切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16385阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 mY#[D; mUe  
    IEjKI"  
    :}o0Eb  
    u5$\E]+ _  
    然后添加了默认公差分析,基本没变 :$dGcX}  
    c*HS#C7'2  
    )Xl/|YD  
    DJ[U^dWRn  
    然后运行分析的结果如下: .oN<c]iqE  
    9I+;waLlB  
    Analysis of Tolerances !`)-seTm  
    l4|bpR Cp  
    File : E:\光学设计资料\zemax练习\f500.ZMX Yg<o 9x$  
    Title: =36vsps=  
    Date : TUE JUN 21 2011 2AzF@Pi^z  
    LL#7oBJdM  
    Units are Millimeters. !+JSguy  
    All changes are computed using linear differences. r-H~MisL  
    ce 1KUwo]  
    Paraxial Focus compensation only. :*)~nPVV  
    8/ZJkI  
    WARNING: Solves should be removed prior to tolerancing. VKS:d!}3E  
    5i83(>p3]e  
    Mnemonics: aq0J }4U  
    TFRN: Tolerance on curvature in fringes. ?K|PM <A  
    TTHI: Tolerance on thickness. {jJUS>  
    TSDX: Tolerance on surface decentering in x. +\\*Iy'xK  
    TSDY: Tolerance on surface decentering in y. %4imlP  
    TSTX: Tolerance on surface tilt in x (degrees). D0us<9q  
    TSTY: Tolerance on surface tilt in y (degrees). UVxE~801Y  
    TIRR: Tolerance on irregularity (fringes). Tf21K9+`L  
    TIND: Tolerance on Nd index of refraction.  Pb+oV  
    TEDX: Tolerance on element decentering in x. 1CFrV=d  
    TEDY: Tolerance on element decentering in y. QE=Cum  
    TETX: Tolerance on element tilt in x (degrees). _+wv3? c"  
    TETY: Tolerance on element tilt in y (degrees). 3@XCP-`  
    C>:F4"0  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. ipw_AC~  
    :_p3nb[r  
    WARNING: Boundary constraints on compensators will be ignored. %*oz~,i  
    HI,1~ Jw+  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm +}I[l,,xy  
    Mode                : Sensitivities 43A6B  
    Sampling            : 2 4ME8NEE  
    Nominal Criterion   : 0.54403234 5R{ {FD`h  
    Test Wavelength     : 0.6328 o-lb/=K+  
    U@ALo  
    7$8z}2  
    Fields: XY Symmetric Angle in degrees w4:n(.;HK  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY .%U~ r2Y(  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 GWM2l?zOP  
    n AoGG0$5  
    Sensitivity Analysis: Z?ZcQ[eC  
    &Sa<&2W4S  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| zb?wl fT  
    Type                      Value      Criterion        Change          Value      Criterion        Change o%Vf#W  
    Fringe tolerance on surface 1 K.*?\)&  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 d?v#gW  
    Change in Focus                :      -0.000000                            0.000000 l^u P?l"  
    Fringe tolerance on surface 2 #E{aN?_  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 2^ ^;Q:  
    Change in Focus                :       0.000000                            0.000000 &M6)-V4  
    Fringe tolerance on surface 3 r{YyKSL1*K  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 &VY;Al  
    Change in Focus                :      -0.000000                            0.000000 9x;/q7  
    Thickness tolerance on surface 1 >QE^KtZ  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 ojs&W]r0Z  
    Change in Focus                :       0.000000                            0.000000 FT[oM<M\Xd  
    Thickness tolerance on surface 2 p0qQ(  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 j+Y4>fL$  
    Change in Focus                :       0.000000                           -0.000000 8MX/GF;F  
    Decenter X tolerance on surfaces 1 through 3 _a+0LTo".  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 }(a y(  
    Change in Focus                :       0.000000                            0.000000 AU^Wy|i5Q  
    Decenter Y tolerance on surfaces 1 through 3 mIFS/C  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 ?OZbns~  
    Change in Focus                :       0.000000                            0.000000 @Sq=#f/=  
    Tilt X tolerance on surfaces 1 through 3 (degrees) UciWrwE  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 r?{Vqephz  
    Change in Focus                :       0.000000                            0.000000 B 0 K2Uw  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) +(/XMx}a  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 #7lkj:j4  
    Change in Focus                :       0.000000                            0.000000 x^+ C[%  
    Decenter X tolerance on surface 1 pr;<n\Y{  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 D'fP2?3FK  
    Change in Focus                :       0.000000                            0.000000 @ RTQJ+ms  
    Decenter Y tolerance on surface 1 XhWMvme  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 0WF(Ga/o  
    Change in Focus                :       0.000000                            0.000000 2mu~hJ  
    Tilt X tolerance on surface (degrees) 1 K ANE"M   
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 ^ b-H  
    Change in Focus                :       0.000000                            0.000000 Pk8L- [&v  
