切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16493阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 A1\;6W:  
    CQsVGn{x  
    /NLpk7r[\q  
    9VkuYm,3  
    然后添加了默认公差分析,基本没变 ,Mc}U9)F  
    eUqsvF}l!  
    av wU)6L  
    ~v9\4O  
    然后运行分析的结果如下: fCZbIt)Eh  
    Qd]-i3^0  
    Analysis of Tolerances ` M"Zq  
    =g/K>B  
    File : E:\光学设计资料\zemax练习\f500.ZMX !e.@Xk.P6  
    Title: W3 2mAz;  
    Date : TUE JUN 21 2011 ImklM7A  
    V|xR`Q  
    Units are Millimeters. *BBP"_$  
    All changes are computed using linear differences. L3X>v3CZ5  
    nb'],({:9  
    Paraxial Focus compensation only. RhbYDsG  
    ~|Gtm[9Ru  
    WARNING: Solves should be removed prior to tolerancing. N+!{Bt*  
    *8js{G0h  
    Mnemonics: v"_hWJ)  
    TFRN: Tolerance on curvature in fringes. 5`6@CRef  
    TTHI: Tolerance on thickness. Z'WoChjM  
    TSDX: Tolerance on surface decentering in x. #(bMZ!/(  
    TSDY: Tolerance on surface decentering in y. dB_\0?jJ-  
    TSTX: Tolerance on surface tilt in x (degrees). 1>57rx"l  
    TSTY: Tolerance on surface tilt in y (degrees). <J{VTk ~  
    TIRR: Tolerance on irregularity (fringes). ]_|qv1K6  
    TIND: Tolerance on Nd index of refraction. h{J2CWJ  
    TEDX: Tolerance on element decentering in x. wC<!,tB(8  
    TEDY: Tolerance on element decentering in y. "]5]"F4]  
    TETX: Tolerance on element tilt in x (degrees). n`0}g_\q  
    TETY: Tolerance on element tilt in y (degrees). -UPdgZ_Vxz  
    69r<Z  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. tQz-tQg  
    D19uI&U4  
    WARNING: Boundary constraints on compensators will be ignored. j3IxcG}f  
    o*I=6`j  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ./[%%"  
    Mode                : Sensitivities #<4h Y7/  
    Sampling            : 2 h3>/..l  
    Nominal Criterion   : 0.54403234 l5D8DvJCj  
    Test Wavelength     : 0.6328 [P)HVFy|l  
    h&[]B*BLr  
    \ tF><  
    Fields: XY Symmetric Angle in degrees Z!~~6Sq  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY yXR$MT+~  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 5sFp+_``  
     yYp!s  
    Sensitivity Analysis: z~L(kf4  
    >F!2ib8  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| ^0ipM/Lg  
    Type                      Value      Criterion        Change          Value      Criterion        Change ArbfA~jXB  
    Fringe tolerance on surface 1 \@GA;~x.b  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 b)3dZ*cOJ  
    Change in Focus                :      -0.000000                            0.000000 )g9Zw_3  
    Fringe tolerance on surface 2 D$I7 Gz,w{  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 m+"?;;s  
    Change in Focus                :       0.000000                            0.000000 d*3k]Ie%5f  
    Fringe tolerance on surface 3 mcpM<vY/H  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 #l+U(zH:JG  
    Change in Focus                :      -0.000000                            0.000000 t]2~aK<]  
    Thickness tolerance on surface 1 j1Q G-Rs&  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 oOmPbAY  
    Change in Focus                :       0.000000                            0.000000 )(_}60  
    Thickness tolerance on surface 2 arrNx|y  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 o[O-|XL_  
    Change in Focus                :       0.000000                           -0.000000 |94"bDL3~  
    Decenter X tolerance on surfaces 1 through 3 &^{HD }/{b  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 & LwR9\sh  
    Change in Focus                :       0.000000                            0.000000 Tc T%[h!  
