切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15215阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    957
    光币
    1067
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 #"yf^*wX  
    I2DmM"-|  
    x[^A9  
    \j;uN#)28  
    然后添加了默认公差分析,基本没变 c_a$g  
    Y-c~"#  
    dS&8R1\>1  
    K]Cvk%  
    然后运行分析的结果如下: _TXV{<E6  
    "AK3t' jF*  
    Analysis of Tolerances dGteYt_F  
    CzEn_ZMb  
    File : E:\光学设计资料\zemax练习\f500.ZMX O({_x@  
    Title: Wkk Nyg,  
    Date : TUE JUN 21 2011 @!'H'GvA  
    rWs5s!l,  
    Units are Millimeters. `^ _:  
    All changes are computed using linear differences. 66Xt=US  
    _dBU6U:V  
    Paraxial Focus compensation only. ^Q,/C8qeb  
    f,a %@WT  
    WARNING: Solves should be removed prior to tolerancing. F`Y<(]+   
    Qd4T?5 vG  
    Mnemonics: ggTjd"|)  
    TFRN: Tolerance on curvature in fringes. L-R}O 8  
    TTHI: Tolerance on thickness. 8)!;[G|  
    TSDX: Tolerance on surface decentering in x. ,h._iO)I^  
    TSDY: Tolerance on surface decentering in y. M<srJ8|'  
    TSTX: Tolerance on surface tilt in x (degrees). NGY I%:  
    TSTY: Tolerance on surface tilt in y (degrees). T!a[@,)_  
    TIRR: Tolerance on irregularity (fringes). RHbp:Mlk  
    TIND: Tolerance on Nd index of refraction. 6v#G'M#r  
    TEDX: Tolerance on element decentering in x. W 8NA.  
    TEDY: Tolerance on element decentering in y. (B-9M)  
    TETX: Tolerance on element tilt in x (degrees). m6cW  
    TETY: Tolerance on element tilt in y (degrees). ECzNByP  
    *$$V, 6O.  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. fdG.=7`  
    @ 1A_eF  
    WARNING: Boundary constraints on compensators will be ignored. @GtZK  
    uP]o39b;V  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm 1W[(+TZ&s  
    Mode                : Sensitivities w0Y%}7  
    Sampling            : 2 ;/T-rVND  
    Nominal Criterion   : 0.54403234 :a@z53X@M  
    Test Wavelength     : 0.6328 <pUou  
    )x&@j4,  
    8w[EyVHA  
    Fields: XY Symmetric Angle in degrees se HbwO3 b  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY =3C)sz}  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 W@dY:N}  
    "J{zfWr  
    Sensitivity Analysis: CWQ2iu<_0  
    *$C[![   
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 5z ^UQ q  
    Type                      Value      Criterion        Change          Value      Criterion        Change Fd&!-` T?  
    Fringe tolerance on surface 1 j]"xck  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 9lJj/  
    Change in Focus                :      -0.000000                            0.000000 ]/Qy1,  
    Fringe tolerance on surface 2 xN8JrZE&  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 |uBC0f  
    Change in Focus                :       0.000000                            0.000000 Z<<gz[$+p  
    Fringe tolerance on surface 3 m@u`$rOh  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 E}9ldM=]s  
    Change in Focus                :      -0.000000                            0.000000 -z$2pXT ^  
    Thickness tolerance on surface 1 S)@vl^3ec  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 /+`<X%^U  
    Change in Focus                :       0.000000                            0.000000 jY+S,lD  
    Thickness tolerance on surface 2 ]G PJ(+5  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 eI rmD  
    Change in Focus                :       0.000000                           -0.000000 p3FnYz-V  
    Decenter X tolerance on surfaces 1 through 3 {WeXURp&nF  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 bXwoJ2  
    Change in Focus                :       0.000000                            0.000000 F(~_L.  
    Decenter Y tolerance on surfaces 1 through 3 =e8L7_;  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 n(YHk\2  
    Change in Focus                :       0.000000                            0.000000 dHF$T33It  
    Tilt X tolerance on surfaces 1 through 3 (degrees) R 0HVLQI  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Wd56B+  
    Change in Focus                :       0.000000                            0.000000 3;S`<  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) {V% O4/  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 g^$11  
    Change in Focus                :       0.000000                            0.000000 [RPAkp  
    Decenter X tolerance on surface 1 G? gXK W  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 (e3Gs+;  
    Change in Focus                :       0.000000                            0.000000 6.h   
    Decenter Y tolerance on surface 1 auTTvJ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 )1nCw  
    Change in Focus                :       0.000000                            0.000000 _pko]F|()  
    Tilt X tolerance on surface (degrees) 1 a<wQzgxG  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 6eYf2sZ;J  
    Change in Focus                :       0.000000                            0.000000 #t2UPLO~  
    Tilt Y tolerance on surface (degrees) 1 9Jy2T/l  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 s7nX\:Bw:  
    Change in Focus                :       0.000000                            0.000000 795Jwv  
    Decenter X tolerance on surface 2 ,o@~OTja*  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 u@_!mjXQ  
    Change in Focus                :       0.000000                            0.000000 5Sjr6l3Vq8  
    Decenter Y tolerance on surface 2 ;s\;78`0  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 TF0-?vBWh  
    Change in Focus                :       0.000000                            0.000000 Ryba[Fz4Di  
    Tilt X tolerance on surface (degrees) 2  +iH30v  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 G9n /S=R?  
