切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16543阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Ax D&_GT  
    G(LGa2;Zg  
    YT)jBS~&  
    Pt/dH+r`%  
    然后添加了默认公差分析,基本没变 `QH-VR\_  
    nf,R+oX  
    PgNg1  
    \KlOj%s  
    然后运行分析的结果如下: $^ \8-k "  
    KrcL*j&^  
    Analysis of Tolerances ,KXS6:1%5Y  
    3h:"-{MW.  
    File : E:\光学设计资料\zemax练习\f500.ZMX }9w?[hXW"  
    Title: 6,nws5dh  
    Date : TUE JUN 21 2011 <ID/\Qx`q  
    0w'%10"&U+  
    Units are Millimeters. L&[uE;ro  
    All changes are computed using linear differences. B}Q.Is5  
    =!rdn#KH  
    Paraxial Focus compensation only. U)Cv_qe  
    ]a4rA+NFLB  
    WARNING: Solves should be removed prior to tolerancing. |@{4zoP_N  
    w +QXSa_D  
    Mnemonics: fi5x0El  
    TFRN: Tolerance on curvature in fringes. ZWZRG-:&H  
    TTHI: Tolerance on thickness. inO)Y]|f  
    TSDX: Tolerance on surface decentering in x. UY@^KT]  
    TSDY: Tolerance on surface decentering in y. 7 &y'\  
    TSTX: Tolerance on surface tilt in x (degrees). B d#D*"gx  
    TSTY: Tolerance on surface tilt in y (degrees). vrr&Ve  
    TIRR: Tolerance on irregularity (fringes). "bI'XaSv  
    TIND: Tolerance on Nd index of refraction. > /,7j:X  
    TEDX: Tolerance on element decentering in x. z8HOig?  
    TEDY: Tolerance on element decentering in y. zGtWyXP  
    TETX: Tolerance on element tilt in x (degrees). dso6ZRx  
    TETY: Tolerance on element tilt in y (degrees). .M3]\I u  
    c&!EsMsU  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. 8Z YF%  
    2=P.$Kx  
    WARNING: Boundary constraints on compensators will be ignored. tOn 6  
    PL;PId<9w  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm wR)U&da`@  
    Mode                : Sensitivities 6Fp}U  
    Sampling            : 2 QWqEe|}6  
    Nominal Criterion   : 0.54403234 i98>=y~  
    Test Wavelength     : 0.6328 B=E<</i  
    mmE!!J`B  
    Q-scL>IkCb  
    Fields: XY Symmetric Angle in degrees Lye^G% {  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY [sxJ<  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 R#D>m8&}3  
    1}O&q6\"J  
    Sensitivity Analysis: xa7~{ E,  
    k!9LJ%Xh  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| "eqNd"~  
    Type                      Value      Criterion        Change          Value      Criterion        Change '@~\(SH  
    Fringe tolerance on surface 1 ;,d^=:S6@  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 Dt)O60X3>  
    Change in Focus                :      -0.000000                            0.000000 1N8:,bpsT  
    Fringe tolerance on surface 2 "])yV    
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 o75Hit  
    Change in Focus                :       0.000000                            0.000000 ]+C;C  
    Fringe tolerance on surface 3 T7F)'Mx<  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 c34s(>AC  
    Change in Focus                :      -0.000000                            0.000000 4z {jWNM)N  
    Thickness tolerance on surface 1 2P&KU%D)0s  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7iI6._"!w  
    Change in Focus                :       0.000000                            0.000000 ]3u$%v c  
    Thickness tolerance on surface 2 3&39M&  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 %E1_)^ ^  
    Change in Focus                :       0.000000                           -0.000000 >bgx o<  
    Decenter X tolerance on surfaces 1 through 3 n'WhCrW  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ],!7S"{97  
    Change in Focus                :       0.000000                            0.000000 A*&`cUoA  
    Decenter Y tolerance on surfaces 1 through 3 =f{)!uW<4  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 uyE_7)2d  
    Change in Focus                :       0.000000                            0.000000 /w5~ O:  
    Tilt X tolerance on surfaces 1 through 3 (degrees) p#k>BHgnF  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 _'CYS3-P3  
    Change in Focus                :       0.000000                            0.000000 8eAc 5by  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) #CRAQ#:45(  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 (z8^^j[  
    Change in Focus                :       0.000000                            0.000000 =Gl6~lJ{_  
    Decenter X tolerance on surface 1 Cf~H9  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 cJIA/HQe  
    Change in Focus                :       0.000000                            0.000000 d9@Pze">e  
    Decenter Y tolerance on surface 1 >~+'V.CNW  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 .>/Tc  
    Change in Focus                :       0.000000                            0.000000 *x0nAo_n  
    Tilt X tolerance on surface (degrees) 1 am+'j5`Ys  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 B#zu< z  
    Change in Focus                :       0.000000                            0.000000 AK$h S M  
    Tilt Y tolerance on surface (degrees) 1 0$saDmED  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 r~<I5MZY  
    Change in Focus                :       0.000000                            0.000000 _^Ds[VAgA  
