切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16315阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 r!/=Iy@  
    \ ;.W;!*  
    8Ar5^.k  
    Jjt'R`t%t  
    然后添加了默认公差分析,基本没变 G2#={g{  
    }9n{E-bj*  
    :?1r.n  
    ;CbQ}k  
    然后运行分析的结果如下: 1.7tXjRd+  
    CD$0Z  
    Analysis of Tolerances <b0;Nf   
     _N`:NOM  
    File : E:\光学设计资料\zemax练习\f500.ZMX 3GEI)!  
    Title: 7^Y"K  
    Date : TUE JUN 21 2011 =-#>NlB$w  
    J%|!KQl  
    Units are Millimeters. $umh&z/  
    All changes are computed using linear differences. !<!5;f8  
    sZ`C "1cX  
    Paraxial Focus compensation only. J23Tst#s  
    |eD$eZ=m  
    WARNING: Solves should be removed prior to tolerancing. :f^ =~#!  
    6nxX~k  
    Mnemonics: tb;!2$  
    TFRN: Tolerance on curvature in fringes. U1pL `P1  
    TTHI: Tolerance on thickness. .+1.??8:+  
    TSDX: Tolerance on surface decentering in x. //C3tW  
    TSDY: Tolerance on surface decentering in y. R"Q=U}?$  
    TSTX: Tolerance on surface tilt in x (degrees). SrMg=a  
    TSTY: Tolerance on surface tilt in y (degrees). bzFwQi}>  
    TIRR: Tolerance on irregularity (fringes). 3QL I|VpO  
    TIND: Tolerance on Nd index of refraction. )6?(K"T  
    TEDX: Tolerance on element decentering in x. O 0Fw!IQk  
    TEDY: Tolerance on element decentering in y. -phwzR\(t  
    TETX: Tolerance on element tilt in x (degrees). "#uXpCuw  
    TETY: Tolerance on element tilt in y (degrees). HCP' V  
    xE/r:D#  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. b&k !DeE  
    7CfHL;+m<4  
    WARNING: Boundary constraints on compensators will be ignored. %T:~N<8)  
    _YVp$aKDR  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Gc=#  
    Mode                : Sensitivities c"X`OB  
    Sampling            : 2 N?`-$C ]  
    Nominal Criterion   : 0.54403234 [a~|{~?8  
    Test Wavelength     : 0.6328 cx?XJ)  
    8 VMe#41  
    K07b#`NF6  
    Fields: XY Symmetric Angle in degrees N*.JQvbnr  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY <"I#lib  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 0pP;[7k\  
    BElVkb  
    Sensitivity Analysis: `TNW LD@Z  
    HorFQ?8  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| =,B44:`r  
    Type                      Value      Criterion        Change          Value      Criterion        Change P$E#C:=  
    Fringe tolerance on surface 1 Wi3:;`>G<p  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 >;Er[Rywr  
    Change in Focus                :      -0.000000                            0.000000 0)/L+P5  
    Fringe tolerance on surface 2 (8C ,"Dc[0  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 \$o5$/oU(  
    Change in Focus                :       0.000000                            0.000000 :BLD &mb"Y  
    Fringe tolerance on surface 3 ?3ldHWa  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 wfH#E2+pk  
    Change in Focus                :      -0.000000                            0.000000 {(r`&[  
    Thickness tolerance on surface 1 +o]DT7W  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 3DH} YAUU  
    Change in Focus                :       0.000000                            0.000000 $5XE'm  
    Thickness tolerance on surface 2 OZ2gIK  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 m Cvgs  
    Change in Focus                :       0.000000                           -0.000000 -nP y?>p"|  
    Decenter X tolerance on surfaces 1 through 3 }^).Y7{g[  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 9&R. <I  
    Change in Focus                :       0.000000                            0.000000 feOX]g#  
    Decenter Y tolerance on surfaces 1 through 3 Q/EHvb]  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 #'}?.m  
    Change in Focus                :       0.000000                            0.000000 2y/|/IW=  
    Tilt X tolerance on surfaces 1 through 3 (degrees) aw z(W >  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 i v7^ !  
