切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16033阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 e)7)~g54  
    G#V22Wca8  
    e&5K]W0{  
    ?*@h]4+k'  
    然后添加了默认公差分析,基本没变 5Z[ D(z  
    qcot T\rq  
    t5k&xV=~ #  
    YZ>cE#  
    然后运行分析的结果如下: vy#(|[pL{  
    fz&}N`n  
    Analysis of Tolerances O>GP>U?]  
    {<2Zb N?  
    File : E:\光学设计资料\zemax练习\f500.ZMX FCWphpz  
    Title: Cg Sdyg@  
    Date : TUE JUN 21 2011 ,fw[J  
    jveRiW@  
    Units are Millimeters. %awS*  
    All changes are computed using linear differences. K9q~Vf  
    a}K+w7VY\  
    Paraxial Focus compensation only. D:(f"  
    Mb>XM7}PU  
    WARNING: Solves should be removed prior to tolerancing. RtL<hD  
     T_uuFL  
    Mnemonics: ?5Fj]Bk]  
    TFRN: Tolerance on curvature in fringes.  kTz  
    TTHI: Tolerance on thickness. fq|2E&&v  
    TSDX: Tolerance on surface decentering in x. UjaC( c  
    TSDY: Tolerance on surface decentering in y. [}2.CM  
    TSTX: Tolerance on surface tilt in x (degrees). o FLrSmY)E  
    TSTY: Tolerance on surface tilt in y (degrees). Bkc-iC}F  
    TIRR: Tolerance on irregularity (fringes). ECScx02  
    TIND: Tolerance on Nd index of refraction. q,DX{:  
    TEDX: Tolerance on element decentering in x. $D5U#  
    TEDY: Tolerance on element decentering in y. IJ8DN@w9  
    TETX: Tolerance on element tilt in x (degrees). 7gwZ9Fob  
    TETY: Tolerance on element tilt in y (degrees). |^Es6 .~  
    F47n_JV!d  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Z?.*.<"Sj  
    6bcrPf}  
    WARNING: Boundary constraints on compensators will be ignored. kPH^X}O$  
    tZ^;{sM  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Q /c WV  
    Mode                : Sensitivities 3kCbD=yF  
    Sampling            : 2 >~rd5xlk  
    Nominal Criterion   : 0.54403234 (J&Xo.<Z-  
    Test Wavelength     : 0.6328 s vb4uvY  
    %j">&U.[  
    nY9qYFw  
    Fields: XY Symmetric Angle in degrees 2.D!4+&  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY rcx;3Vne  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 p*,P%tX  
    U.U.\   
    Sensitivity Analysis: UD2<!a'T  
    rfRo*u2"  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| cJEz>Z6[  
    Type                      Value      Criterion        Change          Value      Criterion        Change C..2y4bA}  
    Fringe tolerance on surface 1 sjI[Vq  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 ?d<:V.1U@  
    Change in Focus                :      -0.000000                            0.000000 51qIo4$  
    Fringe tolerance on surface 2 ok s=|'&  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 d7J[.^\  
    Change in Focus                :       0.000000                            0.000000 m->%8{L  
    Fringe tolerance on surface 3 -]\E}Ti  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 3:joSQa  
    Change in Focus                :      -0.000000                            0.000000 ]HV~xD7\  
    Thickness tolerance on surface 1 MLBg_<  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 :{:?D\%6  
    Change in Focus                :       0.000000                            0.000000 _qt;{,t  
    Thickness tolerance on surface 2 BhW]Oq&  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 s~Wu0%])Q  
    Change in Focus                :       0.000000                           -0.000000 1qj%a%R  
    Decenter X tolerance on surfaces 1 through 3 qTHg[sME  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ZBR^[OXO  
    Change in Focus                :       0.000000                            0.000000 J(0=~Z[  
    Decenter Y tolerance on surfaces 1 through 3 pq?[wp"  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 yp{F 8V 8  
    Change in Focus                :       0.000000                            0.000000 s.;KVy,=Bu  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ~hz@9E]O  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 d50IAa^p6J  
    Change in Focus                :       0.000000                            0.000000 2${,%8"0s  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 5V nr"d  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 +< \cd9  
    Change in Focus                :       0.000000                            0.000000 .;Utkf'I  
    Decenter X tolerance on surface 1 o\ow{ gh9  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 Ag#5.,B-  
    Change in Focus                :       0.000000                            0.000000 uP{+?#a_-\  
    Decenter Y tolerance on surface 1 3cfZ!E~^kc  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 _`@Xy!Ye  
    Change in Focus                :       0.000000                            0.000000 #~URLN  
    Tilt X tolerance on surface (degrees) 1 rfXF 01I  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 YY:iPaGO  
    Change in Focus                :       0.000000                            0.000000 r,.95@  
    Tilt Y tolerance on surface (degrees) 1 _"!{7e`Z  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 H"FflmUO  
    Change in Focus                :       0.000000                            0.000000 '5xuT _  
