我现在在初学zemax的
公差分析,找了一个双胶合
透镜 W0y '5` VLS0XKI)
sc|_Q/`\. ?HTjmIb 然后添加了默认公差分析,基本没变
~"!]
3C,L RS"H8P4W
`NnUyQ;T TkE 8D
n 然后运行分析的结果如下:
C+?Hm1 us;YV<)d Analysis of Tolerances
9:fOYT$8 yW+yg{Gg: File : E:\光学设计资料\zemax练习\f500.ZMX
K\>tA)IPSV Title:
N/]o4o Date : TUE JUN 21 2011
q`|LRz&al *YW/_ Units are Millimeters.
m$`RcwO All changes are computed using linear differences.
Jpj}@, YCdS!&^UN Paraxial Focus compensation only.
_]04lGx27 /|r^W\DV&x WARNING: Solves should be removed prior to tolerancing.
BS /G("oZ[ \qR7mI/* Mnemonics:
z3`-plE TFRN: Tolerance on curvature in fringes.
w3#Wh|LQ- TTHI: Tolerance on thickness.
]p*l%(dhY TSDX: Tolerance on surface decentering in x.
+~'865 { TSDY: Tolerance on surface decentering in y.
cmBB[pk\ TSTX: Tolerance on surface tilt in x (degrees).
w ihH?~] TSTY: Tolerance on surface tilt in y (degrees).
~Cl){8o TIRR: Tolerance on irregularity (fringes).
`kOD[* TIND: Tolerance on Nd index of refraction.
zw+B9PYqX TEDX: Tolerance on element decentering in x.
H70LhN TEDY: Tolerance on element decentering in y.
rE iKi TETX: Tolerance on element tilt in x (degrees).
#?5 (o TETY: Tolerance on element tilt in y (degrees).
WF2}-NU" <!L>Exh&r WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
wDcj,:h` s<*XNNE7 WARNING: Boundary constraints on compensators will be ignored.
/rg*p |w_7_J2 Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
=2[7
E Mode : Sensitivities
GRGzP&}@ Sampling : 2
z|=}1;(. Nominal Criterion : 0.54403234
JQ}$Aqk Test Wavelength : 0.6328
W^fuScG)c E8>Rui@9 h lkn% Fields: XY Symmetric Angle in degrees
.nG#co"r}3 # X-Field Y-Field Weight VDX VDY VCX VCY
q+P|l5_
t 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
T~QWRBO =Qh\D Sensitivity Analysis:
Fp@TCPe# &L#UGp$, |----------------- Minimum ----------------| |----------------- Maximum ----------------|
+cIUGFp} Type Value Criterion Change Value Criterion Change
NZ;{t\ Fringe tolerance on surface 1
Fkvl%n TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
^m?KRm2 Change in Focus :
-0.000000 0.000000
xm%Um\Pb7 Fringe tolerance on surface 2
ZPiq-q TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
_8"O$w Change in Focus : 0.000000 0.000000
eK.e|z| Fringe tolerance on surface 3
}Mo=PWI1? TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
7.C;NT Change in Focus : -0.000000 0.000000
3mYiQ2 Thickness tolerance on surface 1
9l}FU$ TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
$"0M U Change in Focus : 0.000000 0.000000
$tz;<M7B Thickness tolerance on surface 2
WtViW=j' TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
j*F`"df Change in Focus : 0.000000 -0.000000
XD |E=s Decenter X tolerance on surfaces 1 through 3
XS`M-{f` TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
#Xhdn\7 Change in Focus : 0.000000 0.000000
rrQQZ5fh b Decenter Y tolerance on surfaces 1 through 3
,
FhekaA TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
!lEY=1nHOJ Change in Focus : 0.000000 0.000000
()K " c# Tilt X tolerance on surfaces 1 through 3 (degrees)
7nHF@Y|*" TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
[!} :KD2yX Change in Focus : 0.000000 0.000000
Yiry["[]Q Tilt Y tolerance on surfaces 1 through 3 (degrees)
m<{<s T TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
r)Ap8?+ Change in Focus : 0.000000 0.000000
an4GSL Decenter X tolerance on surface 1
F_Y7@Ei/ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
t=_J9| Change in Focus : 0.000000 0.000000
7h6,c /< Decenter Y tolerance on surface 1
BDVHol*g TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
M7+nW ; e% Change in Focus : 0.000000 0.000000
`VKf3&|<A Tilt X tolerance on surface (degrees) 1
?47@o1 TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
