切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16565阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 PCES&|*rf  
    1 4|S^UM$  
    c"| ^Lo.  
    |.,y M|  
    然后添加了默认公差分析,基本没变  *Vc}W  
    <sPB|5Ak  
    I5e!vCG)  
    lmod8B  
    然后运行分析的结果如下: u_uC78`p  
    wM|-u/9+  
    Analysis of Tolerances ;[|x5o /<  
    )~Q$ tM`  
    File : E:\光学设计资料\zemax练习\f500.ZMX !is8`8F8  
    Title: u%T.XgY=j  
    Date : TUE JUN 21 2011 _Q7)FK  
    RpreW7B_Q*  
    Units are Millimeters. a E#s#Kv   
    All changes are computed using linear differences. R% ddB D\?  
    =\q3;5[  
    Paraxial Focus compensation only. 'r-a:8:t^  
    FY VcL*  
    WARNING: Solves should be removed prior to tolerancing. uW[ <?sFG  
    co;2s-X  
    Mnemonics: m7eO T  
    TFRN: Tolerance on curvature in fringes. #)\KV7f! ;  
    TTHI: Tolerance on thickness. "c}b qoN  
    TSDX: Tolerance on surface decentering in x. f>RPh bq|  
    TSDY: Tolerance on surface decentering in y. DF-og*V  
    TSTX: Tolerance on surface tilt in x (degrees). UH)A n:9  
    TSTY: Tolerance on surface tilt in y (degrees). & MAIm56~  
    TIRR: Tolerance on irregularity (fringes). s*S@} l  
    TIND: Tolerance on Nd index of refraction. >si<VCO  
    TEDX: Tolerance on element decentering in x. $1w8GI\J  
    TEDY: Tolerance on element decentering in y. KLoHjBq  
    TETX: Tolerance on element tilt in x (degrees). j\W+wnAgk  
    TETY: Tolerance on element tilt in y (degrees). &)wQ|{P~k  
    fc M~4yP?  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. Sd{>(YWx~  
    6#.R'O  
    WARNING: Boundary constraints on compensators will be ignored. ,,i;6q_f  
    SX;FBO(p  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm jdhhvoQ  
    Mode                : Sensitivities LDbo  
    Sampling            : 2 te:@F]A  
    Nominal Criterion   : 0.54403234 rMI:zFS  
    Test Wavelength     : 0.6328 /at#[Pw~01  
    D L$P  
    Qz $1_vO  
    Fields: XY Symmetric Angle in degrees DTJ~.  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY 2Qn%p[#n  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 c|I{U[(U  
    Ao0F?2|  
    Sensitivity Analysis: z/;NoQ-  
    "F0,S~tZZ  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| b|4h2iuM  
    Type                      Value      Criterion        Change          Value      Criterion        Change NjMo"1d  
    Fringe tolerance on surface 1 P$q IB[Xi  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 N<?RN;M  
    Change in Focus                :      -0.000000                            0.000000 PI }A')Nq.  
    Fringe tolerance on surface 2 X3'z'5  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230 g6nBu  
    Change in Focus                :       0.000000                            0.000000 SA}]ZK P  
    Fringe tolerance on surface 3 x; :[0(st}  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 =_TCtH  
    Change in Focus                :      -0.000000                            0.000000 Rh: \/31~  
    Thickness tolerance on surface 1 V-t!  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 7|H !(a'  
    Change in Focus                :       0.000000                            0.000000 G`w7dn;&  
    Thickness tolerance on surface 2 ]x~H"<V  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 V}3.K\7  
    Change in Focus                :       0.000000                           -0.000000 <~f/T]E,  
    Decenter X tolerance on surfaces 1 through 3 YsDn?pD@  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 (3W<yAM+  
    Change in Focus                :       0.000000                            0.000000 .vwOp*3\  
    Decenter Y tolerance on surfaces 1 through 3 #O G_O I  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 MTa.Ubs  
    Change in Focus                :       0.000000                            0.000000 jH \@Oc;7  
    Tilt X tolerance on surfaces 1 through 3 (degrees)  x@Q}sW92  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 y%iN9 -t  
    Change in Focus                :       0.000000                            0.000000 c6Wy1d^  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) ij%\ld9kd  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 8r+R~{  
    Change in Focus                :       0.000000                            0.000000 Z1*y$=D?3[  
    Decenter X tolerance on surface 1 CkIICx  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 :fo%)_Jc!  
