切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 16370阅读
    • 24回复

    [讨论]公差分析结果的疑问 [复制链接]

    上一主题 下一主题
    离线sansummer
     
    发帖
    959
    光币
    1087
    光券
    1
    只看楼主 倒序阅读 楼主  发表于: 2011-06-21
    我现在在初学zemax的公差分析,找了一个双胶合透镜 bmw"-W^U[  
    PcEE@W9  
    E.4 X,  
    PX5U)  
    然后添加了默认公差分析,基本没变 psAr>:\3  
    !4}Wp.  
    "64D.c(r$  
    >$_@p(w  
    然后运行分析的结果如下: 8M6Qn7{L  
    Z#flu Q%V  
    Analysis of Tolerances F>"B7:P1:Q  
    wyUfmk_}  
    File : E:\光学设计资料\zemax练习\f500.ZMX mO @Sl(9  
    Title: 1V;m8)RF  
    Date : TUE JUN 21 2011 ke5_lr(  
    M*<Bp   
    Units are Millimeters. iYl{V']A  
    All changes are computed using linear differences. "/zDcZbL;  
    3.?B')  
    Paraxial Focus compensation only. fR,7l9<%Zp  
    Nq ZR*/BOz  
    WARNING: Solves should be removed prior to tolerancing. F1b~S;lm  
    <'92\O  
    Mnemonics:  4d )Q  
    TFRN: Tolerance on curvature in fringes. V1\x.0Fs  
    TTHI: Tolerance on thickness. AGgL`sP  
    TSDX: Tolerance on surface decentering in x. \ Q0-yNt  
    TSDY: Tolerance on surface decentering in y. Bt1 &C?_$T  
    TSTX: Tolerance on surface tilt in x (degrees). =f-.aq(G/  
    TSTY: Tolerance on surface tilt in y (degrees). `I)ftj%  
    TIRR: Tolerance on irregularity (fringes). @P xX]e  
    TIND: Tolerance on Nd index of refraction. h&6t.2<e  
    TEDX: Tolerance on element decentering in x. e(;nhU3a*,  
    TEDY: Tolerance on element decentering in y. x\!Uk!fM  
    TETX: Tolerance on element tilt in x (degrees). P1}Fn:Xe%7  
    TETY: Tolerance on element tilt in y (degrees). "T'?Ah6  
    a>/jW-?  
    WARNING: RAY AIMING IS OFF. Very loose tolerances may not be computed accurately. "\u_gk{g  
    ]Qb85;0)  
    WARNING: Boundary constraints on compensators will be ignored. /Jw 65 e  
    w`F4.e  
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm Y]!{ n W  
    Mode                : Sensitivities /?Fa<{  
    Sampling            : 2 p?+*R@O  
    Nominal Criterion   : 0.54403234 4Js9"<w  
    Test Wavelength     : 0.6328 ; \N${YIn  
    l~9P4 ,  
    H3Z"u  
    Fields: XY Symmetric Angle in degrees KZ}F1Mr  
    #      X-Field      Y-Field       Weight    VDX    VDY    VCX    VCY !O~5<tA[#1  
    1   0.000E+000   0.000E+000   1.000E+000  0.000  0.000  0.000  0.000 $Q!J.}P@  
    G>fJ)A  
    Sensitivity Analysis: "mm|0PUJ  
    ;'x\L<b/)  
                     |----------------- Minimum ----------------| |----------------- Maximum ----------------| MGzuQrl{H  
    Type                      Value      Criterion        Change          Value      Criterion        Change h"~GaI  
    Fringe tolerance on surface 1 l;gj],*  
    TFRN   1            -1.00000000     0.54257256    -0.00145977     1.00000000     0.54548607     0.00145374 JZ  
    Change in Focus                :      -0.000000                            0.000000 ,`lVB#|  
    Fringe tolerance on surface 2 ^,.G<2Kx&  
    TFRN   2            -1.00000000     0.54177471    -0.00225762     1.00000000     0.54627463     0.00224230  #FfUkV  
