切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8011阅读
    • 1回复

    [分享]求解光孤子或超短脉冲耦合方程的Matlab程序 [复制链接]

    上一主题 下一主题
    离线tianmen
     
    发帖
    58
    光币
    15
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2011-06-12
    计算脉冲在非线性耦合器中演化的Matlab 程序 xO'xZ%cUI  
    aaesgF  
    %  This Matlab script file solves the coupled nonlinear Schrodinger equations of Jd/XEs?<q  
    %  soliton in 2 cores coupler. The output pulse evolution plot is shown in Fig.1 of ]=0$-ImQ@x  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear &0@AM_b  
    %   pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 .?-]+ -J?`  
    je~gk6}Y  
    %fid=fopen('e21.dat','w'); 7.1FRxS  
    N = 128;                       % Number of Fourier modes (Time domain sampling points) u=!n9W~"  
    M1 =3000;              % Total number of space steps VWE`wan<  
    J =100;                % Steps between output of space qu0dWgK  
    T =10;                  % length of time windows:T*T0 uF\f>E)/N%  
    T0=0.1;                 % input pulse width % KmhR2v  
    MN1=0;                 % initial value for the space output location UNKXfe(X9  
    dt = T/N;                      % time step 5B+I\f&  
    n = [-N/2:1:N/2-1]';           % Index n%:&N   
    t = n.*dt;   #jR1ti)p  
    u10=1.*sech(1*t);              % input to waveguide1 amplitude: power=u10*u10 {(qH8A  
    u20=u10.*0.0;                  % input to waveguide 2 TY *q[AWG  
    u1=u10; u2=u20;                 /7XVr"R  
    U1 = u1;   }Fgp*x-G  
    U2 = u2;                       % Compute initial condition; save it in U eWAgYe2  
    ww = 4*n.*n*pi*pi/T/T;         % Square of frequency. Note i^2=-1. $iAd)2LT  
    w=2*pi*n./T; Ewczq1%l:  
    g=-i*ww./2;                    % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./T 1c03<(FCd  
    L=4;                           % length of evoluation to compare with S. Trillo's paper +h? z7ZY^  
    dz=L/M1;                       % space step, make sure nonlinear<0.05 "+KAYsVtU  
    for m1 = 1:1:M1                                    % Start space evolution 5QJ FNE  
       u1 = exp(dz*i*(abs(u1).*abs(u1))).*u1;          % 1st sSolve nonlinear part of NLS #_[W*-|L  
       u2 = exp(dz*i*(abs(u2).*abs(u2))).*u2; sD`OHV:  
       ca1 = fftshift(fft(u1));                        % Take Fourier transform )1S"D~j-  
       ca2 = fftshift(fft(u2)); q|7$@H^*  
       c2=exp(g.*dz).*(ca2+i*1*ca1.*dz);               % approximation &IgH]?t  
       c1=exp(g.*dz).*(ca1+i*1*ca2.*dz);               % frequency domain phase shift   $79-)4;z4  
       u2 = ifft(fftshift(c2));                        % Return to physical space qx\P(dOUf  
       u1 = ifft(fftshift(c1)); }=JuC+#~n  
    if rem(m1,J) == 0                                 % Save output every J steps. B#;0{  
        U1 = [U1 u1];                                  % put solutions in U array d<B=p&~  
        U2=[U2 u2]; G .k\N(l  
        MN1=[MN1 m1]; Z:s:NvFX  
        z1=dz*MN1';                                    % output location WL/9r *jW  
      end b_j8g{/9  
    end |F^h >^ x  
    hg=abs(U1').*abs(U1');                             % for data write to excel GjvTYg~  
    ha=[z1 hg];                                        % for data write to excel /0I=?+QSo  
    t1=[0 t']; /N82h`\n  
    hh=[t1' ha'];                                      % for data write to excel file AT]Ty  
    %dlmwrite('aa',hh,'\t');                           % save data in the excel format iKN800^u  
    figure(1) @&M$oI$4*  
    waterfall(t',z1',abs(U1').*abs(U1'))               % t' is 1xn, z' is 1xm, and U1' is mxn >n^[-SWJCT  
    figure(2) $y&1.caMa  
    waterfall(t',z1',abs(U2').*abs(U2'))               % t' is 1xn, z' is 1xm, and U1' is mxn -$m?ShDd  
    hz_F^gF  
    非线性超快脉冲耦合的数值方法的Matlab程序 $*i"rlJC  
    5!)_" u3  
    在研究脉冲在非线性耦合器中的演变时,我们需要求解非线性偏微分方程组。在如下的论文中,我们提出了一种简洁的数值方法。 这里我们提供给大家用Matlab编写的计算程序。   bZsg7[: C  
    Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 -6u#:pVpU  
    bkfk9P  
    SR\F2@u  
    9K`uGu  
    %  This Matlab script file solves the nonlinear Schrodinger equations ngHPOI16  
    %  for 3 cores nonlinear coupler. The output plot is shown in Fig.2 of Nt#a_  
    %  Youfa Wang and Wenfeng Wang, “A simple and effective numerical method for nonlinear >E3 lY/[  
    %  pulse propagation in N-core optical couplers”, IEEE Photonics Technology lett. Vol.16, No.4, pp1077-1079, 2004 [r5k8TB1  
    SQd`xbIuL  
    C=1;                           86,$ I+  
    M1=120,                       % integer for amplitude Z6vm!#\  
    M3=5000;                      % integer for length of coupler pe1_E KU  
    N = 512;                      % Number of Fourier modes (Time domain sampling points) N>}2&'I  
    dz =3.14159/(sqrt(2.)*C)/M3;  % length of coupler is divided into M3 segments,  make sure nonlinearity<0.05. h*GU7<F:a  
    T =40;                        % length of time:T*T0. $"&U%3  
    dt = T/N;                     % time step dECH/vJ^  
    n = [-N/2:1:N/2-1]';          % Index |r=.}9 -  
    t = n.*dt;   9&`ejeD  
    ww = 4*n.*n*pi*pi/T/T;        % Square of frequency. Note i^2=-1. ^."HD(  
    w=2*pi*n./T; pD>^Dfd  
    g1=-i*ww./2; d@72z r  
    g2=-i*ww./2;                  % w=2*pi*f*n./N, f=1/dt=N/T,so w=2*pi*n./TP=0; /o_h'l|PS  
    g3=-i*ww./2; MjHjL~Tg  
    P1=0; dnP3{!"b  
    P2=0; ].eY]o}=  
    P3=1; Xqac$%[3  
    P=0; 8>|@O<2\  
    for m1=1:M1                 =_L  
    p=0.032*m1;                %input amplitude q;V1fogqI)  
    s10=p.*sech(p.*t);         %input soliton pulse in waveguide 1 S3k>34_%9  
    s1=s10; 'Na/AcRdg  
    s20=0.*s10;                %input in waveguide 2 !B3lsXLSY  
    s30=0.*s10;                %input in waveguide 3 >xt*(j&}  
    s2=s20; p3NTI/-  
    s3=s30;  Dy[ YL  
    p10=dt*(sum(abs(s10').*abs(s10'))-0.5*(abs(s10(N,1)*s10(N,1))+abs(s10(1,1)*s10(1,1))));   Xkv+"F=-  
    %energy in waveguide 1 6/#5TdJA  
    p20=dt*(sum(abs(s20').*abs(s20'))-0.5*(abs(s20(N,1)*s20(N,1))+abs(s20(1,1)*s20(1,1))));   Q4;br ?2H  
    %energy in waveguide 2 Mwdw7MZ"S  
    p30=dt*(sum(abs(s30').*abs(s30'))-0.5*(abs(s30(N,1)*s30(N,1))+abs(s30(1,1)*s30(1,1))));   [n_H9$   
    %energy in waveguide 3 -~HlME *~f  
    for m3 = 1:1:M3                                    % Start space evolution ?Ze3t5Ll  
       s1 = exp(dz*i*(abs(s1).*abs(s1))).*s1;          % 1st step, Solve nonlinear part of NLS PUN.nt  
       s2 = exp(dz*i*(abs(s2).*abs(s2))).*s2; 'd"\h#  
       s3 = exp(dz*i*(abs(s3).*abs(s3))).*s3; QJG]z'c+  
       sca1 = fftshift(fft(s1));                       % Take Fourier transform j{nkus2  
       sca2 = fftshift(fft(s2)); @Yq!  
       sca3 = fftshift(fft(s3)); _5nQe !  
       sc1=exp(g1.*dz).*(sca1+i*C*sca2.*dz);           % 2nd step, frequency domain phase shift   A_t<SG5  
       sc2=exp(g2.*dz).*(sca2+i*C*(sca1+sca3).*dz); pP'-}%  
       sc3=exp(g3.*dz).*(sca3+i*C*sca2.*dz); Ik#>6  
       s3 = ifft(fftshift(sc3)); _]=`F l  
       s2 = ifft(fftshift(sc2));                       % Return to physical space a`w)awb  
       s1 = ifft(fftshift(sc1)); Te{L@sj  
    end bz~-uHC  
       p1=dt*(sum(abs(s1').*abs(s1'))-0.5*(abs(s1(N,1)*s1(N,1))+abs(s1(1,1)*s1(1,1)))); QsmG(1=  
       p2=dt*(sum(abs(s2').*abs(s2'))-0.5*(abs(s2(N,1)*s2(N,1))+abs(s2(1,1)*s2(1,1)))); iDO~G($C  
       p3=dt*(sum(abs(s3').*abs(s3'))-0.5*(abs(s3(N,1)*s3(N,1))+abs(s3(1,1)*s3(1,1)))); ]'aG oR  
       P1=[P1 p1/p10]; b'N"?W^YQ  
       P2=[P2 p2/p10]; , "zS  pN  
       P3=[P3 p3/p10]; FVsNOU  
       P=[P p*p]; B(MO!GNg=  
    end Dz&4za+{  
    figure(1) ubhem(p#  
    plot(P,P1, P,P2, P,P3); 'FBvAk6  
    )N-+,Ms  
    转自:http://blog.163.com/opto_wang/
     
    分享到
    离线ciomplj
    发帖
    319
    光币
    1
    光券
    0
    只看该作者 1楼 发表于: 2014-06-22
    谢谢哈~!~