我现在在初学zemax的
公差分析,找了一个双胶合
透镜 'M8aW!~ !hCS#'
asr=m{C" vX+.e1m 然后添加了默认公差分析,基本没变
WL l_'2h gg[9u-
XJSa]P^B1 0z`/Hn 然后运行分析的结果如下:
>,"sHm}l% ;i\C]* Analysis of Tolerances
rJQ=9qn\ H4:ZTl_$ File : E:\光学设计资料\zemax练习\f500.ZMX
B'}"AC" Title:
Nb;H`<JP Date : TUE JUN 21 2011
',ZF5T5z@ WPo:^BD Units are Millimeters.
bLbR IY"l All changes are computed using linear differences.
:p>hW!~ \dcdw*v@ Paraxial Focus compensation only.
A59gIp*> ewnfeg1 WARNING: Solves should be removed prior to tolerancing.
d~@q%-`lA r`6:Q&& Mnemonics:
/v#)f-N%zs TFRN: Tolerance on curvature in fringes.
^ve14mbF#. TTHI: Tolerance on thickness.
hj!+HHYSk TSDX: Tolerance on surface decentering in x.
LjaGyj>) TSDY: Tolerance on surface decentering in y.
5G(E&>~ TSTX: Tolerance on surface tilt in x (degrees).
8>N wCjN TSTY: Tolerance on surface tilt in y (degrees).
+xp]:h| TIRR: Tolerance on irregularity (fringes).
Ei5 wel6! TIND: Tolerance on Nd index of refraction.
mS%4gx~~_n TEDX: Tolerance on element decentering in x.
+Ok%e.\ZM TEDY: Tolerance on element decentering in y.
oNM?y:O TETX: Tolerance on element tilt in x (degrees).
bik*ZC?E TETY: Tolerance on element tilt in y (degrees).
\Q&,ISO\ &yIGr`; WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
g97]Y1g SfB8!V|; WARNING: Boundary constraints on compensators will be ignored.
@{d\j]Nw 2)
?q58 Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
NfzF.{nh Mode : Sensitivities
9+qOP>m Sampling : 2
CO^Jz Nominal Criterion : 0.54403234
3`F) AWzdr Test Wavelength : 0.6328
mfom=-q3k :%X Ls, n~g LPHY Fields: XY Symmetric Angle in degrees
s8<gK.atl # X-Field Y-Field Weight VDX VDY VCX VCY
w%a8XnW]1 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
x /mp=
YF[f Z Sensitivity Analysis:
+(?>-3_z qOy=O
[+9 |----------------- Minimum ----------------| |----------------- Maximum ----------------|
qp p/8M Type Value Criterion Change Value Criterion Change
C#Bz>2;# Fringe tolerance on surface 1
xT*d/Oa w TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
1n=_y o Change in Focus :
-0.000000 0.000000
UMMB0(0D Fringe tolerance on surface 2
>v+jh(^ TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
+K~NV?c Change in Focus : 0.000000 0.000000
|/`%3'4H Fringe tolerance on surface 3
e3[:D5 TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
Yu3zM79'k Change in Focus : -0.000000 0.000000
/)>S<X Thickness tolerance on surface 1
kc$)^E7 TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
)9v`f9X){ Change in Focus : 0.000000 0.000000
xJwG=$o Thickness tolerance on surface 2
TNwKda+ TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
gTf|^?vd Change in Focus : 0.000000 -0.000000
bzZ>lyH Decenter X tolerance on surfaces 1 through 3
\3XqHf3|o TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
$V>yXhTh Change in Focus : 0.000000 0.000000
BiwieF4x Decenter Y tolerance on surfaces 1 through 3
K^[#]+nQ TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
$_;e>*+x Change in Focus : 0.000000 0.000000
Q<(YP.k Tilt X tolerance on surfaces 1 through 3 (degrees)
`#mK*Buem} TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
l$xxrb9P! Change in Focus : 0.000000 0.000000
,*svtw:2') Tilt Y tolerance on surfaces 1 through 3 (degrees)
G"SBYU TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
Wp0
Dq( Change in Focus : 0.000000 0.000000
2 QTZwx Decenter X tolerance on surface 1
tt_o$D~kg TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
s5&@Cxzl Change in Focus : 0.000000 0.000000
*OjKcs Decenter Y tolerance on surface 1
'lz"2@4{ TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
G}d-(X Change in Focus : 0.000000 0.000000