>y.%xK Change in Focus : 0.000000 0.000000
&07]LF$] Tilt Y tolerance on surface (degrees) 1
0GB:GBhZ TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
Xv<B1 Change in Focus : 0.000000 0.000000
GytXFL3`: Decenter X tolerance on surface 2
-:30:oq TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
43={Xy Change in Focus : 0.000000 0.000000
F;=4vS]\ Decenter Y tolerance on surface 2
N-I5X2 TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
'rMN=1:iu" Change in Focus : 0.000000 0.000000
/I)yU>o Tilt X tolerance on surface (degrees) 2
)t$,e2FY TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
'|S%aMLZ) Change in Focus : 0.000000 0.000000
[[>wB[w Tilt Y tolerance on surface (degrees) 2
*H?!;u=8 TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
$-#Yl&?z9 Change in Focus : 0.000000 0.000000
U>V&-kxtV Decenter X tolerance on surface 3
\2ZPj)&-E TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
?*?RP)V Change in Focus : 0.000000 0.000000
sXi=70o Decenter Y tolerance on surface 3
)Psb>'X TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
F;gx%[$GX Change in Focus : 0.000000 0.000000
eFpTW&9n Tilt X tolerance on surface (degrees) 3
6&bY} i^K TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
.pfP7weQ Change in Focus : 0.000000 0.000000
3l3+A+n Tilt Y tolerance on surface (degrees) 3
Z9575CI< TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
X@k`3X Change in Focus : 0.000000 0.000000
DA2}{ Irregularity of surface 1 in fringes
.C2TQ:B, . TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
@O@GRq&V Change in Focus : 0.000000 0.000000
3 n'V\Hvz Irregularity of surface 2 in fringes
M7ers|&{ TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
t5'V6nv Change in Focus : 0.000000 0.000000
EI_ Irregularity of surface 3 in fringes
deM7fN4lTi TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
?[)}l9 Change in Focus : 0.000000 0.000000
C8vOE`U,J Index tolerance on surface 1
]UH`Pdlt TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
OCZ[D{i9@ Change in Focus : 0.000000 0.000000
$/=nU*pd Index tolerance on surface 2
iC W*]U TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
%^1cyk Change in Focus : 0.000000 -0.000000
O!Oumw,$ wk6NG/< Worst offenders:
2RN)<\ P Type Value Criterion Change
wjh=Q TSTY 2 -0.20000000 0.35349910 -0.19053324
>.'<J] TSTY 2 0.20000000 0.35349910 -0.19053324
Qu}W/j|3 TSTX 2 -0.20000000 0.35349910 -0.19053324
abJ"
[ TSTX 2 0.20000000 0.35349910 -0.19053324
Y$Q|J4z TSTY 1 -0.20000000 0.42678383 -0.11724851
O~59FuL TSTY 1 0.20000000 0.42678383 -0.11724851
br0++}vwL TSTX 1 -0.20000000 0.42678383 -0.11724851
U5-@2YcH TSTX 1 0.20000000 0.42678383 -0.11724851
?p(/_@ TSTY 3 -0.20000000 0.42861670 -0.11541563
lW(px^&IN TSTY 3 0.20000000 0.42861670 -0.11541563
QHWBAGA X=Ys<TM, Estimated Performance Changes based upon Root-Sum-Square method:
{_Lgtu Nominal MTF : 0.54403234
wMdal:n^ Estimated change : -0.36299231
Wm);C~Le Estimated MTF : 0.18104003
-S$1Yn c%[#~;E Compensator Statistics: K]j0_~3s Change in back focus: +V{7")px6 Minimum : -0.000000 /F4pb]U!* Maximum : 0.000000 _UT$,0u_i Mean : -0.000000 !'j?.F$} Standard Deviation : 0.000000 7<jZ`qdq_ x5QaM.+=J Monte Carlo Analysis:
.Wq@gV Number of trials: 20
E@-KGsdhK b8%C*r7 Initial Statistics: Normal Distribution
IBQ@{QB XuD=E Trial Criterion Change
\EKU*5\Hp> 1 0.42804416 -0.11598818
B 9T!j]' Change in Focus : -0.400171
,oNOC3U 2 0.54384387 -0.00018847
5w\fSY Change in Focus : 1.018470
,SQZD,3v4 3 0.44510003 -0.09893230
!A>z(eIsv` Change in Focus : -0.601922
<)\y#N 4 0.18154684 -0.36248550
=xsTDjH> Change in Focus : 0.920681
ZkIgL 5 0.28665820 -0.25737414
&f7fK|} Change in Focus : 1.253875
(u]N 6 0.21263372 -0.33139862
_=q!
