摘要:在综述国内外镁
合金激光切割、激光焊接、激光表面改性等技术的基础上,对镁合金的激光加工技术进行了研究。结果表明:激光切割AZ31B镁合金,切缝窄细平直,垂直度为0.05mm,切面波纹小且分布规律,热影响区不明显;激光焊接镁合金,焊缝成形好,气孔少,热影响区小;AZ31B镁合金激光熔凝处理后,晶粒得到细化,硬度和耐磨性都得到提高。
`iIYZ3i %
C6 H( 引言
f*5=,$0 9S6vU7W 镁的密度是1.78×103kg/m3,为铝的2/3,钢的1/4。镁合金具有高的比强度、比刚度、导热性、可切削加工性和可回收性,被称为21世纪的“绿色”工程
材料。近年来,镁合金材料在各种机壳、“陆海空”交通运载工具、国防工业等方面获得了广泛的应用,随着镁的提炼及深加工技术的发展,镁合金材料已成为继钢铁和铝之后的第三大类金属材料,在全球范围内得到快速发展。
)_.@M '? ENJ] 本文在综述国内外镁合金激光切割、激光焊接、激光表面改性等技术的基础上,对镁合金的激光加工技术进行了研究。
a%(1#2^`q! x6,S#p 1.激光与镁台金材料的作用机理
p$ [*GXR4 qg.[M* 镁合金材料的激光加工是基于光热效应的热加工,前提是激光被镁合金材料吸收并转化为热能。从原子
结构理论分析,激光对金属材料的作用是高频电磁场对物质中自由
电子的作用,材料中的自由电子在激光诱导作用下发生高频振动,通过韧致辐射,部分振动能量转变为电磁波向外辐射,其余转化为电子的平均动能,再通过电子与晶格之间的驰豫过程转变为热能。
hUA3(!0) *i%!j/QDAP 不同材料对于不同
波长的激光的吸收有很大的差别,吸收率AN,表示为:
.# j)YG -zc9=n<5 s o~p+] 其中:c0为光速,c0=3×108m/s为入射激光的波长;为金属材料的导电率。从式(1)可以看出,被加工材料一定时,激光的波长越短,材料对激光的吸收越多。金属中的大量自由电子由于集肤效应的作用,阻碍激光能量深入材料内部,使之大部分被反射掉,所以一般材料对CO2气体激光(λ=10.6μm)的吸收比对YAG固体激光(λ=1.06μm)的吸收低。当激光波长为一恒定值时,材料对该激
光束吸收率的大小取决于材料的导电率,导电率越大,材料对激光的吸收越少。所以,镁合金材料对激光的吸收比一般金属材料对激光的吸收要低.这是对镁合金材料进行激光加工的难点之一。
"-<u.$fE |[o2S9 0 2.镁合金的激光切割技术
fhfdNmtR)I tMyD^jVC 切割是镁合金材料深加工的首要环节,良好的切割质量是材料深加工的保证。与传统切割方法相比,激光切割具有更高的切割
精度、更低的粗糙度和更高的生产效率。目前,国内外对镁合金激光切割的研究尚属鲜见。
Ju+@ROZ [.<vISRir 我们利用500W固体脉冲Nd:YAG激光对4mm厚AZ31B镁合金板材进行了切割工艺研究。激光切缝窄细,上缝宽0.45mm、中缝宽0.22mm、下缝宽0.35mm,切缝垂直度为0.05mm,切面波纹小且分布规露。热影响区不明显,切缝的整体宽度约为空气等离子弧切割的1/4。但是,切缝的下表面有轻微的氧化现象,切面有80μm厚的组织形貌为等轴晶的重熔层。工艺研究得出的结论是:切缝宽度随着放电电压、脉冲宽度、脉冲频率的增大而增大,切割速度与辅助气体对切缝宽度的影响不大。图1为AZ31B镁合金激光切割宏观形貌和微观组织照片。
HSK^vd?_l ~ xf9
ml A|Y\Y } 图1 AZ31B镁合金激光切割宏观形貌及微观组织
VIi|:k b55|JWfC` 3.镁合金的激光焊接技术
