切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16234阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 V f&zL Sgr  
    (%6P0*  
    ="H`V V_  
    C{rcs'  
    然后添加了默认公差分析,基本没变 0#hlsfc]\  
    !f [_+CD  
    'IQ0{&EI  
    }($5k]]clP  
    然后运行分析的结果如下: q<|AZ2Ai  
    .`eN8Dl1  
    Analysis of Tolerances LH% F 8  
    7n<{tM  
    File : E:\光学设计资料\zemax练习\f500.ZMX p]TAELy  
    Title: 7JH6A'&  
    Date : TUE JUN 21 2011 q]-r@yF  
    Yj49t_$b  
    Units are Millimeters. M6j y\<a  
    All changes are computed using linear differences. C&%_a~  
    ^ZcGY+/~  
    Paraxial Focus compensation only. g! |kp?  
    Q)h(nbbVak  
    WARNING: Solves should be removed prior to tolerancing. %tGO?JMkd  
    #;e:A8IQ  
    Mnemonics: Ti5-6%~&  
    TFRN: Tolerance on curvature in fringes. O^ yG?b  
    TTHI: Tolerance on thickness. Jnov<+  
    TSDX: Tolerance on surface decentering in x. Q1 97mN+0  
    TSDY: Tolerance on surface decentering in y. u6JM]kR  
    TSTX: Tolerance on surface tilt in x (degrees). )ez9"# MH'  
    TSTY: Tolerance on surface tilt in y (degrees). :"c*s4  
    TIRR: Tolerance on irregularity (fringes). 0GeTS Fj  
    TIND: Tolerance on Nd index of refraction. kl:Bfs)b  
    TEDX: Tolerance on element decentering in x. gM:".Ee  
    TEDY: Tolerance on element decentering in y. 46h<,na?,  
    TETX: Tolerance on element tilt in x (degrees). wmLs/:~  
    TETY: Tolerance on element tilt in y (degrees). %h!B^{0  
    (!WD1w   
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. X \/#@T  
    8d'0N  
    WARNING: Boundary constraints on compensators will be ignored. 6i/(5 nQ  
    xy;;zOh`  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 4V`G,W4^J  
    Mode                : Sensitivities [4f{w%~^  
    Sampling            : 2  b>ySv  
    Nominal Criterion   : 0.54403234 ` Sz}`+E  
    Test Wavelength     : 0.6328 ' `Hr}  
    ?Ir:g=RP*  
    zO6oT1I  
    Fields: XY Symmetric Angle in degrees P&Vv/D  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY <e6#lFQqK  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 #H~64/  
    FYQS)s  
    Sensitivity Analysis: WpvhTX  
    S f# R0SA  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| abVmkdP_s  
    Type                      Value      Criterion        Change          Value      Criterion        Change f/?P514h  
    Fringe tolerance on surface 1 M o|2}nf  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ~P-mC@C  
    Change in Focus                :      -0.000000                            0.000000 ,ig/s2ZG6X  
    Fringe tolerance on surface 2 pQB."[n  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 -Q Nh  
    Change in Focus                :       0.000000                            0.000000 @6-jgw>W2  
    Fringe tolerance on surface 3 [$UI8tV  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 hhvyf^o   
    Change in Focus                :      -0.000000                            0.000000 JBZ@'8eqi]  
    Thickness tolerance on surface 1 d<Tc7vg4|U  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 :ShT|n7  
    Change in Focus                :       0.000000                            0.000000 Y'X%Aw;`  
    Thickness tolerance on surface 2 e\/w'  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 #/37V2E  
    Change in Focus                :       0.000000                           -0.000000 H\[W/"  
    Decenter X tolerance on surfaces 1 through 3 qH_Dc=~la  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 _aeBauD  
    Change in Focus                :       0.000000                            0.000000 Tlr v={  
    Decenter Y tolerance on surfaces 1 through 3 "0TZTa1e  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 x,' !gT:j  
    Change in Focus                :       0.000000                            0.000000 dj%!I:Q>u  
    Tilt X tolerance on surfaces 1 through 3 (degrees) LDa1X2N  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 klhtKp_p  
    Change in Focus                :       0.000000                            0.000000 \_fv7Fdp{  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) `Q,H|hp;k;  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 d#wVLmKZ  
    Change in Focus                :       0.000000                            0.000000 ],].zlN  
    Decenter X tolerance on surface 1 }Y4qS  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ?aMOZn?  
