切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16182阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 9`I _Et  
    Y;@>b{s  
    @SJL\{_  
    XC0bI,Fu,  
    然后添加了默认公差分析,基本没变 -:2$ %  
    rz wF~-m +  
     -xSA  
    wRcAX%n&  
    然后运行分析的结果如下: WN?O'E=2  
     [F0s!,P  
    Analysis of Tolerances s2'yY(u/  
    T>}5:,N~  
    File : E:\光学设计资料\zemax练习\f500.ZMX -(bXSBs#  
    Title: < Z{HX[y  
    Date : TUE JUN 21 2011 \`oT#|0  
    QDs^Ije  
    Units are Millimeters. kzn5M&f>  
    All changes are computed using linear differences. HJXT9;w  
    zLD0RBj7p  
    Paraxial Focus compensation only. Xu< k3oD7  
    P `}zlml  
    WARNING: Solves should be removed prior to tolerancing. ,&j hlZ i  
    ;1`fC@rI  
    Mnemonics: @R/07&lBR  
    TFRN: Tolerance on curvature in fringes. 8oUpQcim  
    TTHI: Tolerance on thickness. 4]G?G]lS>  
    TSDX: Tolerance on surface decentering in x.  tBq nf v  
    TSDY: Tolerance on surface decentering in y. r=5{o 1"  
    TSTX: Tolerance on surface tilt in x (degrees). z.$4!$q  
    TSTY: Tolerance on surface tilt in y (degrees). SB1upTn  
    TIRR: Tolerance on irregularity (fringes). NO|KVZ~  
    TIND: Tolerance on Nd index of refraction. lD^]\;?  
    TEDX: Tolerance on element decentering in x. LR.Hh   
    TEDY: Tolerance on element decentering in y. T]t+E'sQ  
    TETX: Tolerance on element tilt in x (degrees). pP*zq"o  
    TETY: Tolerance on element tilt in y (degrees). i5Zk_-\#H  
    _,xc[ 07  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. $ACvV "b  
    < ,Ue 0  
    WARNING: Boundary constraints on compensators will be ignored. Y ;u<GOe  
    yaah*1ip[  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm .z)%)PVV  
    Mode                : Sensitivities 'oF%,4 !Y  
    Sampling            : 2 r\b3AKrIN  
    Nominal Criterion   : 0.54403234 1T y<\bZ=  
    Test Wavelength     : 0.6328 CN#+U,NZV  
    )~+E[|  
    zm]aU`j  
    Fields: XY Symmetric Angle in degrees jGXO\:s O  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY |zQ4u  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 :"=ez<t  
    4]h =yc R  
    Sensitivity Analysis: _d"b;4l  
    M)eO6oX|  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| [q/Abz'i  
    Type                      Value      Criterion        Change          Value      Criterion        Change qQA}Z*( m  
    Fringe tolerance on surface 1 +?u~APjNN  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 DB-l$rj  
    Change in Focus                :      -0.000000                            0.000000 AvdXEY(-  
    Fringe tolerance on surface 2 plb!.g  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 lV1G<qP  
    Change in Focus                :       0.000000                            0.000000 \@8+U;d  
    Fringe tolerance on surface 3 &j4xgh9  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 E=e*VEjy  
    Change in Focus                :      -0.000000                            0.000000 [z9 `)VIe  
    Thickness tolerance on surface 1 \hBG<nH{0  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 V,q](bg  
    Change in Focus                :       0.000000                            0.000000 zaah^.MA|  
    Thickness tolerance on surface 2 T(f/ ?_%  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 S/D^  
    Change in Focus                :       0.000000                           -0.000000 FrTi+& <  
    Decenter X tolerance on surfaces 1 through 3 *a58ZI@  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 #9X70|f  
    Change in Focus                :       0.000000                            0.000000 k\WR  ]  
    Decenter Y tolerance on surfaces 1 through 3 1+9W+$=h2  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 fb{`` ,nO  
    Change in Focus                :       0.000000                            0.000000 y^%n'h{  
    Tilt X tolerance on surfaces 1 through 3 (degrees) ~(Q)"s\1I  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 I_<I&{N>  
    Change in Focus                :       0.000000                            0.000000 P"W2(d  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) g=QDu7Ux  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 7g%E`3)"  
    Change in Focus                :       0.000000                            0.000000 ^:#D0[  
    Decenter X tolerance on surface 1 Zrvz;p@~  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 }o L'8-y  
    Change in Focus                :       0.000000                            0.000000 tS|(K=$  
    Decenter Y tolerance on surface 1 zx-81fx+k  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 4<% *E{`  
    Change in Focus                :       0.000000                            0.000000 oW<5|FaN  
