《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
0ge$ p, 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
/c"efnb! 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
on0]vEE
bKj%s@x %@;6^= 市场价:¥78.00
I/M _p^ 优惠价:¥58.50 免费送货,货到付款!
s"9`s_p`d
A
6OGs/:& rSxxH]- 1 Electromagnetism and basic optics
u)3 $~m~ 1.1 Introduction
umF
Z?a 1.2 The Maxwell eqiations
nt;haeJ 1.3 Linear isotropic media
_$wmI/_JM 1.4 Plane electromagnetic waves
<c)+Fno[E_ 1.5 Energy flow
uHH/rMV 1.6 Scalar wave amplitudes
(Fynok 1.7 Dispersive media
h@:TpE+N 1.8 Electrical transmission lines
.,7JAkB%t 1.9 Elementary(ray)optics
`Ja?fI'H- 1.9.1 The thin lens
"Vw m 1.9.2 Sign conventions
?pYKZg/c 1.9.3 Refraction at a spherical surface
?+g`HTY u 1.9.4 The thick lens
vo\fUT@k 1.10 Rays and waves
%{(x3\ *& Problems
Zq,9&y~ Dfps
gY)/? 2 Fourier series and Fourier transforms
~/ 8M 3k/ 2.1 Introduction
rgSOS-ox 2.2 Fourier series:spectrum of a periodic waveform
4|mD*o 2.3 Fourier series:a mathematical reshape
gXonF' 2.4 The Fourier transform:spectrum of a non-periodic waveform
o Y1';&BO9 2.5 The analytic signal
28/ ADZ 2.6 The Dirac δ-function
[,K.*ZQi 2.7 Frequency and angular frequency
TMs,j!w?I 2.8 The power spectrum
'fcMuBc+4 2.9 Examples of Fourier transforms
:C}2= 2.9.1 A single rectangular pulse
j
[rB"N`0 2.9.2 The double pulse
{fha`i 2.9.3 A δ-function pulse
"t({D 2.9.4 A regular array of δ-functions
?OE.O/~l 2.9.5 A random array of δ-functions
/;7y{(o 2.9.6 An infinite sinewave
e1>aTu@ 2.10 Convolution and the convolution theorem
}j2Y5 2.11 Examples of convoltion
,g7.rEA 2.12 Sign choices with Fourier transforms
&ISb~5 problems
$we]91(:: 6`0mta Q 3 Diffraction
Nru7(ag1~ 3.1 Introduction
B|C/
Rk6? 3.2 Monochromatic spherical wave
za:a)U^n 3.3 The Kirchhoff diffraction integral
f'<Q.Vh< 3.4 The Kirchhoff boundary conditions
`+zWu55; 3.5 Simplifying the Kirchhoff inregral
-29gL_dk. 3.6 Complementary screens:the Babinet principle
oEx\j+}@n 3.7 The Fraunhofer condition I:provisional
Y 2Q=rj 3.8 Fraunhofer diffraction in'one dimension'
:Gu+m 3.9 Fraunhofer diffraction in'two dimensions'
>_c5r?]S G 3.10 Two ways of looking at diffraction
"]m+z)lWd 3.11 Examples of Fraunhofer diffraction
-pU|hSW*b 3.12 Fraunhofer diffraction and Fourier transforms
n:0}utU4 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
?;wpd';c 3.14 The Fraunhofer condition Ⅲ:object and image
$`8Ar,Xz` 3.15 The Fresnel case of diffraction
9%iUG(DC 3.16 Fraunhofer diffraction and optical resolution
"+z?x~rk 3.17 Surfaces whose fields are related by a Fourier transform
A%Xt|=^_ 3.18 Kirchhoff boundary conditions:a harder look
?E9D Xg Problems
N7b1.]< 28hHabd| 4 Diffraction gratings
!" JfOu 4.1 Introduction
7R3fqU.Rq 4.2 A basic transmission grating
nLwiCfe 4.3 The multiple-element pattern
ui"3ak+F 4.4 Reflection grating
Fhv2V,nZ< 4.5 Blazing
L>!8YUz7p$ 4.6 Grating spectrometric instruments
uk9g<<3T 4.7 Spectroscopic resolution
}m/RZP~= 4.8 Making gratings
^9_UUzf\ 4.9 Tricks of the trade
RQkyCAGx 4.9.1 Normal spectrum
F$Ca;cP" 4.9.2 Correct illumination
LuR,f"%2 4.9.3 Shortening exposure times with a spectrograph
IcrL 4.9.4 Vacuum instruments
< AI;6/ 4.9.5 Double monochromator
uK("<u| 4.9.6 An inventor's paradise
Q\Gq|e* 4.10 Beyond the simple theory
~"lJ'&J} Problems
~1*A !j1[$% =# 5 The Fabry-Perot
`k;KBW 5.1 Introduction
5tv<8~:K 5.2 Elementary theory
7l."b$U4yv 5.3 Basic apparatus
z305{B:Y 5.4 The meaning of finesse
Uw/l>\ 5.5 Free spectral range and resolution
E15vq6 DKF 5.5.1 Free spectral range
Vvt ; 5.5.2 Resolution
W%e_~$H0 5.6 Analysis of an étalon fringe pattern
[ U8$HQ+x 5.7 Flatness and parallelism of Fabry-Perot plates
Jz:r7w{4eB 5.8 Designing a Fabry-Perot to do a job
16X@^j_ 5.9 Practicalities of spectroscopy using a Fabry-Perot