    Change in Focus                :       0.000000                            0.000000 ;Q-(tGd  
    Decenter Y tolerance on surface 1 %  &{>oEQ  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 WCU[]A  
    Change in Focus                :       0.000000                            0.000000 C S+6!F]  
    Tilt X tolerance on surface (degrees) 1 evZ{~v& /  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 !*N#}6Jd  
    Change in Focus                :       0.000000                            0.000000 F@&q4whaVD  
    Tilt Y tolerance on surface (degrees) 1 "o% N`Xlx  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 _ 4pBJOJQ6  
    Change in Focus                :       0.000000                            0.000000 X8F _Mb*  
    Decenter X tolerance on surface 2 HuCH`|v-  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 .-fJ\`^mi  
    Change in Focus                :       0.000000                            0.000000 ;PGC9v%i  
    Decenter Y tolerance on surface 2 ^uC1\!Q1  
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 Rm"lRkY4I[  
    Change in Focus                :       0.000000                            0.000000 F< Qjoaz  
    Tilt X tolerance on surface (degrees) 2 miEfxim  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 _q M'm^z5  
    Change in Focus                :       0.000000                            0.000000 MiAXbo#\  
    Tilt Y tolerance on surface (degrees) 2 \2pJ ]  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 &A]*"lt|w  
    Change in Focus                :       0.000000                            0.000000 l 8n#sGA%  
    Decenter X tolerance on surface 3 >\[sNCkf  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 I3p ~pt2  
    Change in Focus                :       0.000000                            0.000000 DBbmM*r  
    Decenter Y tolerance on surface 3 =^O8 4Cp 6  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 1KAA(W;nq  
    Change in Focus                :       0.000000                            0.000000 E.t9F3  
    Tilt X tolerance on surface (degrees) 3 ngn%"xYX  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 v`bX#\It  
    Change in Focus                :       0.000000                            0.000000 pNCk~OM  
    Tilt Y tolerance on surface (degrees) 3 rN8 ZQiJC  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 !G Z2|~f9  
    Change in Focus                :       0.000000                            0.000000 p~DlZk"  
    Irregularity of surface 1 in fringes X Oc0j9Oa  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 ,m9Nd "6\  
    Change in Focus                :       0.000000                            0.000000 tbl!{Qwx  
    Irregularity of surface 2 in fringes TdG[b1xN  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047 ycIT=AFYqd  
    Change in Focus                :       0.000000                            0.000000 _|x%M}O},  
    Irregularity of surface 3 in fringes _)ZAf% f?  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 0 A/GWSmF  
    Change in Focus                :       0.000000                            0.000000 j"yL6Q9P  
    Index tolerance on surface 1 3@\vU~=P:  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 7f~DD8R  
    Change in Focus                :       0.000000                            0.000000 -|:7<$2#I  
    Index tolerance on surface 2 C5*j0}  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 UdT ~ h  
    Change in Focus                :       0.000000                           -0.000000 hnmFhJ !g  
    L5]*ZCDv  
    Worst offenders: (<=qW_iW  
    Type                      Value      Criterion        Change m{I_E G  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 [}+0N GgR  
    TSTY   2             0.20000000     0.35349910    -0.19053324 LdDkd(k  
    TSTX   2            -0.20000000     0.35349910    -0.19053324 'h([Y8p{  
    TSTX   2             0.20000000     0.35349910    -0.19053324 p$0;~1vH  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 M%1-fd  
    TSTY   1             0.20000000     0.42678383    -0.11724851 rX{QgyY&  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 T<mk98CdE  
    TSTX   1             0.20000000     0.42678383    -0.11724851 3-FS} {,  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 b'St14_  
    TSTY   3             0.20000000     0.42861670    -0.11541563 kS8srT /H  
    GL.& g{$#+  
    Estimated Performance Changes based upon Root-Sum-Square method: Bz }Kdyur  
    Nominal MTF                 :     0.54403234 <~u.:x@ R  
    Estimated change            :    -0.36299231 |Gzd|$%Oq  
    Estimated MTF               :     0.18104003 P5%DvZB$w  
    na?jCq9C  
    Compensator Statistics: Gg{@]9  
    Change in back focus: (IAl$IP63s  
    Minimum            :        -0.000000 7E%ehM6Y  
    Maximum            :         0.000000 \#lh b  
    Mean               :        -0.000000 mdoy1a  
    Standard Deviation :         0.000000 6Bo~7gnc  
    =5+M]y E<  
    Monte Carlo Analysis: "mSDL:$  
    Number of trials: 20 LGgEq -  
    \@:pWe  
    Initial Statistics: Normal Distribution !3-mPG< ]  
    9 %,_G.  
