切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16611阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    960
    光币
    1088
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 z}" Xt=G?  
    <L72nwcK  
    qOV6Kh)  
    {bSi3oI  
    然后添加了默认公差分析,基本没变 6uU2+I  
    W+'|zhn  
    /kAu&}  
    3+%c*}KC~  
    然后运行分析的结果如下: .!\NM&E  
    jM E==)Y  
    Analysis of Tolerances <]u~;e57  
    ]Y%?kQ^  
    File : E:\光学设计资料\zemax练习\f500.ZMX <oE(I)r4,  
    Title: Iaq7<$XU  
    Date : TUE JUN 21 2011 >|Hd*pg))  
    U(.3[x  
    Units are Millimeters. &s|&cT  
    All changes are computed using linear differences. Z"# /,?|3@  
    kc3dWWPe  
    Paraxial Focus compensation only. -L&FguoVB  
    k-v@sb24_  
    WARNING: Solves should be removed prior to tolerancing. H'L ~8>  
    O~r.sJ}  
    Mnemonics: J&xH "U  
    TFRN: Tolerance on curvature in fringes. QT5,_+ho  
    TTHI: Tolerance on thickness. PLi[T4u  
    TSDX: Tolerance on surface decentering in x. &J\V !uVo  
    TSDY: Tolerance on surface decentering in y. a-t}L{~  
    TSTX: Tolerance on surface tilt in x (degrees). YlZe  
    TSTY: Tolerance on surface tilt in y (degrees). BCE} Er&  
    TIRR: Tolerance on irregularity (fringes). @bN`+DC!<  
    TIND: Tolerance on Nd index of refraction. Z|FWQ8gZ4m  
    TEDX: Tolerance on element decentering in x. 6S;-fj  
    TEDY: Tolerance on element decentering in y. ^_5Nh^  
    TETX: Tolerance on element tilt in x (degrees). 8?lp:kM  
    TETY: Tolerance on element tilt in y (degrees). wX3x.@!:  
    =%4vrY `  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. z;dD }Fo  
    X]?qns7  
    WARNING: Boundary constraints on compensators will be ignored. vGK'U*gGD  
    (f^K\7HM  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm  xZ*.@Pkr  
    Mode                : Sensitivities [jD.l;jF  
    Sampling            : 2 `&.]>H)N*  
    Nominal Criterion   : 0.54403234 S$!)Uc\)A  
    Test Wavelength     : 0.6328 !H`! KBW  
    #6[7q6{ 4  
    !N4?>[E  
    Fields: XY Symmetric Angle in degrees 0L "+,  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY z@lUaMm:F  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 &></l| hY  
    1D42+cy  
    Sensitivity Analysis: /7$3RV(  
    k!gft'iU  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| 7|A9  
    Type                      Value      Criterion        Change          Value      Criterion        Change SBBDlr^P  
    Fringe tolerance on surface 1 kKV`9&dZe  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 `ySmzp  
    Change in Focus                :      -0.000000                            0.000000 VO|2  
    Fringe tolerance on surface 2 -saisH6  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 p{knQ],   
    Change in Focus                :       0.000000                            0.000000 'CqWF"  
    Fringe tolerance on surface 3 5B [kZ?>  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 -5Qsc/ s&  
    Change in Focus                :      -0.000000                            0.000000 2;@#i*\Y  
    Thickness tolerance on surface 1 MLV_I4o  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 CU3[{a  
    Change in Focus                :       0.000000                            0.000000 O`nrXC{  
    Thickness tolerance on surface 2 %Lec\(-4L  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 $V$|"KRcs  
    Change in Focus                :       0.000000                           -0.000000 nRpZ;X)'.  
    Decenter X tolerance on surfaces 1 through 3 o|\0IG(\  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 LQ5WS  
    Change in Focus                :       0.000000                            0.000000 ]XX8l:+  
    Decenter Y tolerance on surfaces 1 through 3 *5$$C&@o9  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 :T5p6:  
    Change in Focus                :       0.000000                            0.000000 _y Q*  
    Tilt X tolerance on surfaces 1 through 3 (degrees) <Z^t^ O  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 qRMH[F$`  
    Change in Focus                :       0.000000                            0.000000 @D!KFJ  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) &8R%W"<K  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 gkdd#Nrk  
    Change in Focus                :       0.000000                            0.000000 >;S/$  
    Decenter X tolerance on surface 1 a}3sG_(Y  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 $42C4I*E  
    Change in Focus                :       0.000000                            0.000000  Py$*c  
    Decenter Y tolerance on surface 1 k^3|A3A  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 "^j& ^sA+  
    Change in Focus                :       0.000000                            0.000000 r2A(GUz  
    Tilt X tolerance on surface (degrees) 1 3%Jg' Tr+  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 5b9v`6Kq  
    Change in Focus                :       0.000000                            0.000000 i]{M G'tg  
    Tilt Y tolerance on surface (degrees) 1 jHPJk8@y  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 V\8vJ3.YV  
    Change in Focus                :       0.000000                            0.000000 IxwOzpr  
    Decenter X tolerance on surface 2 K'[H`x^  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 (`}O!;/E}  
    Change in Focus                :       0.000000                            0.000000 )--v> *,V  
    Decenter Y tolerance on surface 2 %C*oy$.  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 y0vo-)E]-]  
    Change in Focus                :       0.000000                            0.000000 >#z*gCO5,  
    Tilt X tolerance on surface (degrees) 2 wy5vn?T@  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 0Zkb}F2-  
    Change in Focus                :       0.000000                            0.000000 Ug=8:a(U.  