Z,c,G2D 5.10 The Fabry-Perot as a source of ideas
o<l 2 r Problems
GIftrYr a=xT(G0Re 6 Thin films
?-OPX_i_ 6.1 Introduction
4KI [D{ 6.2 Basic calculation for one layer
_Mc>W0'5@ 6.3 Matrix elimination of'middle'amplitudes
y/? &pKH^ 6.4 Reflected and transmitted Waves
m7=1%6FN3 6.5 Impedance concepts
NQ|xM"MqD 6.6 High-reflectivity mirrors
r7]"?# 6.7 Anti-reflection coatings
02JoA+ 6.8 Interference filters
t` 8!AhOgc 6.9 Practicalities of thin-film deposition
W3&tJ8*3 Problems
I\Glc=T* )9=(|Lp 7 Ray matrices and Gaussian beams
"R9Yb,tIN 7.1 Introduction
/}5B&TZ=(3 7.2 Matrix methods in ray optics
b8BD8~; 7.3 Matrices for translation and refraction
i3mAfDF 7.4 Reflections
]lS@}W\ 7.5 Spherical waves
i2J q|9,g 7.6 Gaussian beams
|%D%0TR&Q 7.7 Properties of a Gaussian beam
8I+d)(: 7.8 Sign conventions
*Q}[ ]g 7.9 Propagation of a Gaussian beam
c 5`US 7.10 Electric and magnetic fields
'GJVWpvUU Problems
w7-WUvxl ~VTs:h 8 Optical cavities
Qbeeq6 8.1 Introduction
5IqQ |/m<6 8.2 Gauss-Hermite beams
Di Or{)a 8.3 Cavity resonator
8
Op.eYe 8.4 Cavity modes
kGN||h 8.5 The condition for a low-loss mode
>_X/[< 8.6 Finding the mode shape for a cavity
r;iV$Rq! 8.7 Longitudinal modes
TSL9ax4j 8.8 High-loss cavities
cs_}&!c{ 8.9 The symmetrical confocal cavity
uD>z@J-v 8.10 The confocal Fabry-Perot
beZ(o?uK 8.11 Choice of cavity geometry for a laser
oP,9#FC|( 8.12 Selection of a desired transverse mode
GlR~%q-jiQ 8.13 Mode matching
,
fb(
WY Problems
VY'Q|[ W"hcaa,& 9 Coherence:qualitative
)u@c3?$6 9.1 Introduction
tSv0" L 9.2 Terminology
S7n"3.k 9.3 Young fringes:tolerance to frequency range
zW4O4b$T 9.4 Young fringes:tolerance to collimation
gbOCR1PBg 9.5 Coherence area
*j*Du+ 9.6 The Michelson stellar interferometer
`Y3( ~~YGn 9.7 Aperture synthesis
~!+h?[miV 9.8 Longitudinal and transverse coherence
b; 9n'UX\ 9.9 Interference of two parallel plane waves
i(HByI 9.10 Fast and slow detectors
'I/h(
9.11 Coherence time and coherence length
VRS 2cc 9.12 A Michelson interferometer investigating longitudinal coherence
5n:71$6[ 9.13 Fringe visibility
'M'w,sID 9.14 Orders of magnitude
%!.M~5mCd 9.15 Discussion
,9ml>ji`= 9.15.1 What of lasers?
C?H{CP 9.15.2 The Young slits:another look
pbB2wt 9.15.3 Fast and slow detectors:another look
a0d
, 9.15.4 Grating monochromator:another look
v@T'7?s. 9.15.5 Polarized and unpolarized light
,5-Zb3\ Problems
RR>G]#k BpT"~4oV5 10 Coherence:correlation functions
rFXSO=P?Z 10.1 Introduction
n@B{vyy 10.2 Correlation function:definition
rveVCTbC 10.3 Autocorrelation and the Michelson interferometer
Ao`_",E 10.4 Normalized autocorrelation function
sQk|I x 10.5 Fringe visibility
e)pTC97^L 10.6 The Wiener-Khintchine theorem
Uu2N9.5 10.7 Fourier transform spectroscopy
k@qWig 10.8 Partial coherence:transverse
l]vohLz
3! 10.9 The van Cittert-Zernike theorem
%yw=[]Vjze 10.10 Intensity correlation
;?im(9h"v! 10.11 Chaotic light and laser light
pv$tTWk 10.12 The Hanbury Brown-Twiss experiment
1*R_"# 10.13 Stellar diameters measured by intensity correlation
4%bTj,H# 10.14 Classical and quantum optics
\JU ~k5j Problems
_'*DT=H'U P06.1 11 Optical practicalities:étendue,interferometry,fringe localization
ZDlu1>Q 11.1 Introduction
|[wyc!nY). 11.2 Energy flow:étendue and radiance
A#:8X1w 11.3 Conservation of étendue and radiance
/Nqrvy= 11.4 Longitudinal and transverse modes
iwz`
x 11.5 étendue and coherence area
'jbMTI 11.6 Field modes and entropy
4 ?2g&B\ 11.7 Radianee of some optical sources
7x+=7,BZd 11.7.1 Radiance of a black body
'oi2Seq 11.7.2 Radiance of a gas-discharge lamp
RdkU2Y}V 11.7.3 Radiance of a light-emitting diode (
LED)
e 2*F;.) 11.8 étendue and interferometers
~|=rwDBZ8l 11.9 大Etendue and spectrometers
8on[%Vk 11.10 A design study:a Fourier-transform spectrometer
lQr6;D}+ 11.11 Fringe locahzation
b3^R,6]x&