      Trial       Criterion        Change EN+WEMro  
          1     0.42804416    -0.11598818 _r+9S.z  
    Change in Focus                :      -0.400171 i/, G=yA  
          2     0.54384387    -0.00018847 YL;ZZ2A  
    Change in Focus                :       1.018470 }^pnwo9vV  
          3     0.44510003    -0.09893230 Z>7Oez>  
    Change in Focus                :      -0.601922 \V7Hi\)  
          4     0.18154684    -0.36248550 fp:j~a>E  
    Change in Focus                :       0.920681 [f:>tRdH  
          5     0.28665820    -0.25737414 uY5f mM9  
    Change in Focus                :       1.253875 VVYQIR]!yk  
          6     0.21263372    -0.33139862 SrN0f0  
    Change in Focus                :      -0.903878 13}=;4O  
          7     0.40051424    -0.14351809 @J!)o d  
    Change in Focus                :      -1.354815 Fu^^Jex  
          8     0.48754161    -0.05649072 ) Z0  
    Change in Focus                :       0.215922 +0^N#0)  
          9     0.40357468    -0.14045766 $lU~3I)  
    Change in Focus                :       0.281783 ;TEZD70r  
         10     0.26315315    -0.28087919 "Y7RvL!U  
    Change in Focus                :      -1.048393 +G7A.d`V}  
         11     0.26120585    -0.28282649 F<Z"W}I+6  
    Change in Focus                :       1.017611 n 'ZlIh  
         12     0.24033815    -0.30369419 /:z}WAW  
    Change in Focus                :      -0.109292 YzhZ%:8  
         13     0.37164046    -0.17239188  &j2L- )  
    Change in Focus                :      -0.692430 X`.4byqdK  
         14     0.48597489    -0.05805744 L_<&oq  
    Change in Focus                :      -0.662040 ?$ Uk[  
         15     0.21462327    -0.32940907 c42p>}P[  
    Change in Focus                :       1.611296 W a2V Z  
         16     0.43378226    -0.11025008 )fA9,yNJ3  
    Change in Focus                :      -0.640081 R 7xV{o  
         17     0.39321881    -0.15081353 OJbY\U  
    Change in Focus                :       0.914906 fdck/|`t  
         18     0.20692530    -0.33710703 vJtQ&,zG  
    Change in Focus                :       0.801607 l!~8  
         19     0.51374068    -0.03029165 ]\+bx=  
    Change in Focus                :       0.947293 Q'7o_[o/  
         20     0.38013374    -0.16389860 mu=u!by.E  
    Change in Focus                :       0.667010 nC_<pq^tr  
    SXwgn >  
    Number of traceable Monte Carlo files generated: 20 bpzB}nEp  
    K%2,z3ps  
    Nominal     0.54403234 1[} =,uaM  
    Best        0.54384387    Trial     2 Kcsje_I-M  
    Worst       0.18154684    Trial     4 (|(Y;%>-v  
    Mean        0.35770970 YV. *8'*  
    Std Dev     0.11156454 z]gxkol\  
    {pd%I  
    V BIPB  
    Compensator Statistics: 0 m";=:(w  
    Change in back focus: 0aQNdi)b  
    Minimum            :        -1.354815 i._d^lR\t  
    Maximum            :         1.611296 sN5 x\9U  
    Mean               :         0.161872 xZGR<+t  
    Standard Deviation :         0.869664 y!blp>V6  
    e4khReF;  
    90% >       0.20977951               D7sw;{ns  
    80% >       0.22748071               o:f=dBmoX  
    50% >       0.38667627               3|/ ;`KfQ  
    20% >       0.46553746               A;SRm<,  
    10% >       0.50064115                <!5N=-  
    cK@O)Ko}  
    End of Run. Z !wDh_  
    &|n*&@fF  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 O JvEq@  
    dQ/Xs.8  
    sFC1PdSk4T  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 BL]!j#''KE  
    MCz +l0  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 zh*NRN  
    80% >       0.22748071                 `\e@O#,^yI  
    50% >       0.38667627                 2=["jP!B  
    20% >       0.46553746                 Ev*HH+:b>  
    10% >       0.50064115 T(J&v|FK  
    "84.qgYaG  
    最后这个数值是MTF值呢,还是MTF的公差? _4[kg)#+  
    Qnr' KbK  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   EBK\.[  
    "=P@x|I  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : >Pbd#*  
    90% >       0.20977951                 ^t9"!K  
    80% >       0.22748071                 i aP+Vab  
    50% >       0.38667627                 X$PT-~!a  
    20% >       0.46553746                 8.]dThaq  
    10% >       0.50064115 9I^_n+E  
    ....... %DzS~5$G  
    i"sVk8+o!  
    n# Z6d`  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   %Ljc#AVg  
    Mode                : Sensitivities bF?EuL  
    Sampling            : 2 r`28fC  
    Nominal Criterion   : 0.54403234 4lvo9R  
    Test Wavelength     : 0.6328 (VwS 9:`  
    .eq-i>  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? 5 BcuLRId:  
    3)42EM'9(  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试