我现在在初学zemax的
公差分析,找了一个双胶合
透镜 o<l4}~a fBd +gT\S
)vGRfFjw_ <)n
然后添加了默认公差分析,基本没变
PLo.q|% 'A8T.BU
R?|_`@@A YBS]JCO 然后运行分析的结果如下:
1<59)RiO> Bdbw!zRR$ Analysis of Tolerances
cS ];?tqrA "?qu(}| File : E:\光学设计资料\zemax练习\f500.ZMX
p6}jCGJ Title:
29Q5s$YD@ Date : TUE JUN 21 2011
KI>7h.t PL+fLCk,I Units are Millimeters.
J;T_9 All changes are computed using linear differences.
c@nl;u)n )If[pw@j Paraxial Focus compensation only.
s:]rL&| s.GhquFCrU WARNING: Solves should be removed prior to tolerancing.
Q}fAAZ&7h QdW%5lM+ Mnemonics:
p Y>yJ) TFRN: Tolerance on curvature in fringes.
@#Xzk?+ TTHI: Tolerance on thickness.
!^"hYp` TSDX: Tolerance on surface decentering in x.
]B,S <*h TSDY: Tolerance on surface decentering in y.
]&G5/]f TSTX: Tolerance on surface tilt in x (degrees).
:Dr&
{3> TSTY: Tolerance on surface tilt in y (degrees).
^~`8 - TE TIRR: Tolerance on irregularity (fringes).
:sPku<1is TIND: Tolerance on Nd index of refraction.
*10e)rzM TEDX: Tolerance on element decentering in x.
=v;-{oN! TEDY: Tolerance on element decentering in y.
\
I?;% TETX: Tolerance on element tilt in x (degrees).
WVNQ}KY TETY: Tolerance on element tilt in y (degrees).
nev*TYY?A v\MH;DW^Z WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately.
HK[sHB& v"F0$c WARNING: Boundary constraints on compensators will be ignored.
IYCKF/2o $Jr`4s Criterion : Geometric
MTF average S&T at 30.0000 cycles per mm
ka>RAr J Mode : Sensitivities
xwRnrWd^6 Sampling : 2
G8;S`-D1a, Nominal Criterion : 0.54403234
=AKW(v Test Wavelength : 0.6328
=V,'f } 1XLe mJsYY,b8 Fields: XY Symmetric Angle in degrees
6=@n
b3D% # X-Field Y-Field Weight VDX VDY VCX VCY
y1
}d(% 1 0.000E+000 0.000E+000 1.000E+000 0.000 0.000 0.000 0.000
c~tSt.^WX q;>BltU Sensitivity Analysis:
U|Jo[4A @Op8^8$` |----------------- Minimum ----------------| |----------------- Maximum ----------------|
,jt098W Type Value Criterion Change Value Criterion Change
<m6Xh^Ko; Fringe tolerance on surface 1
\iL,l87 TFRN 1 -1.00000000 0.54257256 -0.00145977 1.00000000 0.54548607 0.00145374
O?2<rbx Change in Focus :
-0.000000 0.000000
\YKh'|04 Fringe tolerance on surface 2
tAC,'im:* TFRN 2 -1.00000000 0.54177471 -0.00225762 1.00000000 0.54627463 0.00224230
-pD&@Wlwak Change in Focus : 0.000000 0.000000
ROjjN W`W Fringe tolerance on surface 3
zgRP!q<9tt TFRN 3 -1.00000000 0.54779866 0.00376632 1.00000000 0.54022572 -0.00380662
9Y 4N Change in Focus : -0.000000 0.000000
$@Ay0GEI" Thickness tolerance on surface 1
LNN:GD)> TTHI 1 3 -0.20000000 0.54321462 -0.00081772 0.20000000 0.54484759 0.00081525
a[$.B2U Change in Focus : 0.000000 0.000000
SQ
Fey~ Thickness tolerance on surface 2
$3[cBX.= TTHI 2 3 -0.20000000 0.54478712 0.00075478 0.20000000 0.54327558 -0.00075675
DdQf%W8u Change in Focus : 0.000000 -0.000000
h#n8mtt&i Decenter X tolerance on surfaces 1 through 3
L$Leo6<3a TEDX 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
6>L. )V Change in Focus : 0.000000 0.000000
j0%0yb{-^ Decenter Y tolerance on surfaces 1 through 3
RYV6hp)| TEDY 1 3 -0.20000000 0.54401464 -1.7700E-005 0.20000000 0.54401464 -1.7700E-005
eFnsf}(Iy Change in Focus : 0.000000 0.000000
L|2COX Tilt X tolerance on surfaces 1 through 3 (degrees)