    Change in Focus                :       0.000000                            0.000000 ADa'(#+6  
    Fringe tolerance on surface 3 4&c7^ 4w~  
    TFRN   3            -1.00000000     0.54779866     0.00376632     1.00000000     0.54022572    -0.00380662 yb(zyGe  
    Change in Focus                :      -0.000000                            0.000000 r ]cC4%in  
    Thickness tolerance on surface 1 t,2Q~ied=  
    TTHI   1   3        -0.20000000     0.54321462    -0.00081772     0.20000000     0.54484759     0.00081525 2-3|0<`  
    Change in Focus                :       0.000000                            0.000000 Ih!D6  
    Thickness tolerance on surface 2 !y>MchNv  
    TTHI   2   3        -0.20000000     0.54478712     0.00075478     0.20000000     0.54327558    -0.00075675 !PfIe94{`  
    Change in Focus                :       0.000000                           -0.000000 2_4m}T3   
    Decenter X tolerance on surfaces 1 through 3 W~1MeAI  
    TEDX   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 > qSaF  
    Change in Focus                :       0.000000                            0.000000 kOfu7Zj  
    Decenter Y tolerance on surfaces 1 through 3 k-( hJ}N  
    TEDY   1   3        -0.20000000     0.54401464   -1.7700E-005     0.20000000     0.54401464   -1.7700E-005 OudD1( )W  
    Change in Focus                :       0.000000                            0.000000 ZZa$/q"  
    Tilt X tolerance on surfaces 1 through 3 (degrees) Hset(-=X  
    TETX   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 XMM@EN  
    Change in Focus                :       0.000000                            0.000000 J jCzCA:K_  
    Tilt Y tolerance on surfaces 1 through 3 (degrees) =%:mZ@x'  
    TETY   1   3        -0.20000000     0.54897548     0.00494314     0.20000000     0.54897548     0.00494314 ql%>)k /x  
    Change in Focus                :       0.000000                            0.000000 )p MZ5|+X  
    Decenter X tolerance on surface 1 -L/5Nbup  
    TSDX   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 4=H/-v'&  
    Change in Focus                :       0.000000                            0.000000 a$c7d~p$I  
    Decenter Y tolerance on surface 1 &/7AW(?  
    TSDY   1            -0.20000000     0.53999563    -0.00403671     0.20000000     0.53999563    -0.00403671 %^=fjJGV{~  
    Change in Focus                :       0.000000                            0.000000 6 m5\f  
    Tilt X tolerance on surface (degrees) 1 ,/\%-u? 1x  
    TSTX   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 4QnJ;&~  
    Change in Focus                :       0.000000                            0.000000 ChLU(IPo6  
    Tilt Y tolerance on surface (degrees) 1 *xs8/?  
    TSTY   1            -0.20000000     0.42678383    -0.11724851     0.20000000     0.42678383    -0.11724851 7 :s6W%W1*  
    Change in Focus                :       0.000000                            0.000000 Llf>C,)  
    Decenter X tolerance on surface 2 yZaQ{]"  
    TSDX   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 3\FiQ/?  