    Tilt X tolerance on surface (degrees) 1 VO$ iNK  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 xn5l0'2  
    Change in Focus                :       0.000000                            0.000000 ^ q<v{_  
    Tilt Y tolerance on surface (degrees) 1 @&1ZB6OCb:  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 nHm}zOLc  
    Change in Focus                :       0.000000                            0.000000 w+yC)Rmz  
    Decenter X tolerance on surface 2 4WJ.^(  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 rd9e \%A  
    Change in Focus                :       0.000000                            0.000000 %@.v2 cT  
    Decenter Y tolerance on surface 2 Y8o)FVcyNy  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 .Yf:[`Q6g  
    Change in Focus                :       0.000000                            0.000000 B5X(ykaX~  
    Tilt X tolerance on surface (degrees) 2 Ed_N[ I   
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 )rekY;  
    Change in Focus                :       0.000000                            0.000000 @>p<3_Y1  
    Tilt Y tolerance on surface (degrees) 2 89o/F+_b  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 @}@Z8$G^  
    Change in Focus                :       0.000000                            0.000000 !4^C #{$  
    Decenter X tolerance on surface 3 <Dwar>}  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 B oC5E#;G  
    Change in Focus                :       0.000000                            0.000000 @ Wd9I;hWv  
    Decenter Y tolerance on surface 3 !t gi  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 UazP6^{L  
    Change in Focus                :       0.000000                            0.000000 . koYHq  
    Tilt X tolerance on surface (degrees) 3 MBqt&_?K  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 C!fMW+C@  
    Change in Focus                :       0.000000                            0.000000 Ib+Y~ XYR  
    Tilt Y tolerance on surface (degrees) 3 tE)suU5Y  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 T~Gvp0r}h  
    Change in Focus                :       0.000000                            0.000000 wS%Q<uK  
    Irregularity of surface 1 in fringes ;xzUE`uUfJ  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 f' 3q(a<p  
    Change in Focus                :       0.000000                            0.000000 ZuS0DPS`L  
    Irregularity of surface 2 in fringes PX<J&rx  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 5 N#3a0)  
    Change in Focus                :       0.000000                            0.000000 hM{{\yZS  
    Irregularity of surface 3 in fringes S/4^ d &Gr  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 jO!y_Y]B  
    Change in Focus                :       0.000000                            0.000000 {\c(ls{  
    Index tolerance on surface 1 HbXPok  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 uf&myV7  
    Change in Focus                :       0.000000                            0.000000 +\F'iAs@  
    Index tolerance on surface 2 cd$m25CxC  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 i 7x7xtq  
    Change in Focus                :       0.000000                           -0.000000 wid;8%m  
    TWQG591  
    Worst offenders: ]%?YZn<{  
    Type                      Value      Criterion        Change  Kfh|  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 ] :BX!<  
    TSTY   2             0.20000000     0.35349910    -0.19053324 /.Ww6a~  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 .ys6"V|31  
    TSTX   2             0.20000000     0.35349910    -0.19053324 <N_+=_  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 8]M_z:F7F  
    TSTY   1             0.20000000     0.42678383    -0.11724851 e^<#53!  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 %l,,_:7{  
    TSTX   1             0.20000000     0.42678383    -0.11724851 hvDNz"ec{  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 XT@-$%u  
    TSTY   3             0.20000000     0.42861670    -0.11541563 _Jme!Oaa  
    v" OY 1<8  
    Estimated Performance Changes based upon Root-Sum-Square method: 6P5Ih  
    Nominal MTF                 :     0.54403234 oAPb*;}  
    Estimated change            :    -0.36299231 J|w\@inQ  
    Estimated MTF               :     0.18104003 YwZ Z{+n  
    =gJb^ Gx(w  
    Compensator Statistics: K)Q]a30  
    Change in back focus: d*~ ICir7  
    Minimum            :        -0.000000 ]cGA~d  
    Maximum            :         0.000000 z#]Jv!~EPE  
    Mean               :        -0.000000 ]8 f ms(  
    Standard Deviation :         0.000000 k;w- E  
    2ioQb`=  
    Monte Carlo Analysis: {`K m_<Te!  
    Number of trials: 20 DsT>3  
    1rkE yh??  
