切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7498阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 W>${zVu  
    H9'$C/w  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of I:=S 0&%)  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of M1k{t%M+S  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1h^:[[!c  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 4GkWRu1  
    {j{u6i  
    %fid=fopen('e21.dat','w'); )1]ZtU  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) %"q9:{m  
    M1 =3000;              % Total number of space steps V pE*(i$  
    J =100;                % Steps between output of space JgxtlYjl  
    T =10;                  % length of time windows:T*T0 R|6Cv3:  
    T0=0.1;                 % input pulse width ,1y@Z 5wy  
    MN1=0;                 % initial value for the space output location 1auIR/=-  
    dt = T/N;                      % time step 8V~k5#&Ow  
    n = [-N/2:1:N/2-1]';           % Index Lm iOhx  
    t = n.*dt;   35h 8O,Y  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 [8Y:65  
    u20=u10.*0.0;                  % input to waveguide 2 MU($|hwiL  
    u1=u10; u2=u20;                  `xKp%9  
    U1 = u1;   BOX{]EOj  
    U2 = u2;                       % Compute initial condition; save it in U 'f#{{KA  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. hwPw]Ln/  
    w=2*pi*n./T; d?y4GkK  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 4)S,3G  
    L=4;                           % length of evoluation to compare with S. Trillo's paper Jf{*PgP  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Lz |? ek7Q  
    for m1 = 1:1:M1                                    % Start space evolution 1jx:;j  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS h\$$JeSV]  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; j@AIK+0Qc  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform YDIG,%uv  
       ca2 = fftshift(fft(u2)); 2bv=N4ly  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation Z-$[\le  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   )%`c_FL@N=  
       u2 = ifft(fftshift(c2));                        % Return to physical space +vw\y  
       u1 = ifft(fftshift(c1)); uFX#`^r`  
    if rem(m1,J) == 0                                 % Save output every J steps. {dhXIs  
        U1 = [U1 u1];                                  % put solutions in U array =Z{O<xw'  
        U2=[U2 u2]; y8d]9sX{  
        MN1=[MN1 m1]; ^-TE([bW  
        z1=dz*MN1';                                    % output location r7RIRg_  
      end ;@0;pY  
    end /}((l%UE.  
    hg=abs(U1').*abs(U1');                             % for data write to excel E:,/!9n  
    ha=[z1 hg];                                        % for data write to excel J-[,KME_^  
    t1=[0 t']; kGH}[w  
    hh=[t1' ha'];                                      % for data write to excel file ] vz%iv_  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format ,cXD.y  
    figure(1) ADz ^\  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Z|&MKG24  
    figure(2) ML}J\7R  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn M  f}~{+  
    272q1~&  
    非线性超快脉冲耦合的数值方法的Matlab程序 9)D6Nm  
    B+$%*%b  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   '@a}H9>}  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -{KQr1{5UM  
    Bm:98? [  
    ,[N%Q#  
    i"1Mfz~e  
    %  This Matlab script file solves the nonlinear Schrodinger equations -m\u  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of raW>xOivR  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear J9..P&c\  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ^8]NxV@l  
    5A,K6f@:g  
    C=1;                           el&0}`K  
    M1=120,                       % integer for amplitude l?\jB\,  
    M3=5000;                      % integer for length of coupler >d(~# Z`  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) 2pZXZ  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. D+#E -8  
    T =40;                        % length of time:T*T0. 3Lfqdqj  
    dt = T/N;                     % time step %7QV&[4!  
    n = [-N/2:1:N/2-1]';          % Index V~UN  
    t = n.*dt;   ~]nRV *^  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ,D5cjaX<  
    w=2*pi*n./T; `b?R#:G  
    g1=-i*ww./2; EHSlK5bD,  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; DMs,y{v  
    g3=-i*ww./2; Oylf<&knF\  
    P1=0; Cw~q4A6'  
    P2=0; ay4 %  
    P3=1; :v YYfs&  
    P=0; W}nlRbN?  
    for m1=1:M1                 $&Gu)4'+  
    p=0.032*m1;                %input amplitude tCw<Ip  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 O8f?; ]  
    s1=s10; dR K?~1  
    s20=0.*s10;                %input in waveguide 2 CVDV)#JA  
    s30=0.*s10;                %input in waveguide 3 r^2p*nr}  
    s2=s20; bs+f,j-oBN  
    s3=s30; MO[2~`,Q!  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   HUcq% .  
    %energy in waveguide 1 !d'GE`w T  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   \h+AXs<j  
    %energy in waveguide 2 )tG\vk=@  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   +|*IZ:w)  
    %energy in waveguide 3 8aZ=?_gvT  
    for m3 = 1:1:M3                                    % Start space evolution nz%DM<0$  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS G%BjhpL  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; ;$HftG>B  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; 3Nl <p"=  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform QZ!Y2Bz(4  
       sca2 = fftshift(fft(s2)); 1eA7>$w}[  
       sca3 = fftshift(fft(s3)); 6d:zb;Iz  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   >3ZFzh&OYQ  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); 7 G)ZN{'  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); p}&#jE  
       s3 = ifft(fftshift(sc3)); eFipIn)b  
       s2 = ifft(fftshift(sc2));                       % Return to physical space S&e0u%8mc  
       s1 = ifft(fftshift(sc1)); a,Sw4yJ!Q  
    end \-L&5x"x  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); .GbX]?dN  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); +2(I1  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); \1d (9jR  
       P1=[P1 p1/p10]; 6e(Qwt  
       P2=[P2 p2/p10]; Cmu@4j&  
       P3=[P3 p3/p10]; ih)zG  
       P=[P p*p]; [<7@{;r  
    end >u>5{4  
    figure(1) j 7fL7:,T  
    plot(P,P1, P,P2, P,P3); ; a/X<  
    w2Us!<x  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~