    Tilt Y tolerance on surface (degrees) 2 k~WX6rEJ  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 BJDe1W3;'  
    Change in Focus                :       0.000000                            0.000000 EB'(%dH  
    Decenter X tolerance on surface 3 ^\kv> WBE  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 W/U&w.$  
    Change in Focus                :       0.000000                            0.000000 S/CT;M@W  
    Decenter Y tolerance on surface 3 _K{hq<g  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 *V(TNLIh;  
    Change in Focus                :       0.000000                            0.000000 '`^<*;w  
    Tilt X tolerance on surface (degrees) 3 L*tn>AO  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 :UmY|=v?t  
    Change in Focus                :       0.000000                            0.000000 :&Xy#.un  
    Tilt Y tolerance on surface (degrees) 3 5KJN](x+  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 iQpKcBx  
    Change in Focus                :       0.000000                            0.000000 )P\Vd #  
    Irregularity of surface 1 in fringes [nBlHI;&  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 HABMFv  
    Change in Focus                :       0.000000                            0.000000 Eh;SH^&6  
    Irregularity of surface 2 in fringes 2`,{IHu*!  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 c;l d  
    Change in Focus                :       0.000000                            0.000000 xe[Cuy$P  
    Irregularity of surface 3 in fringes _@0>y MZ^  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 T!eb=oy  
    Change in Focus                :       0.000000                            0.000000 j;eR9jI$T  
    Index tolerance on surface 1 z8+3/jLN0B  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 SlvQ)jw%  
    Change in Focus                :       0.000000                            0.000000 v/6QE;BY&Q  
    Index tolerance on surface 2 /)?]vKMiI  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 ('!90  
    Change in Focus                :       0.000000                           -0.000000 X"<t3l(+  
    a?%X9 +1A  
    Worst offenders: z-nhL=  
    Type                      Value      Criterion        Change +.MHI   
    TSTY   2            -0.20000000     0.35349910    -0.19053324 A][\L[8X  
    TSTY   2             0.20000000     0.35349910    -0.19053324 SLRQ3<0W_  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 O [GG<Um  
    TSTX   2             0.20000000     0.35349910    -0.19053324  lTsl=  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 `V[{(&?,n  
    TSTY   1             0.20000000     0.42678383    -0.11724851 niY9`8  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 ;cIs$  
    TSTX   1             0.20000000     0.42678383    -0.11724851 RP&H9>  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 p;Kw$fQ?  
    TSTY   3             0.20000000     0.42861670    -0.11541563 OL&ku &J_  
    !u)ve h3x  
    Estimated Performance Changes based upon Root-Sum-Square method: :.Vn  
    Nominal MTF                 :     0.54403234 3=V79&  
    Estimated change            :    -0.36299231 4' bup h1(  
    Estimated MTF               :     0.18104003 bY7d  
    F n4i[|W42  
    Compensator Statistics: H `Fe |6I&  
    Change in back focus: 75}BI&t3k  
    Minimum            :        -0.000000 EI6K0{'&X  
    Maximum            :         0.000000 "1_eZ`  
    Mean               :        -0.000000 SUxz &xH  
    Standard Deviation :         0.000000 62Yi1<kV@  
    QcG4~DEX4  
    Monte Carlo Analysis: he;;p="!*  
    Number of trials: 20 JSQNx2VqQ  
    IBr?6_\%"4  
    Initial Statistics: Normal Distribution #WlIH7J8Tc  
    h\afO  
      Trial       Criterion        Change TG'_1m*$  
          1     0.42804416    -0.11598818 -4{sr| lm  
    Change in Focus                :      -0.400171 :Zl@4}  
          2     0.54384387    -0.00018847 _M= \s>;G  
    Change in Focus                :       1.018470 w$4fS  
          3     0.44510003    -0.09893230 @D&VOJV  
    Change in Focus                :      -0.601922 '+^HeM^;  
          4     0.18154684    -0.36248550 %{g<{\@4(;  
    Change in Focus                :       0.920681 ,Hn{nVU1R=  
