《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
K"=I,Vr: 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
0e~4(2xK 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
*edhJUT
uWr vkLGN tb'O:/ 市场价:¥78.00
X./7b{Pax 优惠价:¥58.50 免费送货,货到付款!
V%w]HIhq
X|pOw," WaDdZIz4 1 Electromagnetism and basic optics
";/,FUJJ 1.1 Introduction
{r[g.@ 1.2 The Maxwell eqiations
|("zW7g 1.3 Linear isotropic media
&n2dL->*# 1.4 Plane electromagnetic waves
dj:6c@n 1.5 Energy flow
m^YYdyn]M 1.6 Scalar wave amplitudes
5l
/EZ\q 1.7 Dispersive media
oAq<ag\qV 1.8 Electrical transmission lines
iJEKLv 1.9 Elementary(ray)optics
kKNrCv@64d 1.9.1 The thin lens
05[k@f$n 1.9.2 Sign conventions
/c52w"WW 1.9.3 Refraction at a spherical surface
]n&Eb88 1.9.4 The thick lens
^U{SUWl 1.10 Rays and waves
<.c#l': Problems
GPU,.s"&( ,mvU`>Ry 2 Fourier series and Fourier transforms
+J(@. 2.1 Introduction
&/]g@^h9 2.2 Fourier series:spectrum of a periodic waveform
*gL-v]V 2.3 Fourier series:a mathematical reshape
Z/[ww8b. 2.4 The Fourier transform:spectrum of a non-periodic waveform
OOX[xv!b 2.5 The analytic signal
+ Awo\;@, 2.6 The Dirac δ-function
-ZE]VO*F 2.7 Frequency and angular frequency
[<A|\d'x 2.8 The power spectrum
H6%%n
X 2.9 Examples of Fourier transforms
l]__!X 2.9.1 A single rectangular pulse
A\};^Y 2.9.2 The double pulse
x`gsD3C 2.9.3 A δ-function pulse
1usLCG>w{ 2.9.4 A regular array of δ-functions
$]S*(K3U~ 2.9.5 A random array of δ-functions
@vkO(o 2.9.6 An infinite sinewave
|qX[Dk 2.10 Convolution and the convolution theorem
uO}UvMW 2.11 Examples of convoltion
!6:X] 2.12 Sign choices with Fourier transforms
,e5#wz problems
u|D|pRM-LT ^|ln q.j 3 Diffraction
U8R*i7 3.1 Introduction
gOKF%Ej31T 3.2 Monochromatic spherical wave
)l"py9STF 3.3 The Kirchhoff diffraction integral
w>Y!5RnO 3.4 The Kirchhoff boundary conditions
:7jDgqn^|i 3.5 Simplifying the Kirchhoff inregral
}
cQ`L 3.6 Complementary screens:the Babinet principle
`KUl
XS( 3.7 The Fraunhofer condition I:provisional
"3X~BdH&J 3.8 Fraunhofer diffraction in'one dimension'
;dE'# Kb 3.9 Fraunhofer diffraction in'two dimensions'
M7g6m 3.10 Two ways of looking at diffraction
%[H|3 3.11 Examples of Fraunhofer diffraction
^OnZ9?C{R 3.12 Fraunhofer diffraction and Fourier transforms
F{"4cyoou 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
!;s5\91 3.14 The Fraunhofer condition Ⅲ:object and image
] B3\IT 3.15 The Fresnel case of diffraction
>7I"_#x1: 3.16 Fraunhofer diffraction and optical resolution
W"*~1$vf 3.17 Surfaces whose fields are related by a Fourier transform
h;?H4j 3.18 Kirchhoff boundary conditions:a harder look
?0k4l8R Problems
IIIP<nyc v[I,N$: 4 Diffraction gratings
k9vzxZ%s: 4.1 Introduction
@eU5b63jM 4.2 A basic transmission grating
b?{ \t; 4.3 The multiple-element pattern
\zGmZZ 4.4 Reflection grating
i"J`$u 4.5 Blazing
1a>TJdoa 4.6 Grating spectrometric instruments
XpU%09K 4.7 Spectroscopic resolution
)7}f. 4.8 Making gratings
$~FnBD%|{ 4.9 Tricks of the trade