    Change in Focus                :       0.000000                            0.000000 hQ}7Z&O  
    Tilt Y tolerance on surface (degrees) 2 }{wTlR.]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 ,)rZAI  
    Change in Focus                :       0.000000                            0.000000 ?(/j<,m^  
    Decenter X tolerance on surface 3 O(D5A?tv!  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 iQ|,&K0d]  
    Change in Focus                :       0.000000                            0.000000 Ly)(_Tp@+  
    Decenter Y tolerance on surface 3 *M&VqG4P9w  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 2'<=H76  
    Change in Focus                :       0.000000                            0.000000 grCO-S|j^  
    Tilt X tolerance on surface (degrees) 3 1KYbL8c  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 -<51CDw,  
    Change in Focus                :       0.000000                            0.000000 I51oG:6fR?  
    Tilt Y tolerance on surface (degrees) 3 !<=%;+  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 VqClM  
    Change in Focus                :       0.000000                            0.000000 rI<nUy P?  
    Irregularity of surface 1 in fringes /}nrF4S  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 \7t5U7v8U  
    Change in Focus                :       0.000000                            0.000000 E +Ujpd  
    Irregularity of surface 2 in fringes ?H[5O+P[  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 xv$)u<Ve  
    Change in Focus                :       0.000000                            0.000000 k~1j/VHv  
    Irregularity of surface 3 in fringes X$-b oe?  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 I>H;o{X#  
    Change in Focus                :       0.000000                            0.000000 b@wBR9s  
    Index tolerance on surface 1 ," C[Qg(  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 7bonOt Y  
    Change in Focus                :       0.000000                            0.000000 Z\|u9DO  
    Index tolerance on surface 2 WXLe,7y  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 uS,p|}Q&  
    Change in Focus                :       0.000000                           -0.000000 Jm %ynW  
    $AA~]'O>6:  
    Worst offenders: (}{_]X|e  
    Type                      Value      Criterion        Change ` /I bWu  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 aJ6#=G61l  
    TSTY   2             0.20000000     0.35349910    -0.19053324 }{&l n  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 llHc=&y#  
    TSTX   2             0.20000000     0.35349910    -0.19053324 E[jXUOu-  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 YgfSC}a  
    TSTY   1             0.20000000     0.42678383    -0.11724851 NV} RRs  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 k<YtoV  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ` URSv,(  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 O->_/_  
    TSTY   3             0.20000000     0.42861670    -0.11541563 9Qzjqq:"Li  
    DO&+=o`"  
    Estimated Performance Changes based upon Root-Sum-Square method: HQ^9 [HN.  
    Nominal MTF                 :     0.54403234 w0Fwd  
    Estimated change            :    -0.36299231 U@.u-)oX  
    Estimated MTF               :     0.18104003 %bIsrQ~B  
    Y&vHOA  
    Compensator Statistics: y)3~]h\a  
    Change in back focus: GA|/7[I}  
    Minimum            :        -0.000000 8^/+wa+G  
    Maximum            :         0.000000  6R;)  
    Mean               :        -0.000000 \npz .g^c_  
    Standard Deviation :         0.000000 {q&@nm40  
     r=fE8[,  
    Monte Carlo Analysis: '8 )Wd"[  
    Number of trials: 20 Md8(`@`o  
    e7@li<3>d  
    Initial Statistics: Normal Distribution (jM<T;4  
    RVc)") hQj  
      Trial       Criterion        Change [AXsnpa/C  
          1     0.42804416    -0.11598818 XnBm`vk?V!  
