光电子谱技术是研究原子、分子、固体和表面电子
结构的一种非常有效的手段。本书全面
系统地介绍了
光电子谱技术的
原理和应用,并简明讨论了逆光发射、自旋极化光发射和
光电子衍射等现象。本书是一本非常实用的光电子谱技术的专著,内容几乎覆盖了光电子研究的所有领域。其特点是紧密联系实验,并利用理论详细解释实验结果,达到理论和应用的有机结合。书中还收集了大量的实际
材料的光电子谱分析,同时给出了大量的实验数据,以便于读者的查阅。总之,该书既是一本很有价值的参考书,又可作为初学者的入门教材。
Dx9k%G)! AF{@lDa1h 作者在该领域做出了杰出的贡献。在第3版中,作者介绍了大量最新研究成果,并对光电子谱技术很多方面给出了有深刻见解的讨论。
uY3#, iI*qx+>f? 读者对象:适用于凝聚态
物理学、材料物理学和光电子学等专业的高年级本科生、研究生和相关专业的科研人员。
:x?G[x= _,p/2m-Pj
rQPO+ rvb@4-i>iI 市场价:¥88.00
[V5,1dmkI 优惠价:¥78.60 为您节省:9.40元 (89折)
'3E25BsL
Pb59RE:7V 9wdX#=I 目录
lJS3*x#H 1. Introduction and Basic Principles
OE}c$!@ 1.1 Historical Development
1gLET.I: 1.2 The Electron Mean Free Path
=">0\# 1.3 Photoelectron Spectroscopy and Inverse Photoelectron Spectroscopy
_skE\7&>X 1.4 Experimental Aspects
|n(b>.X 1.5 Very High Resolution
PevT`\> 1.6 The Theory of Photoemission
4v#s!W 1.6.1 Core-Level Photoemission
!4YmaijeN 1.6.2 Valence-State Photoemission
A\.{(,;kp 1.6.3 Three-Step and One-Step Considerations
ykGA.wo7/P 1.7 Deviations from the Simple Theory of Photoemission
/<o?T{z<- References
W{ZJ^QAq/ ~C?)-
]bF 2. Core Levels and Final States
4:kDBV;v 2.1 Core-Level Binding Energies in Atoms and Molecules
&nY#GHB 2.1.1 The Equivalent-Core Approximation
h6tYy_(G 2.1.2 Chemical Shifts
o$}$Z&LK 2.2 Core-Level Binding Energies in Solids
&.Yu%=} 2.2.1 The Born-Haber Cycle in Insulators
e8z?) 4T 2.2.2 Theory of Binding Energies
$]^Io)}f@ 2.2.3 Determination of Binding Energies and Chemical Shifts from Thermodynamic Data
u|Ng>lU 2.3 Core Polarization
e_1L J 2.4 Final-State Multiplets in Rare-Earth Valence Bands
:G5O_T$ 2.5 Vibrational Side Bands
iU#"G" & 2.6 Core Levels of Adsorbed Molecules
^r{N^ 2.7 Quantitative Chemical Analysis from Core-Level Intensities
aZo>3z; References
i> {0h3Y un)PW&~E 3. Charge-Excitation Final States: Satellites
JDOn`7!w 3.1 Copper Dihalides; 3d Transition Metal Compounds
J@ 8OU 3.1.1 Characterization of a Satellite
5tY/ d=\k 3.1.2 Analysis of Charge-Transfer Satellites
58o&Dv6? 3.1.3 Non-local Screening
D\pX@Sx,v[ 3.2 The 6-eV Satellite in Nickel
]tmMk7 3.2.1 Resonance Photoemission
`?"r\Qo< 3.2.2 Satellites in Other Metals
=n8M' 3.3 The Gunnarsson-Sch6nhammer Theory
: T qeVf 3.4 Photoemission Signals and Narrow Bands in Metals
nM99AW References
+\>op,_9I !H6X%hlk 4. Continuous Satellites and Plasmon Satellites: XPS Photoemission in Nearly Free Electron Systems
_gl1Qtv@rf 4.1 Theory
++=jh6 4.1.1 General
=RofC9, 4.1.2 Core-Line Shape
U8<C4 4.1.3 Intrinsic Plasmons
_k(&<1i 4.1.4 Fxtrinsic FAectron Scattering: Plasmons and Background
<s'0<e!./t 4.1.5 The Total Photoelectron Spectrum
=L{-Hu/j 4.2 Experimental Results
Mh}vr%0;) 4.2.1 The Core Line Without Plasmons
s Dsq:z 4.2.2 Core-Level Spectra Including Plasmoas
"#w%sG^_ 4.2.3 Valence-Band Spectra of the Simple Metals
SES-a Mi3 4.2.4 Simple Metals: A General Comment
RE08\gNIt 4.3 The Background Correction
UM^~a$t References
8,&Y\b`.. D@c@Dt 5. Valence Orbitals in Simple Molecules and Insulating Solids
STPRC&7; 5.1 UPS Spectra of Monatomic Gases
*lQa^F 5.2 Photoelectron Spectra of Diatomic Molecules
caV DV 5.3 Binding Energy of the H2 Molecule
mR8tW"Z2 5.4 Hydrides Isoelectronic with Noble Gases
@Z<Z//^k Neon (Ne)
P4 #j;k4P Hydrogen Fluoride (HF)
:b;`.`@KL_ Water (H2O)
8T"kQB.Zv Ammonia (NH3)
$|AasT5w Methane (CH4)
WDt 6{5T 5.5 Spectra of the Alkali HMides
V$dhiP
z 5.6 Transition Metal Dihalides
SUjo%3R 5.7 Hydrocarbons
_SU6Bd/> 5.7.1 Guidelines for the Interpretation of Spectra from Free Molecules
y8}
/e@& 5.7.2 Linear Polymers
t~8H~%T>v 5.8 Insulating Solids with Valence d Electrons
3h}i="i 5.8.1 The NiO Problem
MXDUKh7v3 5.8.2 Mort Insulation