S1D=' k] 4.9.1 Normal spectrum
u[G`_Y{=EM 4.9.2 Correct illumination
1&Ruz[F5 4.9.3 Shortening exposure times with a spectrograph
+ tza]r: 4.9.4 Vacuum instruments
qxW^\u!< 4.9.5 Double monochromator
C3>`e3v 4.9.6 An inventor's paradise
oZSPdk
4.10 Beyond the simple theory
akB+4?+s) Problems
S<bsrS*$ &D*22R4{CX 5 The Fabry-Perot
?'I pR 5.1 Introduction
bfl%yGkd/| 5.2 Elementary theory
-J\R}9 lIm 5.3 Basic apparatus
6
r}R%{ 5.4 The meaning of finesse
*
j]"I=D 5.5 Free spectral range and resolution
*Y/}EX!F 5.5.1 Free spectral range
\1R<GBC4 5.5.2 Resolution
~rICPR 5.6 Analysis of an étalon fringe pattern
+(l(|lQy$ 5.7 Flatness and parallelism of Fabry-Perot plates
AIX?840V 5.8 Designing a Fabry-Perot to do a job
GB\1' 5.9 Practicalities of spectroscopy using a Fabry-Perot
>hsvRX\_` 5.10 The Fabry-Perot as a source of ideas
dD.;P=AP Problems
aq-R#q g\q*,1
6 Thin films
U,2H) {l/ 6.1 Introduction
Lx#CFrLQ* 6.2 Basic calculation for one layer
T(2*P5%& 6.3 Matrix elimination of'middle'amplitudes
'&42E[0P 6.4 Reflected and transmitted Waves
Bq4^nDK 6.5 Impedance concepts
$zv&MD!&h 6.6 High-reflectivity mirrors
7ts`uI<E@7 6.7 Anti-reflection coatings
Kdr7JQYzuz 6.8 Interference filters
wi$,Y.: 6.9 Practicalities of thin-film deposition
uEX+j Problems
g
r[M-U yirQ 7 Ray matrices and Gaussian beams
.5K}R< 7.1 Introduction
u/>+cT6} 7.2 Matrix methods in ray optics
VS
?n pH 7.3 Matrices for translation and refraction
L$Yg*]\ 7.4 Reflections
F*rsi7#!pG 7.5 Spherical waves
3tu:Vc.:M 7.6 Gaussian beams
"B3&v%b 7.7 Properties of a Gaussian beam
i}E&mv' 7.8 Sign conventions
b"7L
;J5| 7.9 Propagation of a Gaussian beam
rf= ndjrH 7.10 Electric and magnetic fields
OuuN~yC Problems
z8-dntkf }$E341@ 8 Optical cavities
'%y5Dh 8.1 Introduction
@4xV3Xkf&C 8.2 Gauss-Hermite beams
&&$,BFY4 8.3 Cavity resonator
9_ru*j\ 8.4 Cavity modes
2vh@KnNU 8.5 The condition for a low-loss mode
{#C)S&o)6 8.6 Finding the mode shape for a cavity
fjP(r+[ 8.7 Longitudinal modes
X5w_ }Nhe 8.8 High-loss cavities
Uuq*;L 8.9 The symmetrical confocal cavity
yi&6HNb 8.10 The confocal Fabry-Perot
3<R8_p 8.11 Choice of cavity geometry for a laser
_6!@>`u~ 8.12 Selection of a desired transverse mode
9^<Y~rkm
8.13 Mode matching
Iy8fN"I9D Problems
odsLFU( x*7Q 9 Coherence:qualitative
0Q4i<4 XW 9.1 Introduction
>Sc/E}3 9.2 Terminology
AJ"a 9.3 Young fringes:tolerance to frequency range
tQ7:4._ 9.4 Young fringes:tolerance to collimation
XT` 2Z= 9.5 Coherence area
JcJc&cG 9.6 The Michelson stellar interferometer
J{qsCJiB 9.7 Aperture synthesis
]TX"BH"2 9.8 Longitudinal and transverse coherence
Uy98lv 9.9 Interference of two parallel plane waves
rm?C_ 9.10 Fast and slow detectors
Ouos f1 9.11 Coherence time and coherence length
A!uO7".E 9.12 A Michelson interferometer investigating longitudinal coherence
)&vuT
q'7' 9.13 Fringe visibility
V ah&)&n 9.14 Orders of magnitude
ec3zoKtV 9.15 Discussion
`W9~u: F 9.15.1 What of lasers?
,`,1s9\&t 9.15.2 The Young slits:another look
PP&