切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 15897阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 'M8aW!~  
    !h CS#'  
    as r=m{C"  
    vX+.e1m  
    然后添加了默认公差分析,基本没变 WL l_'2h  
    gg[ 9u-  
    XJSa]P^B1  
    0z`/Hn  
    然后运行分析的结果如下: >,"sHm}l%  
    ;i\C]*  
    Analysis of Tolerances rJQ=9qn\  
     H4:ZTl_$  
    File : E:\光学设计资料\zemax练习\f500.ZMX B'}"AC"  
    Title: Nb;H`<JP  
    Date : TUE JUN 21 2011 ',ZF5T5z@  
    WPo:^BD   
    Units are Millimeters. bLbR IY"l  
    All changes are computed using linear differences. :p>hW!~  
    \dcdw* v@  
    Paraxial Focus compensation only. A59gIp*>  
    ewnfeg1  
    WARNING: Solves should be removed prior to tolerancing. d~@q%-`lA  
    r`6:Q&&  
    Mnemonics: /v#)f-N%zs  
    TFRN: Tolerance on curvature in fringes. ^ve14mbF#.  
    TTHI: Tolerance on thickness. hj!+HHYSk  
    TSDX: Tolerance on surface decentering in x. LjaGyj>)  
    TSDY: Tolerance on surface decentering in y. 5G(E&>~  
    TSTX: Tolerance on surface tilt in x (degrees). 8>NwCjN  
    TSTY: Tolerance on surface tilt in y (degrees). +xp]:h|  
    TIRR: Tolerance on irregularity (fringes). Ei5wel6!  
    TIND: Tolerance on Nd index of refraction. mS%4gx~~_n  
    TEDX: Tolerance on element decentering in x. +Ok%e.\ZM  
    TEDY: Tolerance on element decentering in y. oNM?y:O  
    TETX: Tolerance on element tilt in x (degrees). bik*ZC?E  
    TETY: Tolerance on element tilt in y (degrees). \Q&,ISO\  
    &yIGr` ;  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. g97]Y1g  
    SfB8!V|;  
    WARNING: Boundary constraints on compensators will be ignored. @{d\j]Nw  
    2) ?q 58  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm NfzF.{nh  
    Mode                : Sensitivities 9+qOP>m   
    Sampling            : 2 CO^Jz  
    Nominal Criterion   : 0.54403234 3`F) AWzdr  
    Test Wavelength     : 0.6328 mfom=-q3k  
    :%X Ls,  
    n~g LPHY  
    Fields: XY Symmetric Angle in degrees s8<gK.atl  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY w%a8XnW]1  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 x/mp=  
    YF[f Z  
    Sensitivity Analysis: +(?>-3_z  
    qOy=O [+9  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| qpp/8M  
    Type                      Value      Criterion        Change          Value      Criterion        Change C#Bz >2;#  
    Fringe tolerance on surface 1 xT*d/Oaw  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 1n=_y o  
    Change in Focus                :      -0.000000                            0.000000 UMMB0(0D  
    Fringe tolerance on surface 2 >v+jh(^  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 +K~NV?c  
    Change in Focus                :       0.000000                            0.000000 |/`%3'4H  
    Fringe tolerance on surface 3 e3[:D5  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 Yu3zM79'k  
    Change in Focus                :      -0.000000                            0.000000 /)>S<X  
    Thickness tolerance on surface 1 kc$)^E7  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 )9v`f9X){  
    Change in Focus                :       0.000000                            0.000000 xJwG=$o  
    Thickness tolerance on surface 2 TNwK da+  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 gTf|^?vd  
    Change in Focus                :       0.000000                           -0.000000 bzZ>lyH  
    Decenter X tolerance on surfaces 1 through 3 \3XqHf3|o  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 $V>yXhTh  
    Change in Focus                :       0.000000                            0.000000 BiwieF4x  
    Decenter Y tolerance on surfaces 1 through 3 K^[#]+nQ  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005  $_;e>*+x  
    Change in Focus                :       0.000000                            0.000000 Q<(YP.k  
    Tilt X tolerance on surfaces 1 through 3 (degrees) `#mK*Buem}  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 l$xxrb9P!  
