切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16649阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 ]6` %  
    {P./==^0  
    Llo"MO*sr  
    xCTML!H  
    然后添加了默认公差分析,基本没变 BU_nh+dF  
    d0ks G$  
    ^x,YW]AS}  
    cT,sh~-x,  
    然后运行分析的结果如下: 2zb"MEOS5  
    ki!0^t:9  
    Analysis of Tolerances =T@1@w  
    eym4=k ~  
    File : E:\光学设计资料\zemax练习\f500.ZMX 4VSU8tK|N]  
    Title: ;^*W+,4WB  
    Date : TUE JUN 21 2011 2ilQXy  
    9A=,E&  
    Units are Millimeters. O>,e~#!  
    All changes are computed using linear differences. n>YKa)|W`  
    `^&OF u ee  
    Paraxial Focus compensation only. }Y\%RA  
    4[e X e$  
    WARNING: Solves should be removed prior to tolerancing. 3pKQ$\u  
    %u'u kcL7  
    Mnemonics: ,O(hMI85]  
    TFRN: Tolerance on curvature in fringes. bG#>uE J-  
    TTHI: Tolerance on thickness. :I#V.  
    TSDX: Tolerance on surface decentering in x. Xv^qVn4  
    TSDY: Tolerance on surface decentering in y. %h@EP[\  
    TSTX: Tolerance on surface tilt in x (degrees). :o3N;*o>)0  
    TSTY: Tolerance on surface tilt in y (degrees). 8ib:FF(= u  
    TIRR: Tolerance on irregularity (fringes). C6PdDRf  
    TIND: Tolerance on Nd index of refraction. 0(HU}I  
    TEDX: Tolerance on element decentering in x. (<9u-HF#  
    TEDY: Tolerance on element decentering in y. fHFE){  
    TETX: Tolerance on element tilt in x (degrees). ]a`$LW}  
    TETY: Tolerance on element tilt in y (degrees). Zy/_ E@C}u  
    ;Y, y4{H3  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. *EH~_F  
    fJg+Ryo  
    WARNING: Boundary constraints on compensators will be ignored. k_#)Tw*  
    })%{AfDRF  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm ]f_p 8?j"  
    Mode                : Sensitivities yWSGi#)1  
    Sampling            : 2 @yYkti;4-  
    Nominal Criterion   : 0.54403234 ~"!fP3"e  
    Test Wavelength     : 0.6328 eR>oq,  
    l/5 hp.  
    ]-# DB^EQ  
    Fields: XY Symmetric Angle in degrees L4W5EO$  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY hZb_P\1X  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 RA 6w}:sq7  
    L/K(dkx  
    Sensitivity Analysis: {JLtE{  
    K&-"d/QuLg  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| At;LO9T3z  
    Type                      Value      Criterion        Change          Value      Criterion        Change ;uGv:$([g  
    Fringe tolerance on surface 1 R;LP:,)  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 %cn<ych G  
    Change in Focus                :      -0.000000                            0.000000 ]SEZaT  
    Fringe tolerance on surface 2 2 %]X+`+O  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 KI.hy2?e  
    Change in Focus                :       0.000000                            0.000000 <P<z N~i9j  
    Fringe tolerance on surface 3 x8|J-8A(  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 .}+}8[p4l  
    Change in Focus                :      -0.000000                            0.000000 h";L  
    Thickness tolerance on surface 1 u3 D)M%e  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 !4!~L k=  
    Change in Focus                :       0.000000                            0.000000 {!`6zBsP  
    Thickness tolerance on surface 2 x+]"  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 2~V*5~fb  
    Change in Focus                :       0.000000                           -0.000000 4+tEFxvX&  
    Decenter X tolerance on surfaces 1 through 3 p#tI;"\y  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 l]SX@zTb  
    Change in Focus                :       0.000000                            0.000000 x{n=;JD  
    Decenter Y tolerance on surfaces 1 through 3 pgo$ 61  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 Z_NCD`i;  
    Change in Focus                :       0.000000                            0.000000 fP1! )po  
    Tilt X tolerance on surfaces 1 through 3 (degrees) :4|4=mkr  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 \U_@S.  
    Change in Focus                :       0.000000                            0.000000 y();tsW qc  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) /9X7A;O  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 -?a 26o%e  
    Change in Focus                :       0.000000                            0.000000 q3`u1S7Z7  
    Decenter X tolerance on surface 1 iy"*5<;*DD  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 O6Y0XL  
    Change in Focus                :       0.000000                            0.000000 V]^$S"Tv  
    Decenter Y tolerance on surface 1 `vV7c`K?  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 h+,@G,|D  
    Change in Focus                :       0.000000                            0.000000 /L 3:  
    Tilt X tolerance on surface (degrees) 1 []T8k9g/-  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 \2z>?i)  
    Change in Focus                :       0.000000                            0.000000 Bw.i}3UT6  
    Tilt Y tolerance on surface (degrees) 1 :6dxtl/{b:  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ?7A>+EY  
    Change in Focus                :       0.000000                            0.000000 d(K +);!  
