《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
c,%>7U(w_ 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
"J:NW_U 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
&rWJg6/
C$;s+ALy[ ?vNS!rY2& 市场价:¥78.00
3n)iTSU3 优惠价:¥58.50 免费送货,货到付款!
ur[bh
Sf:lN4 _1%^ibn 1 Electromagnetism and basic optics
=YsTF T 1.1 Introduction
d~$t{46 1.2 The Maxwell eqiations
hs uJ;4}$q 1.3 Linear isotropic media
VQ3& 1.4 Plane electromagnetic waves
rzj'!~>U 1.5 Energy flow
3AL=*qq 1.6 Scalar wave amplitudes
Y }d>%i+ 1.7 Dispersive media
/7)G"qG~F~ 1.8 Electrical transmission lines
DNO%J^ 1.9 Elementary(ray)optics
] CE2/6Ph 1.9.1 The thin lens
]F-6KeBc 1.9.2 Sign conventions
1vd+p!n 1.9.3 Refraction at a spherical surface
Kg67cmj)f 1.9.4 The thick lens
=#fvdj 1.10 Rays and waves
}`]^LFU5 Problems
.}>[Kr JPzPL\ 2 Fourier series and Fourier transforms
@"2-tn@q_ 2.1 Introduction
t!N>0]:mo 2.2 Fourier series:spectrum of a periodic waveform
1'B?f# s 2.3 Fourier series:a mathematical reshape
86Vu PV- 2.4 The Fourier transform:spectrum of a non-periodic waveform
`Yve
2.5 The analytic signal
Nh-*Gt? 2.6 The Dirac δ-function
O$^YUHD 2.7 Frequency and angular frequency
[_Z3v,vt, 2.8 The power spectrum
Wd<}|?R 2.9 Examples of Fourier transforms
q=(wK& 2.9.1 A single rectangular pulse
C`K/ai{4 2.9.2 The double pulse
j. cH,Y 2.9.3 A δ-function pulse
%LmB`DqZ 2.9.4 A regular array of δ-functions
`8Ix&d3F 2.9.5 A random array of δ-functions
4B(qVf&M 2.9.6 An infinite sinewave
jqmP^ZS 2.10 Convolution and the convolution theorem
@)wXP@7 2.11 Examples of convoltion
D=]P9XDvb. 2.12 Sign choices with Fourier transforms
eU*hqy?0 problems
J],BO\ECH ~8E
rl3=5{ 3 Diffraction
]~,'[gWb 3.1 Introduction
dksnW! 3.2 Monochromatic spherical wave
tzPe*|m< 3.3 The Kirchhoff diffraction integral
?y
kIi/ 3.4 The Kirchhoff boundary conditions
g5`YUr+3?h 3.5 Simplifying the Kirchhoff inregral
0't)fnI# 3.6 Complementary screens:the Babinet principle
2Hj]QN7"
3.7 The Fraunhofer condition I:provisional
d7Z\ 3.8 Fraunhofer diffraction in'one dimension'
r v>6k:( 3.9 Fraunhofer diffraction in'two dimensions'
='azVw%_ 3.10 Two ways of looking at diffraction
@m4d 4K@ 3.11 Examples of Fraunhofer diffraction
IYPI5qCR 3.12 Fraunhofer diffraction and Fourier transforms
)^AO?MW 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
xNU}uW>>T 3.14 The Fraunhofer condition Ⅲ:object and image
>d|W>|8e 3.15 The Fresnel case of diffraction
QBg'VV 3.16 Fraunhofer diffraction and optical resolution
cA,xf@itp 3.17 Surfaces whose fields are related by a Fourier transform
i=rW{0c% 3.18 Kirchhoff boundary conditions:a harder look
Pc-HQU Problems
Q}]un]]Zt mqpZby 4 Diffraction gratings
+ `xp+Q 4.1 Introduction
-)/>qFj) 4.2 A basic transmission grating
L;;x%> 4.3 The multiple-element pattern
O4{&B@! 4.4 Reflection grating
$on liW| 4.5 Blazing
<KC gtO 4.6 Grating spectrometric instruments
z;)% i f6 4.7 Spectroscopic resolution
&x}JC/u]fd 4.8 Making gratings
-\vq-n 4.9 Tricks of the trade
Uz6B\-(0p 4.9.1 Normal spectrum
~Km8-b(& 4.9.2 Correct illumination
_eS*e-@O5 4.9.3 Shortening exposure times with a spectrograph
u]"RAH 4.9.4 Vacuum instruments
JT<J[Qz5 4.9.5 Double monochromator
1RLSeT 4.9.6 An inventor's paradise
HukHZ;5 4.10 Beyond the simple theory
r iz({ Problems
o3yZC z mDhU wZH 5 The Fabry-Perot
;1WclQ!( 5.1 Introduction
(s*}= 5.2 Elementary theory
<qu\q \ 5.3 Basic apparatus
Nz8iU@!a 5.4 The meaning of finesse
dbR4%;< 5.5 Free spectral range and resolution
H!N,PI?rn 5.5.1 Free spectral range
]pb3
Fm{ 5.5.2 Resolution
p<