切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 7873阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 o^+2%S`]  
    4} .PQ{  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of XB0G7o%1  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of M~+}ss  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear 1K{u>T  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 ( f]@lNmx  
    E.LD1Pm0  
    %fid=fopen('e21.dat','w'); KTtB!4by  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) Bm"-X:='  
    M1 =3000;              % Total number of space steps ?TWve)U  
    J =100;                % Steps between output of space R RRF/Z;))  
    T =10;                  % length of time windows:T*T0 !$n@-  
    T0=0.1;                 % input pulse width J,(@1R]KF:  
    MN1=0;                 % initial value for the space output location <fS WX>pR  
    dt = T/N;                      % time step Y=83r]%  
    n = [-N/2:1:N/2-1]';           % Index = y @*vl   
    t = n.*dt;   Eqizx~eqq  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 kx{LY`pY  
    u20=u10.*0.0;                  % input to waveguide 2 #ME!G/  
    u1=u10; u2=u20;                 = -bGH   
    U1 = u1;   $|"Y|3&X  
    U2 = u2;                       % Compute initial condition; save it in U d?ru8  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. ml,FBBGq|-  
    w=2*pi*n./T; $Z|HFV{  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T /aTW X  
    L=4;                           % length of evoluation to compare with S. Trillo's paper JkShtLEr  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 Nwwn #+  
    for m1 = 1:1:M1                                    % Start space evolution MpK3+4UMa  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS ~ECIL7,  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; 8NnGN(a*D  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform O:E0htdWr  
       ca2 = fftshift(fft(u2)); {'8td^JEE  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation |E?PQ?P  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   3#A4A0  
       u2 = ifft(fftshift(c2));                        % Return to physical space Iip%er%b  
       u1 = ifft(fftshift(c1)); ]SC|%B_*  
    if rem(m1,J) == 0                                 % Save output every J steps. cs lZ;  
        U1 = [U1 u1];                                  % put solutions in U array &2,3R}B/  
        U2=[U2 u2]; O*7vmPy  
        MN1=[MN1 m1]; _lG|t6y  
        z1=dz*MN1';                                    % output location ~] &yHzp2  
      end Kpg?' !I  
    end 6o0}7T%6  
    hg=abs(U1').*abs(U1');                             % for data write to excel efr9  
    ha=[z1 hg];                                        % for data write to excel _`I}"`2H  
    t1=[0 t']; yJK:4af;.  
    hh=[t1' ha'];                                      % for data write to excel file [I?[N.v  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format de/oK c  
    figure(1) f\;w(_  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn Wsb>3J  
    figure(2) =,b6yV+$D  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn Q7.jSL6  
    $Ge0<6/  
    非线性超快脉冲耦合的数值方法的Matlab程序 3,'LW}  
    vM'!WVs  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   z]2MR2W@X  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 S{m:Iij[;  
    (|\%)v H-  
    0tz? sN  
    RNF%i~nhO  
    %  This Matlab script file solves the nonlinear Schrodinger equations ?y-@c]  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of ,\?s=D{  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear |<Y~\ |  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 U!{~L$S  
    (mr*Thy`@  
    C=1;                           s3Wjhw/  
    M1=120,                       % integer for amplitude v#lrF\G5  
    M3=5000;                      % integer for length of coupler d"yJ0F  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) u6 QW*8b4  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. We++DWp  
    T =40;                        % length of time:T*T0. ,.kmUd  
    dt = T/N;                     % time step /Xq|S O  
    n = [-N/2:1:N/2-1]';          % Index `_f&T}]  
    t = n.*dt;    aGOS 9  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. &q&~&j'[  
    w=2*pi*n./T; #zv&h`gY  
    g1=-i*ww./2;  ,)uW`7  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; : t9sAD  
    g3=-i*ww./2; Wks zN h  
    P1=0; ow  
    P2=0; 9M^5<8:  
    P3=1; 7;c^*"Ud  
    P=0; L8q#_k  
    for m1=1:M1                 u -)ED  
    p=0.032*m1;                %input amplitude GSs?!BIC  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 S\]9mHJI  
    s1=s10; Nd]RbX  
    s20=0.*s10;                %input in waveguide 2 (t){o> l  
    s30=0.*s10;                %input in waveguide 3 ;HBKOe_3  
    s2=s20; zB`J+r;LU  
    s3=s30; :f:&B8  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   HE{UgU:tY  
    %energy in waveguide 1 rizjH+  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   CDF;cM"td  
    %energy in waveguide 2 eIy:5/s  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   o~9sO=-O  
    %energy in waveguide 3 EXF]y}n  
    for m3 = 1:1:M3                                    % Start space evolution >0[:uu,'>  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS TQ:h[6v  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; [m4M#Lg\0  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; =E$bZe8  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform Qn|8Ic` *  
       sca2 = fftshift(fft(s2)); AOkG.u-k  
       sca3 = fftshift(fft(s3)); ~3-"1E>Rgy  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   q sUBvq  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); ps?su`  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); m]*a;a'}#  
       s3 = ifft(fftshift(sc3));  }D+ b`,  
       s2 = ifft(fftshift(sc2));                       % Return to physical space .%dGSDru  
       s1 = ifft(fftshift(sc1)); Nmd{C(^o  
    end  3Z`"k2k  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); S(U9Dlyarg  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1))));  j'Jb+@W?  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); gG@4MXq.  
       P1=[P1 p1/p10]; u  Fw1%  
       P2=[P2 p2/p10]; 6`iYIXnz  
       P3=[P3 p3/p10]; 8ki3>"!A  
       P=[P p*p]; b%*`}B  
    end u,nn\>Y  
    figure(1) qou\4YZ  
    plot(P,P1, P,P2, P,P3);  r73W. &  
    Qd\='*:!  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~