BW Change in Focus : -0.903878
@^;j)%F} 7 0.40051424 -0.14351809
w|CZ7|6 Change in Focus : -1.354815
Qc[3Fq,f 8 0.48754161 -0.05649072
uP<0WCN Change in Focus : 0.215922
W`"uu.~f 9 0.40357468 -0.14045766
?7M.o Change in Focus : 0.281783
0<8XI>.3D 10 0.26315315 -0.28087919
r}0\}~'?c Change in Focus : -1.048393
M[ z)6. 11 0.26120585 -0.28282649
nOQa_G]Gz Change in Focus : 1.017611
#-8\JEn 12 0.24033815 -0.30369419
?6nF~9Z' Change in Focus : -0.109292
T]j.=|,d 13 0.37164046 -0.17239188
<5G{"U+ \ Change in Focus : -0.692430
Oky**B[D' 14 0.48597489 -0.05805744
,jC3Fcly Change in Focus : -0.662040
(YY~{W$w( 15 0.21462327 -0.32940907
0W3i() Change in Focus : 1.611296
i 9g>9 16 0.43378226 -0.11025008
RJy=pNztm Change in Focus : -0.640081
8scc%t7 17 0.39321881 -0.15081353
'kYwz;gp Change in Focus : 0.914906
:5/Uh/sX 18 0.20692530 -0.33710703
Yk42(!
Change in Focus : 0.801607
K_
lVISBQ 19 0.51374068 -0.03029165
I+ es8 Change in Focus : 0.947293
(_4;') 9 20 0.38013374 -0.16389860
Dw7vv]+ S Change in Focus : 0.667010
,v&L:a hoT/KWD, Number of traceable Monte Carlo files generated: 20
/t6X(*xoy XX1Il;1G# Nominal 0.54403234
peJKNX.!q Best 0.54384387 Trial 2
XyMG.r-, Worst 0.18154684 Trial 4
DI`%zLDcY Mean 0.35770970
saU]`w_Z* Std Dev 0.11156454
QZX~T|Ckv tTN?r 8 GabYfUkO Compensator Statistics:
PyA&ZkX> Change in back focus:
8?*RIA.a Minimum : -1.354815
k8,?hX: Maximum : 1.611296
l88A=iLgv Mean : 0.161872
_/S?# Standard Deviation : 0.869664
3+J0!FVla AH4EtZC=W 90% > 0.20977951 *_ +7ni 80% > 0.22748071 x f4{r+ 50% > 0.38667627 kAM1TWbaVQ 20% > 0.46553746 YUQtMf9 10% > 0.50064115 7O`o ovW$ >K# ,cxY End of Run.
htm{!Z]s0 !GW,\y 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
>xA),^ YT
/U6%%%-D` o$C|J]% 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
dr{y0`CCN yAL1O94 不吝赐教