光电子谱技术是研究原子、分子、固体和表面电子
结构的一种非常有效的手段。本书全面
系统地介绍了
光电子谱技术的
原理和应用,并简明讨论了逆光发射、自旋极化光发射和
光电子衍射等现象。本书是一本非常实用的光电子谱技术的专著,内容几乎覆盖了光电子研究的所有领域。其特点是紧密联系实验,并利用理论详细解释实验结果,达到理论和应用的有机结合。书中还收集了大量的实际
材料的光电子谱分析,同时给出了大量的实验数据,以便于读者的查阅。总之,该书既是一本很有价值的参考书,又可作为初学者的入门教材。
kl9~obX
1 Un
T\6u 作者在该领域做出了杰出的贡献。在第3版中,作者介绍了大量最新研究成果,并对光电子谱技术很多方面给出了有深刻见解的讨论。
=1,1}OucP Sw5-^2x0' 读者对象:适用于凝聚态
物理学、材料物理学和光电子学等专业的高年级本科生、研究生和相关专业的科研人员。
kBoQjOV` ~gNFcJuy
T5.^
w K1]3zLnS 市场价:¥88.00
S3E5^n\\ 优惠价:¥78.60 为您节省:9.40元 (89折)
n5IQKYrg
've[Mx #reW)P> 目录
$z 5kA9 1. Introduction and Basic Principles
X:g#&e_ 1.1 Historical Development
*vvm8ik 1.2 The Electron Mean Free Path
}@tgc?CD 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy
1)zXv 1.4 Experimental Aspects
*yjnC 1.5 Very High Resolution
{s*2d P) 1.6 The Theory of Photoemission
mo(>SnS< 1.6.1 Core-Level Photoemission
i27)c)\BM 1.6.2 Valence-State Photoemission
jI H^ 1.6.3 Three-Step and One-Step Considerations
Y~UAE. 1.7 Deviations from the Simple Theory of Photoemission
f#w
u~*c References
VYO1qj oVPr`] 2. Core Levels and Final States
NuD|%Ebs 2.1 Core-Level Binding Energies in Atoms and Molecules
ecQ,DOX|b 2.1.1 The Equivalent-Core Approximation
[K'gvLt1 2.1.2 Chemical Shifts
`+>K)5hrR 2.2 Core-Level Binding Energies in Solids
i*@PywT"i3 2.2.1 The Born-Haber Cycle in Insulators
L/]
(pXEp 2.2.2 Theory of Binding Energies
%2g<zdab 2.2.3 Determination of Binding Energies and Chemical Shifts from Thermodynamic Data
;z N1Qb 2.3 Core Polarization
Q[K)Yd 2.4 Final-State Multiplets in Rare-Earth Valence Bands
H6|eUU[& 2.5 Vibrational Side Bands
x-%RRm<V 2.6 Core Levels of Adsorbed Molecules
cGdYfi 2.7 Quantitative Chemical Analysis from Core-Level Intensities
d%-/U!z? References
w-LENdw Ot:}Ncq^\O 3. Charge-Excitation Final States: Satellites
SPt/$uYJ 3.1 Copper Dihalides; 3d Transition Metal Compounds
uZ\+{j= 3.1.1 Characterization of a Satellite
e3~{l~Rb 3.1.2 Analysis of Charge-Transfer Satellites
32%Fdz1S 3.1.3 Non-local Screening
2l^_OrE! 3.2 The 6-eV Satellite in Nickel
y)CvlI 3.2.1 Resonance Photoemission
e6J^J&`|4 3.2.2 Satellites in Other Metals
NMf#0Nz- 3.3 The Gunnarsson-Sch6nhammer Theory
U,;796h 3.4 Photoemission Signals and Narrow Bands in Metals
\]5I atli References
$j<KXR 7}6CUo 4. Continuous Satellites and Plasmon Satellites: XPS Photoemission in Nearly Free Electron Systems
[Z#Sj=z 4.1 Theory
b:p0@ |y 4.1.1 General
l!&ik9m 4.1.2 Core-Line Shape
]W`?0VwF 4.1.3 Intrinsic Plasmons
Y|Gp\
4.1.4 Fxtrinsic FAectron Scattering: Plasmons and Background
2.b,8wT/ 4.1.5 The Total Photoelectron Spectrum
&r4|WM/ec 4.2 Experimental Results
#u8#<
,w 4.2.1 The Core Line Without Plasmons
OWT%XUW= 4.2.2 Core-Level Spectra Including Plasmoas
U&Vu%+B 4.2.3 Valence-Band Spectra of the Simple Metals
"`4ky] 4.2.4 Simple Metals: A General Comment
(tg9"C 4.3 The Background Correction
Ddpcov References
2b^Fz0
w4 \U>&W 5. Valence Orbitals in Simple Molecules and Insulating Solids
2Ki_d 5.1 UPS Spectra of Monatomic Gases
S)j(%g 5.2 Photoelectron Spectra of Diatomic Molecules
09jE7g @X} 5.3 Binding Energy of the H2 Molecule
Y<irNp9 5.4 Hydrides Isoelectronic with Noble Gases
~~-VScG& Neon (Ne)
2%`=
LGQC Hydrogen Fluoride (HF)
W&%,XwkQ Water (H2O)
c$7~EP Ammonia (NH3)
}_XiRm< Methane (CH4)
}^&f { 5.5 Spectra of the Alkali HMides
tzIP4CR~F& 5.6 Transition Metal Dihalides
p^<(.+P4 5.7 Hydrocarbons
/]!2k9u\ 5.7.1 Guidelines for the Interpretation of Spectra from Free Molecules
2tpu v(H; 5.7.2 Linear Polymers
;<m`mb4x[ 5.8 Insulating Solids with Valence d Electrons
/3~L#jS 5.8.1 The NiO Problem
~i>DF`w$ 5.8.2 Mort Insulation