    Change in Focus                :       0.000000                            0.000000 ,*svtw:2')  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) G"SBYU  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 Wp0 Dq(  
    Change in Focus                :       0.000000                            0.000000 2 QTZwx  
    Decenter X tolerance on surface 1 tt_o$D~kg  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 s5&@Cxzl  
    Change in Focus                :       0.000000                            0.000000 *OjKc s  
    Decenter Y tolerance on surface 1 'lz "2@4{  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 G}d-(X  
    Change in Focus                :       0.000000                            0.000000 )c2_b  
    Tilt X tolerance on surface (degrees) 1 Z|lU8`'5  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 q2aYEuu,  
    Change in Focus                :       0.000000                            0.000000 w'Tq3-%V  
    Tilt Y tolerance on surface (degrees) 1 S$q =;"  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 U(>4s]O6  
    Change in Focus                :       0.000000                            0.000000 u.XQ&  
    Decenter X tolerance on surface 2 9!',b>C6  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 oqd;6[%G  
    Change in Focus                :       0.000000                            0.000000 Z8O n%Mx{"  
    Decenter Y tolerance on surface 2 NpP')m!`}  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 yay<GP?  
    Change in Focus                :       0.000000                            0.000000 \nNXxTxX!  
    Tilt X tolerance on surface (degrees) 2 K>Fqf +_  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 n/d`qS  
    Change in Focus                :       0.000000                            0.000000 g=L]S-e  
    Tilt Y tolerance on surface (degrees) 2 YY((#"o;l  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 \Q?ip&R  
    Change in Focus                :       0.000000                            0.000000 N "tFP9;K  
    Decenter X tolerance on surface 3 y9H% Xl  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 gV;H6"  
    Change in Focus                :       0.000000                            0.000000 4R^mI  
    Decenter Y tolerance on surface 3 +n0r0:z0  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 LkruL_E>  
    Change in Focus                :       0.000000                            0.000000 S0,R_d')  
    Tilt X tolerance on surface (degrees) 3 $@-P5WcRs  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 s8"8y`u  
    Change in Focus                :       0.000000                            0.000000 ipnV$!z  
    Tilt Y tolerance on surface (degrees) 3 *D}0 [|O  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Fxs;Fp  
    Change in Focus                :       0.000000                            0.000000 tc ;'oMUP  
    Irregularity of surface 1 in fringes S^@S%Eg  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 Dr&('RZ4  
    Change in Focus                :       0.000000                            0.000000 f 3V Dv9(  
    Irregularity of surface 2 in fringes gN8hJG'0  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 {Bs~lC$  
    Change in Focus                :       0.000000                            0.000000 !3n)|~r;K  
    Irregularity of surface 3 in fringes 2,2Z`X  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 Pt:e!qX)  
    Change in Focus                :       0.000000                            0.000000 GG064zPq7  
    Index tolerance on surface 1 8 ;d$54 b  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 Ix@&$!'k  
    Change in Focus                :       0.000000                            0.000000 =uk0@hy9b  
    Index tolerance on surface 2 z<sg0K8z63  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 H`bSYjgM!  
    Change in Focus                :       0.000000                           -0.000000 "I?Am&>'  
    :bV mgLgG  
    Worst offenders: l:0s2  
    Type                      Value      Criterion        Change q\Q{sv_  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 {e[%;W%c&  
    TSTY   2             0.20000000     0.35349910    -0.19053324 '|]e<Mt-  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 :P,sxDlG)  
    TSTX   2             0.20000000     0.35349910    -0.19053324 uzmk6G v  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 ]xC#rwHUC  
    TSTY   1             0.20000000     0.42678383    -0.11724851 LZJA4?C  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 Q?ahr~qo  
    TSTX   1             0.20000000     0.42678383    -0.11724851 Q$& sTM  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 E#J';tUQ  
    TSTY   3             0.20000000     0.42861670    -0.11541563 CTt vyr  
     ~\,w {  
    Estimated Performance Changes based upon Root-Sum-Square method: D0k 8^  
    Nominal MTF                 :     0.54403234 {2/LRPT  
    Estimated change            :    -0.36299231 2XTPBZNe  
    Estimated MTF               :     0.18104003 ]-oJ[5cQ0v  
    |b-9b&  
    Compensator Statistics: !TZhQiorC  
    Change in back focus: N8qDdr9p?c  
    Minimum            :        -0.000000 Wcb7 ;~K  
    Maximum            :         0.000000 z,qRcO&  
    Mean               :        -0.000000 ] h-,o R?e  
    Standard Deviation :         0.000000 5w%_$x  
    \k;`}3 uO  
    Monte Carlo Analysis:  Q~R ~xz  
    Number of trials: 20 ,NnhHb2\  
    RZM"~ 0  
    Initial Statistics: Normal Distribution }X x(^Zh  
    56^ +;^f^`  
      Trial       Criterion        Change ;^*Unyt[4]  
          1     0.42804416    -0.11598818 hjaT^(Y  
    Change in Focus                :      -0.400171 8N:owK  
          2     0.54384387    -0.00018847 !d<"nx[2`  
    Change in Focus                :       1.018470 D:k 3" E"S  
          3     0.44510003    -0.09893230 o]nw0q?  