    Change in Focus                :       0.000000                            0.000000 S ~lw5  
    Decenter Y tolerance on surface 2 T7YzO,b/   
    TSDY   2            -0.20000000     0.51705427    -0.02697807     0.20000000     0.51705427    -0.02697807 {M]m cRB(  
    Change in Focus                :       0.000000                            0.000000 `xkJ.,#Io  
    Tilt X tolerance on surface (degrees) 2 f#414ja  
    TSTX   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 p/WEQ2   
    Change in Focus                :       0.000000                            0.000000 #]I:}Q51  
    Tilt Y tolerance on surface (degrees) 2 pTmG\wA~$  
    TSTY   2            -0.20000000     0.35349910    -0.19053324     0.20000000     0.35349910    -0.19053324 MC3XGnT#5  
    Change in Focus                :       0.000000                            0.000000 * Yov>lO  
    Decenter X tolerance on surface 3 udg;jR-^  
    TSDX   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 bdqo2ZO  
    Change in Focus                :       0.000000                            0.000000 kaUH#;c>_  
    Decenter Y tolerance on surface 3 G <m{o  
    TSDY   3            -0.20000000     0.53419039    -0.00984195     0.20000000     0.53419039    -0.00984195 2`t4@T  
    Change in Focus                :       0.000000                            0.000000 |U$oS2U\m  
    Tilt X tolerance on surface (degrees) 3 Kd;|Z  
    TSTX   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 Oa7`Y`6  
    Change in Focus                :       0.000000                            0.000000 [m!\ZK  
    Tilt Y tolerance on surface (degrees) 3 "xS",6Sy  
    TSTY   3            -0.20000000     0.42861670    -0.11541563     0.20000000     0.42861670    -0.11541563 WJe  
    Change in Focus                :       0.000000                            0.000000 ImklM7A  
    Irregularity of surface 1 in fringes 0_qqBL.4  
    TIRR   1            -0.20000000     0.50973587    -0.03429647     0.20000000     0.57333868     0.02930634 L3X>v3CZ5  
    Change in Focus                :       0.000000                            0.000000 Qo)>i0  
    Irregularity of surface 2 in fringes _V6;`{$WK  
    TIRR   2            -0.20000000     0.53400904    -0.01002330     0.20000000     0.55360281     0.00957047  V '^s5  
    Change in Focus                :       0.000000                            0.000000 |/ZpZ7  
    Irregularity of surface 3 in fringes 8Z/P<u  
    TIRR   3            -0.20000000     0.58078982     0.03675748     0.20000000     0.49904394    -0.04498840 v.\1-Q?  
    Change in Focus                :       0.000000                            0.000000 GIo&zPx  
    Index tolerance on surface 1 FL0(q>$*8  
    TIND   1            -0.00100000     0.52606778    -0.01796456     0.00100000     0.56121811     0.01718578 u Dm=W36  
    Change in Focus                :       0.000000                            0.000000 v?!x,H$Qd  
    Index tolerance on surface 2 N}VKH5U|  
    TIND   2            -0.00100000     0.55639086     0.01235852     0.00100000     0.53126361    -0.01276872 lXW.G  
    Change in Focus                :       0.000000                           -0.000000 "-A@>*g  
    f]%$HfF @  
    Worst offenders: lkFv5^%  
    Type                      Value      Criterion        Change Bz9!a k~4  
    TSTY   2            -0.20000000     0.35349910    -0.19053324 hM/|k0YV  
    TSTY   2             0.20000000     0.35349910    -0.19053324 ,V.X-`Y  
    TSTX   2            -0.20000000     0.35349910    -0.19053324  yYp!s  
    TSTX   2             0.20000000     0.35349910    -0.19053324 VCNg`6!x  
    TSTY   1            -0.20000000     0.42678383    -0.11724851 +<|6y46  
    TSTY   1             0.20000000     0.42678383    -0.11724851 B Lw ssr.  
    TSTX   1            -0.20000000     0.42678383    -0.11724851 D$I7 Gz,w{  
    TSTX   1             0.20000000     0.42678383    -0.11724851 L @t<%fy@  
    TSTY   3            -0.20000000     0.42861670    -0.11541563 w2YfFtgD,  
    TSTY   3             0.20000000     0.42861670    -0.11541563 "S_t%m&R  
    K82pWpR  
    Estimated Performance Changes based upon Root-Sum-Square method: : JD% =w_  
    Nominal MTF                 :     0.54403234 F%+/j5~^  
    Estimated change            :    -0.36299231 # 0dN!l;  
    Estimated MTF               :     0.18104003 + ( `  
    O!\P]W4r$  
    Compensator Statistics: nQa5e_q!u  
    Change in back focus: U_wn/wcLS  
    Minimum            :        -0.000000 3uZY.H+H  
    Maximum            :         0.000000 py]m^)yc  
    Mean               :        -0.000000 _b&Mrd  
    Standard Deviation :         0.000000 8&IsZPq%l  
    mawomna  
    Monte Carlo Analysis: N)RyRR.x1.  