) c2_b Tilt X tolerance on surface (degrees) 1
Z|lU8`'5 TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
q2aYEuu, Change in Focus : 0.000000 0.000000
w'T q3-%V Tilt Y tolerance on surface (degrees) 1
S$q=;" TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
U(>4s]O6 Change in Focus : 0.000000 0.000000
u.XQ& Decenter X tolerance on surface 2
9!',b>C6 TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
oqd;6[%G Change in Focus : 0.000000 0.000000
Z8O n%Mx{" Decenter Y tolerance on surface 2
NpP')m!`} TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
yay<GP? Change in Focus : 0.000000 0.000000
\nNXxTxX! Tilt X tolerance on surface (degrees) 2
K>Fqf
+_ TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
n/d`qS Change in Focus : 0.000000 0.000000
g=L]S-e Tilt Y tolerance on surface (degrees) 2
YY((#"o;l TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
\Q?ip&R Change in Focus : 0.000000 0.000000
N"tFP9;K Decenter X tolerance on surface 3
y9H%
Xl TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
gV;H6" Change in Focus : 0.000000 0.000000
4R^mI Decenter Y tolerance on surface 3
+n0r0:z0 TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
LkruL_E> Change in Focus : 0.000000 0.000000
S0,R_d') Tilt X tolerance on surface (degrees) 3
$@-P5WcRs TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
s8"8y`u Change in Focus : 0.000000 0.000000
ipnV$!z Tilt Y tolerance on surface (degrees) 3
*D}0[|O TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
Fxs;Fp Change in Focus : 0.000000 0.000000
tc;'oMUP Irregularity of surface 1 in fringes
S^@S%Eg TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
Dr&('RZ4 Change in Focus : 0.000000 0.000000
f
3V Dv9( Irregularity of surface 2 in fringes
gN8hJG'0 TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
{Bs~lC$ Change in Focus : 0.000000 0.000000
!3n)|~r;K Irregularity of surface 3 in fringes
2,2Z`X TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
Pt:e!qX) Change in Focus : 0.000000 0.000000
GG064zPq7 Index tolerance on surface 1
8
;d$54
b TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
Ix@&$!'k Change in Focus : 0.000000 0.000000
=uk0@hy9b Index tolerance on surface 2
z<sg0K8z63 TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
H`bSYjgM! Change in Focus : 0.000000 -0.000000
"I?Am&>' :bV mgLgG Worst offenders:
l:0s2 Type Value Criterion Change
q\Q{sv_ TSTY 2 -0.20000000 0.35349910 -0.19053324
{e[%;W%c& TSTY 2 0.20000000 0.35349910 -0.19053324
'|]e<Mt- TSTX 2 -0.20000000 0.35349910 -0.19053324
:P,sxDlG) TSTX 2 0.20000000 0.35349910 -0.19053324
uzmk6G
v TSTY 1 -0.20000000 0.42678383 -0.11724851
]xC#rwHUC TSTY 1 0.20000000 0.42678383 -0.11724851
LZJA4?C TSTX 1 -0.20000000 0.42678383 -0.11724851
Q?ahr~qo TSTX 1 0.20000000 0.42678383 -0.11724851
Q$& sTM TSTY 3 -0.20000000 0.42861670 -0.11541563
E#J';tUQ TSTY 3 0.20000000 0.42861670 -0.11541563
CTt vyr ~\ ,w { Estimated Performance Changes based upon Root-Sum-Square method:
D0k
8^ Nominal MTF : 0.54403234
{2/LRPT Estimated change : -0.36299231
2XTPBZNe Estimated MTF : 0.18104003
]-oJ[5cQ0v |b-9b& Compensator Statistics: !TZhQiorC Change in back focus: N8qDdr9p?c Minimum : -0.000000 Wcb7
;~K Maximum : 0.000000 z,qRcO& Mean : -0.000000 ] h-,o
R?e Standard Deviation : 0.000000 5w %_$x \k;`}3uO Monte Carlo Analysis:
Q~R
~xz Number of trials: 20
,NnhHb2\
RZM"~ 0 Initial Statistics: Normal Distribution
}X x(^Zh 56^+;^f^` Trial Criterion Change
;^*Unyt[4] 1 0.42804416 -0.11598818
hjaT^(Y Change in Focus : -0.400171
8N:owK 2 0.54384387 -0.00018847
!d<"nx[2` Change in Focus : 1.018470
D:k3"
E"S 3 0.44510003 -0.09893230
o]nw0q?