    Tilt Y tolerance on surface (degrees) 1 ,=$yvZs4[]  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 oq8~PTw  
    Change in Focus                :       0.000000                            0.000000 }K<;ygcWE@  
    Decenter X tolerance on surface 2 ]DmqhK`  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 QAygr4\X^  
    Change in Focus                :       0.000000                            0.000000 '3+S5p8  
    Decenter Y tolerance on surface 2 R3?~+ y&  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 PO&xi9_  
    Change in Focus                :       0.000000                            0.000000 ;2L=WR%  
    Tilt X tolerance on surface (degrees) 2 Ic#+*W\ZW  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 OUI}jJw+  
    Change in Focus                :       0.000000                            0.000000 3-o ]H'6  
    Tilt Y tolerance on surface (degrees) 2 ( fdDFb#1  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 DOhXb  
    Change in Focus                :       0.000000                            0.000000 YLSG 5vF+  
    Decenter X tolerance on surface 3 >x2T '  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 @'C)ss=kj  
    Change in Focus                :       0.000000                            0.000000 cb'8Li8,j  
    Decenter Y tolerance on surface 3 X){F^1CT{  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 \?3];+c9  
    Change in Focus                :       0.000000                            0.000000 Tw!x*  
    Tilt X tolerance on surface (degrees) 3 2mU}"gf[  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 u52; )"&=)  
    Change in Focus                :       0.000000                            0.000000 Qbv)(&i# ~  
    Tilt Y tolerance on surface (degrees) 3 (]7@0d88  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 ya:H{#%6  
    Change in Focus                :       0.000000                            0.000000 B@iIj<p~  
    Irregularity of surface 1 in fringes zh/+1  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ,x{5,K.yWq  
    Change in Focus                :       0.000000                            0.000000 ^<y$+HcH  
    Irregularity of surface 2 in fringes QRdb~f;<hj  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 5.GBd_;  
    Change in Focus                :       0.000000                            0.000000 N"E\o,_  
    Irregularity of surface 3 in fringes ^+GN8LUs  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 zEO 9TuBO  
    Change in Focus                :       0.000000                            0.000000 c$e~O-OVD?  
    Index tolerance on surface 1 fcw \`.  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 ,(c="L4[  
    Change in Focus                :       0.000000                            0.000000 kY_UY~E  
    Index tolerance on surface 2 YmF`7W  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 E+~~d6nB  
    Change in Focus                :       0.000000                           -0.000000 E>4 \9  
    >`oO(d}n[0  
    Worst offenders: Pyyx/u+?@  
    Type                      Value      Criterion        Change %+pXzw`B  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 6PPvf D^  
    TSTY   2             0.20000000     0.35349910    -0.19053324 IloHU6h'  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 xUSIck  
    TSTX   2             0.20000000     0.35349910    -0.19053324 7kJ,;30)  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 Q45rP4mQ  
    TSTY   1             0.20000000     0.42678383    -0.11724851 .Dx]wv  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 C y& L,  
    TSTX   1             0.20000000     0.42678383    -0.11724851 ait/|a  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 _')KDy7  
    TSTY   3             0.20000000     0.42861670    -0.11541563 8=2)I.   
    @l;f';+  
    Estimated Performance Changes based upon Root-Sum-Square method: w^ DAu1  
    Nominal MTF                 :     0.54403234 ")sq?1?X  
    Estimated change            :    -0.36299231 ]\_4r)cN<n  
    Estimated MTF               :     0.18104003 @NyCMe;]  
    D2?7=5DgS  
    Compensator Statistics: Q0 ^?jh  
    Change in back focus: ]I}' [D  
    Minimum            :        -0.000000 99ZQlX  
    Maximum            :         0.000000 G7),!Qol  
    Mean               :        -0.000000 #MBYa&Tw7  
    Standard Deviation :         0.000000 yXEC@#?|  
    7vHU49DV  
    Monte Carlo Analysis: sX**'cH  
    Number of trials: 20 t;4{l`dk  
    3ea6g5kX  
    Initial Statistics: Normal Distribution |5FyfDaFBX  
    &j>`H:  
      Trial       Criterion        Change 0#yo\McZ  
          1     0.42804416    -0.11598818 9wI1/>  
    Change in Focus                :      -0.400171 )?_c7 R  
          2     0.54384387    -0.00018847 Y)!5Z.K  
    Change in Focus                :       1.018470 `GSfA0?  