    Number of trials: 20 X2}\i5{  
    N&]v\MjI62  
    Initial Statistics: Normal Distribution +%OINMo.A  
    >8"oO[U5>  
      Trial       Criterion        Change Vl%AN;o  
          1     0.42804416    -0.11598818 (CJiCtAsl`  
    Change in Focus                :      -0.400171 8V`NQS$  
          2     0.54384387    -0.00018847 GvF8S MO[x  
    Change in Focus                :       1.018470 2E33m*C2  
          3     0.44510003    -0.09893230 A[ 9 @:z  
    Change in Focus                :      -0.601922 +iz5%Qe<f  
          4     0.18154684    -0.36248550 x%pC.0%  
    Change in Focus                :       0.920681 ! @{rk p  
          5     0.28665820    -0.25737414 MUhC6s\F  
    Change in Focus                :       1.253875 F[<EXLQ  
          6     0.21263372    -0.33139862 nfJ|&'T  
    Change in Focus                :      -0.903878 *Z>Yv37P  
          7     0.40051424    -0.14351809 L-hK(W!8pt  
    Change in Focus                :      -1.354815 bE#=\kf|  
          8     0.48754161    -0.05649072 guz{DBlK  
    Change in Focus                :       0.215922 6F6[w?   
          9     0.40357468    -0.14045766 ^m;dEe&@F  
    Change in Focus                :       0.281783 %_0,z`f  
         10     0.26315315    -0.28087919  7?-eR-  
    Change in Focus                :      -1.048393 kT@RA}  
         11     0.26120585    -0.28282649 ]wh8m1  
    Change in Focus                :       1.017611 },KY9w  
         12     0.24033815    -0.30369419 7 Bm 18  
    Change in Focus                :      -0.109292 [t*m$0[:  
         13     0.37164046    -0.17239188 /ZqBO*]  
    Change in Focus                :      -0.692430 cTu7U=%  
         14     0.48597489    -0.05805744 #P.jlpZk  
    Change in Focus                :      -0.662040 -CfGWO#Gbx  
         15     0.21462327    -0.32940907 0L"CM?C  
    Change in Focus                :       1.611296 h>-JXuN  
         16     0.43378226    -0.11025008 Rn~FCj,-  
    Change in Focus                :      -0.640081 ";E Mu(IXb  
         17     0.39321881    -0.15081353 j2# nCU54Z  
    Change in Focus                :       0.914906 !-b4@=f:  
         18     0.20692530    -0.33710703 JYL/p9K[I  
    Change in Focus                :       0.801607 o"~ODN" L  
         19     0.51374068    -0.03029165 :_JZn`Cab  
    Change in Focus                :       0.947293 drP2% u  
         20     0.38013374    -0.16389860 9 P_`IsVK  
    Change in Focus                :       0.667010 n"vl%!B  
    \bYuAE1q  
    Number of traceable Monte Carlo files generated: 20 []:;8fY  
    SQ| pH"  
    Nominal     0.54403234 Os^sOOSY  
    Best        0.54384387    Trial     2 jT"P$0sJAd  
    Worst       0.18154684    Trial     4 y ,isK  
    Mean        0.35770970 3{RuR+yi  
    Std Dev     0.11156454 dl;~-'0  
    mbxJS_P  
    S>}jsP:V  
    Compensator Statistics: R~8gw^w![  
    Change in back focus: H `y.jSNi  
    Minimum            :        -1.354815 fpf1^ TZ  
    Maximum            :         1.611296 R5 47  
    Mean               :         0.161872 #\N?ka}!  