    Decenter Y tolerance on surfaces 1 through 3 0}PW<lU-  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 GTeFDm; T^  
    Change in Focus                :       0.000000                            0.000000 M0S}-eXc5  
    Tilt X tolerance on surfaces 1 through 3 (degrees) !G 90oW  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 )d2 <;c  
    Change in Focus                :       0.000000                            0.000000 4=%Uv^M  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) S}cpYjnH8  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 C~yfuPr\B  
    Change in Focus                :       0.000000                            0.000000 Zq}w}v  
    Decenter X tolerance on surface 1 $ [by)  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 xw&[ 9}Y  
    Change in Focus                :       0.000000                            0.000000 .Xc, Gq{  
    Decenter Y tolerance on surface 1 +5JCbT@y  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 l|/h4BJ'  
    Change in Focus                :       0.000000                            0.000000 g G>1  
    Tilt X tolerance on surface (degrees) 1 A{bt Z#k  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 P|!GXkS  
    Change in Focus                :       0.000000                            0.000000 4askQV &hj  
    Tilt Y tolerance on surface (degrees) 1 \A6MVMF8  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ~>VEg3#F  
    Change in Focus                :       0.000000                            0.000000 M$B9?N6  
    Decenter X tolerance on surface 2 1y2D]h/'  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 _[<R<&jG  
    Change in Focus                :       0.000000                            0.000000 j#f+0  
    Decenter Y tolerance on surface 2 ra0:Lg'  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 *!$4   
    Change in Focus                :       0.000000                            0.000000 V}. uF,>V  
    Tilt X tolerance on surface (degrees) 2 iKnH6} `?U  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 me_DONW  
    Change in Focus                :       0.000000                            0.000000 .0:BgM  
    Tilt Y tolerance on surface (degrees) 2 h3Nwxj~E  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 '_lyoVP  
    Change in Focus                :       0.000000                            0.000000 wZJpSkcEx  
    Decenter X tolerance on surface 3 XI} C|]#  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 jr bEJ.  
    Change in Focus                :       0.000000                            0.000000 n#uH^@#0  
    Decenter Y tolerance on surface 3 n (7m  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 J;W(}"cFq  
    Change in Focus                :       0.000000                            0.000000 gbsRf&4h  
    Tilt X tolerance on surface (degrees) 3 # =V%S 2~  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 s:'M[xI  
    Change in Focus                :       0.000000                            0.000000 vIF=kKl9,  
    Tilt Y tolerance on surface (degrees) 3 HJhPd#xCW  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 QM\v ruTB  
    Change in Focus                :       0.000000                            0.000000 <H<5E'm  
    Irregularity of surface 1 in fringes (%}T\~`1z#  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 >6*"g{/  
    Change in Focus                :       0.000000                            0.000000 MqGF~h|+  
    Irregularity of surface 2 in fringes rbiNp6AdL  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 H%t/-'U?  
    Change in Focus                :       0.000000                            0.000000 e^&QT  
    Irregularity of surface 3 in fringes A{iI,IFe  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 veFl0ILd  
    Change in Focus                :       0.000000                            0.000000 VUC  
    Index tolerance on surface 1 vA2@Db}  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 `zGK$,[%  
    Change in Focus                :       0.000000                            0.000000 F1J Sf&8  
    Index tolerance on surface 2 Q/m))!ikMt  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 .;yy= Rj  
    Change in Focus                :       0.000000                           -0.000000 r5jiB L~  
    {_0Efc=7  
    Worst offenders: w$n\`rQ  
    Type                      Value      Criterion        Change $e& ( ncM  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ,DK|jf  
    TSTY   2             0.20000000     0.35349910    -0.19053324 SweaE Rl  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ?BT\)@ h  
    TSTX   2             0.20000000     0.35349910    -0.19053324 ^.5 L\  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 )67_yHW  
    TSTY   1             0.20000000     0.42678383    -0.11724851 !%5ae82~3  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 @'C f<wns  
    TSTX   1             0.20000000     0.42678383    -0.11724851 C9E l {f  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 0,)B~|+  
    TSTY   3             0.20000000     0.42861670    -0.11541563 ML'4 2z Y  
    y3F13 Z@%  
    Estimated Performance Changes based upon Root-Sum-Square method: rUEoz|e4a  
    Nominal MTF                 :     0.54403234 d af$`  
    Estimated change            :    -0.36299231 !4GG q  
    Estimated MTF               :     0.18104003 Ja>UcE29  
    Qj5~ lX`W  
    Compensator Statistics: E{kh)-  
    Change in back focus: iwWy]V m7  
    Minimum            :        -0.000000 #qXE[%  
    Maximum            :         0.000000 Xt~`EN  
    Mean               :        -0.000000 lE:X~RO"~  
    Standard Deviation :         0.000000 nv1'iSEeOl  
    'bGL@H  
    Monte Carlo Analysis: =]&?(Gq  
    Number of trials: 20  Q];gC{I  
    (mz5vzyw  
    Initial Statistics: Normal Distribution 8:;_MBt  
    hYMIe]kJ  
      Trial       Criterion        Change RmxgCe(2a  
          1     0.42804416    -0.11598818 2ME"=! &5  
    Change in Focus                :      -0.400171 )k01K,%#)  
          2     0.54384387    -0.00018847 Bzn{~&i?W:  
    Change in Focus                :       1.018470 ez=$]cln  
          3     0.44510003    -0.09893230 })!d4EcZf  
    Change in Focus                :      -0.601922 +]uW|owxo  
          4     0.18154684    -0.36248550 1RM;"b/  
    Change in Focus                :       0.920681 Mnyg:y*=  
          5     0.28665820    -0.25737414 H1_XEcaM+*  
    Change in Focus                :       1.253875 TWYz\Hmw  
          6     0.21263372    -0.33139862 rGuhYYvK  
    Change in Focus                :      -0.903878 8*kZ.-T B  
          7     0.40051424    -0.14351809 hm3,?FMbq  
    Change in Focus                :      -1.354815 yaD<jc(O  
          8     0.48754161    -0.05649072 >Z?fX  
    Change in Focus                :       0.215922 4@OnMj{M  
          9     0.40357468    -0.14045766 |7]7~ 6l  
    Change in Focus                :       0.281783 WXu:mv,'e  
         10     0.26315315    -0.28087919 tW53&q\=  
    Change in Focus                :      -1.048393 ,Q4U<`ds!  
