切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 14898阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    956
    光币
    1054
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 h-].?X,]Q  
    =e$<[ "  
    0r*E$|zZ  
    Fw)#[  
    然后添加了默认公差分析,基本没变 -r@fLkwg  
    zogw1g&C  
    |D~mLs;&  
    bC{}&a  
    然后运行分析的结果如下: "3(""0Q  
    iP]KV.e'/C  
    Analysis of Tolerances ~k^rIjR  
    3X=9$xw_  
    File : E:\光学设计资料\zemax练习\f500.ZMX lm i,P-Q  
    Title:  LP-~;  
    Date : TUE JUN 21 2011 T~8==Z{[  
    -GCC  
    Units are Millimeters. MHeUh[%(  
    All changes are computed using linear differences. w9< <|ZaU  
    {p[{5k 0  
    Paraxial Focus compensation only. Ti$G2dBO  
    2Tec#eYe  
    WARNING: Solves should be removed prior to tolerancing. aMe]6cWHV>  
    r'/&{?Je/  
    Mnemonics: Kkcb' aDR  
    TFRN: Tolerance on curvature in fringes. K|,P  
    TTHI: Tolerance on thickness. =PYfk6j9  
    TSDX: Tolerance on surface decentering in x. Y3=5J\d!a  
    TSDY: Tolerance on surface decentering in y. H=RzY-\a%  
    TSTX: Tolerance on surface tilt in x (degrees). u1a0w  
    TSTY: Tolerance on surface tilt in y (degrees). /Jj7 +?  
    TIRR: Tolerance on irregularity (fringes). %A64AJZ  
    TIND: Tolerance on Nd index of refraction. <:/Lap#D^  
    TEDX: Tolerance on element decentering in x. Ne#FBRu5  
    TEDY: Tolerance on element decentering in y. M(8dKj1+  
    TETX: Tolerance on element tilt in x (degrees). h;cl+c|B  
    TETY: Tolerance on element tilt in y (degrees). Q]$gw,H"6  
    xY4g2Q J  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. IJa6W`}  
    fIe';a  
    WARNING: Boundary constraints on compensators will be ignored.  >M~1{  
    D+m#_'ocL  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm A0X'|4I  
    Mode                : Sensitivities VaP9&tWXj  
    Sampling            : 2 epN> ;e z  
    Nominal Criterion   : 0.54403234 uPCzs$R  
    Test Wavelength     : 0.6328 6$/Z.8  
    3E9 )~$  
    M^IEu }  
    Fields: XY Symmetric Angle in degrees K|L&mL&8  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY ncTPFv H5  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 bUvVt3cm  
    J([Y4Em5  
    Sensitivity Analysis: Ig&H0S  
    k_;g-r,  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| eJbZA&:  
    Type                      Value      Criterion        Change          Value      Criterion        Change I+2#k\y  
    Fringe tolerance on surface 1 g y5^JL  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 1.24ZX  
    Change in Focus                :      -0.000000                            0.000000 T*o!#E.  
    Fringe tolerance on surface 2 ~:FF"T>  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 5 EhOvt8  
    Change in Focus                :       0.000000                            0.000000 La>fvm  
    Fringe tolerance on surface 3 ^_\S)P2c  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 TOT#l6yqdd  
    Change in Focus                :      -0.000000                            0.000000 u ,R R|/@  
    Thickness tolerance on surface 1 .*}!XKp0j  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 Nk63F&J7e  
    Change in Focus                :       0.000000                            0.000000 f \ E9u}  
    Thickness tolerance on surface 2 ='A VI-go5  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 H!'Ek[s+  
    Change in Focus                :       0.000000                           -0.000000 3d>8~ANi=%  
    Decenter X tolerance on surfaces 1 through 3 wqxChTbs  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 YCl&}/.pA  
    Change in Focus                :       0.000000                            0.000000 1X5MknA  
    Decenter Y tolerance on surfaces 1 through 3 3vXa#f>P<  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 |N5r_V  
    Change in Focus                :       0.000000                            0.000000 h;Hg/jv  
    Tilt X tolerance on surfaces 1 through 3 (degrees) F(O"S@  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 joz0D!-"#  
    Change in Focus                :       0.000000                            0.000000 3</W}]$)p  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) s(Y2]X4 (  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Ab #}BHI  
    Change in Focus                :       0.000000                            0.000000 >:Y"DX-  
    Decenter X tolerance on surface 1 Nl]_Ie6  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 ~P7zg!p/q  
    Change in Focus                :       0.000000                            0.000000 B>}B{qi|  
    Decenter Y tolerance on surface 1 aT4I sPA?_  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 4A0v>G`E*#  
    Change in Focus                :       0.000000                            0.000000 YsO3( HS  
    Tilt X tolerance on surface (degrees) 1 3AcS$.G  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 a B$x(8pP@  
    Change in Focus                :       0.000000                            0.000000 ]z O6ESH  
    Tilt Y tolerance on surface (degrees) 1 q2 b>Z6!5  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 %i6/= 'u  
    Change in Focus                :       0.000000                            0.000000 bMq)[8,N  
    Decenter X tolerance on surface 2 j/t)=c  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Tnv,$KOhs  
