q2b>Z6!5 TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
%i6/=
'u Change in Focus : 0.000000 0.000000
bMq)[8,N Decenter X tolerance on surface 2
j/t)=c TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
Tnv,$KOhs Change in Focus : 0.000000 0.000000
s%QCdU ] Decenter Y tolerance on surface 2
|.z4 VJi4 TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
`pb=y} Change in Focus : 0.000000 0.000000
w=_q<1a Tilt X tolerance on surface (degrees) 2
ToK=`0#LNK TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
-zg 6^f_pW Change in Focus : 0.000000 0.000000
c(b2f-0!4 Tilt Y tolerance on surface (degrees) 2
f
AY(ro9Q( TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
*(s0X[- Change in Focus : 0.000000 0.000000
kQF3DR$,B Decenter X tolerance on surface 3
5O(U1
* TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
-lqD Change in Focus : 0.000000 0.000000
5dX /< Decenter Y tolerance on surface 3
EfB.K}b^ TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
y@@h )P# Change in Focus : 0.000000 0.000000
-FF#+Z$ Tilt X tolerance on surface (degrees) 3
:HM~!7e TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
>Hu3Guik] Change in Focus : 0.000000 0.000000
Aj8zFt] Tilt Y tolerance on surface (degrees) 3
63(XCO TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
i#NtiZ.t= Change in Focus : 0.000000 0.000000
5yyc0UG Irregularity of surface 1 in fringes
5)Z:J TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
q[Tl#*P?y Change in Focus : 0.000000 0.000000
-_xTs(;|8 Irregularity of surface 2 in fringes
n&!q9CR` TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
Mtl`A'KQ/K Change in Focus : 0.000000 0.000000
I<Cm$8O? Irregularity of surface 3 in fringes
8=@f lK TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
:%gM
Xsb Change in Focus : 0.000000 0.000000
PWeWz(]0Z4 Index tolerance on surface 1
O=vD6@QI TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
d}aMdIF!e Change in Focus : 0.000000 0.000000
{e$@i Index tolerance on surface 2
*~~J1.ja> TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
I s|_ Change in Focus : 0.000000 -0.000000
Ey.%:
O-Dv Scug
wSB Worst offenders:
X(O:y^sX} Type Value Criterion Change
a ]:xsJ~ TSTY 2 -0.20000000 0.35349910 -0.19053324
_%3p&1ld TSTY 2 0.20000000 0.35349910 -0.19053324
c'XSs TSTX 2 -0.20000000 0.35349910 -0.19053324
i%GiWanG TSTX 2 0.20000000 0.35349910 -0.19053324
2%v6h TSTY 1 -0.20000000 0.42678383 -0.11724851
guVuO TSTY 1 0.20000000 0.42678383 -0.11724851
fRxn,HyV TSTX 1 -0.20000000 0.42678383 -0.11724851
)gz]F_ TSTX 1 0.20000000 0.42678383 -0.11724851
D^xg2D TSTY 3 -0.20000000 0.42861670 -0.11541563
:]4s;q:m TSTY 3 0.20000000 0.42861670 -0.11541563
r:PYAb=g Em4'b1mDX% Estimated Performance Changes based upon Root-Sum-Square method:
mo9(2@~< Nominal MTF : 0.54403234
g\9&L/xDN Estimated change : -0.36299231
}+}Cl T Estimated MTF : 0.18104003
ecx_&J@D bxPJ5oT Compensator Statistics: CfO{KiM(2 Change in back focus: pI.~j]*:{ Minimum : -0.000000 :`K2?;DC8 Maximum : 0.000000 vM-kk:n7f Mean : -0.000000 ]N,'3`&:: Standard Deviation : 0.000000 LN)yQ- >sdF:(JV& Monte Carlo Analysis:
P8#_E{f Number of trials: 20
zJh!Q** Q,:h`%V Initial Statistics: Normal Distribution
;pS+S0U
G({5Lj gW Trial Criterion Change
m;nH
v 1 0.42804416 -0.11598818
)y6 Change in Focus : -0.400171
C8do8$ 2 0.54384387 -0.00018847
VU6+"2+'2 Change in Focus : 1.018470
c}!`tBTm 3 0.44510003 -0.09893230
2"k|IHs1 Change in Focus : -0.601922
RameaFX8 4 0.18154684 -0.36248550
dNCd-ep Change in Focus : 0.920681
@Z7s3b 5 0.28665820 -0.25737414
P8H2v_)X& Change in Focus : 1.253875
*NM* 6 0.21263372 -0.33139862
zlB[Eg^X Change in Focus : -0.903878
4uh~@ Lv 7 0.40051424 -0.14351809
FjI1'Ah\ Change in Focus : -1.354815
J*zQ8\f=} 8 0.48754161 -0.05649072
$C,`^n' Change in Focus : 0.215922
t'yh&44_ 9 0.40357468 -0.14045766
vR pO0qG Change in Focus : 0.281783
O'(D:D? 10 0.26315315 -0.28087919
"r8N-
h/P Change in Focus : -1.048393
xT( pB-R 11 0.26120585 -0.28282649
fGW~xul_ Change in Focus : 1.017611
&_s^C?x 12 0.24033815 -0.30369419
Gm> =s Change in Focus : -0.109292
6ZwQ/~7H 13 0.37164046 -0.17239188
T!pA$eE Change in Focus : -0.692430
@*uZ+$ 14 0.48597489 -0.05805744
il"pKQF Change in Focus : -0.662040
4/_!F'j 15 0.21462327 -0.32940907
.
Y$xNLoP[ Change in Focus : 1.611296
{d0
rUHP 16 0.43378226 -0.11025008
i5_l//] Change in Focus : -0.640081
n<@C'\j@ 17 0.39321881 -0.15081353
f+.sm Change in Focus : 0.914906
7Bd=K=3u 18 0.20692530 -0.33710703
?%lfbZ Change in Focus : 0.801607
GuaF B[4 19 0.51374068 -0.03029165
naA8RD5/ Change in Focus : 0.947293
}IdkXAB. 20 0.38013374 -0.16389860
ynf!1!4 Change in Focus : 0.667010
m?1r@!/y \4
+HNy3 Number of traceable Monte Carlo files generated: 20
Z0v&AD= snNB;hkj Nominal 0.54403234
A;6ew4 Best 0.54384387 Trial 2
C1qlB8(Wh> Worst 0.18154684 Trial 4
_ /Eg_dQ~@ Mean 0.35770970
%sPq*w. Std Dev 0.11156454
8A/rkoht* )nq(XM7 >wFn|7\)s> Compensator Statistics:
-i_XP]b& Change in back focus:
kw7E<aF! Minimum : -1.354815
)>iPx.hVSS Maximum : 1.611296
16nU`TN Mean : 0.161872
;!7M<T$& Standard Deviation : 0.869664
c+O:n:L wbk$(P'gN 90% > 0.20977951 : w>R|] 80% > 0.22748071 RSw;b.t7 50% > 0.38667627 sXT8jLIf 20% > 0.46553746 - (q7"h 10% > 0.50064115 <(xro/ 8wEJyAu2 End of Run.
L$"pk{' B5R 7geC 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
^&c &5S} 79k+R9m /)dyAX( 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
m,6[; -D1A 不吝赐教