切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16304阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 Jm`{MzqL  
    v.6K;TY.  
    wZg~k\_lF  
    @@z5v bs'{  
    然后添加了默认公差分析,基本没变 zq'KX/o  
    vn x+1T  
    WB.w3w [f  
    ._[uSBR'  
    然后运行分析的结果如下: Ew )1O9f  
    $/kZKoF{f  
    Analysis of Tolerances #|QA_5  
    U?xa^QVhj  
    File : E:\光学设计资料\zemax练习\f500.ZMX MMy\u) 4  
    Title: v05$"Ig  
    Date : TUE JUN 21 2011 {U)q)  
    Q"s]<MtdS  
    Units are Millimeters. @M*oq2U;  
    All changes are computed using linear differences. $ vBFs]h  
    Q%QIr  
    Paraxial Focus compensation only. ':7gYP*v  
    ]64pb;w"$D  
    WARNING: Solves should be removed prior to tolerancing. Xd@ d$  
    QKIg5I-  
    Mnemonics: @Yw>s9X  
    TFRN: Tolerance on curvature in fringes. 6Zx)L|B  
    TTHI: Tolerance on thickness. =<X4LO)C  
    TSDX: Tolerance on surface decentering in x. f2 ?01PM,Q  
    TSDY: Tolerance on surface decentering in y. !8I80 :e_~  
    TSTX: Tolerance on surface tilt in x (degrees). Y;{(?0 s  
    TSTY: Tolerance on surface tilt in y (degrees). X- j@#Qb  
    TIRR: Tolerance on irregularity (fringes). 'd]t@[#  
    TIND: Tolerance on Nd index of refraction. +' SG$<Xv  
    TEDX: Tolerance on element decentering in x. wln"g,ct  
    TEDY: Tolerance on element decentering in y. v(]dIH  
    TETX: Tolerance on element tilt in x (degrees). {ceY:49  
    TETY: Tolerance on element tilt in y (degrees). )C$pjjo/`  
    @2~;)*  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. {Fvl7Sh  
    `h~-  
    WARNING: Boundary constraints on compensators will be ignored. ! Q8y]9O  
    v$Xoxp  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm m[nrr6 G"  
    Mode                : Sensitivities OCu/w1 bc  
    Sampling            : 2 ,rX|_4 n*  
    Nominal Criterion   : 0.54403234 K(AZD&D  
    Test Wavelength     : 0.6328 6J <.i  
     V*W H  
    m$VCCDv  
    Fields: XY Symmetric Angle in degrees ujr"_ofI  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY Uka(Vr:  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 t4UL|fI  
    s)#TT9BbV  
    Sensitivity Analysis: &hJQHlyJM0  
    y$9XHubu  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| L|p+;ex  
    Type                      Value      Criterion        Change          Value      Criterion        Change mM'uRhO+  
    Fringe tolerance on surface 1 ^@)*voP#G  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 \F14]`i  
    Change in Focus                :      -0.000000                            0.000000 -ZoAbp$  
    Fringe tolerance on surface 2 ]] T,;|B  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 X2`n&JE  
    Change in Focus                :       0.000000                            0.000000 M63t4; 0A  
    Fringe tolerance on surface 3 hVNT  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 l6N"{iXU  
    Change in Focus                :      -0.000000                            0.000000 ir~4\G!  