    Change in Focus                :       0.000000                            0.000000 s%QCdU ]  
    Decenter Y tolerance on surface 2 |.z4VJi4  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 `pb=y}  
    Change in Focus                :       0.000000                            0.000000 w=_q<1a  
    Tilt X tolerance on surface (degrees) 2 ToK=`0#LNK  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 -zg 6^f_pW  
    Change in Focus                :       0.000000                            0.000000 c(b2f-0!4  
    Tilt Y tolerance on surface (degrees) 2 f AY(ro9Q(  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 *(s0X[-  
    Change in Focus                :       0.000000                            0.000000 k QF3DR$,B  
    Decenter X tolerance on surface 3 5O(U1 *  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 - lqD  
    Change in Focus                :       0.000000                            0.000000 5dX /<  
    Decenter Y tolerance on surface 3 EfB.K}b^  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 y@@h)P#  
    Change in Focus                :       0.000000                            0.000000 -FF#+Z$  
    Tilt X tolerance on surface (degrees) 3 : HM~!7e  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 >Hu3Guik]  
    Change in Focus                :       0.000000                            0.000000 Aj8zFt ]  
    Tilt Y tolerance on surface (degrees) 3 63(XCO  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 i#NtiZ.t=  
    Change in Focus                :       0.000000                            0.000000 5yyc 0UG  
    Irregularity of surface 1 in fringes 5)Z:J  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 q[Tl#*P?y  
    Change in Focus                :       0.000000                            0.000000 -_xTs(;|8  
    Irregularity of surface 2 in fringes n&!q9CR`  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 Mtl`A'KQ/K  
    Change in Focus                :       0.000000                            0.000000 I<Cm$8O?  
    Irregularity of surface 3 in fringes 8=@f lK  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 :%gM Xsb  
    Change in Focus                :       0.000000                            0.000000 PWeWz(]0Z4  
    Index tolerance on surface 1 O=vD6@QI  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 d}aMdIF!e  
    Change in Focus                :       0.000000                            0.000000 {e$ @i  
    Index tolerance on surface 2 *~~J1.ja>  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 I s|_  
    Change in Focus                :       0.000000                           -0.000000 Ey.%: O-Dv  
    Scug wSB  
    Worst offenders: X(O:y^sX}  
    Type                      Value      Criterion        Change a ]:xsJ~  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 _%3p&1ld  
    TSTY   2             0.20000000     0.35349910    -0.19053324 c'XSs  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 i%GiWanG  
    TSTX   2             0.20000000     0.35349910    -0.19053324 2%v6h  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 guVuO  
    TSTY   1             0.20000000     0.42678383    -0.11724851 fRxn,HyV  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 )gz]F_  
    TSTX   1             0.20000000     0.42678383    -0.11724851 D^xg2D  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 :]4s;q:m  
    TSTY   3             0.20000000     0.42861670    -0.11541563 r:PYAb=g  
    Em4'b1mDX%  
    Estimated Performance Changes based upon Root-Sum-Square method: mo9(2@~<  
    Nominal MTF                 :     0.54403234 g\9&L/xDN  
    Estimated change            :    -0.36299231 }+}Cl T  
    Estimated MTF               :     0.18104003 ecx_&J@D  
    bxPJ5oT  
    Compensator Statistics: CfO{KiM(2  
    Change in back focus: p I.~j]*:{  
    Minimum            :        -0.000000 :`K2?;DC8  
    Maximum            :         0.000000 vM-kk:n7f  
    Mean               :        -0.000000 ]N,'3`&::  
    Standard Deviation :         0.000000 LN) yQ-  
    >sdF:(JV&  
    Monte Carlo Analysis: P8#_E{f  
    Number of trials: 20 zJh!Q**  
    Q,:h`%V  
    Initial Statistics: Normal Distribution ;pS+S0U   
    G({5LjgW  
      Trial       Criterion        Change m;nH v  
          1     0.42804416    -0.11598818  )y6  
    Change in Focus                :      -0.400171 C8do8$  
          2     0.54384387    -0.00018847 VU6+" 2+'2  
    Change in Focus                :       1.018470 c}!`tBTm  
          3     0.44510003    -0.09893230 2"k|IHs1  
    Change in Focus                :      -0.601922 RameaFX8  
          4     0.18154684    -0.36248550 dNCd-ep  
    Change in Focus                :       0.920681 @Z7s3b  
          5     0.28665820    -0.25737414 P8H2v_)X&  
    Change in Focus                :       1.253875 *NM*   
          6     0.21263372    -0.33139862 zlB[Eg^X  
    Change in Focus                :      -0.903878 4uh~@Lv  
          7     0.40051424    -0.14351809 FjI1'Ah\  
    Change in Focus                :      -1.354815 J*zQ8\f=}  
          8     0.48754161    -0.05649072  $C,` ^n'  
    Change in Focus                :       0.215922 t'yh&44_  
          9     0.40357468    -0.14045766 vR pO0qG  
    Change in Focus                :       0.281783 O'(D:D?  