$HXB !$d TETX 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
2 Lamvf Change in Focus : 0.000000 0.000000
kR6 t
. Tilt Y tolerance on surfaces 1 through 3 (degrees)
(wlsn6h TETY 1 3 -0.20000000 0.54897548 0.00494314 0.20000000 0.54897548 0.00494314
XF7W'^ Change in Focus : 0.000000 0.000000
!Q(xOc9>Ug Decenter X tolerance on surface 1
vl5n%m H>^ TSDX 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
cV{ZDq Change in Focus : 0.000000 0.000000
{''|iwLr Decenter Y tolerance on surface 1
O9|'8"AF
TSDY 1 -0.20000000 0.53999563 -0.00403671 0.20000000 0.53999563 -0.00403671
VA%"IAl Change in Focus : 0.000000 0.000000
0o<qEo^ Tilt X tolerance on surface (degrees) 1
r;XQ i TSTX 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
YDNqWP7s Change in Focus : 0.000000 0.000000
$&C(oh$: Tilt Y tolerance on surface (degrees) 1
jccW8g~
~ TSTY 1 -0.20000000 0.42678383 -0.11724851 0.20000000 0.42678383 -0.11724851
9_Re,h Change in Focus : 0.000000 0.000000
@*DIB+K Decenter X tolerance on surface 2
da2[
TSDX 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
]v{fFmL Change in Focus : 0.000000 0.000000
.?p}: Decenter Y tolerance on surface 2
[Kj:~~`T TSDY 2 -0.20000000 0.51705427 -0.02697807 0.20000000 0.51705427 -0.02697807
Ft7a\vn*B Change in Focus : 0.000000 0.000000
)R^Cq o' Tilt X tolerance on surface (degrees) 2
@"I#b99 TSTX 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
+hg\DqO^M Change in Focus : 0.000000 0.000000
rEhf_[Dv Tilt Y tolerance on surface (degrees) 2
X}*o[;2G TSTY 2 -0.20000000 0.35349910 -0.19053324 0.20000000 0.35349910 -0.19053324
vaj66nV Change in Focus : 0.000000 0.000000
N4To#Q1w Decenter X tolerance on surface 3
KCk?)Qv TSDX 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
2\w=U,;( Change in Focus : 0.000000 0.000000
u!uDu,y Decenter Y tolerance on surface 3
gx*rSS?=N TSDY 3 -0.20000000 0.53419039 -0.00984195 0.20000000 0.53419039 -0.00984195
PEBFN Change in Focus : 0.000000 0.000000
&'7"i~pC Tilt X tolerance on surface (degrees) 3
,z1!~gIal TSTX 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
7I(t,AKJ Change in Focus : 0.000000 0.000000
UNQRtR/ Tilt Y tolerance on surface (degrees) 3
JQ_gM._3 TSTY 3 -0.20000000 0.42861670 -0.11541563 0.20000000 0.42861670 -0.11541563
,0Zn hS)kq Change in Focus : 0.000000 0.000000
M_1Tx Irregularity of surface 1 in fringes
v1C.\fL TIRR 1 -0.20000000 0.50973587 -0.03429647 0.20000000 0.57333868 0.02930634
grQnV' q Change in Focus : 0.000000 0.000000
"rGOw'!q> Irregularity of surface 2 in fringes
<8)s TIRR 2 -0.20000000 0.53400904 -0.01002330 0.20000000 0.55360281 0.00957047
+^kxFQ(: Change in Focus : 0.000000 0.000000
rh`.$/^ Irregularity of surface 3 in fringes
[S]!+YBK TIRR 3 -0.20000000 0.58078982 0.03675748 0.20000000 0.49904394 -0.04498840
VxN64;|= Change in Focus : 0.000000 0.000000
Zva Index tolerance on surface 1
z"K(
bw6 TIND 1 -0.00100000 0.52606778 -0.01796456 0.00100000 0.56121811 0.01718578
h)_Gxe"x Change in Focus : 0.000000 0.000000
yK077zH_ Index tolerance on surface 2
v1r_Z($ TIND 2 -0.00100000 0.55639086 0.01235852 0.00100000 0.53126361 -0.01276872
U+;>S$ Change in Focus : 0.000000 -0.000000
Iz)hz9k g?~ Tguv Worst offenders:
n`)7Y`hBhP Type Value Criterion Change