    Thickness tolerance on surface 1 1sq1{|NW~  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ]f6,4[  
    Change in Focus                :       0.000000                            0.000000 a&Me#H{  
    Thickness tolerance on surface 2 "}b/[U@>  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 ;pqS|ayl  
    Change in Focus                :       0.000000                           -0.000000 jxZ_-1  
    Decenter X tolerance on surfaces 1 through 3 LCqWL1  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 i^)JxEPr w  
    Change in Focus                :       0.000000                            0.000000 =3=8oFx8  
    Decenter Y tolerance on surfaces 1 through 3 e 3TKg  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ,U>G$G^  
    Change in Focus                :       0.000000                            0.000000 zqLOwzMlLx  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Bqw/\Lxwlf  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 -HRa6  
    Change in Focus                :       0.000000                            0.000000 4JL]?75  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) 'jYKfq~_cJ  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 VuuF _y;  
    Change in Focus                :       0.000000                            0.000000 8peK[sz  
    Decenter X tolerance on surface 1 q:m qA$n  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 hLaQ[9  
    Change in Focus                :       0.000000                            0.000000 \q"vC1,9  
    Decenter Y tolerance on surface 1 +*G<xW :M  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 {Hz;*1?$k  
    Change in Focus                :       0.000000                            0.000000 A27!I+M  
    Tilt X tolerance on surface (degrees) 1 ->W rBO  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 "Mh}n-oju  
    Change in Focus                :       0.000000                            0.000000 1cV0TUrz  
    Tilt Y tolerance on surface (degrees) 1 b@B\2BT  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 d!y_N&z|(  
    Change in Focus                :       0.000000                            0.000000 =<Ss&p>  
    Decenter X tolerance on surface 2 K<v:RbU|[1  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 k)agbx  
    Change in Focus                :       0.000000                            0.000000 pwl7aC+6d  
    Decenter Y tolerance on surface 2 WL;2&S/{@  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 L(}/W~En  
    Change in Focus                :       0.000000                            0.000000 )Ut9k  
    Tilt X tolerance on surface (degrees) 2  dK]#..  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 !Hj 7|5  
    Change in Focus                :       0.000000                            0.000000 " t,ZO  
    Tilt Y tolerance on surface (degrees) 2 X]s="^  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 <W/YC 2b  
    Change in Focus                :       0.000000                            0.000000 AbB+<0  
    Decenter X tolerance on surface 3 o),@I#fM  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 UW&K\P  
    Change in Focus                :       0.000000                            0.000000 )Mh5q&ow  
    Decenter Y tolerance on surface 3 [@0Hmd7  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 !*}E  
    Change in Focus                :       0.000000                            0.000000 c@$W]o"A  
    Tilt X tolerance on surface (degrees) 3 <<&SyP  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 \F<C$cys\  
    Change in Focus                :       0.000000                            0.000000 3A3WD+[L  
    Tilt Y tolerance on surface (degrees) 3  @4>?Y=#  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 _ 3{8Zg  
    Change in Focus                :       0.000000                            0.000000 wvH*<,8V q  
    Irregularity of surface 1 in fringes fwSI"cfM  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 BLb'7`t  
    Change in Focus                :       0.000000                            0.000000 c1 1?Kq  
    Irregularity of surface 2 in fringes B \.0 5<  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 8< z   
    Change in Focus                :       0.000000                            0.000000 64SRW8AH  
    Irregularity of surface 3 in fringes ! ~+mf^D  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 FB O_B  
    Change in Focus                :       0.000000                            0.000000 bK|nxL  
    Index tolerance on surface 1 T5aeO^x  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 X + B=?|M  
    Change in Focus                :       0.000000                            0.000000 Se [>z(  
    Index tolerance on surface 2 =j8g6#'u  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 L7N>p4h]Xj  
    Change in Focus                :       0.000000                           -0.000000 )SfM`W)Y  
    =!=DISPo  
    Worst offenders: *s!T$oc  
    Type                      Value      Criterion        Change +Rq]_ sDu  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 4qyPjAG  
    TSTY   2             0.20000000     0.35349910    -0.19053324 C`\yc_b9Pf  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 2Iq*7n:v0  
    TSTX   2             0.20000000     0.35349910    -0.19053324 [L?WM>]%  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 }LX.gm  
    TSTY   1             0.20000000     0.42678383    -0.11724851 cLIeo{H  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 !lI1jb"  
    TSTX   1             0.20000000     0.42678383    -0.11724851 !uhh_3RH  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 ($[@'?Z1  
    TSTY   3             0.20000000     0.42861670    -0.11541563 dDqT#N?Y  
    [-1Yyy1}  
    Estimated Performance Changes based upon Root-Sum-Square method: <#lNi.?.  
    Nominal MTF                 :     0.54403234 SKJ'6*6  
    Estimated change            :    -0.36299231 Fb^,%K:  
    Estimated MTF               :     0.18104003 |q 0iX2W  
    ^Fwdi#g  
    Compensator Statistics: |qb-iXW=  
    Change in back focus: ]GzfU'fOn|  
    Minimum            :        -0.000000 VB~Do?]*k%  
    Maximum            :         0.000000 {QT:1U \.  
    Mean               :        -0.000000 t#7owY$^  
    Standard Deviation :         0.000000 8VMD304  
    w=ZK=@  
    Monte Carlo Analysis: 0~ cbB  
    Number of trials: 20 y9 K'(/  
    kQ.3J.Q5  
    Initial Statistics: Normal Distribution B{NGrC`5)  
    \5F {MBx !  