    Initial Statistics: Normal Distribution &8]d }-e  
    =y/8 ^^  
      Trial       Criterion        Change N(y\dL=v  
          1     0.42804416    -0.11598818 ]K/DY Do-  
    Change in Focus                :      -0.400171 Yx eOI#L  
          2     0.54384387    -0.00018847 Vzwc}k*Y  
    Change in Focus                :       1.018470 8"fD`jtQ  
          3     0.44510003    -0.09893230 't6V:X  
    Change in Focus                :      -0.601922 &<UMBAS  
          4     0.18154684    -0.36248550 lsy?Ac  
    Change in Focus                :       0.920681 :1iqT)&|8F  
          5     0.28665820    -0.25737414 /Rg*~Ers *  
    Change in Focus                :       1.253875 4)U.5FBk )  
          6     0.21263372    -0.33139862 1. rj'  
    Change in Focus                :      -0.903878 m"o ;L3  
          7     0.40051424    -0.14351809 pb$~b\s]=  
    Change in Focus                :      -1.354815 #1c_evH  
          8     0.48754161    -0.05649072 ,B0_MDA +  
    Change in Focus                :       0.215922 OujCb^Rm  
          9     0.40357468    -0.14045766 ho0@ l  
    Change in Focus                :       0.281783 %5A+V0D0'  
         10     0.26315315    -0.28087919 j& <i&  
    Change in Focus                :      -1.048393 Oh'Y0_oB>  
         11     0.26120585    -0.28282649  \o/n  
    Change in Focus                :       1.017611 I+dbZBX  
         12     0.24033815    -0.30369419 w\DVzeW(  
    Change in Focus                :      -0.109292 DXa-rk8  
         13     0.37164046    -0.17239188 FxVZ[R  
    Change in Focus                :      -0.692430 rwG CUo6Z  
         14     0.48597489    -0.05805744 w*|7!iM  
    Change in Focus                :      -0.662040 IjR'Qou5  
         15     0.21462327    -0.32940907 k5C@>J  
    Change in Focus                :       1.611296 bIEhgiH  
         16     0.43378226    -0.11025008 5<ux6,E1{  
    Change in Focus                :      -0.640081 H8`(O"V  
         17     0.39321881    -0.15081353 9M1d%jT  
    Change in Focus                :       0.914906 OBP1B@|l$+  
         18     0.20692530    -0.33710703 w );6K[+;  
    Change in Focus                :       0.801607 ]- 4QNc=  
         19     0.51374068    -0.03029165 a(v>Q*zNP  
    Change in Focus                :       0.947293 JGH60|  
         20     0.38013374    -0.16389860 @$2))g`  
    Change in Focus                :       0.667010 X_g 3rv1J  
    Pw;!uag  
    Number of traceable Monte Carlo files generated: 20 Ce")[<:  
    kJ-*fe'S  
    Nominal     0.54403234 8WXJ.  
    Best        0.54384387    Trial     2 8kIR y   
    Worst       0.18154684    Trial     4 'qF#<1&  
    Mean        0.35770970 ty*@7g0k  
    Std Dev     0.11156454 YcN!T"w J@  
    nYa*b=[.  
    T7d9ChU\#.  
    Compensator Statistics: nE^Qy=iE  
    Change in back focus: O=dJi9;`#_  
    Minimum            :        -1.354815 {nvLPUL  
    Maximum            :         1.611296 f4guz  
    Mean               :         0.161872 sPb=82~z  
    Standard Deviation :         0.869664 =pk)3<GwF  
    +5&wOgx  
    90% >       0.20977951               @bnG:np  
    80% >       0.22748071               {!K-E9_,S  
    50% >       0.38667627               )"m!YuS Y  
    20% >       0.46553746               pIKSs<IP  
    10% >       0.50064115                #zR bx  
    DmBS0NyR7Y  
    End of Run. zBP>jM(8  
    /2HN>{F^Y  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 \#>T~.Y7K  
    Zb134b'  
    x $zKzfHW  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 W{rt8^1  
    His*t1o8'O  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 \Fe_rh  
    80% >       0.22748071                 Ol')7d&  
    50% >       0.38667627                 p<v.Q   
    20% >       0.46553746                 ~kCwJ<E  
    10% >       0.50064115 ^o !O)D-q  
    4\&  
    最后这个数值是MTF值呢,还是MTF的公差? *E~VKx1  
    o|j*t7  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   34QfgMyH  
    TbehR:B5g  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : NfE.N&vI_c  
    90% >       0.20977951                 Napf"Av  
    80% >       0.22748071                 CQODXB^  
    50% >       0.38667627                 cbKL$|  
    20% >       0.46553746                 &14W vAU  
    10% >       0.50064115 Poa?Ej  
    ....... Y(GN4@`S  
    g$j6n{Yl  
    _ ^7|!(Sz  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   {TZE/A3D,  
    Mode                : Sensitivities b"8FlZ$  
    Sampling            : 2 Rq7p29w  
    Nominal Criterion   : 0.54403234 #Y[H8TW  
    Test Wavelength     : 0.6328 /BH.>R4`A  
    ~4 FDKU C  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? ?^3B3qqh9  
    'yNPhI  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试