切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8056阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 Yn+d!w<3:  
    /Y_)dz^@  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of w;=g$Bn  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of l'm\ *=3  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear o-7,P RmKN  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 Z6\H4,k&  
    q1_iV.G<  
    %fid=fopen('e21.dat','w'); appWq}db  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) M:/)|fk  
    M1 =3000;              % Total number of space steps ih\=mB  
    J =100;                % Steps between output of space gi#g)9HG  
    T =10;                  % length of time windows:T*T0 DYej<T'?3  
    T0=0.1;                 % input pulse width `"RT(` m  
    MN1=0;                 % initial value for the space output location "x~su?KiA  
    dt = T/N;                      % time step b2vCr F;  
    n = [-N/2:1:N/2-1]';           % Index ~[ZRE @  
    t = n.*dt;   .tQeOZW'  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 glI4Jb_[  
    u20=u10.*0.0;                  % input to waveguide 2 =4_Er{AT  
    u1=u10; u2=u20;                 H$4 4,8,m  
    U1 = u1;   W^8MsdM  
    U2 = u2;                       % Compute initial condition; save it in U !L?diR  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. jn,_Ncd#  
    w=2*pi*n./T; W^"C|4G}  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T K}a3Bj,  
    L=4;                           % length of evoluation to compare with S. Trillo's paper AdGDs+at,  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 l)K8.(2  
    for m1 = 1:1:M1                                    % Start space evolution Z#znA4;)  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS fMl uVND  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; +DwE~l  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform /kH 7I  
       ca2 = fftshift(fft(u2)); 1ww#]p`1  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation J2avt  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   5!jU i9  
       u2 = ifft(fftshift(c2));                        % Return to physical space 0hv}*NYd  
       u1 = ifft(fftshift(c1)); a,`f`;\7N%  
    if rem(m1,J) == 0                                 % Save output every J steps. D\0q lCAs  
        U1 = [U1 u1];                                  % put solutions in U array ZgI?#e  
        U2=[U2 u2]; ?&_u$Nn  
        MN1=[MN1 m1]; R^k)^!/$f  
        z1=dz*MN1';                                    % output location Wz&[ cj  
      end 9?38/2kX4  
    end &qMt07  
    hg=abs(U1').*abs(U1');                             % for data write to excel d]r?mnN W  
    ha=[z1 hg];                                        % for data write to excel .u3Z*+  
    t1=[0 t']; y*7{S{9  
    hh=[t1' ha'];                                      % for data write to excel file <Gw>}/-^  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format /L^pU-}Z0  
    figure(1) 0i4XS*vPv  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn '4e, e|r  
    figure(2) H{U(Rt]K  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn kkU#0p?7  
    5KgAY;|  
    非线性超快脉冲耦合的数值方法的Matlab程序 z{wZLqG  
    q#_<J1)z  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   ,*m{Q  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 mV++7DY  
    PFI^+';  
    H84Zg/ ^  
    b-?d(-  
    %  This Matlab script file solves the nonlinear Schrodinger equations }F4%5go  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of K)N'~jCG  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear B1 Y   
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 :zp9L/eh  
    rk8Cea  
    C=1;                           9r=yfc!cS  
    M1=120,                       % integer for amplitude vB Vg/  
    M3=5000;                      % integer for length of coupler Zt ;u8O  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) z*e`2n#\  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. DDBf89$\  
    T =40;                        % length of time:T*T0. XE($t2x,M  
    dt = T/N;                     % time step 0WQd#l  
    n = [-N/2:1:N/2-1]';          % Index }ki6(_  
    t = n.*dt;   K_GqM9  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. (q}{;  
    w=2*pi*n./T; zT+ "Z(oz,  
    g1=-i*ww./2; s)~Wcp'+M:  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; AB=Wj*f r  
    g3=-i*ww./2; -GODM128 ^  
    P1=0; mt\pndTy7!  
    P2=0; WCyjp  
    P3=1; @ S)p{T5G  
    P=0; w~ O)DhC  
    for m1=1:M1                 bltZQI|  
    p=0.032*m1;                %input amplitude XM~eocn  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 ge|Cv v  
    s1=s10; CF]#0*MI  
    s20=0.*s10;                %input in waveguide 2 FV\$M6 _  
    s30=0.*s10;                %input in waveguide 3 ) ^ 7- qy  
    s2=s20; 3(3-#MD0  
    s3=s30; F0KNkL>&g  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   8d[!"lL  
    %energy in waveguide 1 }WnoI2  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   g`I$U%a_2  
    %energy in waveguide 2 KvmXRf*z  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   %`0*KMO3  
    %energy in waveguide 3 gr\vC  
    for m3 = 1:1:M3                                    % Start space evolution q DPl( WXb  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS qdxDR 2]U  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; suE#'0K  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; * TByAa{  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform ?P"j5  
       sca2 = fftshift(fft(s2)); 1O+$"5H  
       sca3 = fftshift(fft(s3)); j$Vtd &  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   ^w*&7.Z  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); N4w&g-  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); )F m'i&F_  
       s3 = ifft(fftshift(sc3)); d=/a{lP\  
       s2 = ifft(fftshift(sc2));                       % Return to physical space yX1OJg[s,  
       s1 = ifft(fftshift(sc1)); cB_ 3~=fV  
    end lin  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); qkD9xFp  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); Ns6C xE9  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ALt^@|!d  
       P1=[P1 p1/p10]; XL`i9kV?  
       P2=[P2 p2/p10]; S#l)|c_~  
       P3=[P3 p3/p10]; AME<V-5  
       P=[P p*p]; b X4]/4%  
    end Idr|-s%l6'  
    figure(1) eb7~\|9l1i  
    plot(P,P1, P,P2, P,P3); 0pA>w8mh  
    Y|L]#  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~