    Standard Deviation :         0.869664 0fA42*s;  
    a(Ka2;M4J  
    90% >       0.20977951               w]]`/`  
    80% >       0.22748071               jUtrFl  
    50% >       0.38667627               j} XTa[  
    20% >       0.46553746               4 r#O._Z  
    10% >       0.50064115                bcL>S$B  
    !Sr^4R+Z  
    End of Run. 7 vUfA"  
    QwXM<qG*  
    这就有了些疑问,为什么我选择的补偿器是近轴焦点,而分析结果近轴焦点都不变化??应该是变得。另外最后的蒙特卡洛分析,只有10%的大于0.5(我用的是MTF作为评价方式),可是我设计的MTF如图 o^dt# &  
    MV6 %~T  
    f Z$<'(t  
    是大于0.6左右的,难道我按照这个默认的公差来加工的话,只有10%的才可能大于0.5?那太低了啊,请问这该怎么进行进一步处理。或者之前哪有问题 I8HUH* |)n  
    A[J9v{bD  
    不吝赐教
     
    分享到
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 1楼 发表于: 2011-06-21
    我又试了试,原来是得根据上面的结果不断修改公差,放松或者变紧,然后在做公差分析,不断提高蒙特卡罗的结果。但是比如就拿我这个来说,理想是达到30lp处>0.6,那么实际做蒙特卡罗公差分析时,百分之多少以上的MTF是合格的呢?
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 2楼 发表于: 2011-06-22
    90% >       0.20977951                 rsBF\(3b~  
    80% >       0.22748071                 FU!U{qDI  
    50% >       0.38667627                 xp/u, q  
    20% >       0.46553746                 ;G!X?(%+  
    10% >       0.50064115 s .^9;%@$J  
    [=e61Z  
    最后这个数值是MTF值呢,还是MTF的公差? Q9K Gf;  
    *[ Wh9 ,H  
    也就是说,这到底是有90%的产品MTF大于0.20977951还是90%的产品的MTF变化量大于0.20977951???   GY,@jp|R  
    PNT.9 *d  
    怎么没人啊,大家讨论讨论吗
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 3楼 发表于: 2011-06-23
    没有人啊???
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 4楼 发表于: 2011-06-23
    引用第2楼sansummer于2011-06-22 08:56发表的  : @+{S-iD"  
    90% >       0.20977951                 {UUVN/$  
    80% >       0.22748071                 * e 8V4P  
    50% >       0.38667627                 n!N;WL3k  
    20% >       0.46553746                 =}q4ked /  
    10% >       0.50064115 )5&m:R9  
    ....... +}Q4 g]M8  
    6F(yH4  
    oqY?#p/  
    这些数值都是MTF值
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 5楼 发表于: 2011-06-23
    Criterion           : Geometric MTF average S&T at 30.0000 cycles per mm   +Va?wAnr  
    Mode                : Sensitivities I{AU,  
    Sampling            : 2 ^GAdl}  
    Nominal Criterion   : 0.54403234 ,mX|TI<*  
    Test Wavelength     : 0.6328 ;`+RSr^8$  
    ?dmMGm0T9  
    波长632.8nm 时 mtf 是 0.54403234  没达到0.6
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 6楼 发表于: 2011-06-24
    回 5楼(天地大同) 的帖子
    谢谢。您说的“波长632.8nm 时 mtf 是 0.54403234  没达到0.6”这是一个评价标准吧? yUSB{DLpla  
    4d 3Znpf  
    这个评价标准和我理想的设计结果的0.6有什么联系吗,另外这个 0.54403234  是这么来的?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 7楼 发表于: 2011-06-24
    回 6楼(sansummer) 的帖子
    你试试把原来的系统波长改成632.8nm,看看Geometric MTF    30 per mm 的mtf值是不是0.54403234
    离线sansummer
    发帖
    959
    光币
    1087
    光券
    1
    只看该作者 8楼 发表于: 2011-06-24
    回 7楼(天地大同) 的帖子
    啊...这倒也是。换了波长的确可能有所变化。另外还有就是如果现在百分比太低,我是否应该考虑把最敏感的公差再紧一些,就会好了?
    离线天地大同
    发帖
    295
    光币
    1899
    光券
    0
    只看该作者 9楼 发表于: 2011-06-28
    回 8楼(sansummer) 的帖子
    恩,多多尝试