    Decenter X tolerance on surface 2 W|H4i;u  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 jO&f*rxN  
    Change in Focus                :       0.000000                            0.000000 bOxjm`B<  
    Decenter Y tolerance on surface 2 m>uI\OY{n  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807  Z|:_ c  
    Change in Focus                :       0.000000                            0.000000 <[3lV)~t  
    Tilt X tolerance on surface (degrees) 2 *M5$ h*;v  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 1Fvv/Tj  
    Change in Focus                :       0.000000                            0.000000 /2_B$  
    Tilt Y tolerance on surface (degrees) 2 ?mYV\kDt\  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 8 g# Y  
    Change in Focus                :       0.000000                            0.000000 N t>HztXd  
    Decenter X tolerance on surface 3 7<R6T9g  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 LTYu xZ  
    Change in Focus                :       0.000000                            0.000000 t)oES>W1  
    Decenter Y tolerance on surface 3 a(x.{}uG,  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 _yxe2[TD  
    Change in Focus                :       0.000000                            0.000000 Y1yXB).AH8  
    Tilt X tolerance on surface (degrees) 3 @}&,W N%  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 M=\d_O#;Z  
    Change in Focus                :       0.000000                            0.000000 ^i`3cCFB<  
    Tilt Y tolerance on surface (degrees) 3 OP|.I._I  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 UPVO~hB;  
    Change in Focus                :       0.000000                            0.000000 kKxL04  
    Irregularity of surface 1 in fringes VRd:2uDS  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 C NzSBm  
    Change in Focus                :       0.000000                            0.000000 >uyeI&z  
    Irregularity of surface 2 in fringes 5&n988g C8  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 AF*ni~  
    Change in Focus                :       0.000000                            0.000000 GFQG(7G9  
    Irregularity of surface 3 in fringes 4 [5lX C  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 A{i][1N  
    Change in Focus                :       0.000000                            0.000000 nj~$%vmA  
    Index tolerance on surface 1 iJCY /*C}  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 q*F~~J!P  
    Change in Focus                :       0.000000                            0.000000 Qe @A5#  
    Index tolerance on surface 2 fz<|+(_>J  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 H;TOPtt2  
    Change in Focus                :       0.000000                           -0.000000 .`p<hA)%[C  
    2rR@2Vsw2  
    Worst offenders: RR~sEUCo{  
    Type                      Value      Criterion        Change ;Xfd1    
    TSTY   2            -0.20000000     0.35349910    -0.19053324 q19k<BqR  
    TSTY   2             0.20000000     0.35349910    -0.19053324 FhY{;-W(T  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 ,yHzo  
    TSTX   2             0.20000000     0.35349910    -0.19053324 fR]p+\#8u*  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Q QsVIHA  
    TSTY   1             0.20000000     0.42678383    -0.11724851 7GBZA=J  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 tf$PaA  
    TSTX   1             0.20000000     0.42678383    -0.11724851 G_2gKkIK-  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 jpYw#]Q  
    TSTY   3             0.20000000     0.42861670    -0.11541563 R (tiIo  
    r/N[7 *i  
    Estimated Performance Changes based upon Root-Sum-Square method: :Bx+WW&P.i  
    Nominal MTF                 :     0.54403234 t5ny"k!  
    Estimated change            :    -0.36299231 +X* F<6mZ  
    Estimated MTF               :     0.18104003 xVsa,EX b  
    (!3Yc:~RE  
    Compensator Statistics: 27Kc -rcB  
    Change in back focus: V!pq,!C$v  
    Minimum            :        -0.000000 lgCHGv2@  
    Maximum            :         0.000000 <O,'5+zG%  
    Mean               :        -0.000000 RR[)UQ  
    Standard Deviation :         0.000000 dAYI DE  
    ?VMi!-POE  
    Monte Carlo Analysis: [Vrc:%Jk  
    Number of trials: 20 S F&M (=w<  
    %mK3N2N$  
    Initial Statistics: Normal Distribution ['51FulDR  
    ^w;o\G  
      Trial       Criterion        Change =Q/w%8G  
          1     0.42804416    -0.11598818 ql!5m\  
    Change in Focus                :      -0.400171 #6*V7@9]3|  
          2     0.54384387    -0.00018847 Z-4K?;g'k  
    Change in Focus                :       1.018470 -vv   
          3     0.44510003    -0.09893230 * ajFZI  
    Change in Focus                :      -0.601922 [ E$$nNs  
          4     0.18154684    -0.36248550 ^Ei*M0fF  
    Change in Focus                :       0.920681 o :.~X  
          5     0.28665820    -0.25737414 "?oo\op  
    Change in Focus                :       1.253875 ;eS;AHZ  
          6     0.21263372    -0.33139862 |Q5H9<*  
    Change in Focus                :      -0.903878 c0!Te'?  