!W@mW
5J| 5.8.3 The Metal-Insulator Transition;the Ratio of the Correlation Energy and the Bandwidth;Doping
3-{BXht) 5.8.4Band Structures of Transition Metal Compounds
PRaVe,5a 5.9 High—Temperature Superconductors
`Y4K w 5.9.1valence-Band Electronic Structure;Polycrystalline Samples
kex V~Q 5.9.2 Dispersion Relations in High Temperature Superconductors;Single Crystals
xwof[BnEZ 5.9.3 The Superconducting Gap
W3/bM>1 5.9.4 Symmetry of the Order Parameter in the High-Temperature SuDerconductors
:e;6oC*"q 5.9.5 Core—Level Shifts
#YE?&5t 5.10 The Fermi Liquid and the Luttinger Liquid
89 (qU 5.11 Adsorbed Molecules
V@k+RniEO 5.11.1 Outline
,mp<<%{u 5.11.2 CO on Metal Surfaces
iKJqMES References
~at@3j}W aPEI_P+Ls 6.Photoemission of Valence Electrons froill Metallic Solids in the OHe-Electron Approximation
$a*7Q~4 6.1 Theory of Photoemission:A Summary of the Three-Step Model
n2B%}LLa 6.2 Discussion of the Photocurrent
I\k<PglRA 6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample
9>S)*lU&s 6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid
KxX [8 6.2.3 Angle-Integrated and Angle-Resolved Data Collection
>aO.a[AM 6.3 Photoemission from the Semi—infinite Crystal:The Inverse LEED Formalism
v4"Ukv 6.3.1 Band Structure Regime
kP&I}RY 6.3.2 XPS Regime
7UMZs7L$ 6.3.3 Surface Emission
rBTg"^jsw 6.3.4 One-Step Calculations
+yWD>PY( 6.4 Thermal Effects
_90D4kGU 6.5 Dipole Selection Rules for Direct Optical Transitions
M
x#L|w`r References
?I[8rzBWU WT<}3(S'? 7.Band Structtire and Angular-Resolved Photoelectron Spectra
CE`]X;#y 7.1 Free-Electron Final—State Model
nXLz<wE 7.2 Methods Employing Calculated Band Structures
7b>_vtrt 7.3 Methods for the Absolute Determination of the Crystal Momentum
g&xj(SMj-$ 7.3.1 Triangulation or Energy Coincidence Method
Intuda7e1 7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method
%%s)D4sW 7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method)
h2Nt@ 7.3.4 The Surface Emission Method and Electron Damping
y%i9 b&gDd 7.3.5 The Very-Low-Energy Electron Diffraction Method
EyA
ny\" 7.3.6 The Fermi Surface Method
H@1'El\9 7.3.7 Intensities and Their Use in Band-Structure Determinations
qS/}aDk& 7.3.8 Summary
))|d~m 7.4 Experimental Band Structures
SZ9Oz-? 7.4.1 One- and Two-Dimensional Systems
H%vfRl3rB 7.4.2 Three-Dimensional Solids: Metals and Semiconductors
N<:c*X 7..4.3UPS Band Structures and XPS Density of States
.T9$O]:o 7.5 A Comment
l&+O*=#Hh References
z!3=.D 0>BxS9?w 8.Surface States, Surface Effects
.t1:;H b 8.1 Theoretical Considerations
`CS\"|z 8.2 Experimental Results on Surface States
}S uj=oFp 8.3 Quantum-Well States
+Pl)E5W!=` 8.4 Surface Core-Level Shifts
*pwkv7Zh References
^Qx?)(@ O3o^%0 9.Inverse Photoelectron Spectroscopy
\
T#|<= 9.1 Surface States
#MA6eE'R 9.2 Bulk Band Structures
i#*[,
P~ 9.3 Adsorbed Molecules
:lB`K>)iB} References
o(SPT?ao~ r&4Xf#QD6 10. Spin-Polarized Photoelectron Spectroscopy
]H !ru 10.1 General Description
_,L_H[FN 10.2 Examples of Spin-Polarized Photoelectron Spectroscopy
47Z3nl? 10.3 Magnetic Dichroism
p [C
9g References
*ai~!TR Q0R05* 11. Photoelectron Diffraction
W94:% 11.1 Examples
#4bT8kq 11.2 Substrate Photoelectron Diffraction
ev;&n@k_I 11.3 Adsorbate Photoelectron Diffraction
F9j@KC(yg 11.4 Fermi Surface Scans
xA
Ez1 References
~x,_A>a }?,?2U,8: Appendix
Ih:Q}V#6 A.1 Table of Binding Energies
N4+Cg t( A.2 Surface and Bulk Brillouin Zones of the Three Low-Index Faces of a Face—Centered Cubic(fcc)Crystal Face
JI.=y5I A.3 Compilation of Work Functions
~ZVz
sNrx References
F9o7=5WAb Index