《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
-AD`(b7q 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
zjcSn7iu 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
KWD{_h{ R
k}E_1_S( ]+a~/ 市场价:¥78.00
SSla^,MHef 优惠价:¥58.50 免费送货,货到付款!
4gev^/^^
&[j9Up' w6h83m
3 1 Electromagnetism and basic optics
Q(aNa!
1.1 Introduction
,xrA2 1.2 The Maxwell eqiations
v@SHR0 1.3 Linear isotropic media
Sw; kUJ 1.4 Plane electromagnetic waves
8(y%]#n 1.5 Energy flow
.=<s@Sg,t 1.6 Scalar wave amplitudes
e1JHN 1.7 Dispersive media
dqQJC qc! 1.8 Electrical transmission lines
st)v'ce, 1.9 Elementary(ray)optics
Pw]r&)I`y[ 1.9.1 The thin lens
NvTK7? v 1.9.2 Sign conventions
`+vQ5l$;L 1.9.3 Refraction at a spherical surface
bo<.pK$ 1.9.4 The thick lens
~8(Xn2 1.10 Rays and waves
,YBO}l Problems
FNOsw\Bo /=AFle2( 2 Fourier series and Fourier transforms
oHv.EO 2.1 Introduction
ik)u/r DW 2.2 Fourier series:spectrum of a periodic waveform
1i.3P$F 2.3 Fourier series:a mathematical reshape
>Z3> 2.4 The Fourier transform:spectrum of a non-periodic waveform
qa@;S,lp 2.5 The analytic signal
Hhk`yX c_ 2.6 The Dirac δ-function
]3='TN8aQF 2.7 Frequency and angular frequency
Ci4c8 2.8 The power spectrum
eg?p)| 2.9 Examples of Fourier transforms
N TDmOS\, 2.9.1 A single rectangular pulse
{`
bX*] 2.9.2 The double pulse
[PiMu,O[v 2.9.3 A δ-function pulse
0[<'ygu 2.9.4 A regular array of δ-functions
!ii(2U 2.9.5 A random array of δ-functions
'-n
Iy$> 2.9.6 An infinite sinewave
AX6:*aZB 2.10 Convolution and the convolution theorem
<3N\OV2 2.11 Examples of convoltion
''q;yKpaz 2.12 Sign choices with Fourier transforms
e:4,rfF1 problems
*\}$,/m[' ht6}v<x.eA 3 Diffraction
/g9^g( 3.1 Introduction
FYE(lEjxi 3.2 Monochromatic spherical wave
_99 +Vjy 3.3 The Kirchhoff diffraction integral
t.RDS2N| 3.4 The Kirchhoff boundary conditions
aQY.96yo 3.5 Simplifying the Kirchhoff inregral
>$CNR*}@ 3.6 Complementary screens:the Babinet principle
a;U)#*(5|v 3.7 The Fraunhofer condition I:provisional
a_[+id 3.8 Fraunhofer diffraction in'one dimension'
bf1$:09 3.9 Fraunhofer diffraction in'two dimensions'
`
-SC,qHw 3.10 Two ways of looking at diffraction
WL'!M&h 3.11 Examples of Fraunhofer diffraction
{&D$U'ye 3.12 Fraunhofer diffraction and Fourier transforms
lB/^ 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
F g):>];<9 3.14 The Fraunhofer condition Ⅲ:object and image
c w)J+Lyh 3.15 The Fresnel case of diffraction
roG<2i F 3.16 Fraunhofer diffraction and optical resolution
*0L3#. i 3.17 Surfaces whose fields are related by a Fourier transform
]g oVQ'Y 3.18 Kirchhoff boundary conditions:a harder look
1>OU~A" Problems
y0O e)oP Xa;wx3]t 4 Diffraction gratings
'Pn:10; 4.1 Introduction
0;=]MEk? 4.2 A basic transmission grating
YKayaI\* 4.3 The multiple-element pattern
(;9fkqm%m 4.4 Reflection grating
;"EDFH#W 4.5 Blazing
N.E{6_{S 4.6 Grating spectrometric instruments
/4+zT?f 4.7 Spectroscopic resolution
/FW$)w2{j 4.8 Making gratings
\}=W*xxB 4.9 Tricks of the trade
O5+Ah% 4.9.1 Normal spectrum
zT/woiyB` 4.9.2 Correct illumination
Kc1w[EQ 4.9.3 Shortening exposure times with a spectrograph
mAIl)mq|g 4.9.4 Vacuum instruments
jY/(kA]} 4.9.5 Double monochromator
mKV31wvK} 4.9.6 An inventor's paradise
Td7Q%7p: 4.10 Beyond the simple theory
7oUo [ Problems
|na9I6 .v+J@Y a 5 The Fabry-Perot
4z~;4 5.1 Introduction
).u>%4=6 5.2 Elementary theory
k`[>Bk%b 5.3 Basic apparatus
wkPomTO 5.4 The meaning of finesse
XPt>klf 5.5 Free spectral range and resolution
TI"Ki$jC 5.5.1 Free spectral range
<bhJ > 5.5.2 Resolution
+
<w6sPm 5.6 Analysis of an étalon fringe pattern
lY,9bSF$ 5.7 Flatness and parallelism of Fabry-Perot plates
,1<6=vL 5.8 Designing a Fabry-Perot to do a job
9T`YHA'g 5.9 Practicalities of spectroscopy using a Fabry-Perot
sMJa4P>O@ 5.10 The Fabry-Perot as a source of ideas
"av/a Problems
,5t_}d|3C= o2]Np~`g, 6 Thin films
-H_#et3&i