    Change in Focus                :       0.000000                            0.000000 }G,PUjg_^3  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) &S/@i|_  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 9 06b=  
    Change in Focus                :       0.000000                            0.000000 `Paz   
    Decenter X tolerance on surface 1 jqULg iC  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 sTx23RJ9  
    Change in Focus                :       0.000000                            0.000000 R"NR-iU  
    Decenter Y tolerance on surface 1 k WVaHZr  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 .!yXto:  
    Change in Focus                :       0.000000                            0.000000 K.k%Tg[ ~  
    Tilt X tolerance on surface (degrees) 1 Bf37/kkf(  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 6CoDn(+z  
    Change in Focus                :       0.000000                            0.000000 SJ(<u2J]  
    Tilt Y tolerance on surface (degrees) 1 :\I88 -N@'  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 N#(p_7M  
    Change in Focus                :       0.000000                            0.000000 y \M]\^[7  
    Decenter X tolerance on surface 2 )erI3?k  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 49vKb(bz{  
    Change in Focus                :       0.000000                            0.000000 M`6rI  
    Decenter Y tolerance on surface 2 B(+J?0Dj  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 ] B ZSW  
    Change in Focus                :       0.000000                            0.000000 ^Ec);Z  
    Tilt X tolerance on surface (degrees) 2 +6dq+8msF  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 0s>ozAJ  
    Change in Focus                :       0.000000                            0.000000 D?yiK=:08`  
    Tilt Y tolerance on surface (degrees) 2 UVND1XV^f  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 =ELl86=CG  
    Change in Focus                :       0.000000                            0.000000 -:mT8'.F-  
    Decenter X tolerance on surface 3 WvV!F?uqZ  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 - \ {.]KL  
    Change in Focus                :       0.000000                            0.000000 Aj9<4N  
    Decenter Y tolerance on surface 3 H{ Fww4pn  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 6Z2a5zO8  
    Change in Focus                :       0.000000                            0.000000 b#ih= qE  
    Tilt X tolerance on surface (degrees) 3 ;- ~}g7$  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 vUtA@  
    Change in Focus                :       0.000000                            0.000000 h+,Eu7\88  
    Tilt Y tolerance on surface (degrees) 3 *^|.bBG  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 9fLxp$`(T  
    Change in Focus                :       0.000000                            0.000000 z=YHRS  
    Irregularity of surface 1 in fringes $^[^ ]Q  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 m-%.LDqM  
    Change in Focus                :       0.000000                            0.000000 x6-bAf  
    Irregularity of surface 2 in fringes %d3KE|&u  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 s/' ]* n  
    Change in Focus                :       0.000000                            0.000000 ;"gUrcuY  
    Irregularity of surface 3 in fringes ?<mxv"  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 )#|I(Gz ^  
    Change in Focus                :       0.000000                            0.000000 t|/{oAj  
    Index tolerance on surface 1 =a!w)z_rw  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Cp[{| U-?G  
    Change in Focus                :       0.000000                            0.000000 9Tju+KcK  
    Index tolerance on surface 2 E@uxEF  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 _ML`Vh]  
    Change in Focus                :       0.000000                           -0.000000 ix.I)  
    6;JlA})  
    Worst offenders: aaa6R|>0  
    Type                      Value      Criterion        Change _VvXE572  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ,\2w+L5TD  
    TSTY   2             0.20000000     0.35349910    -0.19053324 (g>8!Gl  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 'aLTiF+  
    TSTX   2             0.20000000     0.35349910    -0.19053324 3rRN~$  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 D' d^rT| H  
    TSTY   1             0.20000000     0.42678383    -0.11724851 $0(~ID  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 KG8:F].u(  
    TSTX   1             0.20000000     0.42678383    -0.11724851 }{3XbvC  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 nqnVFkGd9  
    TSTY   3             0.20000000     0.42861670    -0.11541563 SuorCp]  
    !:zWhu,  
    Estimated Performance Changes based upon Root-Sum-Square method: _s(izc  
    Nominal MTF                 :     0.54403234 *=b# >//  
    Estimated change            :    -0.36299231 %d%$jF`  
    Estimated MTF               :     0.18104003 iS/faXe5  
    .|Ee,Un  
    Compensator Statistics: `XmT)C  
    Change in back focus: klUW_d-  
    Minimum            :        -0.000000 L("zS%qr  
    Maximum            :         0.000000 G\\0N^v  
    Mean               :        -0.000000 ?WD JWp%  
    Standard Deviation :         0.000000 f&ZFG>)6  
    :4HZ >!i  
    Monte Carlo Analysis: ggP#2I\  
    Number of trials: 20 A7eF.V&  
    TmH'_t.*T~  
    Initial Statistics: Normal Distribution G/y@`A)  
    /kK%}L_D  
      Trial       Criterion        Change IN{ 1itE  
          1     0.42804416    -0.11598818 @ +iO0?f  
    Change in Focus                :      -0.400171 ..Dr?#Cr  
          2     0.54384387    -0.00018847 rhr(uCp/  
    Change in Focus                :       1.018470 q-k~L\Ys  
          3     0.44510003    -0.09893230 Ok/U"N-  
    Change in Focus                :      -0.601922 cVR#\OM  
          4     0.18154684    -0.36248550 JsDugn ,B  
    Change in Focus                :       0.920681 \NgBF  
          5     0.28665820    -0.25737414 i wFI lJ@  
    Change in Focus                :       1.253875 "3\C;B6I  
          6     0.21263372    -0.33139862 S8S<>W  
    Change in Focus                :      -0.903878 Q,AM<\S  
          7     0.40051424    -0.14351809 7K.in3M(  
    Change in Focus                :      -1.354815 C=y[WsT  
          8     0.48754161    -0.05649072 KeIk9T13O  
    Change in Focus                :       0.215922 |o5F%1o  
          9     0.40357468    -0.14045766 q%rfKHMA50  
    Change in Focus                :       0.281783 [Y%H8}  
         10     0.26315315    -0.28087919 [WAnII  
    Change in Focus                :      -1.048393 Da@H^  
         11     0.26120585    -0.28282649 p,cw- lN  
    Change in Focus                :       1.017611 }BR@vY'd  
         12     0.24033815    -0.30369419 {&qB!axj  
    Change in Focus                :      -0.109292 Z2.S:y.  
