光电子谱技术是研究原子、分子、固体和表面电子
结构的一种非常有效的手段。本书全面
系统地介绍了
光电子谱技术的
原理和应用,并简明讨论了逆光发射、自旋极化光发射和
光电子衍射等现象。本书是一本非常实用的光电子谱技术的专著,内容几乎覆盖了光电子研究的所有领域。其特点是紧密联系实验,并利用理论详细解释实验结果,达到理论和应用的有机结合。书中还收集了大量的实际
材料的光电子谱分析,同时给出了大量的实验数据,以便于读者的查阅。总之,该书既是一本很有价值的参考书,又可作为初学者的入门教材。
3r!6Z5P7{' I3]-$ 作者在该领域做出了杰出的贡献。在第3版中,作者介绍了大量最新研究成果,并对光电子谱技术很多方面给出了有深刻见解的讨论。
OF&{mJH"g' B*p`e1 读者对象:适用于凝聚态
物理学、材料物理学和光电子学等专业的高年级本科生、研究生和相关专业的科研人员。
@&t';"AE [X]yj
S#6{4x4 Mh"DPt9@J 市场价:¥88.00
A94ZG: 优惠价:¥78.60 为您节省:9.40元 (89折)
5drc8_fZ
[ Hw 1Y4=D
目录
F]DRT6) 1. Introduction and Basic Principles
zgRZgVj 1.1 Historical Development
@^]wT_r 1.2 The Electron Mean Free Path
A Vf'"~? 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy
GOuBNaU{ 1.4 Experimental Aspects
*F0O*n*7W 1.5 Very High Resolution
8\HL8^6c5 1.6 The Theory of Photoemission
VI7f} 1.6.1 Core-Level Photoemission
=(:{>tO_" 1.6.2 Valence-State Photoemission
4^cDp!8 1.6.3 Three-Step and One-Step Considerations
8+Sa$R 1.7 Deviations from the Simple Theory of Photoemission
nf=*KS\v References
jA_wOR7$ ?,uTH
4 2. Core Levels and Final States
{\z&`yD@ 2.1 Core-Level Binding Energies in Atoms and Molecules
|&OW_*l 2.1.1 The Equivalent-Core Approximation
2u9O+]EP 2.1.2 Chemical Shifts
3<.]+ukm 2.2 Core-Level Binding Energies in Solids
JLo'=( 2.2.1 The Born-Haber Cycle in Insulators
Y|JC+Ee 2.2.2 Theory of Binding Energies
Syv[[Ek 2.2.3 Determination of Binding Energies and Chemical Shifts from Thermodynamic Data
4Gz5Ju 2.3 Core Polarization
D#Qfa!=g 2.4 Final-State Multiplets in Rare-Earth Valence Bands
`2N&{( 2.5 Vibrational Side Bands
kHLpa/A 2.6 Core Levels of Adsorbed Molecules
=OY&;d!C 2.7 Quantitative Chemical Analysis from Core-Level Intensities
zY_xJ"/9 References
QcQQQM 0qP&hybL[( 3. Charge-Excitation Final States: Satellites
XJJdCv^ 3.1 Copper Dihalides; 3d Transition Metal Compounds
uG<VQ2LM 3.1.1 Characterization of a Satellite
Axp#8 3.1.2 Analysis of Charge-Transfer Satellites
&D@/_m $ 3.1.3 Non-local Screening
GP=i6I6C 3.2 The 6-eV Satellite in Nickel
l{q$[/J~) 3.2.1 Resonance Photoemission
dQP7CP 3.2.2 Satellites in Other Metals
M]9oSi 3.3 The Gunnarsson-Sch6nhammer Theory
s}"5uDfn1F 3.4 Photoemission Signals and Narrow Bands in Metals
&q~**^;' References
Zx$q,Zo< d'j8P 4. Continuous Satellites and Plasmon Satellites: XPS Photoemission in Nearly Free Electron Systems
YdsY2 4.1 Theory
`"~s<+ 4.1.1 General
>!u@> 4.1.2 Core-Line Shape
fzcPi9+ 4.1.3 Intrinsic Plasmons
9{&APxm 4.1.4 Fxtrinsic FAectron Scattering: Plasmons and Background
"s-e)svB 4.1.5 The Total Photoelectron Spectrum
>6 p
<n 4.2 Experimental Results
Qa*?iD 4.2.1 The Core Line Without Plasmons
MV8Lk/zd?A 4.2.2 Core-Level Spectra Including Plasmoas
;/tZsE{ 4.2.3 Valence-Band Spectra of the Simple Metals
"V/|RC 4.2.4 Simple Metals: A General Comment
b-Fv
vA 4.3 The Background Correction
5vxKkk&i4l References
n =SY66 r(UEPGu|~l 5. Valence Orbitals in Simple Molecules and Insulating Solids