         10     0.26315315    -0.28087919 "r8N- h/P  
    Change in Focus                :      -1.048393 xT( pB-R  
         11     0.26120585    -0.28282649 fGW~xul_  
    Change in Focus                :       1.017611 &_s^C?x  
         12     0.24033815    -0.30369419 Gm> =s  
    Change in Focus                :      -0.109292 6ZwQ/~7H  
         13     0.37164046    -0.17239188 T!pA$eE  
    Change in Focus                :      -0.692430 @ *uZ+$  
         14     0.48597489    -0.05805744 il"pKQF  
    Change in Focus                :      -0.662040 4/_! F'j  
         15     0.21462327    -0.32940907 . Y$xNLoP[  
    Change in Focus                :       1.611296 {d0 rUHP  
         16     0.43378226    -0.11025008 i5_l//]  
    Change in Focus                :      -0.640081 n<@C'\j@  
         17     0.39321881    -0.15081353 f+.sm  
    Change in Focus                :       0.914906 7Bd=K=3u  
         18     0.20692530    -0.33710703 ?%lfbZ  
    Change in Focus                :       0.801607 GuaF B[4  
         19     0.51374068    -0.03029165 naA8RD5/  
    Change in Focus                :       0.947293 }IdkXAB.  
         20     0.38013374    -0.16389860 ynf!1!4  
    Change in Focus                :       0.667010 m?1r@!/y  
    \4 +HNy3  
    Number of traceable Monte Carlo files generated: 20 Z 0v&AD=  
    snNB;hkj  
    Nominal     0.54403234 A;6ew4  
    Best        0.54384387    Trial     2 C1qlB8(Wh>  
    Worst       0.18154684    Trial     4 _ /Eg_dQ~@  
    Mean        0.35770970 %sPq*w.  
    Std Dev     0.11156454 8A/rkoht*  
    )nq(XM7  
    >wFn|7\)s>  
    Compensator Statistics: -i_XP]b&  
    Change in back focus: kw7E<aF!  
    Minimum            :        -1.354815 )>iPx.hVSS  
    Maximum            :         1.611296 16nU`TN  
    Mean               :         0.161872 ;!7M<T$&  
    Standard Deviation :         0.869664 c+O:n:L  
    wbk$(P'gN  
    90% >       0.20977951               : w>R|]  
    80% >       0.22748071               RSw; b.t7  
    50% >       0.38667627               sXT8jLIf  
    20% >       0.46553746               - (q7"h  
    10% >       0.50064115                <(xro/  
    8wEJyAu2  
    End of Run. L$"pk{'  
    B5R7geC  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 ^&c &5S}  
    7 9k+R9m  
    /)dyAX(  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 m,6[;  
    -D1 A  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 xX Dj4j,  
    80% >       0.22748071                 GNHWbC6_m  
    50% >       0.38667627                 ,s:viXk  
    20% >       0.46553746                 dVn_+1\L  
    10% >       0.50064115 F%O+w;J4  
    gr# |ZK.`  
    最后这个数值是MTF值呢,还是MTF的公差? "{2niBx  
    Blj<|\ igc  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   %J9+`uSl  
    "3_GFq  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : BO%'/2eV  
    90% >       0.20977951                 b[:{\ !I  
    80% >       0.22748071                  M+:9U&>  
    50% >       0.38667627                 DKkilqVM  
    20% >       0.46553746                 ,_Kr}RH  
    10% >       0.50064115 HV*;Yt  
    ....... T)',}=  
    :+"H h%  
    yqB!0) <  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   %$i}[ U  
    Mode                : Sensitivities &~2I Fp  
    Sampling            : 2 PC|ul{[*}  
    Nominal Criterion   : 0.54403234 (OA4H1DL^  
    Test Wavelength     : 0.6328 ww #kc!'  
    Ivj=?[c|  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 0/9]T Ic  
    _l"nwEs  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    956
    光币
    1054
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1895
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试