    Decenter X tolerance on surface 2 ,x$,l  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 a'T;x`b8U,  
    Change in Focus                :       0.000000                            0.000000 dN6?c'iN?2  
    Decenter Y tolerance on surface 2 wC*X4 '  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 '"Nr,vQo  
    Change in Focus                :       0.000000                            0.000000 VU#7%ufu&  
    Tilt X tolerance on surface (degrees) 2 d-%hjy3N  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 2<6UwF  
    Change in Focus                :       0.000000                            0.000000 TA\vZGJ('  
    Tilt Y tolerance on surface (degrees) 2 MK*r+xfSae  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 (k P9hcV  
    Change in Focus                :       0.000000                            0.000000 {`_i`  
    Decenter X tolerance on surface 3 +7a6*;\ y  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 4ppz,L,4  
    Change in Focus                :       0.000000                            0.000000 F"kAkX>3}  
    Decenter Y tolerance on surface 3 V[V[~;Py  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 qgB_=Q#E  
    Change in Focus                :       0.000000                            0.000000 L},_.$I?  
    Tilt X tolerance on surface (degrees) 3 3' 'me  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 <ZW-QN4  
    Change in Focus                :       0.000000                            0.000000 s#MPX3itK  
    Tilt Y tolerance on surface (degrees) 3 *^r}"in  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 }B^tL$k  
    Change in Focus                :       0.000000                            0.000000 |BYRe1l6l  
    Irregularity of surface 1 in fringes #K&Gp-  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 O&&~NXI\  
    Change in Focus                :       0.000000                            0.000000 kf9X$d6   
    Irregularity of surface 2 in fringes wM{s|Ay  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 @+DX.9  
    Change in Focus                :       0.000000                            0.000000 I 6O  
    Irregularity of surface 3 in fringes 1Ws9WU  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 MfkZ  
    Change in Focus                :       0.000000                            0.000000 =lSNs   
    Index tolerance on surface 1 ~G w*r\\+  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 #z42C?V  
    Change in Focus                :       0.000000                            0.000000 "jCu6Rjd  
    Index tolerance on surface 2 !~Z"9(v'C  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 m+9#5a-  
    Change in Focus                :       0.000000                           -0.000000 SWLo|)@[/  
    q\)-BXw:  
    Worst offenders: Zd&S@Z  
    Type                      Value      Criterion        Change kT=8e;K  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 2zpr~cB=  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ,,TnIouy  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 M%#e1"n  
    TSTX   2             0.20000000     0.35349910    -0.19053324 Va8&Z  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 x^CS"v7  
    TSTY   1             0.20000000     0.42678383    -0.11724851 `h;[TtIX4  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 -qoH,4w  
    TSTX   1             0.20000000     0.42678383    -0.11724851 AwN!;t_0+N  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 [-&Zl(9&  
    TSTY   3             0.20000000     0.42861670    -0.11541563 pot~<d`:K"  
    Mihg:  
    Estimated Performance Changes based upon Root-Sum-Square method: `X8F`5&U\f  
    Nominal MTF                 :     0.54403234 w =KPT''!  
    Estimated change            :    -0.36299231 >d6|^h'0  
    Estimated MTF               :     0.18104003 7Lt)nq-b  
    4P0}+  
    Compensator Statistics: %znc##j)q  
    Change in back focus: ^}r1;W?n  
    Minimum            :        -0.000000 e(yh[7p=  
    Maximum            :         0.000000 0$njMnB2l  
    Mean               :        -0.000000 F[0]/  
    Standard Deviation :         0.000000 OJxl<Q=z  
    9FX-1,Jx  
    Monte Carlo Analysis: ~XIb\m9H  
    Number of trials: 20 D,6:EV"sa  
    /<3UQLMa  
    Initial Statistics: Normal Distribution g78^9Y*1  
    cnLro  
      Trial       Criterion        Change oU/5 a>9~  
          1     0.42804416    -0.11598818 nP$9CA  
    Change in Focus                :      -0.400171 d'2A,B~_*  
          2     0.54384387    -0.00018847 DI%saw  
    Change in Focus                :       1.018470 YS ][n_  
          3     0.44510003    -0.09893230 ctUp=po  
    Change in Focus                :      -0.601922 Uz7<PLxd  
          4     0.18154684    -0.36248550 W%J\qA  
    Change in Focus                :       0.920681 A=4OWV?  
