《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
_BA_lkN+D 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
49kia!FR 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
w)>z3Lm
lNPbU ~k 9&FV=}MO 市场价:¥78.00
I*ni )Px 优惠价:¥58.50 免费送货,货到付款!
xE[tD? M{
I%WK*AORM 5"]2@@b4 1 Electromagnetism and basic optics
r:Tb{cA 1.1 Introduction
]ZATER)jq 1.2 The Maxwell eqiations
KPcuGJ 1.3 Linear isotropic media
=_:L
wmI 1.4 Plane electromagnetic waves
eBKIdR%k 1.5 Energy flow
:QSW^x 1.6 Scalar wave amplitudes
ty=?SZF 1.7 Dispersive media
\r9%;?f 1.8 Electrical transmission lines
2^lT!X@ 1.9 Elementary(ray)optics
/>7/S^ 1.9.1 The thin lens
.T
X& X 1.9.2 Sign conventions
4V3
w$:, 1.9.3 Refraction at a spherical surface
6-YR'ikU 1.9.4 The thick lens
+ # >%bq x 1.10 Rays and waves
3k0%H]wt Problems
1/BMs0 = \Y 4Z Q"0Q 2 Fourier series and Fourier transforms
mwhn=y#]* 2.1 Introduction
z1 px^#
2.2 Fourier series:spectrum of a periodic waveform
8dB~09Z7 2.3 Fourier series:a mathematical reshape
za/#R_%p 2.4 The Fourier transform:spectrum of a non-periodic waveform
Mdh"G @$n 2.5 The analytic signal
=^M t#h." 2.6 The Dirac δ-function
JOq<lb= 2.7 Frequency and angular frequency
4!qDG+m 2.8 The power spectrum
.AW*7Pp`f 2.9 Examples of Fourier transforms
:_zKUv] 2.9.1 A single rectangular pulse
M.Ik%nN#K0 2.9.2 The double pulse
,]"u!,yHb 2.9.3 A δ-function pulse
T480w6-@ 2.9.4 A regular array of δ-functions
c!T{|'? 2.9.5 A random array of δ-functions
9F4|T7? 2.9.6 An infinite sinewave
c[7qnSH 2.10 Convolution and the convolution theorem
"c*|vE 2.11 Examples of convoltion
YTh4&wm 2.12 Sign choices with Fourier transforms
dfcG'+RU} problems
:wAB"TCt0 qm8RRDG 3 Diffraction
4Pdk?vHK; 3.1 Introduction
[{*#cr f 3.2 Monochromatic spherical wave
!m2k0|9 3.3 The Kirchhoff diffraction integral
R<Tzt'z 3.4 The Kirchhoff boundary conditions
U:e9Vq'N m 3.5 Simplifying the Kirchhoff inregral
l$KcS&{w9 3.6 Complementary screens:the Babinet principle
KJfyh=AD( 3.7 The Fraunhofer condition I:provisional
%"2B1^o> 3.8 Fraunhofer diffraction in'one dimension'
b4ivWb |` 3.9 Fraunhofer diffraction in'two dimensions'
^*Fkt(ida 3.10 Two ways of looking at diffraction
}6N|+z.cU 3.11 Examples of Fraunhofer diffraction
d`/{0 :F 3.12 Fraunhofer diffraction and Fourier transforms
`yXy T^ 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
K gX)fj 3.14 The Fraunhofer condition Ⅲ:object and image
B)dynGF8i 3.15 The Fresnel case of diffraction
sSK$ 3.16 Fraunhofer diffraction and optical resolution
@=c='V] 3.17 Surfaces whose fields are related by a Fourier transform
k:xV[9ev: 3.18 Kirchhoff boundary conditions:a harder look
+s}28U! Problems
u<zDZ{jt) vGw}e&YI 4 Diffraction gratings
^S|^1 4.1 Introduction
Y."[k&P- 4.2 A basic transmission grating
8=9sIK2 4.3 The multiple-element pattern
o*xEaD 4.4 Reflection grating
0oMMJ6"i 4.5 Blazing
48`<{|r{ 4.6 Grating spectrometric instruments
8hg(6 XUG 4.7 Spectroscopic resolution
BoqW;SG$9 4.8 Making gratings
Gov{jksr 4.9 Tricks of the trade
wSMgBRV#^ 4.9.1 Normal spectrum
QPEv@laM 4.9.2 Correct illumination
O7sn>uO 4.9.3 Shortening exposure times with a spectrograph
Dr:}k* 4.9.4 Vacuum instruments
&Te:l-x 4.9.5 Double monochromator
L8J/GVmj 4.9.6 An inventor's paradise
o<4LL7$A! 4.10 Beyond the simple theory
dp"w=~53 Problems
.Yx.Lm} 6z*L9Vy($ 5 The Fabry-Perot
f@mM&e=f 5.1 Introduction
\=<.0K A~
5.2 Elementary theory
z4goa2@Z 5.3 Basic apparatus
!l|Qyk[ 5.4 The meaning of finesse
;`+,gVrp 5.5 Free spectral range and resolution
L%"Mp(gZ 5.5.1 Free spectral range
q.7CPm+ 5.5.2 Resolution
|D~MS`~qd5 5.6 Analysis of an étalon fringe pattern
d?mdw
?| 5.7 Flatness and parallelism of Fabry-Perot plates
N\?iU8w= 5.8 Designing a Fabry-Perot to do a job
#C`!yU6( 5.9 Practicalities of spectroscopy using a Fabry-Perot
Yq_zlxd%F 5.10 The Fabry-Perot as a source of ideas
/Kvb$]F+! Problems
:<W8uDAs itU01 6 Thin films
u$"5SGI6 6.1 Introduction
/%7eo?@, 6.2 Basic calculation for one layer
u=[oo@Rk` 6.3 Matrix elimination of'middle'amplitudes
or<JjTJ\o_ 6.4 Reflected and transmitted Waves
9=SZL~#CE 6.5 Impedance concepts
%WNy=V9txp 6.6 High-reflectivity mirrors
^:0?R/A 6.7 Anti-reflection coatings
82vx:*Ip!} 6.8 Interference filters
bCF63(0 6.9 Practicalities of thin-film deposition
ZS-9|EA< Problems
SZPu"O\ Z%Gvf~u 7 Ray matrices and Gaussian beams
{e^llfj$# 7.1 Introduction
)
l)5^7=W 7.2 Matrix methods in ray optics
MouYZI) 7.3 Matrices for translation and refraction
zM!*r~*k$ 7.4 Reflections
'54@-}D 7.5 Spherical waves
g`j%jQuY 7.6 Gaussian beams
T^'i+>F!w 7.7 Properties of a Gaussian beam
ZDf9Npe 7.8 Sign conventions
!ZVMx*1Cf 7.9 Propagation of a Gaussian beam
VtVnht1 7.10 Electric and magnetic fields
NJp;t[v.^ Problems
5?O"N 0ePZxOSjD 8 Optical cavities
CeQcnJU 8.1 Introduction
pd6d( 8.2 Gauss-Hermite beams
S92Dvw? 8.3 Cavity resonator
F
;D_zo? 8.4 Cavity modes
8C2t0u;Y
. 8.5 The condition for a low-loss mode
D fb&