光电子谱技术是研究原子、分子、固体和表面电子
结构的一种非常有效的手段。本书全面
系统地介绍了
光电子谱技术的
原理和应用,并简明讨论了逆光发射、自旋极化光发射和
光电子衍射等现象。本书是一本非常实用的光电子谱技术的专著,内容几乎覆盖了光电子研究的所有领域。其特点是紧密联系实验,并利用理论详细解释实验结果,达到理论和应用的有机结合。书中还收集了大量的实际
材料的光电子谱分析,同时给出了大量的实验数据,以便于读者的查阅。总之,该书既是一本很有价值的参考书,又可作为初学者的入门教材。
HqM>K*XKU Ce&nMgd~ 作者在该领域做出了杰出的贡献。在第3版中,作者介绍了大量最新研究成果,并对光电子谱技术很多方面给出了有深刻见解的讨论。
[f`^+,U @L?X}'0xI4 读者对象:适用于凝聚态
物理学、材料物理学和光电子学等专业的高年级本科生、研究生和相关专业的科研人员。
^Ej4^d w\(LG_n|
tF:'Y ~3 p !%w#h0(b 市场价:¥88.00
jC_7cAsl 优惠价:¥78.60 为您节省:9.40元 (89折)
<(|No3jx
/rMxl(wD' \=n0@1Q=> 目录
aJh=4j~. 1. Introduction and Basic Principles
*Nfn6lVB 1.1 Historical Development
_PTo!aJL 1.2 The Electron Mean Free Path
7\ .Ax 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy
D+$ k 1.4 Experimental Aspects
agQ5%t# 1.5 Very High Resolution
mX@Un9k 1.6 The Theory of Photoemission
Zmx[u_NG 1.6.1 Core-Level Photoemission
aFkxR\x
6% 1.6.2 Valence-State Photoemission
-I, _{3.S 1.6.3 Three-Step and One-Step Considerations
9`[#4'1Mik 1.7 Deviations from the Simple Theory of Photoemission
G'|Emu=4 References
WW.\5kBl8 [w iI 2. Core Levels and Final States
q;I`&JK 2.1 Core-Level Binding Energies in Atoms and Molecules
8 I'1~d%$ 2.1.1 The Equivalent-Core Approximation
o;#{N~4[$ 2.1.2 Chemical Shifts
e"jA#Y # 2.2 Core-Level Binding Energies in Solids
qF9rY)ifm 2.2.1 The Born-Haber Cycle in Insulators
6k#H>zY, 2.2.2 Theory of Binding Energies
$}[Tj0+: 2.2.3 Determination of Binding Energies and Chemical Shifts from Thermodynamic Data
~cE; k@ 2.3 Core Polarization
+n1jP<[<N 2.4 Final-State Multiplets in Rare-Earth Valence Bands
xP@VK!sc 2.5 Vibrational Side Bands
*%0f^~!G<p 2.6 Core Levels of Adsorbed Molecules
xx}R6VKU. 2.7 Quantitative Chemical Analysis from Core-Level Intensities
o?G^=0T References
)B d`N^k+ ,v"/3Ff{, 3. Charge-Excitation Final States: Satellites
^V^In-[!y: 3.1 Copper Dihalides; 3d Transition Metal Compounds
WY@x2bBi 3.1.1 Characterization of a Satellite
0m5Q;|mH 3.1.2 Analysis of Charge-Transfer Satellites
q.(p.uD 3.1.3 Non-local Screening
+uPN+CgQ@ 3.2 The 6-eV Satellite in Nickel
E(G=~>P 3.2.1 Resonance Photoemission
\!UNale 3.2.2 Satellites in Other Metals
tVx.J'"Y 3.3 The Gunnarsson-Sch6nhammer Theory
`1%SXP1 3.4 Photoemission Signals and Narrow Bands in Metals
k&nhF9Y4 References
B3I\= vcB+h;x 4. Continuous Satellites and Plasmon Satellites: XPS Photoemission in Nearly Free Electron Systems
=N,KVMxw 4.1 Theory
^qpa[6D6x 4.1.1 General
h.)2, 4.1.2 Core-Line Shape
ixJUq o 4.1.3 Intrinsic Plasmons
Ow\9vf6H 4.1.4 Fxtrinsic FAectron Scattering: Plasmons and Background
7YRDQjg 4.1.5 The Total Photoelectron Spectrum
@LY 5]og 4.2 Experimental Results
oH+UuP2a-J 4.2.1 The Core Line Without Plasmons
<$liWAGX\ 4.2.2 Core-Level Spectra Including Plasmoas
< %Qw
dEO 4.2.3 Valence-Band Spectra of the Simple Metals
]\nG1+ta 4.2.4 Simple Metals: A General Comment
dE5DH~ldV 4.3 The Background Correction
JxQwxey{ References
)Jx!VJ^Y VGcl)fIqw? 5. Valence Orbitals in Simple Molecules and Insulating Solids
</y V 5.1 UPS Spectra of Monatomic Gases
|Y<ca 5.2 Photoelectron Spectra of Diatomic Molecules
V>P\yr? 5.3 Binding Energy of the H2 Molecule
tC+9W1o 5.4 Hydrides Isoelectronic with Noble Gases
.Jdw: Neon (Ne)
Fm}O,= Hydrogen Fluoride (HF)
K.