    Change in Focus                :       0.000000                            0.000000 lu/ (4ED  
    Decenter Y tolerance on surface 1 &%Tj/Qx  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 bg0Wnl  
    Change in Focus                :       0.000000                            0.000000 C7AUsYM  
    Tilt X tolerance on surface (degrees) 1 T51 `oZ`  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 P!k{u^$L  
    Change in Focus                :       0.000000                            0.000000 ^<AwG=  
    Tilt Y tolerance on surface (degrees) 1 x,Vr=FB  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 BDVtSs<7  
    Change in Focus                :       0.000000                            0.000000 6W Ur QFK  
    Decenter X tolerance on surface 2 ;A[Q2(w+  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 |Q>IrT  
    Change in Focus                :       0.000000                            0.000000 /a o5FL  
    Decenter Y tolerance on surface 2 :BT q!>s  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 I2Yz#V<%ru  
    Change in Focus                :       0.000000                            0.000000 yV(\R  
    Tilt X tolerance on surface (degrees) 2 Aiea\j Bv  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 WX0tgXl  
    Change in Focus                :       0.000000                            0.000000 HpnWo DM  
    Tilt Y tolerance on surface (degrees) 2 KK &?gTa  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 qIqM{#' ^  
    Change in Focus                :       0.000000                            0.000000 8\gjST*  
    Decenter X tolerance on surface 3 cN9t{.m  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 %~S&AE-  
    Change in Focus                :       0.000000                            0.000000 ReeH@.74  
    Decenter Y tolerance on surface 3 ~PNub E  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 ;A!BVq  
    Change in Focus                :       0.000000                            0.000000 @s^-.z  
    Tilt X tolerance on surface (degrees) 3 |zE'd!7E  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 >&k-'`Nw  
    Change in Focus                :       0.000000                            0.000000 pD]OT-8  
    Tilt Y tolerance on surface (degrees) 3 -Y;3I00(  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 e?f IXk~b  
    Change in Focus                :       0.000000                            0.000000 ?G&ikxl  
    Irregularity of surface 1 in fringes 8HdAFRw  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 E1f\%!2l  
    Change in Focus                :       0.000000                            0.000000 dC4'{ n|7  
    Irregularity of surface 2 in fringes W*w3 [_"sr  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 =mmWl9'mJ  
    Change in Focus                :       0.000000                            0.000000 nt.y !k  
    Irregularity of surface 3 in fringes /H+a0`/  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 #cLBQJq  
    Change in Focus                :       0.000000                            0.000000 pY$Q  
    Index tolerance on surface 1 }4S6Xe  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 76` .Y  
    Change in Focus                :       0.000000                            0.000000 dAe')N:KPI  
    Index tolerance on surface 2 !5?<% *  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 z&^&K}  
    Change in Focus                :       0.000000                           -0.000000 T9q-,w/j;  
    KCDE{za  
    Worst offenders: W+1^4::+  
    Type                      Value      Criterion        Change lB[kbJ  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 .w ,q0<}  
    TSTY   2             0.20000000     0.35349910    -0.19053324 W|(1Y D  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 :p6M=  
    TSTX   2             0.20000000     0.35349910    -0.19053324 /vb`H>P  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Oz#{S:24M+  
    TSTY   1             0.20000000     0.42678383    -0.11724851 W'TaBuCb  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 8sK9G` k  
    TSTX   1             0.20000000     0.42678383    -0.11724851 -n5)w*b,  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 HLHz2-lI  
    TSTY   3             0.20000000     0.42861670    -0.11541563 #yvGK:F  
    -o EW:~y  
    Estimated Performance Changes based upon Root-Sum-Square method: ~.lPEA %%  
    Nominal MTF                 :     0.54403234 fLAw12;^  
    Estimated change            :    -0.36299231 t<?,F  
    Estimated MTF               :     0.18104003 w.-!UD9/.x  
     1ZB"EQ  
    Compensator Statistics: Pd]|:W< E  
    Change in back focus: R_S.tT!  