         13     0.37164046    -0.17239188 ^o|Gx  
    Change in Focus                :      -0.692430 \/ 9s<  
         14     0.48597489    -0.05805744 v})-:  
    Change in Focus                :      -0.662040 Y*KHr`\C4  
         15     0.21462327    -0.32940907 h^`!kp  
    Change in Focus                :       1.611296 S,'y L7s  
         16     0.43378226    -0.11025008 PrZs@ Y  
    Change in Focus                :      -0.640081 L'KgB=5K&i  
         17     0.39321881    -0.15081353 QnJ(C]cW  
    Change in Focus                :       0.914906 Fh3>y2 `/  
         18     0.20692530    -0.33710703 [=otgVteN"  
    Change in Focus                :       0.801607 #xlT,:_:)  
         19     0.51374068    -0.03029165 f(}AdW}?  
    Change in Focus                :       0.947293 !K0:0:  
         20     0.38013374    -0.16389860 "j]85  
    Change in Focus                :       0.667010 a2vZ'  
    'T_Vm%\)  
    Number of traceable Monte Carlo files generated: 20 3u tJlD  
    2b`3"S  
    Nominal     0.54403234 |+|q`SwJ  
    Best        0.54384387    Trial     2 L6jD4ec8  
    Worst       0.18154684    Trial     4 Pv>W`/*_,s  
    Mean        0.35770970 [!Jd.zm  
    Std Dev     0.11156454 qa!3lb_'M  
    "j<l=l!  
    $v#\bqY  
    Compensator Statistics: ": G\  
    Change in back focus: )j^~=Sio.  
    Minimum            :        -1.354815 ar#Xe;T!  
    Maximum            :         1.611296 Alh"ZT^*  
    Mean               :         0.161872 ! ,*4d $  
    Standard Deviation :         0.869664 F79!B  
    jIOrB}  
    90% >       0.20977951               #*"5F*  
    80% >       0.22748071               lls-Nir%  
    50% >       0.38667627               ;hcOD4or  
    20% >       0.46553746               o2J-&   
    10% >       0.50064115                YgFmJ.1  
     oRbG6Vv/  
    End of Run. <Y9 L3O`[  
    UF$JVb  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 <691pk X  
    a#_=c>h;  
    ap7ZT7KW  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 , (Bo .(]  
    eOdB<He36  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 ]rpU3 3  
    80% >       0.22748071                 'DDlX3W-  
    50% >       0.38667627                 Tf|?j=f  
    20% >       0.46553746                 N3Yf3rK  
    10% >       0.50064115 g$(<wWsU  
    *j9hjq0j  
    最后这个数值是MTF值呢,还是MTF的公差? 3.c0PRZ  
    gHB*u!w7Z  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   gE_i#=bw  
    =.sg$VX  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : iEA$`LhO\A  
    90% >       0.20977951                  [YGPcGw  
    80% >       0.22748071                 6 aE:v R2  
    50% >       0.38667627                 QM"\;l??  
    20% >       0.46553746                 Mdj?;'Yv  
    10% >       0.50064115 rzR=% >  
    ....... 6;O fh   
    TjU g8k  
    XL`*T bx  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   lj U|9|v  
    Mode                : Sensitivities ?4[IIX-  
    Sampling            : 2 /K@_O\+;Q  
    Nominal Criterion   : 0.54403234 h^H~q<R[T  
    Test Wavelength     : 0.6328 Ojh\H  
    EJ%Kr$51K  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? hxXl0egI  
    (3_m[N\F  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试