G#[ Water (H2O)
/3%]Ggwe Ammonia (NH3)
*9^CgLF Methane (CH4)
SX}GKu 5.5 Spectra of the Alkali HMides
"sFdrXJ 5.6 Transition Metal Dihalides
whNRUOK: 5.7 Hydrocarbons
;J\{r$q 5.7.1 Guidelines for the Interpretation of Spectra from Free Molecules
8O{]ML 5.7.2 Linear Polymers
'D(Hqdr;: 5.8 Insulating Solids with Valence d Electrons
7kn=j6I 5.8.1 The NiO Problem
\Y9=dE} 5.8.2 Mort Insulation
9[N'HpQ3 5.8.3 The Metal-Insulator Transition;the Ratio of the Correlation Energy and the Bandwidth;Doping
SU#
S' 5.8.4Band Structures of Transition Metal Compounds
@n(=#Q3 5.9 High—Temperature Superconductors
1jmhh!, 5.9.1valence-Band Electronic Structure;Polycrystalline Samples
[v-?MS 5.9.2 Dispersion Relations in High Temperature Superconductors;Single Crystals
IJ,,aCj4g 5.9.3 The Superconducting Gap
r"fu{4aX 5.9.4 Symmetry of the Order Parameter in the High-Temperature SuDerconductors
:yT~.AK}>1 5.9.5 Core—Level Shifts
[ur/` 5.10 The Fermi Liquid and the Luttinger Liquid
BHj]w*Ov 5.11 Adsorbed Molecules
~Y)Au?d(a 5.11.1 Outline
pq5)Ug 5.11.2 CO on Metal Surfaces
](_(1 References
j<deTK;. aic6,>\!' 6.Photoemission of Valence Electrons froill Metallic Solids in the OHe-Electron Approximation
O8u"Y0$*w 6.1 Theory of Photoemission:A Summary of the Three-Step Model
Tf@t.4\ 6.2 Discussion of the Photocurrent
@YwaOc_% 6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample
|r-<t 6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid
8gC(N3/E" 6.2.3 Angle-Integrated and Angle-Resolved Data Collection
XQ(`8Jl&^ 6.3 Photoemission from the Semi—infinite Crystal:The Inverse LEED Formalism
Rl5}W\& 6.3.1 Band Structure Regime
hQGZrZK# 6.3.2 XPS Regime
!+)$;` 6.3.3 Surface Emission
M`?/QU~ 6.3.4 One-Step Calculations
}Tc)M_ 6.4 Thermal Effects
\((>i7C 6.5 Dipole Selection Rules for Direct Optical Transitions
66L*6O4 References
>Dtw^1i ,A6*EJ\w 7.Band Structtire and Angular-Resolved Photoelectron Spectra
cJ8*[H<NV 7.1 Free-Electron Final—State Model
6C]!>i}U 7.2 Methods Employing Calculated Band Structures
&I(|aZx?J 7.3 Methods for the Absolute Determination of the Crystal Momentum
N=I5MQG 7.3.1 Triangulation or Energy Coincidence Method
qE,%$0g 7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method
Zt!l3(*tt 7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method)
D"x~bs?V\ 7.3.4 The Surface Emission Method and Electron Damping
Z<,gSut'Y 7.3.5 The Very-Low-Energy Electron Diffraction Method
T)C 7.3.6 The Fermi Surface Method
T[Gz 7.3.7 Intensities and Their Use in Band-Structure Determinations
*znCe(dd 7.3.8 Summary
?tA-`\E 7.4 Experimental Band Structures
LnJ7i"Q 7.4.1 One- and Two-Dimensional Systems
3F.O0Vz 7.4.2 Three-Dimensional Solids: Metals and Semiconductors
xBw"RCBz^ 7..4.3UPS Band Structures and XPS Density of States
+^69>L2V 7.5 A Comment
9q8
rf\& References
vY;Lc !m(6/*PAl 8.Surface States, Surface Effects
gdG:
&{|x 8.1 Theoretical Considerations
+$
-#V 8.2 Experimental Results on Surface States
.`h+fqa 8.3 Quantum-Well States
Fk9(FOFg 8.4 Surface Core-Level Shifts
41uSr 1 References
@pS[_!EqYz 3p4bOT5 9.Inverse Photoelectron Spectroscopy
j_H
T 9.1 Surface States
73<iK]*c 9.2 Bulk Band Structures
v'@LuF'e8 9.3 Adsorbed Molecules
7I44BC*R~ References
ah<f&2f Rw\DJJrz 10. Spin-Polarized Photoelectron Spectroscopy
L+kS8D< 10.1 General Description
fzio8mKVX 10.2 Examples of Spin-Polarized Photoelectron Spectroscopy
RCX4;,DHx 10.3 Magnetic Dichroism
JWdG?[$ References
5g5pzww 2mT+@G 11. Photoelectron Diffraction
7r;A
wa 11.1 Examples
plIx""a^h 11.2 Substrate Photoelectron Diffraction
AdYQhF## 11.3 Adsorbate Photoelectron Diffraction
}N|/b"j9 11.4 Fermi Surface Scans
)I$Mh@F References
=~S
P4AdfHk Appendix
W2B=%`sC A.1 Table of Binding Energies
#FQVhgc A.2 Surface and Bulk Brillouin Zones of the Three Low-Index Faces of a Face—Centered Cubic(fcc)Crystal Face
CFA> A.3 Compilation of Work Functions
j,-7J*A~ References
YOoP]0'L Index