          5     0.28665820    -0.25737414 Z?Y14L~%  
    Change in Focus                :       1.253875 C]K|;VQ  
          6     0.21263372    -0.33139862 gq4le=,v  
    Change in Focus                :      -0.903878 smW 7zGE  
          7     0.40051424    -0.14351809 _U;z@  
    Change in Focus                :      -1.354815 B uV@w-|  
          8     0.48754161    -0.05649072 a,IE;5kG  
    Change in Focus                :       0.215922 \wqi_[A  
          9     0.40357468    -0.14045766 Q)S0z2  
    Change in Focus                :       0.281783 ]Sg4>tp  
         10     0.26315315    -0.28087919 f}b= FV{  
    Change in Focus                :      -1.048393 JlJy3L8L  
         11     0.26120585    -0.28282649 FP=%e]vJ  
    Change in Focus                :       1.017611 =m6;]16D  
         12     0.24033815    -0.30369419 cLn&b}8'  
    Change in Focus                :      -0.109292 7<DlA>(oUX  
         13     0.37164046    -0.17239188 .^0@^%Wi  
    Change in Focus                :      -0.692430 5]DgfwX  
         14     0.48597489    -0.05805744 `8xt!8Z$  
    Change in Focus                :      -0.662040 fF37P8Ir  
         15     0.21462327    -0.32940907  Svj%O(  
    Change in Focus                :       1.611296 \?A 7{IY  
         16     0.43378226    -0.11025008 nn!W-Bsqjh  
    Change in Focus                :      -0.640081 FjD`bhw-  
         17     0.39321881    -0.15081353 Ub!MyXd{q  
    Change in Focus                :       0.914906 :clMO|  
         18     0.20692530    -0.33710703 0w}OE8uq  
    Change in Focus                :       0.801607 +x$GwX  
         19     0.51374068    -0.03029165 1:5jUUL8  
    Change in Focus                :       0.947293 zI77#AUM  
         20     0.38013374    -0.16389860 P 0v&*y3Y  
    Change in Focus                :       0.667010 '=}F}[d"kk  
    zX{K\yp  
    Number of traceable Monte Carlo files generated: 20 Xi`K`Cu+  
    Kk|uN#m  
    Nominal     0.54403234 7xidBVx  
    Best        0.54384387    Trial     2 v?Q&06PMRc  
    Worst       0.18154684    Trial     4 FY h+G-Y#  
    Mean        0.35770970 mb_*FJB-_  
    Std Dev     0.11156454 QyN<o{\FD!  
    R: 8\z0"L*  
    p\T.l <p  
    Compensator Statistics: >DqV^%2l  
    Change in back focus: luAmq+  
    Minimum            :        -1.354815 f/Cf2 K  
    Maximum            :         1.611296 z 4 4(  
    Mean               :         0.161872 |E)-9JSRy  
    Standard Deviation :         0.869664 >.^/Z/[.L  
    H<bYm]a%  
    90% >       0.20977951               ;^VLx)q  
    80% >       0.22748071               CYD&#+o  
    50% >       0.38667627               ha_&U@w  
    20% >       0.46553746               ZdQt!  
    10% >       0.50064115                <pzCpF<  
    hJ[Z~PC\T0  
    End of Run. `rEu8u  
    AP*Z0OFE  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 \!D<u'n  
    Hxe!68{aR  
    6Ap-J~4  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 8{QN$Qkn  
    ?86q8E3;&  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 t]dtBt].:  
    80% >       0.22748071                 fjD/<`}v  
    50% >       0.38667627                 @D$^- S6  
    20% >       0.46553746                 yDmNPk/  
    10% >       0.50064115 O}$@|w(8;  
    hn-+]Y:  
    最后这个数值是MTF值呢,还是MTF的公差? J/OG\}  
    >ucVrLm,X  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   =rH' \7T  
    !'yCB9]O  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : VuU{7:  
    90% >       0.20977951                 3?n2/p 7=  
    80% >       0.22748071                 w6Owfq'v  
    50% >       0.38667627                 fV>12ici  
    20% >       0.46553746                 [9-&Lq_ g  
    10% >       0.50064115 O7})1|>1  
    ....... 2#y-3y<G  
    neLQ>WT L  
    ^yl)c \`  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   Cih~cwE  
    Mode                : Sensitivities gfPR3%EXs  
    Sampling            : 2 F<YXkG4 pO  
    Nominal Criterion   : 0.54403234 IEP^u `}  
    Test Wavelength     : 0.6328 VfFXH,j  
    S.! n35  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? r9vO(m~  
    |z 8Wh  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    960
    光币
    1088
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试