          5     0.28665820    -0.25737414 5X+A"X ;C  
    Change in Focus                :       1.253875 16 $B>  
          6     0.21263372    -0.33139862 Je{ykL?N  
    Change in Focus                :      -0.903878 H#&00Q[  
          7     0.40051424    -0.14351809 4m)n+ll  
    Change in Focus                :      -1.354815 W4N{S.#!  
          8     0.48754161    -0.05649072 _Y!IEAU/#  
    Change in Focus                :       0.215922 *] (iS  
          9     0.40357468    -0.14045766 he4(hX^  
    Change in Focus                :       0.281783 f5r0\7y0  
         10     0.26315315    -0.28087919 D]}G.v1  
    Change in Focus                :      -1.048393 >V~E]P%@  
         11     0.26120585    -0.28282649 fIF8%J ^3  
    Change in Focus                :       1.017611 kP"9&R`E  
         12     0.24033815    -0.30369419 "}!G!k:  
    Change in Focus                :      -0.109292 HV.t6@\};  
         13     0.37164046    -0.17239188 =Uh$&m  
    Change in Focus                :      -0.692430 ;aBG,dr}i  
         14     0.48597489    -0.05805744 ]tD]Wx%  
    Change in Focus                :      -0.662040 }*-@!wc-N  
         15     0.21462327    -0.32940907 PeT'^?>  
    Change in Focus                :       1.611296 OY d !v`<  
         16     0.43378226    -0.11025008 %LV9=!w  
    Change in Focus                :      -0.640081 ?EL zj  
         17     0.39321881    -0.15081353 ]! dTG  
    Change in Focus                :       0.914906 weQ_*<5%  
         18     0.20692530    -0.33710703 Ib`XT0k  
    Change in Focus                :       0.801607 OH88n69  
         19     0.51374068    -0.03029165 Qd-A.{[h  
    Change in Focus                :       0.947293 "#]$r  
         20     0.38013374    -0.16389860 g ?k=^C  
    Change in Focus                :       0.667010 [~^0gAlQC  
    xmG<]WF>E  
    Number of traceable Monte Carlo files generated: 20 YN,A )w:]  
    ZEQEx]Y  
    Nominal     0.54403234 *Uh!>Iv;  
    Best        0.54384387    Trial     2 ( =$ x.1  
    Worst       0.18154684    Trial     4 G"6 !{4g  
    Mean        0.35770970 zTp"AuNHN  
    Std Dev     0.11156454 _+,TT['57s  
    Rv=YFo[B  
    ~zgGa:uU  
    Compensator Statistics: y*? Jui Q  
    Change in back focus: yuVs YV@"  
    Minimum            :        -1.354815 rUl+  
    Maximum            :         1.611296 nu^436MSOa  
    Mean               :         0.161872 6mE\OS-I  
    Standard Deviation :         0.869664 S 5U;#H  
    ebq4g387X  
    90% >       0.20977951               Mhu*[a=;x  
    80% >       0.22748071               O8o3O 6[Y  
    50% >       0.38667627               SKtrtm  
    20% >       0.46553746               /{[o ~:'p  
    10% >       0.50064115                5\v3;;A[  
    s.#`&Sd>  
    End of Run. 92c HwWZ!  
    omFz@  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 @c#(.=  
    pw#-_  
    ==B6qX8T  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 *R"/|Ka  
    9$Y=orpWxr  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 @iiT<  
    80% >       0.22748071                 pCDmXB  
    50% >       0.38667627                 _{>vTBU4F  
    20% >       0.46553746                 TpaInXR  
    10% >       0.50064115 K"6vXv4QO  
    ,6/V" kqIP  
    最后这个数值是MTF值呢,还是MTF的公差? f<_Cq <q"  
    mq l Z?-  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   R_KH"`q  
     z} <^jgJ  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Tx D#9]Q`  
    90% >       0.20977951                 Oz95  
    80% >       0.22748071                 Nc`L;CP  
    50% >       0.38667627                 j_AACq {.  
    20% >       0.46553746                 $I=~S[p  
    10% >       0.50064115 V&5wRz+`W  
    ....... XwmL.Gg:]7  
    YWLj?+  
     @5FQX  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Da|z"I x  
    Mode                : Sensitivities aUp g u"  
    Sampling            : 2 A"]YM'.  
    Nominal Criterion   : 0.54403234 Psf#c:*_)  
    Test Wavelength     : 0.6328 @dK Tx#gZ  
    GOPfXtkC  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 1M6D3d_  
    qGo.WZ$  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试