    Decenter X tolerance on surface 2 Or({|S9d2  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 cH== OM7&-  
    Change in Focus                :       0.000000                            0.000000 Q!%C:b  
    Decenter Y tolerance on surface 2 ITUwIpA E  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 LTof$4s  
    Change in Focus                :       0.000000                            0.000000 D&)w =qIu  
    Tilt X tolerance on surface (degrees) 2 7 3 Oo;  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @i" ^b  
    Change in Focus                :       0.000000                            0.000000 E0SP  
    Tilt Y tolerance on surface (degrees) 2 @)R6!"p  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 'N7AVj  
    Change in Focus                :       0.000000                            0.000000 *8WcRx  
    Decenter X tolerance on surface 3 t;^NgkP{$  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 TgDx3U[  
    Change in Focus                :       0.000000                            0.000000 ;z>?- j  
    Decenter Y tolerance on surface 3 {9/ayG[98  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 Z'u:Em  
    Change in Focus                :       0.000000                            0.000000 H@j D %  
    Tilt X tolerance on surface (degrees) 3 +"~~; J$  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 4ONou&T  
    Change in Focus                :       0.000000                            0.000000 Vm3e6Y,K  
    Tilt Y tolerance on surface (degrees) 3 ``Yw-|&:Ae  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ZRD@8'1p  
    Change in Focus                :       0.000000                            0.000000 <`rl[C{  
    Irregularity of surface 1 in fringes ,(D:cRN  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 $L@os2  
    Change in Focus                :       0.000000                            0.000000 !yfQ^a_ O  
    Irregularity of surface 2 in fringes gG>|5R0  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 iJ7?6)\  
    Change in Focus                :       0.000000                            0.000000 D>HX1LV  
    Irregularity of surface 3 in fringes NHL -ll-R  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Q\!0V@$  
    Change in Focus                :       0.000000                            0.000000 ,hggmzA~  
    Index tolerance on surface 1 _ +"V5z  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 \Y?ByY  
    Change in Focus                :       0.000000                            0.000000 qh40nqS;9  
    Index tolerance on surface 2 O<H5W|cM  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 GadZ!_.f  
    Change in Focus                :       0.000000                           -0.000000 0-N"_1k|?  
    C}7 c:4c  
    Worst offenders: xUKn  
    Type                      Value      Criterion        Change B\tP{}P8{  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 gGtl*9a=  
    TSTY   2             0.20000000     0.35349910    -0.19053324 YNRorE   
    TSTX   2            -0.20000000     0.35349910    -0.19053324 m$w'`[H  
    TSTX   2             0.20000000     0.35349910    -0.19053324 U}=o3u  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 F$!K/Mm[  
    TSTY   1             0.20000000     0.42678383    -0.11724851 t9!8Bh<  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Z2%ySO  
    TSTX   1             0.20000000     0.42678383    -0.11724851 i6.HR?n  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 _a?(JzLw5  
    TSTY   3             0.20000000     0.42861670    -0.11541563 figCeJ!W4  
    BS6UXAf{|Z  
    Estimated Performance Changes based upon Root-Sum-Square method: @77%15_Jz  
    Nominal MTF                 :     0.54403234 `Tt;)D  
    Estimated change            :    -0.36299231 t/3t69\x  
    Estimated MTF               :     0.18104003 t:SME'~.P  
    k9'`<82Y  
    Compensator Statistics: NJe^5>4`  
    Change in back focus: aj$#8l |zu  
    Minimum            :        -0.000000 '5*8'.4Sy  
    Maximum            :         0.000000 sXpA^pT"T  
    Mean               :        -0.000000 <z=d5g{n  
    Standard Deviation :         0.000000 ]<zjD%Ez  
    U)3*7D  
    Monte Carlo Analysis: d=6FL" .o  
    Number of trials: 20 :M |<c9I  
    ;;3oWsil}  
    Initial Statistics: Normal Distribution 7a0kat '\  
    xv+47.?N  
      Trial       Criterion        Change E&wz0d;gf  
          1     0.42804416    -0.11598818 g~A~|di|  
    Change in Focus                :      -0.400171 wB~5&:]jr  
          2     0.54384387    -0.00018847 w<0F-0:8  
    Change in Focus                :       1.018470 ^1b/Y8&8A  
          3     0.44510003    -0.09893230  3g#  
    Change in Focus                :      -0.601922 zFq8xw  
          4     0.18154684    -0.36248550 &rj)Oh2  
    Change in Focus                :       0.920681 pI>[^7  
          5     0.28665820    -0.25737414 P>i!f!o*I  
    Change in Focus                :       1.253875 P`HDQ/^O  
          6     0.21263372    -0.33139862 saj%[Gsy  
    Change in Focus                :      -0.903878 ?_VoO  
          7     0.40051424    -0.14351809 9?IvSv}z  
    Change in Focus                :      -1.354815 qoo+=eh!  