Change in Focus : -0.601922
NCxqh < 4 0.18154684 -0.36248550
D9`0Dr}/2 Change in Focus : 0.920681
x~.:64 5 0.28665820 -0.25737414
&]
\X]p Change in Focus : 1.253875
J]m{b09F 6 0.21263372 -0.33139862
da1]mb=4 5 Change in Focus : -0.903878
k>t)g-,2 7 0.40051424 -0.14351809
? uYu`Ojzr Change in Focus : -1.354815
SyAvKd`g 8 0.48754161 -0.05649072
UzXE_S Change in Focus : 0.215922
[tMZ G%h 9 0.40357468 -0.14045766
4iW'kuK Change in Focus : 0.281783
2o>)7^9|#< 10 0.26315315 -0.28087919
vG \a1H Change in Focus : -1.048393
,J`'Y+7W 11 0.26120585 -0.28282649
ypJ". Change in Focus : 1.017611
n@ w^V 12 0.24033815 -0.30369419
RI68%ZoL Change in Focus : -0.109292
Wrr cx( 13 0.37164046 -0.17239188
?"z]A7<Hj Change in Focus : -0.692430
B||;' 14 0.48597489 -0.05805744
G_> #Js Change in Focus : -0.662040
)DYI
. 15 0.21462327 -0.32940907
W8lx~:v Change in Focus : 1.611296
w8g,a]p 16 0.43378226 -0.11025008
e</$ s Change in Focus : -0.640081
AfG/JWSo} 17 0.39321881 -0.15081353
jy]JiQB Change in Focus : 0.914906
p{PE@KO: 18 0.20692530 -0.33710703
'#(v=|J Change in Focus : 0.801607
%,hV[[ @. 19 0.51374068 -0.03029165
:ss,Hl Change in Focus : 0.947293
{O|'U' 20 0.38013374 -0.16389860
!QDQ_ Change in Focus : 0.667010
Y?ez9o:/# |+`c3*PV Number of traceable Monte Carlo files generated: 20
W>q HFoKa +za8=`2o Nominal 0.54403234
c1%H4j4/ Best 0.54384387 Trial 2
"B_K
XL Worst 0.18154684 Trial 4
Hcc"b0>}{ Mean 0.35770970
>5Wlc$bc Std Dev 0.11156454
5e
sQ; rHP%0f9: bFA!=uvA Compensator Statistics:
hDV20&hq Change in back focus:
F @Te@n Minimum : -1.354815
"*,XL
uv> Maximum : 1.611296
%F kMv Mean : 0.161872
L28*1]\Jh Standard Deviation : 0.869664
t%530EB3 M>M`baM1 90% > 0.20977951 zD3mX<sw 80% > 0.22748071 mrV!teP 50% > 0.38667627 0euuT@_$ 20% > 0.46553746 V'w@rc\XN 10% > 0.50064115 kh%{C]".1 ?YeWH
WM End of Run.
=TqQbadp ?8W("W 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
9:I6( Zv0
/x{s5P3 $ "Bh]- 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
e)E$}4 J<Pw+6B~ 不吝赐教