          7     0.40051424    -0.14351809 q*HAIw[<y  
    Change in Focus                :      -1.354815 >QYh}Z- /%  
          8     0.48754161    -0.05649072 RE ![O  
    Change in Focus                :       0.215922  'P@=/  
          9     0.40357468    -0.14045766 .K $p`WQ{  
    Change in Focus                :       0.281783 J>f /u:.  
         10     0.26315315    -0.28087919 M*g2VyZ  
    Change in Focus                :      -1.048393 "_ nX5J9  
         11     0.26120585    -0.28282649 t!6\7Vm/  
    Change in Focus                :       1.017611 C!$Xv&"r  
         12     0.24033815    -0.30369419 oS[W*\7'!  
    Change in Focus                :      -0.109292 sl~b\j  
         13     0.37164046    -0.17239188 68v xI|EZ  
    Change in Focus                :      -0.692430 Y;fuh[#  
         14     0.48597489    -0.05805744 { M`  
    Change in Focus                :      -0.662040 &FL%H;Kfx  
         15     0.21462327    -0.32940907 G[|3^O>P  
    Change in Focus                :       1.611296 %3]3r*e&5  
         16     0.43378226    -0.11025008 'b LP ~  
    Change in Focus                :      -0.640081 kA1RfSS  
         17     0.39321881    -0.15081353 z `\# $  
    Change in Focus                :       0.914906 ,3G$`  
         18     0.20692530    -0.33710703 i0ILb/LS  
    Change in Focus                :       0.801607 X tJswxw`K  
         19     0.51374068    -0.03029165 w0#% AK  
    Change in Focus                :       0.947293 q:xtm?'$  
         20     0.38013374    -0.16389860 V8-4>H}Cb/  
    Change in Focus                :       0.667010 Rb{+Ki  
    qsI{ b<n  
    Number of traceable Monte Carlo files generated: 20 a^@+%?X  
    c eqFQ  
    Nominal     0.54403234 fy9uLl}h  
    Best        0.54384387    Trial     2 WEno+Z~=1'  
    Worst       0.18154684    Trial     4 TAXd,z N  
    Mean        0.35770970 OZ eiH X!  
    Std Dev     0.11156454 V78Mq:7d  
    2}D,df'W4  
    [vE$R@TZ0!  
    Compensator Statistics: Xfj)gPt}  
    Change in back focus: !.9l4@z#  
    Minimum            :        -1.354815 RI?NB6U  
    Maximum            :         1.611296 J09*v )L  
    Mean               :         0.161872 6(:)otz  
    Standard Deviation :         0.869664 4DvdE t  
    OMl8 a B9  
    90% >       0.20977951               bAUHUPe  
    80% >       0.22748071               [0K=I64 z  
    50% >       0.38667627               #1MKEfv(~  
    20% >       0.46553746               #g,H("Qy({  
    10% >       0.50064115                x<8\-  
    &q.)2o#Q.  
    End of Run. "K 8nxnq  
    C=8H)Ef,l  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 O2C6V>Q;  
    [70Y,,w  
    o\d |CE;>  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 KUbJe)}g  
    cS4xe(n8  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 2f `&WUe  
    80% >       0.22748071                 QJQJR/g  
    50% >       0.38667627                 R \ia6  
    20% >       0.46553746                 kw3 +>{\  
    10% >       0.50064115 rj}(muM,R  
    FbmsN)mv!%  
    最后这个数值是MTF值呢,还是MTF的公差? WBa /IM   
    _$!`VA%  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   *aI~W^N3  
    J, r Xx:  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : ljuNs@q  
    90% >       0.20977951                 $HxS:3D%D  
    80% >       0.22748071                 >gnF]<  
    50% >       0.38667627                 #cO+<1  
    20% >       0.46553746                 3T?f5+@I  
    10% >       0.50064115 ld95[cTP  
    ....... zA,/@/'(  
    !VFem~'d  
    *<xrp*O  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   3}j1RYtz  
    Mode                : Sensitivities /p 5=i  
    Sampling            : 2 0E1=W 6UZ  
    Nominal Criterion   : 0.54403234 Z}+yI,  
    Test Wavelength     : 0.6328 [Y$V\h=V  
    Z(`r-}f I  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? O_AGMW/2+  
    C\A49q  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试