《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
Li9>RY+3 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
:(;ho.zz 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
Tj6kCB
) .W0} FY
pspv?4 市场价:¥78.00
<(l`zLf4p 优惠价:¥58.50 免费送货,货到付款!
zA|)9Dq
.\8LL,zT V5p->X2# 1 Electromagnetism and basic optics
9>;CvR 1.1 Introduction
%$=2tfR 1.2 The Maxwell eqiations
~'N+O K 1.3 Linear isotropic media
'ql<R0g 1.4 Plane electromagnetic waves
cyB2=, 1.5 Energy flow
1i;Cw/mr 1.6 Scalar wave amplitudes
luJNdA:t& 1.7 Dispersive media
*A0*.>@N 1.8 Electrical transmission lines
l0eh}d 1.9 Elementary(ray)optics
rLA^ &P: 1.9.1 The thin lens
S7j U:CLJ 1.9.2 Sign conventions
MJU*Sq 1.9.3 Refraction at a spherical surface
!{vZvy" 1.9.4 The thick lens
r`e6B!p 1.10 Rays and waves
M6y|;lh''c Problems
R| XD#bG 4)Ew
rU 2 Fourier series and Fourier transforms
VP*B<u 2.1 Introduction
_O&P!hI 2.2 Fourier series:spectrum of a periodic waveform
37*2/N2 2.3 Fourier series:a mathematical reshape
g|M>C:ZT 2.4 The Fourier transform:spectrum of a non-periodic waveform
3*-!0 2.5 The analytic signal
<DhuY/o 2.6 The Dirac δ-function
cCcJOhk|d 2.7 Frequency and angular frequency
(&M,rW~Qxs 2.8 The power spectrum
l@`n4U.Gwl 2.9 Examples of Fourier transforms
S~M/!Xb 2.9.1 A single rectangular pulse
kArF Gb2c 2.9.2 The double pulse
2Hk21y\
2.9.3 A δ-function pulse
=69sWcC8 2.9.4 A regular array of δ-functions
?(M]'ia{ 2.9.5 A random array of δ-functions
$?On,U 2.9.6 An infinite sinewave
lU.aDmy< 2.10 Convolution and the convolution theorem
.2y @@g 2.11 Examples of convoltion
3gv?rJV 2.12 Sign choices with Fourier transforms
J)sOne problems
IiV]lxiE] % -.V6}V 3 Diffraction
n>,? V3ly 3.1 Introduction
G6qFAepwi 3.2 Monochromatic spherical wave
q[x|tO 3.3 The Kirchhoff diffraction integral
1*:BOoYx 3.4 The Kirchhoff boundary conditions
Rp>%umDyL 3.5 Simplifying the Kirchhoff inregral
<3x:nH @ 3.6 Complementary screens:the Babinet principle
{x~r$")c? 3.7 The Fraunhofer condition I:provisional
qR
kPl!5 3.8 Fraunhofer diffraction in'one dimension'
;X+cS,h 3.9 Fraunhofer diffraction in'two dimensions'
OX [r\ 3.10 Two ways of looking at diffraction
Q1!+wC 3.11 Examples of Fraunhofer diffraction
]+>Kl>@ 3.12 Fraunhofer diffraction and Fourier transforms
zL3I!& z2 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
.f|)od[ 3.14 The Fraunhofer condition Ⅲ:object and image
#-l+cu{ 3.15 The Fresnel case of diffraction
l0E]#ra" 3.16 Fraunhofer diffraction and optical resolution
()Qq7/ 3.17 Surfaces whose fields are related by a Fourier transform
Q)5V3Q]@^ 3.18 Kirchhoff boundary conditions:a harder look
&Y3ZGRT Problems
%0vWyU:K9 H-eHX3c7 4 Diffraction gratings
4W=fQx] 4.1 Introduction
oVd7ucnK 4.2 A basic transmission grating
{&J
OO 4.3 The multiple-element pattern
E`|vu*l7 4.4 Reflection grating
}\1IsK~P 4.5 Blazing
vZPBjloT!. 4.6 Grating spectrometric instruments
I(j$^DA. 4.7 Spectroscopic resolution
"O_)~u 4.8 Making gratings
f,Am;:\ | 4.9 Tricks of the trade
b`;Cm)@X!) 4.9.1 Normal spectrum
bpa'`sf 4.9.2 Correct illumination
k{bC3)'$#R 4.9.3 Shortening exposure times with a spectrograph
hJ75(I
*j 4.9.4 Vacuum instruments
BY@l:y4 4.9.5 Double monochromator
,M$h3B\;r 4.9.6 An inventor's paradise
sYB2{w
4.10 Beyond the simple theory
;,xM* Problems
&,* ILz SQ<{X/5 5 The Fabry-Perot
K1p. { 5.1 Introduction
F6_en z 5.2 Elementary theory
Lzx2An@R 5.3 Basic apparatus
lkJe7 +s 5.4 The meaning of finesse
^OK;swDW 5.5 Free spectral range and resolution
w17CZa
6 5.5.1 Free spectral range
8YQ7XB 5.5.2 Resolution
9)uJ\NMy 5.6 Analysis of an étalon fringe pattern
GtKSA#oYZB 5.7 Flatness and parallelism of Fabry-Perot plates
cI-@nV 5.8 Designing a Fabry-Perot to do a job
5>hXqNjP2 5.9 Practicalities of spectroscopy using a Fabry-Perot
lBudC 5.10 The Fabry-Perot as a source of ideas
N;4wbUPL7h Problems
uvi&! )x 5yjG\~ 6 Thin films