    Change in Focus                :      -0.601922 NCxqh<  
          4     0.18154684    -0.36248550 D9`0Dr}/2  
    Change in Focus                :       0.920681 x~.:64  
          5     0.28665820    -0.25737414 &] \X]p  
    Change in Focus                :       1.253875 J]m{ b09F  
          6     0.21263372    -0.33139862 da1]mb=4 5  
    Change in Focus                :      -0.903878 k >t )g-,2  
          7     0.40051424    -0.14351809 ? uYu`Ojzr  
    Change in Focus                :      -1.354815 SyAvKd`g  
          8     0.48754161    -0.05649072 UzXE_ S  
    Change in Focus                :       0.215922 [tMZ G%h  
          9     0.40357468    -0.14045766 4iW'kuK  
    Change in Focus                :       0.281783 2o>)7^9|#<  
         10     0.26315315    -0.28087919 vG \a1H  
    Change in Focus                :      -1.048393 ,J`'Y+7W  
         11     0.26120585    -0.28282649 ypJ".  
    Change in Focus                :       1.017611 n@ w^ V   
         12     0.24033815    -0.30369419 RI68%ZoL  
    Change in Focus                :      -0.109292 Wrrcx(  
         13     0.37164046    -0.17239188 ?"z]A7<Hj  
    Change in Focus                :      -0.692430 B||;'  
         14     0.48597489    -0.05805744 G_>#Js  
    Change in Focus                :      -0.662040 )DYI .  
         15     0.21462327    -0.32940907 W8lx~:v  
    Change in Focus                :       1.611296 w8g,a]p  
         16     0.43378226    -0.11025008 e</$ s  
    Change in Focus                :      -0.640081 AfG/JWSo}  
         17     0.39321881    -0.15081353 jy]JiQ B  
    Change in Focus                :       0.914906 p{PE@KO:  
         18     0.20692530    -0.33710703 '#(v=|J  
    Change in Focus                :       0.801607 %,hV[[@.  
         19     0.51374068    -0.03029165 :ss,Hl  
    Change in Focus                :       0.947293 {O|'U'  
         20     0.38013374    -0.16389860 !QDQ_  
    Change in Focus                :       0.667010 Y?ez9o:/#  
    |+`c3*PV  
    Number of traceable Monte Carlo files generated: 20 W>q HFoKa  
    +za8=`2o  
    Nominal     0.54403234 c1%H4j4/  
    Best        0.54384387    Trial     2 "B_K XL  
    Worst       0.18154684    Trial     4 Hcc"b0>}{  
    Mean        0.35770970 >5Wlc$bc  
    Std Dev     0.11156454 5e sQ;  
    rHP%0f 9:  
    bFA!=uvA  
    Compensator Statistics: hDV20&hq  
    Change in back focus: F @Te@n  
    Minimum            :        -1.354815 "*,XL uv>  
    Maximum            :         1.611296 %F kMv  
    Mean               :         0.161872 L28*1]\Jh  
    Standard Deviation :         0.869664 t%530EB3  
    M>M`baM1  
    90% >       0.20977951               zD3mX<sw  
    80% >       0.22748071               mrV!teP  
    50% >       0.38667627               0euuT@_$  
    20% >       0.46553746               V'w@rc\XN  
    10% >       0.50064115                kh%{C] ".1  
    ?YeWH WM  
    End of Run. =TqQbadp  
    ?8W( "W   
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 9:I6( Zv0  
    /x{s5P 3  
    $ "Bh]-  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 e)E$}4  
    J<Pw+6B~  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 -X+H2G  
    80% >       0.22748071                 qF iLh9=D  
    50% >       0.38667627                 xooY' El*#  
    20% >       0.46553746                 e$Y[Z{T5  
    10% >       0.50064115 sKyPosnP  
    {-BRt)L[  
    最后这个数值是MTF值呢,还是MTF的公差? CIVnCy z  
     )J?{+3  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   -+t]15  
     X\}Y  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : r3rxC&  
    90% >       0.20977951                 qC!&x,}3  
    80% >       0.22748071                 B5X sGLV  
    50% >       0.38667627                 fx8EB8A7K7  
    20% >       0.46553746                 >MJ?g-  
    10% >       0.50064115 \n0Oez0z!B  
    ....... ^7]"kg DA  
    ~8|t*@D  
    B~'MBBD"  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   -G &_^"=R  
    Mode                : Sensitivities CLKov\U\  
    Sampling            : 2 04!(okubyp  
    Nominal Criterion   : 0.54403234 ihT~xt  
    Test Wavelength     : 0.6328 G)>W'yxQ  
    ! 0/z>#b  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? C-P06Q]  
    bAxTLIf  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试