         11     0.26120585    -0.28282649 | qtdmm  
    Change in Focus                :       1.017611 "}Kvx{L8  
         12     0.24033815    -0.30369419 A`<#}~A  
    Change in Focus                :      -0.109292 }uo5rB5D  
         13     0.37164046    -0.17239188 Dww]D|M  
    Change in Focus                :      -0.692430 @;kw6f:{d  
         14     0.48597489    -0.05805744 q9.)p  
    Change in Focus                :      -0.662040 au7%K5  
         15     0.21462327    -0.32940907 C\Q3vG  
    Change in Focus                :       1.611296 H `y.jSNi  
         16     0.43378226    -0.11025008 2 P+RfE`o  
    Change in Focus                :      -0.640081 ;Q&38qI  
         17     0.39321881    -0.15081353 8^M5k%P  
    Change in Focus                :       0.914906 $'e;ScH  
         18     0.20692530    -0.33710703 }Uki)3(  
    Change in Focus                :       0.801607 r9z_8#cR  
         19     0.51374068    -0.03029165 txQyHQ)@  
    Change in Focus                :       0.947293 _ _cJ+%e  
         20     0.38013374    -0.16389860 SY|r'8Z%Q  
    Change in Focus                :       0.667010 pxjN\q  
    +Q_(wR"FS  
    Number of traceable Monte Carlo files generated: 20 6l&m+!i  
    :kh l}|  
    Nominal     0.54403234 IF~i*  
    Best        0.54384387    Trial     2 L;/#D>U(  
    Worst       0.18154684    Trial     4 -/|O*oZ  
    Mean        0.35770970 q9o =,[  
    Std Dev     0.11156454 j b1OcI%  
     hh<5?1  
    jC+>^=J(  
    Compensator Statistics: }MP2)6  
    Change in back focus: 1)(p=<$  
    Minimum            :        -1.354815 9UTWq7KJ  
    Maximum            :         1.611296 %Q5D#d"p`  
    Mean               :         0.161872 9XWF&6w6yf  
    Standard Deviation :         0.869664 hnZI{2XzBE  
    o_&.R  
    90% >       0.20977951               Yf.H$L  
    80% >       0.22748071               Sxf|gDC  
    50% >       0.38667627               rg+28tlDn  
    20% >       0.46553746               ~ z4T   
    10% >       0.50064115                I8HUH* |)n  
    #3u3WTk+  
    End of Run. G~_5E]8  
    @_ ^QBw0  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 EquNg@25W  
    Fn$/ K  
    NHA 2 i  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 /{YUM~  
    zk5sAHQ  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 Cvm ZW$5Yo  
    80% >       0.22748071                 OzBo *X/p  
    50% >       0.38667627                 RL~|Kr<7J  
    20% >       0.46553746                 ^T'+dGU`  
    10% >       0.50064115 FMY r6/I  
    deaxb8'7  
    最后这个数值是MTF值呢,还是MTF的公差? B;4hI?  
    Z]$yuM  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   :eS7"EG{3  
    %_M B-  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : 7MGc+M(p  
    90% >       0.20977951                 / 6gRoQ%j  
    80% >       0.22748071                 5R"b1  
    50% >       0.38667627                 9D<^)ShY  
    20% >       0.46553746                 DT9i<kl  
    10% >       0.50064115 !\awT  
    ....... G>:l(PW:  
    KL5rF,DME  
    &-cI|  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   #=O0-si ]P  
    Mode                : Sensitivities b7>;UX  
    Sampling            : 2 ]iz5VI@  
    Nominal Criterion   : 0.54403234 |23 }~c,  
    Test Wavelength     : 0.6328 P$pl  
    ;<&s _C3  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? r?[mn^Bo5  
    Yd<~]aXM   
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试