D5Z)"~' 6.1 Introduction
-1w^z`;2h 6.2 Basic calculation for one layer
!t?5U_on 6.3 Matrix elimination of'middle'amplitudes
eV"Uv3 6.4 Reflected and transmitted Waves
U[z2{\ 6.5 Impedance concepts
0D0uzUD- 6.6 High-reflectivity mirrors
((M>To_l 6.7 Anti-reflection coatings
un}!&*+ 6.8 Interference filters
4~2 9, 6.9 Practicalities of thin-film deposition
M^G9t*I Problems
)_}xK={ 5uJ!)Q 7 Ray matrices and Gaussian beams
.R^ R|<x 7.1 Introduction
"*:?m{w5 7.2 Matrix methods in ray optics
l
nJ 7.3 Matrices for translation and refraction
^FZ9q 7.4 Reflections
OyG2Ks"H 7.5 Spherical waves
qRq4PQ@ 7.6 Gaussian beams
bm h@SB 7.7 Properties of a Gaussian beam
S|?P#.=GX 7.8 Sign conventions
m= %KaRI 7.9 Propagation of a Gaussian beam
B7sBO6Z$J 7.10 Electric and magnetic fields
`/<f([w Problems
{ T<[-"h ^ Z3y 8 Optical cavities
@X P_~ N 8.1 Introduction
4}Lui9 8.2 Gauss-Hermite beams
X.ZG-TC 8.3 Cavity resonator
n6 wx/: 8.4 Cavity modes
s.a @uR^ 8.5 The condition for a low-loss mode
=F_j})O5 8.6 Finding the mode shape for a cavity
.N7&Jy
8.7 Longitudinal modes
z>b^Ui0 8.8 High-loss cavities
%BQ?DTtb7' 8.9 The symmetrical confocal cavity
SZ:R~4 A 8.10 The confocal Fabry-Perot
$QwzL/a 8.11 Choice of cavity geometry for a laser
j$4lyDfD 8.12 Selection of a desired transverse mode
!j3Xzn9 8.13 Mode matching
"V5_B^Gzb] Problems
JURg=r]LI ZgmK~iJ 9 Coherence:qualitative
Q |hBGH9:B 9.1 Introduction
b#n 9.2 Terminology
Z%
]LZ/O8 9.3 Young fringes:tolerance to frequency range
{mLv?"M] 9.4 Young fringes:tolerance to collimation
"2 D{X 9.5 Coherence area
=FMrVE 9.6 The Michelson stellar interferometer
TQOJN 9.7 Aperture synthesis
hl2|Ec 9.8 Longitudinal and transverse coherence
W#kLM\2L 9.9 Interference of two parallel plane waves
aM:tg1g 9.10 Fast and slow detectors
M
#%V%< 9.11 Coherence time and coherence length
^;$9>yi1 9.12 A Michelson interferometer investigating longitudinal coherence
q?8#D 9.13 Fringe visibility
h]4qJ 9.14 Orders of magnitude
%D7 '7E8. 9.15 Discussion
ob/HO(h3 9.15.1 What of lasers?
;KG}Yr72 9.15.2 The Young slits:another look
d
<zD@ z 9.15.3 Fast and slow detectors:another look
'1zC|:, 9.15.4 Grating monochromator:another look
zLPCWP.u 9.15.5 Polarized and unpolarized light
|BO5<`&I Problems
}S%}%1pG7 $?9u;+jIR 10 Coherence:correlation functions
H~:g=Zw 10.1 Introduction
;a[3RqmKW 10.2 Correlation function:definition
z_). - 10.3 Autocorrelation and the Michelson interferometer
iztgk/(+G 10.4 Normalized autocorrelation function
)-1$y+s>
10.5 Fringe visibility
@@}muW>;T 10.6 The Wiener-Khintchine theorem
-*2b/=$u 10.7 Fourier transform spectroscopy
5U*${ 10.8 Partial coherence:transverse
1+l[P9?R[ 10.9 The van Cittert-Zernike theorem
5oOs.(m|*C 10.10 Intensity correlation
knWI7 10.11 Chaotic light and laser light
L>N)[;| 10.12 The Hanbury Brown-Twiss experiment
:ra[e(l9 10.13 Stellar diameters measured by intensity correlation
Z7Nhb{ 10.14 Classical and quantum optics
S-brV\v7 Problems
2(GLc*B> r)<n)eXeD 11 Optical practicalities:étendue,interferometry,fringe localization
YT@N$kOg_ 11.1 Introduction
fQw|SW 11.2 Energy flow:étendue and radiance
}@53*h i( 11.3 Conservation of étendue and radiance
VD{_6 11.4 Longitudinal and transverse modes
}-vP~I 11.5 étendue and coherence area
ul"Z%
1] 11.6 Field modes and entropy
Ge24Lp;Y6 11.7 Radianee of some optical sources
s3~6[T?8 11.7.1 Radiance of a black body
l_fERp#y 11.7.2 Radiance of a gas-discharge lamp
:k~ p=ko 11.7.3 Radiance of a light-emitting diode (
LED)
6X$\:> 11.8 étendue and interferometers
iT1HbAT] 11.9 大Etendue and spectrometers
">nFzg?Y 11.10 A design study:a Fourier-transform spectrometer
3>z+3!I z 11.11 Fringe locahzation
0%3T'N% Problems
`?T8NK T8vMBaU!qY 12 Image formation:diffraction theory
g$8aB{) 12.1 Introduction
n>%TIoY 12.2 Image formation with transversely Coherent illumination informal
|^GN<