计算脉冲在非线性耦合器中演化的Matlab 程序 ZW|VAn'>
`?L-{VtM3*
% This Matlab script file solves the coupled nonlinear Schrodinger equations of 'zhw]L;'g
% soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ^6
sT$set
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear <ArP_!
`3
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 !j.jvI%e;
E5 0$y:
%fid=fopen('e21.dat','w'); P'6(HT>F?
N = 128; % Number of Fourier modes (Time domain sampling points) /< CjBW:
M1 =3000; % Total number of space steps GcPhT
J =100; % Steps between output of space (N\Zz*PLz
T =10; % length of time windows:T*T0 /Iu._2
T0=0.1; % input pulse width cnOk
MN1=0; % initial value for the space output location jsvD[ \P
dt = T/N; % time step Lay+)S.ta[
n = [-N/2:1:N/2-1]'; % Index ~4iIG}Y<
t = n.*dt; ]-aeoa#
u10=1.*sech(1*t); % input to waveguide1 amplitude: power=u10*u10 $|YIr7?R
u20=u10.*0.0; % input to waveguide 2 uOrvmb
u1=u10; u2=u20; 7o+!Gts]
U1 = u1; %?EOD=e=
U2 = u2; % Compute initial condition; save it in U "ppT<8Qi'
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. S!n
9A
w=2*pi*n./T; D4r5wc%
g=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 'gojP
L=4; % length of evoluation to compare with S. Trillo's paper G?]E6R
dz=L/M1; % space step, make sure nonlinear<0.05 $0Y&r]'
for m1 = 1:1:M1 % Start space evolution %zyMWC
u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1; % 1st sSolve nonlinear part of NLS ${ ~UA6
u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 5 b[:B~J
ca1 = fftshift(fft(u1)); % Take Fourier transform V|.aud=7z
ca2 = fftshift(fft(u2)); [,a O*7N
c2=exp(g.*dz).*(ca2+i*1*ca1.*dz); % approximation r Q'tab.,]
c1=exp(g.*dz).*(ca1+i*1*ca2.*dz); % frequency domain phase shift ^>ca*g
u2 = ifft(fftshift(c2)); % Return to physical space !DCJ2h%E[_
u1 = ifft(fftshift(c1)); bhSpSul
if rem(m1,J) == 0 % Save output every J steps. <5(8LMF
U1 = [U1 u1]; % put solutions in U array lq_W;L
U2=[U2 u2]; =D4EPfQn1
MN1=[MN1 m1]; y+?tUSPP
z1=dz*MN1'; % output location 2`vCQV
end "=<lPi
end 9,'5~+7
hg=abs(U1').*abs(U1'); % for data write to excel ?4Z0)%6
ha=[z1 hg]; % for data write to excel h{sW$WA
t1=[0 t']; %~ecrQ;
hh=[t1' ha']; % for data write to excel file q'2PG@
%dlmwrite('aa',hh,'\t'); % save data in the excel format -H`G6oMOO
figure(1) $_Qo
waterfall(t',z1',abs(U1').*abs(U1')) % t' is 1xn, z' is 1xm, and U1' is mxn 1qUdj[Bj
figure(2) 2>O2#53ls0
waterfall(t',z1',abs(U2').*abs(U2')) % t' is 1xn, z' is 1xm, and U1' is mxn =,[46 ;q
i:kWO7aP
非线性超快脉冲耦合的数值方法的Matlab程序 P+3G*M=}
0 \LkJ*i
在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。 4'54
Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 uU.9*B=H9
7Nwi\#o
cJ8F#t
:/vB,JC
% This Matlab script file solves the nonlinear Schrodinger equations ,0 &lag
% for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of yK?~XV:
% Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear AD?DIE(v
% pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 |7`Vw Z
R~w(]
C=1; p!aeL}g`
M1=120, % integer for amplitude X=\#n-*
M3=5000; % integer for length of coupler }h_Op7.5D
N = 512; % Number of Fourier modes (Time domain sampling points) t48(GKF
dz =3.14159/(sqrt(2.)*C)/M3; % length of coupler is divided into M3 segments, make sure nonlinearity<0.05. $xu?zd"
T =40; % length of time:T*T0. #]eXI
$HP
dt = T/N; % time step +zs6$OI]V
n = [-N/2:1:N/2-1]'; % Index `FJnR~d
t = n.*dt; Xq>e]#gR
ww = 4*n.*n*pi*pi/T/T; % Square of frequency. Note i^2=-1. iY|YEi8
w=2*pi*n./T; \;7DS:d@
g1=-i*ww./2; b7AuKY{L
g2=-i*ww./2; % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; U*&ZQw
g3=-i*ww./2; 50DPzn
P1=0; X^|oY]D
P2=0; o@>c[knJ
P3=1; U[A*A^$c}
P=0; }uHc7gTBF7
for m1=1:M1 ==XP}w)m
p=0.032*m1; %input amplitude ^CK)q2K>[
s10=p.*sech(p.*t); %input soliton pulse in waveguide 1 [BQw$8+n_
s1=s10; CMBW]b|
s20=0.*s10; %input in waveguide 2 owMH
s30=0.*s10; %input in waveguide 3 <,E*,&0W
s2=s20; z}Z`kq+C
s3=s30; g
Go
p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1)))); s3+O=5
%energy in waveguide 1 {-Y_8@&