"Py Wo TSTY 2 -0.20000000 0.35349910 -0.19053324
d>, V TSTY 2 0.20000000 0.35349910 -0.19053324
~"0@u TSTX 2 -0.20000000 0.35349910 -0.19053324
FxfL+}?Q TSTX 2 0.20000000 0.35349910 -0.19053324
KO|pJ3 TSTY 1 -0.20000000 0.42678383 -0.11724851
HRV*x!|I TSTY 1 0.20000000 0.42678383 -0.11724851
um jhG6 TSTX 1 -0.20000000 0.42678383 -0.11724851
:B=8_M TSTX 1 0.20000000 0.42678383 -0.11724851
wm=RD98 TSTY 3 -0.20000000 0.42861670 -0.11541563
ns#~}2"d TSTY 3 0.20000000 0.42861670 -0.11541563
gKN}Of@^1 Mi}I0yhVm Estimated Performance Changes based upon Root-Sum-Square method:
ole|J Nominal MTF : 0.54403234
<'[Ku;m Estimated change : -0.36299231
*J_iXu| Estimated MTF : 0.18104003
-~][0PVL9 *AH^%!kVP Compensator Statistics: ZCQ<%f Change in back focus: l>~`;W Minimum : -0.000000 iS1Gb$? Maximum : 0.000000 %f(S'<DhC Mean : -0.000000 MCeu0e^) Standard Deviation : 0.000000 "#pzZ)Zh i_u
{5 U; Monte Carlo Analysis:
vJRnBq+y Number of trials: 20
]jc_=I6) fpvvV( Initial Statistics: Normal Distribution
Y}LLOj@L @Y
UY9+D& Trial Criterion Change
.G}k/`a 1 0.42804416 -0.11598818
dC`tN5 Change in Focus : -0.400171
'Y!pY]Z 2 0.54384387 -0.00018847
7qg<[ Change in Focus : 1.018470
!:"-:O}>=, 3 0.44510003 -0.09893230
> BNw Change in Focus : -0.601922
jJ
aV 4 0.18154684 -0.36248550
CV&zi6 Change in Focus : 0.920681
fxDj+Q1p 5 0.28665820 -0.25737414
?MC(}dF0 Change in Focus : 1.253875
5VR.o!h3I 6 0.21263372 -0.33139862
aDL)|>"Q Change in Focus : -0.903878
4\N_ G
@ 7 0.40051424 -0.14351809
5vTv$2@ Change in Focus : -1.354815
2{ o0@ 8 0.48754161 -0.05649072
fcRj Change in Focus : 0.215922
B0oxCc/'sZ 9 0.40357468 -0.14045766
hq<5lE^ Change in Focus : 0.281783
MO[kr2T 10 0.26315315 -0.28087919
}:`5,b%Y_ Change in Focus : -1.048393
bj@xqAGl 11 0.26120585 -0.28282649
4xm&pQo{V6 Change in Focus : 1.017611
[yw%i h) 12 0.24033815 -0.30369419
H9RGU~q4s[ Change in Focus : -0.109292
k-"<{V 13 0.37164046 -0.17239188
Y4#y34We Change in Focus : -0.692430
{A|bBg1! 14 0.48597489 -0.05805744
$$JIBf8 Change in Focus : -0.662040
vsKl#R B 15 0.21462327 -0.32940907
g96T*T Change in Focus : 1.611296
L=,OZ9aA 16 0.43378226 -0.11025008
uBmxh%]C~ Change in Focus : -0.640081
K@HQrv< 17 0.39321881 -0.15081353
cd!|Ne>fe Change in Focus : 0.914906
x>%joKY[ 18 0.20692530 -0.33710703
nv"G;W Change in Focus : 0.801607
=3*Jj`AV 19 0.51374068 -0.03029165
9x=3W?K:, Change in Focus : 0.947293
~r<p@k=.#0 20 0.38013374 -0.16389860
{FWyu5. Change in Focus : 0.667010
:NuR>~ c45tmul Number of traceable Monte Carlo files generated: 20
K;x~&G0= 2F1ZAl Nominal 0.54403234
W;q+, Io Best 0.54384387 Trial 2
ibJl;sJ Worst 0.18154684 Trial 4
P@gtdi(Q Mean 0.35770970
B7HQR{t Std Dev 0.11156454
nq'M?c#E e*:}$u8a 7 _g+^e-" Compensator Statistics:
:#{-RU@PS Change in back focus:
h*s`^W3 Minimum : -1.354815
y"vX~LR Maximum : 1.611296
:.$"kXm^
Mean : 0.161872
3_W{T@T Standard Deviation : 0.869664
S[mM4et| h4(JUio 90% > 0.20977951 Uky9zGa 80% > 0.22748071 Ky kSFB 50% > 0.38667627 /b#q*x-b 20% > 0.46553746 txq~+'A:+ 10% > 0.50064115 *|YU]b;W rjUBLY1( End of Run.
<Ct_d
Cc ;,XyN+2H 这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图
Uk,g> LG
+TN^NE %/T7Z;d 是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题
/^:2<y8Ha t`5j4bdG 不吝赐教