      Trial       Criterion        Change /z4n?&tM  
          1     0.42804416    -0.11598818 .7n`]S/  
    Change in Focus                :      -0.400171 { ?]&P  
          2     0.54384387    -0.00018847 l6-%)6u>  
    Change in Focus                :       1.018470 u@kr;^m  
          3     0.44510003    -0.09893230 !3Q^oR  
    Change in Focus                :      -0.601922 %kiPE<<x  
          4     0.18154684    -0.36248550 I0OfK3!^  
    Change in Focus                :       0.920681 ( Uk\O`)m  
          5     0.28665820    -0.25737414 CPu~^ik  
    Change in Focus                :       1.253875 i$z*~SuM#  
          6     0.21263372    -0.33139862 / KxZ+Ww>v  
    Change in Focus                :      -0.903878 ! p3vnOX6  
          7     0.40051424    -0.14351809 I>@Qfc bG  
    Change in Focus                :      -1.354815 ^%/d]Zwb  
          8     0.48754161    -0.05649072 8-q4'@(  
    Change in Focus                :       0.215922 Wp//SV  
          9     0.40357468    -0.14045766 $!:xjb  
    Change in Focus                :       0.281783 9w$+Qc  
         10     0.26315315    -0.28087919 j6BFh=?D  
    Change in Focus                :      -1.048393 jn>RE   
         11     0.26120585    -0.28282649 rq^VOK|L  
    Change in Focus                :       1.017611 Q}]RB$ZS  
         12     0.24033815    -0.30369419 ]]|vQA^  
    Change in Focus                :      -0.109292 {(^%2dk83C  
         13     0.37164046    -0.17239188 ?yAjxoE~?  
    Change in Focus                :      -0.692430 <*DP G\6Ma  
         14     0.48597489    -0.05805744 6g'+1%O  
    Change in Focus                :      -0.662040 G":u::hR  
         15     0.21462327    -0.32940907 O+o_{t\R  
    Change in Focus                :       1.611296 C8 "FTH'  
         16     0.43378226    -0.11025008 VY "i>Ae  
    Change in Focus                :      -0.640081 P6;Cohfh  
         17     0.39321881    -0.15081353 m"mU:-jk`  
    Change in Focus                :       0.914906 ]s~%1bd  
         18     0.20692530    -0.33710703 Yx<wYzD  
    Change in Focus                :       0.801607 xMo'SpVz:  
         19     0.51374068    -0.03029165 4 UnN~  
    Change in Focus                :       0.947293 #l_hiD`;r  
         20     0.38013374    -0.16389860 CL"q "  
    Change in Focus                :       0.667010 IJofbuzw:  
    Bc51 0I$c  
    Number of traceable Monte Carlo files generated: 20 2R`}}4<Z  
    n; *W#c  
    Nominal     0.54403234 j'|`:^ Sy  
    Best        0.54384387    Trial     2 O:W4W=K  
    Worst       0.18154684    Trial     4 ^I6GH?19>e  
    Mean        0.35770970 Ozs&YZ  
    Std Dev     0.11156454 Iih]q  
    bd3q207>  
    r#/Bz5Jb*  
    Compensator Statistics: of?0 y-LT%  
    Change in back focus: *]* D^'  
    Minimum            :        -1.354815 Be2yS]U  
    Maximum            :         1.611296 d]QCk &XU  
    Mean               :         0.161872 O@? *5  
    Standard Deviation :         0.869664 [7gwJiK  
    is}Y+^j.  
    90% >       0.20977951               = j S  
    80% >       0.22748071               2?\L#=<F  
    50% >       0.38667627               C\; $RH  
    20% >       0.46553746               nAW`G'V#  
    10% >       0.50064115                |iB svI:  
    'Mm=<Bh  
    End of Run. ;n=A245W\  
    f)!7/+9>  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 W1p5F\ wt  
    \x+"1  
    m6M:l"u  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 6*=7ifS  
    RaLc}F)9   
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 f:|O);nM  
    80% >       0.22748071                 K7N.gT*4  
    50% >       0.38667627                 s/J/kKj*s  
    20% >       0.46553746                 A T'P=)F@  
    10% >       0.50064115 v9R"dc]0h  
    O F CA~sR  
    最后这个数值是MTF值呢,还是MTF的公差? <OC|z3na_  
    "~HV!(dRMC  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   8x9$6HO  
    KGoHn6jM  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : H<SL=mb;  
    90% >       0.20977951                 Y,bw:vX  
    80% >       0.22748071                 Qjj:r~l  
    50% >       0.38667627                 r $du-U  
    20% >       0.46553746                 q-.e9eoc\  
    10% >       0.50064115 6rnehv!p  
    ....... e<> Lr  
    aqb;H 'F  
    S%ri/}qI[{  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   W RAW%?$  
    Mode                : Sensitivities a{h(BI^~  
    Sampling            : 2 K.2M=Q  
    Nominal Criterion   : 0.54403234 ~zz|U!TG  
    Test Wavelength     : 0.6328 ISr~JQr  
    B-[SUmHr  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? <nsl`C~6g0  
    8{+~3@T  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试