《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
\,'4eV 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
_=}.Sg5Q 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
\&47u1B
o2[$XONTl 0#4A0[vV 市场价:¥78.00
@0(%ayi2Y 优惠价:¥58.50 免费送货,货到付款!
|AS~sjWSJ
q1v7(`O udmLHc 1 Electromagnetism and basic optics
%+/Dv 1.1 Introduction
GL~
Wnt 1.2 The Maxwell eqiations
NF7 1.3 Linear isotropic media
BS(jC 1.4 Plane electromagnetic waves
cg_ " }]Y1 1.5 Energy flow
`@ny!S|1/ 1.6 Scalar wave amplitudes
?d+ri 1.7 Dispersive media
!{ fu(E 1.8 Electrical transmission lines
,4Q8r:_ u 1.9 Elementary(ray)optics
K+"3He 1.9.1 The thin lens
P+BGCc%);B 1.9.2 Sign conventions
i[I&m]N 1.9.3 Refraction at a spherical surface
Mdq|:^px 1.9.4 The thick lens
#<X4RJ 1.10 Rays and waves
|=07n K2 Problems
w 62m}5eA Y=?{TX=6<[ 2 Fourier series and Fourier transforms
Y% JE}) 2.1 Introduction
G|RBwl 2.2 Fourier series:spectrum of a periodic waveform
^VW]Qr! 2.3 Fourier series:a mathematical reshape
+r7hc;+G 2.4 The Fourier transform:spectrum of a non-periodic waveform
\Zh&[D!2 2.5 The analytic signal
Xu
E' %;: 2.6 The Dirac δ-function
&nwS7n1eb 2.7 Frequency and angular frequency
)_\ ;l%& 2.8 The power spectrum
}zxf~41 2.9 Examples of Fourier transforms
fDqDU 2.9.1 A single rectangular pulse
#!E`%'
s] 2.9.2 The double pulse
}a#T\6rY 2.9.3 A δ-function pulse
8:)[. 2.9.4 A regular array of δ-functions
9HEqB0|ZRu 2.9.5 A random array of δ-functions
_`gkYu3R+ 2.9.6 An infinite sinewave
bRrSd:e 2.10 Convolution and the convolution theorem
Na@;F{ 2.11 Examples of convoltion
5*+DN
U@ 2.12 Sign choices with Fourier transforms
#Hz9@H problems
j Neb*dPoK hW'b'x< 3 Diffraction
-#mN/ 3.1 Introduction
l0;u$ 3.2 Monochromatic spherical wave
?@Q0;LG 3.3 The Kirchhoff diffraction integral
SP/b4 3.4 The Kirchhoff boundary conditions
>F:1a\c 3.5 Simplifying the Kirchhoff inregral
,A $IFE 3.6 Complementary screens:the Babinet principle
{&XTa`C 3.7 The Fraunhofer condition I:provisional
&@'%0s9g 3.8 Fraunhofer diffraction in'one dimension'
ij#v_~g3 3.9 Fraunhofer diffraction in'two dimensions'
,X1M!' 3.10 Two ways of looking at diffraction
U;TS7A3 3.11 Examples of Fraunhofer diffraction
1L+hI=\O 3.12 Fraunhofer diffraction and Fourier transforms
:3XvHL0rx 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
{[`(o
0@( 3.14 The Fraunhofer condition Ⅲ:object and image
1h(IrV5 g 3.15 The Fresnel case of diffraction
)">#bu$ 3.16 Fraunhofer diffraction and optical resolution
9C2pGfEbn} 3.17 Surfaces whose fields are related by a Fourier transform
QV.>Cy 3.18 Kirchhoff boundary conditions:a harder look
Dt> tTU 6 Problems
S.Kcb=;"L J[r_ag 4 Diffraction gratings
p`rjWpH 4.1 Introduction
G_5{5Ar 4.2 A basic transmission grating
H\n6t-l 4.3 The multiple-element pattern
vea{o35! 4.4 Reflection grating
8(l0\R,%+z 4.5 Blazing
38m9t' 4.6 Grating spectrometric instruments
("PZ!z1m1 4.7 Spectroscopic resolution
|bSAn*6b 4.8 Making gratings
.a :7|L#a 4.9 Tricks of the trade
rqiH!R 4.9.1 Normal spectrum
tmoCy0qWz 4.9.2 Correct illumination
j>?nL~{
4.9.3 Shortening exposure times with a spectrograph
f*rub. y 4.9.4 Vacuum instruments
[%R?^*] 4.9.5 Double monochromator
xzOvc<u 4.9.6 An inventor's paradise
wJJ|]^0. 4.10 Beyond the simple theory
Q:7P
/ Problems
37:tu7e~c Og1\6Q 5 The Fabry-Perot
u/wX7s 5.1 Introduction
a@&qdp 5.2 Elementary theory
CQ<