`i{o8l C(,s_Ks 镁合金的焊接性能不好,是制约镁合金应用的技术瓶预之一。相比传统焊接方法,激光焊接具有焊接速度快、热输人低、焊接变形小的特点。镁合金激光焊接技术的研究处于起步阶段,国内外对镁合金的激光焊接研究主要集中在镁合金的连续CO2激光焊接和固体脉冲YAG激光焊接两个领域。
#C>pA<YJzK u%}vTCg*p 德国的R.S.Coe1h。等Coelho用2.2kW的Nd:YAG激光器焊接了2mm厚的AZ31B镁合金。得到了表面成形好、气孔少、HAZ区小且无品粒明显长大的焊缝。加拿大的H.Al-Kazzaz等用4kW的Nd:YAG激光器成功焊接了2mm-6mm厚的ZE41A。焊接过程中激光
功率过高或过低都会导致加工表面功率密度降低,问时焊接形式从小孔聚焦转变为部分聚焦,最后为热传导模式。
0^["&K/ sL&u%7>Re 激光复合热源焊接作为新型焊接技术日益受到关注,宋刚等用400W固体脉冲YAG激光加旁轴式TIG作为焊接复合热源,首次成功焊接2.5mm厚AZ31B镁合金板材,复合焊接的熔深可达TIG单独焊接的2倍、激光单独焊接的4倍,且焊缝与母材抗拉强度(240MPa)相当。为了提高镁合金材料在焊接过程中对激光的吸收率,孙昊等用500W固体脉冲YAG激光器研究了活性剂对镁合金激光焊接过程的影响,氧化物和氯化物能够增加镁合金激光焊接的熔深和深宽比,原因是活性剂微细粉末在激光作用初期增加了对激光能量的吸收。
Tm3$|+}$f UdL`.D, 我们已经进行了镁合金薄板的激光焊接和激光复合焊接,目前正在研究中厚板的激光焊接,为工程实践提供理论支持。
'{:(4>& O=mGL 4.镁合金的激光表面改性技术
:hJhEQH(9 +p<Y)Z(>6 随着激光表面改性技术的不断完善,镁合金激光表面处理在镁合金表面耐蚀性、耐磨性等方面的应用越来越受到国内外研究者的重视。激光表面改性技术分为激光表而重熔、激光表面合金化及激光表面熔覆等。
*ZaK+ B 4F:RLj9P! 4.1.激光表面重熔
;WGY)=-gv Z6h.gaQ7
H 镁合金激光表面重熔使材料表面组织晶粒细化、显微偏析减少、生成非平衡相,进而引起表面强化,使合金表面耐磨性增加。
M
$e~Rlw a~XNRAh 巴基斯坦的Ghazanfar Abbas等利用1.5kW的
半导体激光器对AZ31和AZ61镁合金进行表面熔凝处理,AZ31的硬度由基体的65HV提高到熔凝层的120HV, AZ61的硬度由基体的70HV提高到熔凝层的140HV,且磨损量都降低了一半,提高了其耐磨性。
2_F`ILCML h{PLyWH 高亚丽等用800W的CO2激光器对AZ91HP镁合金进行了激光表面熔凝处理。与原始镁合金相比,熔凝层的硬度约提高90%左右,耐磨性提高78%,耐蚀性显著提高。这是枝晶细化和熔凝层中相对较多的共同作用。我们用5kW横流CO2激光器研究了AZ31B的激光熔凝技术,微观组织见图2,可以看出,熔凝区晶粒比母材明显小很多。
m,up37-{ f"-<Z_ dOiy[4s 图2 AZ31B镁合金激光熔凝微观组织
IRS^F;) ( I,V+v+{Y 4.2.激光表面合金化
Y_)04dmr@[ Xq)'p8C? 国内外在镁合金表面采用合金化处理的研究较少,主要的研究是利用注人硬质颗粒来提高合金化层的耐磨性。印度的Majurndar J D等利用l0kW连续CO2激光器对MEZ采用Al+Mn,SiC和Al+Al2O3合金粉末进行表面合金化处理,硬度由基体的35HV提高到合金化层的270HV,由于硬质相SiC的存在,同时耐磨性得到了提高。
A>k+4|f Kw?,A
陈长军等使用5kW的CO2激光器对表面上预置了Al-Y粉末的ZM5进行了合金化处理,涂层硬度可达到250HV-325HV,而基材的硬度仅为80HV-l00HV。同基材相比,激光处理后的涂层耐蚀性得到显著提高。
/VJ@`]jhDf 7<