r^ABu_u(`I 5.8.3 The Metal-Insulator Transition;the Ratio of the Correlation Energy and the Bandwidth;Doping
S7~HBgS< 5.8.4Band Structures of Transition Metal Compounds
Af`Tr6) 5.9 High—Temperature Superconductors
Xx\,<8Xn 5.9.1valence-Band Electronic Structure;Polycrystalline Samples
al7D3J 5.9.2 Dispersion Relations in High Temperature Superconductors;Single Crystals
'c3'eJ0 5.9.3 The Superconducting Gap
8fPTxvXqL 5.9.4 Symmetry of the Order Parameter in the High-Temperature SuDerconductors
bc>&Qj2Z7c 5.9.5 Core—Level Shifts
q)J5tBfJ 5.10 The Fermi Liquid and the Luttinger Liquid
4b6)+*[O 5.11 Adsorbed Molecules
8O[l[5u& 5.11.1 Outline
A,3qjd,$ c 5.11.2 CO on Metal Surfaces
n+ k,:O5 References
2HF`}H)H WADEDl&,' 6.Photoemission of Valence Electrons froill Metallic Solids in the OHe-Electron Approximation
)c532
y 6.1 Theory of Photoemission:A Summary of the Three-Step Model
@3bVjQ`4f 6.2 Discussion of the Photocurrent
vb}c)w
dp? 6.2.1 Kinematics of Internal Photoemission in a Polycrystalline Sample
^sqzlF 6.2.2 Primary and Secondary Cones in the Photoemission from a Real Solid
%.HLO.A 6.2.3 Angle-Integrated and Angle-Resolved Data Collection
=T1Xfib 6.3 Photoemission from the Semi—infinite Crystal:The Inverse LEED Formalism
q4,/RZhzh 6.3.1 Band Structure Regime
WuTkYiF 6.3.2 XPS Regime
8]rObT9> 6.3.3 Surface Emission
G#A6<e/ 6.3.4 One-Step Calculations
VmRfnH" 6.4 Thermal Effects
DhD##5a 6.5 Dipole Selection Rules for Direct Optical Transitions
h.NCG96S References
.}:*tvot V/zmbo) 7.Band Structtire and Angular-Resolved Photoelectron Spectra
gAf4wq 7.1 Free-Electron Final—State Model
@jrxbo;5 7.2 Methods Employing Calculated Band Structures
@a,=ApS" 7.3 Methods for the Absolute Determination of the Crystal Momentum
:[0)Uu{ 7.3.1 Triangulation or Energy Coincidence Method
RL fQT_V 7.3.2 Bragg Plane Method: Variation of External Emission Angle at Fixed Photon Frequency (Disappearance/Appearance Angle Method
^dE[ ; 7.3.3 Bragg Plane Method: Variation of Photon Energy at Fixed Emission Angle (Symmetry Method)
=YD<q:n4 7.3.4 The Surface Emission Method and Electron Damping
6~x a^3G: 7.3.5 The Very-Low-Energy Electron Diffraction Method
ef/43+F^x 7.3.6 The Fermi Surface Method
QS1lg 7.3.7 Intensities and Their Use in Band-Structure Determinations
}>V=J aG 7.3.8 Summary
MH0wpHz 7.4 Experimental Band Structures
v5U'ky: 7.4.1 One- and Two-Dimensional Systems
i'\-Y]?[ 7.4.2 Three-Dimensional Solids: Metals and Semiconductors
.tQ(q=# 7..4.3UPS Band Structures and XPS Density of States
'yV*eG?^& 7.5 A Comment
/XU=l0u References
Kf_xKW)^ 0)ZLdF_6 8.Surface States, Surface Effects
16 \)C/* 8.1 Theoretical Considerations
2 )3oX 8.2 Experimental Results on Surface States
kE|x'(x 8.3 Quantum-Well States
p1(" 8.4 Surface Core-Level Shifts
_x^rHADp References
I5`>XfO) bbDm6, 9.Inverse Photoelectron Spectroscopy
oJ`=ob4WDo 9.1 Surface States
^7Z;=]8J 9.2 Bulk Band Structures
WNKg>$M 9.3 Adsorbed Molecules
H4j1yD(d References
TQ0ZBhd DsbTx.vA 10. Spin-Polarized Photoelectron Spectroscopy
VJ_fA}U 10.1 General Description
P ?nk> 10.2 Examples of Spin-Polarized Photoelectron Spectroscopy
'GiN^Y9dcc 10.3 Magnetic Dichroism
c;06>1=wP5 References
sg49a9`8 #kA?*i[T 11. Photoelectron Diffraction
DiTpjk]c` 11.1 Examples
b?qV~Dgk` 11.2 Substrate Photoelectron Diffraction
#f/4%|t: 11.3 Adsorbate Photoelectron Diffraction
9)o@d`*
11.4 Fermi Surface Scans
yPs6_Qo!p References
y`
'#gH Q1rEUbvCE Appendix
iHK.hs; A.1 Table of Binding Energies
"?lz[K> A.2 Surface and Bulk Brillouin Zones of the Three Low-Index Faces of a Face—Centered Cubic(fcc)Crystal Face
LZ.Xcy A.3 Compilation of Work Functions
u3E =r References
`%"x'B`mM Index