          3     0.44510003    -0.09893230 5q8bM.k\7N  
    Change in Focus                :      -0.601922  F-ijGGL#  
          4     0.18154684    -0.36248550 >yL8C: J9  
    Change in Focus                :       0.920681 .IYE"0)wJ  
          5     0.28665820    -0.25737414 ,m:MI/ )p  
    Change in Focus                :       1.253875 _y8)jD"  
          6     0.21263372    -0.33139862 VvPTL8Z  
    Change in Focus                :      -0.903878 IPY@9+]  
          7     0.40051424    -0.14351809 M VsIyP  
    Change in Focus                :      -1.354815 IRcZyry  
          8     0.48754161    -0.05649072 fo5!d@Nv  
    Change in Focus                :       0.215922 QU\|RX   
          9     0.40357468    -0.14045766 ^WVr@6  
    Change in Focus                :       0.281783 J[<:-$E  
         10     0.26315315    -0.28087919 9cj:'KG)!  
    Change in Focus                :      -1.048393 yCm iW %L4  
         11     0.26120585    -0.28282649 IJs` 3?  
    Change in Focus                :       1.017611 hsVWD,w  
         12     0.24033815    -0.30369419 G8<,\mg+  
    Change in Focus                :      -0.109292 J.*dA j  
         13     0.37164046    -0.17239188 5$jKw\FF=  
    Change in Focus                :      -0.692430 //AS44^IS  
         14     0.48597489    -0.05805744 SFh6'v'1N@  
    Change in Focus                :      -0.662040 )TP7gLv=b  
         15     0.21462327    -0.32940907 :.Np7[~{  
    Change in Focus                :       1.611296 Mb+cXdZb  
         16     0.43378226    -0.11025008 :PjHsNp;^  
    Change in Focus                :      -0.640081 0A|.ch  
         17     0.39321881    -0.15081353 -,p(PK  
    Change in Focus                :       0.914906 >0u4>=#  
         18     0.20692530    -0.33710703 K72U0}$B  
    Change in Focus                :       0.801607 Y.=v!*p?}  
         19     0.51374068    -0.03029165 Rb\\6 BU0  
    Change in Focus                :       0.947293 jtN2%w;  
         20     0.38013374    -0.16389860 p5Y"W(5_  
    Change in Focus                :       0.667010 p+A#t~K  
    $0{c =r9  
    Number of traceable Monte Carlo files generated: 20 qL3*H\9N  
    MT|}[|_  
    Nominal     0.54403234 :uqsRFo&4  
    Best        0.54384387    Trial     2 Oi=kL{DG:s  
    Worst       0.18154684    Trial     4 DmPp&  
    Mean        0.35770970 \J:/l|h  
    Std Dev     0.11156454 Lymy/9  
    rr2|xL?+u  
    HP&+ 8  
    Compensator Statistics: {bl^O  
    Change in back focus: gNN{WFHQX:  
    Minimum            :        -1.354815 V[A uw3)  
    Maximum            :         1.611296 >8HcCG  
    Mean               :         0.161872 ,%yjEO  
    Standard Deviation :         0.869664 jsc1B  
    Xb3z<r   
    90% >       0.20977951               V% psaT=)P  
    80% >       0.22748071               {_l@ws  
    50% >       0.38667627               X> =`{JS1  
    20% >       0.46553746               # (T  
    10% >       0.50064115                ~[isR|>  
    }M * Oo  
    End of Run. iIA&\'|;i  
    591Syyy  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 9:IVSD&"Rf  
    vG69z&  
    R/xeC [r  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 n<uF9N<   
    9 }jF]P*Q  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 K*xqQ]&  
    80% >       0.22748071                 B\G?dmo  
    50% >       0.38667627                 p'M5]G  
    20% >       0.46553746                 4p\<b8(9>  
    10% >       0.50064115 *$1M= $  
    ) wtVFG  
    最后这个数值是MTF值呢,还是MTF的公差? 7Ps I'1v  
    wt0^R<28  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   y0k*iS e  
    ^1sX22k  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : `2`Nu:r^  
    90% >       0.20977951                 65X31vU  
    80% >       0.22748071                 :?W {vV  
    50% >       0.38667627                 KzD5>Xf]4$  
    20% >       0.46553746                 k.=67L  
    10% >       0.50064115 /^ *GoB  
    ....... >`L)E,=/  
    G%0G$3W"  
    7oaa)  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   ;4. D%  
    Mode                : Sensitivities ^ei[#I  
    Sampling            : 2 eveGCV;@  
    Nominal Criterion   : 0.54403234 5<Mht6"H  
    Test Wavelength     : 0.6328 $tvGS6p>  
    K^z-G=|N  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? : sIZ+3  
    YbZ<=ZzO4  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试