    Minimum            :        -0.000000 w^0nqh  
    Maximum            :         0.000000 "Os_vlapHo  
    Mean               :        -0.000000 $a ` G  
    Standard Deviation :         0.000000 iMRwp+$  
    `n?DU;,  
    Monte Carlo Analysis: 1 I",L&S1  
    Number of trials: 20 *EwR!L*  
    %BB%pC  
    Initial Statistics: Normal Distribution eO[b1]WLP  
    n>U5R_T  
      Trial       Criterion        Change sds"%]r g  
          1     0.42804416    -0.11598818 IRqy%@)  
    Change in Focus                :      -0.400171 PRE|+=w$  
          2     0.54384387    -0.00018847 d9|<@A  
    Change in Focus                :       1.018470 zT?D<XW>1  
          3     0.44510003    -0.09893230 1D!<'`)AY  
    Change in Focus                :      -0.601922 'a.qu9PJ  
          4     0.18154684    -0.36248550 hqkz^!rp  
    Change in Focus                :       0.920681 fL7xq$K  
          5     0.28665820    -0.25737414 pIKPXqA  
    Change in Focus                :       1.253875 r^ ZEImjc  
          6     0.21263372    -0.33139862 ayF\nk4b  
    Change in Focus                :      -0.903878 ZO$%[ftb  
          7     0.40051424    -0.14351809 h;NYdX5  
    Change in Focus                :      -1.354815 >!)DM]Ri  
          8     0.48754161    -0.05649072 KL Xq\{X  
    Change in Focus                :       0.215922 S#} KIy  
          9     0.40357468    -0.14045766 2WYPO"q  
    Change in Focus                :       0.281783 }txX; "/  
         10     0.26315315    -0.28087919 hp L;bM'  
    Change in Focus                :      -1.048393 4d;8`66O  
         11     0.26120585    -0.28282649 8E]F$.6U  
    Change in Focus                :       1.017611 W X6&oy>  
         12     0.24033815    -0.30369419 kt$jm)UI~l  
    Change in Focus                :      -0.109292 0v$~90)  
         13     0.37164046    -0.17239188 Nf1-!u7  
    Change in Focus                :      -0.692430 TT3|/zwn  
         14     0.48597489    -0.05805744 #$qTFN  
    Change in Focus                :      -0.662040 <B8!.|19  
         15     0.21462327    -0.32940907 %&t<K3&Yh  
    Change in Focus                :       1.611296 pBA7,z"`mP  
         16     0.43378226    -0.11025008 I"7u2"@-8j  
    Change in Focus                :      -0.640081 O]1(FWYy  
         17     0.39321881    -0.15081353 [87,s.MK  
    Change in Focus                :       0.914906 j]/RC(;?  
         18     0.20692530    -0.33710703 RF0HjgP  
    Change in Focus                :       0.801607 J!U}iD@occ  
         19     0.51374068    -0.03029165 QWHug:c  
    Change in Focus                :       0.947293 d <JM36j?  
         20     0.38013374    -0.16389860  p|D/;Mk  
    Change in Focus                :       0.667010 (mtk 4  
    )gy!GK  
    Number of traceable Monte Carlo files generated: 20 j^rIH#V   
    i9][N5\$  
    Nominal     0.54403234 M{hg0/}sUW  
    Best        0.54384387    Trial     2 $,Yd>%Y  
    Worst       0.18154684    Trial     4 I,@6J(9  
    Mean        0.35770970 6MdiY1Lr!K  
    Std Dev     0.11156454 F;0}x;:>  
    ?o#%Xs  
    IG9VdDj  
    Compensator Statistics: j Dv{/ )  
    Change in back focus: ?]Xpi3k  
    Minimum            :        -1.354815 naznayy  
    Maximum            :         1.611296 ]G< Vg5  
    Mean               :         0.161872 ^\&e:Nkh  
    Standard Deviation :         0.869664 j+v=Ul|l  
    8k1Dj1@0z  
    90% >       0.20977951               oJ|j#+Ft  
    80% >       0.22748071               ` 3K)GA  
    50% >       0.38667627               __GqQUQ  
    20% >       0.46553746               JKGe"  
    10% >       0.50064115                T\ >a!  
    ; _1 at  
    End of Run. KE3;V2Ym f  
    !LN?PKJ  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 FNY8tv*/x  
    ! lc[  
    <.izVD4/Gg  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 XtSkh] #z!  
    +8Ymw:D7a  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 _zn.K&I-*k  
    80% >       0.22748071                 "ZsOd>[/  
    50% >       0.38667627                 J1sv[$9  
    20% >       0.46553746                 :AF =<X*5  
    10% >       0.50064115 VZymM<O  
    wFsyD3  
    最后这个数值是MTF值呢,还是MTF的公差? LzXmb 7A  
    Cdu4U}^H  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   c[4i9I3v  
    TNY&asQo  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : c^u"I'#Q  
    90% >       0.20977951                 (TwnkXrR,  
    80% >       0.22748071                 j =WST  
    50% >       0.38667627                 ]2'na?q9  
    20% >       0.46553746                 J(%0z:exs  
    10% >       0.50064115 R_68-WO  
    ....... )V ;mwT!Q  
    `V"sOTb  
    P h}|dGb  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   4Hn`'+b  
    Mode                : Sensitivities X 9%'|(tL  
    Sampling            : 2 0iK;Egwm  
    Nominal Criterion   : 0.54403234 z$GoaS(  
    Test Wavelength     : 0.6328 >O?U= OeD  
    I_%a{$Gjl  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 0}FOV`n  
    J}@z_^|"mJ  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试