VjZ_L_U} 5.1 UPS Spectra of Monatomic Gases
)HZUCi/F] 5.2 Photoelectron Spectra of Diatomic Molecules
1X-Ku GaD 5.3 Binding Energy of the H2 Molecule
*qx<bY@F 5.4 Hydrides Isoelectronic with Noble Gases
WY=RJe2 Neon (Ne)
1|K>V;C Hydrogen Fluoride (HF)
nq'vq]] Water (H2O)
PqOy"HO Ammonia (NH3)
"v.]s;g Methane (CH4)
t<`h(RczHI 5.5 Spectra of the Alkali HMides
q\ihye 5.6 Transition Metal Dihalides
X`,4pSQ; 5.7 Hydrocarbons
iC U[X& 5.7.1 Guidelines for the Interpretation of Spectra from Free Molecules
G'|Emu=4 5.7.2 Linear Polymers
WW.\5kBl8 5.8 Insulating Solids with Valence d Electrons
[w iI 5.8.1 The NiO Problem
q;I`&JK 5.8.2 Mort Insulation
@(:ah 5.8.3 The Metal-Insulator Transition;the Ratio of the Correlation Energy and the Bandwidth;Doping
o;#{N~4[$ 5.8.4Band Structures of Transition Metal Compounds
e"jA#Y # 5.9 High—Temperature Superconductors
qF9rY)ifm 5.9.1valence-Band Electronic Structure;Polycrystalline Samples
K?l1Gj 5.9.2 Dispersion Relations in High Temperature Superconductors;Single Crystals
WA);Z= 5.9.3 The Superconducting Gap
9&'I?D&8 5.9.4 Symmetry of the Order Parameter in the High-Temperature SuDerconductors
*q5'~)W< 5.9.5 Core—Level Shifts
E\M{/.4 4 5.10 The Fermi Liquid and the Luttinger Liquid
rWN#QL()* 5.11 Adsorbed Molecules
Bx(+uNQ 5.11.1 Outline
>M` swEj 5.11.2 CO on Metal Surfaces
L_+0[A References
o]NL_SM_ #=WDJT: 6.Photoemission of Valence Electrons froill Metallic Solids in the OHe-Electron Approximation
9"yBO` 6.1 Theory of Photoemission:A Summary of the Three-Step Model
-25#Vh 6.2 Discussion of the Photocurrent
>40B
Fxc 6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample
Z_%}pe39B 6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid
Fa(}:Ug 6.2.3 Angle-Integrated and Angle-Resolved Data Collection
qA- ya6 6.3 Photoemission from the Semi—infinite Crystal:The Inverse LEED Formalism
Q*TxjE7K
6.3.1 Band Structure Regime
#vO3*-hs 6.3.2 XPS Regime
Q9K+k*?{N 6.3.3 Surface Emission
Z2chv,SqCJ 6.3.4 One-Step Calculations
)k&pp^q\ 6.4 Thermal Effects
1B3,lYBM 6.5 Dipole Selection Rules for Direct Optical Transitions
Rl 4r 9 References
`R@24 ) Ow\9vf6H 7.Band Structtire and Angular-Resolved Photoelectron Spectra
F"a^`E& 7.1 Free-Electron Final—State Model
0w >DU^+ 7.2 Methods Employing Calculated Band Structures
(l22p
7.3 Methods for the Absolute Determination of the Crystal Momentum
oeXNb4; 4 7.3.1 Triangulation or Energy Coincidence Method
&%pB; dk 7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method
@S~'m; 7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method)
=J8)Z'Jr 7.3.4 The Surface Emission Method and Electron Damping
A>L(#lz#ek 7.3.5 The Very-Low-Energy Electron Diffraction Method
=erA.u 7.3.6 The Fermi Surface Method
*8p\.za1 7.3.7 Intensities and Their Use in Band-Structure Determinations
6RZ[X[R[} 7.3.8 Summary
Q:+Y-&||" 7.4 Experimental Band Structures
$8&HpX#h$ 7.4.1 One- and Two-Dimensional Systems
&Q