    Change in Focus                :      -0.400171 Y 3o^Euou  
          2     0.54384387    -0.00018847 Ln ~4mN^  
    Change in Focus                :       1.018470 `[WyH O|8  
          3     0.44510003    -0.09893230 pO"m~mpA  
    Change in Focus                :      -0.601922 p QluGIX0V  
          4     0.18154684    -0.36248550 U r^YG4(  
    Change in Focus                :       0.920681 MWBXs7 5I  
          5     0.28665820    -0.25737414 "@.Z#d|Y  
    Change in Focus                :       1.253875 `$J'UXtGc  
          6     0.21263372    -0.33139862 U? 8i'5)  
    Change in Focus                :      -0.903878 \). Nag+  
          7     0.40051424    -0.14351809 <z^SZ~G  
    Change in Focus                :      -1.354815 +x(YG(5\w  
          8     0.48754161    -0.05649072 ~6p5H}'H1  
    Change in Focus                :       0.215922 Js/N()X  
          9     0.40357468    -0.14045766 aT&t_^[]   
    Change in Focus                :       0.281783 j*XjY[  
         10     0.26315315    -0.28087919 F y b[{"  
    Change in Focus                :      -1.048393 qtO1hZ  
         11     0.26120585    -0.28282649 Tru c[A.2Z  
    Change in Focus                :       1.017611 iBucT"d]  
         12     0.24033815    -0.30369419 vruD U#  
    Change in Focus                :      -0.109292 vyE{WkZxR  
         13     0.37164046    -0.17239188 yKYl@&H/%  
    Change in Focus                :      -0.692430 mIvnz{_d  
         14     0.48597489    -0.05805744 C?/r;  
    Change in Focus                :      -0.662040 L ${m/@9  
         15     0.21462327    -0.32940907 :i.t)ES  
    Change in Focus                :       1.611296 ((qGh>*  
         16     0.43378226    -0.11025008 975 _d_U  
    Change in Focus                :      -0.640081 > V8sm/M  
         17     0.39321881    -0.15081353 ^;+[8:Kb  
    Change in Focus                :       0.914906 \6{LR&  
         18     0.20692530    -0.33710703 +,z) #  
    Change in Focus                :       0.801607 rkq#7  
         19     0.51374068    -0.03029165 "mR*7o$|  
    Change in Focus                :       0.947293 6(Vhtr2( *  
         20     0.38013374    -0.16389860 5Dd:r{{ Q  
    Change in Focus                :       0.667010 )9B:Y;>)  
    U9 bWU'  
    Number of traceable Monte Carlo files generated: 20 +Juh:1H  
    Tpb"uBiXoo  
    Nominal     0.54403234 "kU]  
    Best        0.54384387    Trial     2 g8RPHjvZ  
    Worst       0.18154684    Trial     4 h48YDWwy  
    Mean        0.35770970 \%TyrY+`K  
    Std Dev     0.11156454 ywO mQcZ  
    Cc Y7$D  
    Z|I-BPyn  
    Compensator Statistics: zW5C1:.3K  
    Change in back focus: P 6.!3%y  
    Minimum            :        -1.354815 &qKig kLd  
    Maximum            :         1.611296 E=]]b;u-n  
    Mean               :         0.161872 6WeM rWx  
    Standard Deviation :         0.869664 q_sEw~~@!  
    b# u8\H  
    90% >       0.20977951               RkA8  
    80% >       0.22748071               gw+eM,Yp  
    50% >       0.38667627               at| \FOKj  
    20% >       0.46553746               dxCPV6 XI  
    10% >       0.50064115                n'M>xq_  
    cS(;Qs]Q  
    End of Run. 35_)3 R)  
    RYy,wVh}  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 [EOVw%R  
    U*\17YU6h  
    ~x#vZ=]8  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 OhFW*v  
    y3JMbl[S0  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 g7n "  
    80% >       0.22748071                 E!mmLVa9  
    50% >       0.38667627                 ej^3Y Nh&  
    20% >       0.46553746                 H=~9CJ+tc  
    10% >       0.50064115 /tj$luls5  
    Ia4)uV8  
    最后这个数值是MTF值呢,还是MTF的公差? 8ObeiVXf)  
    tC)6  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   /.Q4~Hw%}  
    `^6 ,kI-c  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : F -gE<<  
    90% >       0.20977951                 h2q/mi5{  
    80% >       0.22748071                 gP}+wbk  
    50% >       0.38667627                 :k=mzO<&  
    20% >       0.46553746                 +[-i%b3q  
    10% >       0.50064115 XNH4vG |  
    ....... I PCGt{B~  
    #f,y&\Xmf  
    hZ$t$3  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   |V,<+BEi  
    Mode                : Sensitivities A;X=bj _&a  
    Sampling            : 2 Xl-e !  
    Nominal Criterion   : 0.54403234 E8[T   
    Test Wavelength     : 0.6328 L"+$Wc[|  
    I:j3sy  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 9WG{p[  
    @* ust>7  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    957
    光币
    1067
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试