          8     0.48754161    -0.05649072 3T|xUY)G4  
    Change in Focus                :       0.215922 *Bse3%-v  
          9     0.40357468    -0.14045766 A\1X-Mm  
    Change in Focus                :       0.281783 ):c)$$dn  
         10     0.26315315    -0.28087919 Hkv4^|  
    Change in Focus                :      -1.048393 /3!c ;(  
         11     0.26120585    -0.28282649 V*C%r:5 ,v  
    Change in Focus                :       1.017611 lDV}vuM<4  
         12     0.24033815    -0.30369419 k|Syw ATr  
    Change in Focus                :      -0.109292 SFiK_;  
         13     0.37164046    -0.17239188 v95O)cC:W  
    Change in Focus                :      -0.692430 bRhc8#kw)  
         14     0.48597489    -0.05805744 k,kr7'Q  
    Change in Focus                :      -0.662040 l, [cR?v  
         15     0.21462327    -0.32940907 0[O."9  
    Change in Focus                :       1.611296 ?4^8C4  
         16     0.43378226    -0.11025008 w|AHE  
    Change in Focus                :      -0.640081 =Ay'\j  
         17     0.39321881    -0.15081353 CHojF+e  
    Change in Focus                :       0.914906 `> :^c  
         18     0.20692530    -0.33710703 sb3k? q  
    Change in Focus                :       0.801607 ,?k~>,{3  
         19     0.51374068    -0.03029165 wt(Hk6/B  
    Change in Focus                :       0.947293 ,ezC}V0M  
         20     0.38013374    -0.16389860 oQS_rv\Ber  
    Change in Focus                :       0.667010 /p PSo  
    q5UD!& W  
    Number of traceable Monte Carlo files generated: 20 eBs4:R_i  
    _Z>I"m  
    Nominal     0.54403234 (z:DTe  
    Best        0.54384387    Trial     2 dP7nR1GS  
    Worst       0.18154684    Trial     4 r) SG!;X  
    Mean        0.35770970 V(5=-8k  
    Std Dev     0.11156454 b;K]; o-/f  
    dHUcu@,  
    cj5; XK  
    Compensator Statistics: A@o:mZ+XN(  
    Change in back focus: c2,;t)%@E  
    Minimum            :        -1.354815 K*]^0  
    Maximum            :         1.611296 @_L:W1[  
    Mean               :         0.161872 Ny6 daf3f  
    Standard Deviation :         0.869664 :1 Y*&s  
    g:yUZ;U  
    90% >       0.20977951               3%NbT  
    80% >       0.22748071               ydx-` yg#  
    50% >       0.38667627               )}[:.Zg,3/  
    20% >       0.46553746               *Bj7\8cKC  
    10% >       0.50064115                {f12&t  
    5J1q]^  
    End of Run. n-5@<y^  
    ?vd_8C2B  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 e+? -#  
    iL](w3EM  
    $X;wj5oj  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 ifYC&5}SI  
    =/6rX"\P  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 a BHV  
    80% >       0.22748071                 EXrOP]Kl  
    50% >       0.38667627                 VHUOI64*  
    20% >       0.46553746                 potb6jc?  
    10% >       0.50064115 C K{.Ic^  
    @NY$.K#]  
    最后这个数值是MTF值呢,还是MTF的公差? +"!=E erKi  
    'B$ bGQ  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   FQ72VY  
    |RdiM&C7  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : Xeg g2.Kk  
    90% >       0.20977951                 (+Yerc.NQt  
    80% >       0.22748071                 ]hBp elKJ  
    50% >       0.38667627                 /&>6#3df-  
    20% >       0.46553746                 \pzqUTk  
    10% >       0.50064115 ]JeA29   
    ....... 'w+T vOB  
    Q<y&*o3YF|  
    =$B:i>z<  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   +8FlDiP  
    Mode                : Sensitivities ta*B#2D>  
    Sampling            : 2 ,X&lVv#  
    Nominal Criterion   : 0.54403234 /++CwRz@Gm  
    Test Wavelength     : 0.6328 ?hh 4M  
    t)n!];  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 6,sZo!G  
    (yv&&Jc  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试