《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
\sZ!F&a~ 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
U6@j=|q 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
=tE7XC3X_
VCZ.{MD L<**J\=7M 市场价:¥78.00
X!%CYmIRb 优惠价:¥58.50 免费送货,货到付款!
[vs5e3B)
EpCsJ08K UfnjhHu 1 Electromagnetism and basic optics
Wq1% 1.1 Introduction
t)Mi,ljY[ 1.2 The Maxwell eqiations
h{&}p-X&[ 1.3 Linear isotropic media
9,`eYAu 1.4 Plane electromagnetic waves
-_RMiGM?T 1.5 Energy flow
P~y% 1.6 Scalar wave amplitudes
-mlBr63Bj 1.7 Dispersive media
<k0$3&D 1.8 Electrical transmission lines
S-\;f jh 1.9 Elementary(ray)optics
#PpmR_IX 1.9.1 The thin lens
xu _: 1.9.2 Sign conventions
'% $)"g]/# 1.9.3 Refraction at a spherical surface
2}P?N 1.9.4 The thick lens
b]Xc5Dp{ 1.10 Rays and waves
3~7X2}qU Problems
t_PAXj I8C(z1(N 2 Fourier series and Fourier transforms
~al4`:rRx1 2.1 Introduction
Qyr^\a;k' 2.2 Fourier series:spectrum of a periodic waveform
W9ZfD~(3- 2.3 Fourier series:a mathematical reshape
i+)9ItZr 2.4 The Fourier transform:spectrum of a non-periodic waveform
CnT]uU 2.5 The analytic signal
K(+ ~#$|-~ 2.6 The Dirac δ-function
!z7j.u`Y 2.7 Frequency and angular frequency
qMrBTq[ 2.8 The power spectrum
9K\A4F} 2.9 Examples of Fourier transforms
SW
^F 2.9.1 A single rectangular pulse
B=mk@gX,G 2.9.2 The double pulse
qd=&*? 2.9.3 A δ-function pulse
:qbbo~U 2.9.4 A regular array of δ-functions
1d4?+[)gUv 2.9.5 A random array of δ-functions
?n 9<PMo 2.9.6 An infinite sinewave
jW^@lH
EU 2.10 Convolution and the convolution theorem
Ydw04WEJ 2.11 Examples of convoltion
1/O7KR`K 2.12 Sign choices with Fourier transforms
2aef[TY problems
gi|j! m brk>oM;t 3 Diffraction
MY]Z@ 3.1 Introduction
df=G}M( 3.2 Monochromatic spherical wave
pDlU*& 3.3 The Kirchhoff diffraction integral
0(2r"Hi 3.4 The Kirchhoff boundary conditions
Gm0&y 3.5 Simplifying the Kirchhoff inregral
G(2(-x"+ 3.6 Complementary screens:the Babinet principle
$n30[P@p; 3.7 The Fraunhofer condition I:provisional
BM_hW8&G 3.8 Fraunhofer diffraction in'one dimension'
~|_s2T 3.9 Fraunhofer diffraction in'two dimensions'
6 6G$5 3.10 Two ways of looking at diffraction
UQmdm$. 3.11 Examples of Fraunhofer diffraction
cN}Aeo 3.12 Fraunhofer diffraction and Fourier transforms
.</`# 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
$wgHaSni 3.14 The Fraunhofer condition Ⅲ:object and image
^h}xFiAV# 3.15 The Fresnel case of diffraction
Fc{X$hh< 3.16 Fraunhofer diffraction and optical resolution
n2NxO0 3.17 Surfaces whose fields are related by a Fourier transform
T2Q`Ax7 3.18 Kirchhoff boundary conditions:a harder look
\t6k(5J Problems
1$&(ei]*: [YbnpI 4 Diffraction gratings
,i>{yrsOh 4.1 Introduction
S${n:e0\ 4.2 A basic transmission grating
zJhG`iWFw 4.3 The multiple-element pattern
#nTzn2 4.4 Reflection grating
Qy>n]->% 4.5 Blazing
jF5Y-CX 4.6 Grating spectrometric instruments
|yqL0x0\l 4.7 Spectroscopic resolution
{$,t^hd 4.8 Making gratings
sp=;i8Y 3 4.9 Tricks of the trade
'&XL|_Iq 4.9.1 Normal spectrum
\e89 >m 4.9.2 Correct illumination
0+\%os V 4.9.3 Shortening exposure times with a spectrograph
ia'eV10 4.9.4 Vacuum instruments
UMcQqV+vT 4.9.5 Double monochromator
: MfY8P) 4.9.6 An inventor's paradise
op\'T;xIu 4.10 Beyond the simple theory
P;.j5P^j` Problems
Hs}3c
R} N:"S/G>r ; 5 The Fabry-Perot
_Hhf.DmUAH 5.1 Introduction
?X'm>R. @ 5.2 Elementary theory
k/6Qwb# 5.3 Basic apparatus
l70a&[W 5.4 The meaning of finesse
"iu9r%l94 5.5 Free spectral range and resolution
4 f)B@A- 5.5.1 Free spectral range
|ia#Elavo 5.5.2 Resolution
p\A!"KC 5.6 Analysis of an étalon fringe pattern
%25GplMT 5.7 Flatness and parallelism of Fabry-Perot plates
gk & 5.8 Designing a Fabry-Perot to do a job
JDp"!x{O 5.9 Practicalities of spectroscopy using a Fabry-Perot
#(i9G^K 5.10 The Fabry-Perot as a source of ideas
S.u1[Yz^ Problems
V7+fNr]I Owe"x2D\ 6 Thin films
,~z*V;y) 6.1 Introduction
I&m C 6.2 Basic calculation for one layer
} D'pyTf[ 6.3 Matrix elimination of'middle'amplitudes
,>YW7+kY 6.4 Reflected and transmitted Waves
q9)]R
6.5 Impedance concepts
8>\tD 6.6 High-reflectivity mirrors
%QYH]DR 6.7 Anti-reflection coatings
K~1uR:DR 6.8 Interference filters
DW@|H 6.9 Practicalities of thin-film deposition
-2o_ L? Problems
9oe=*#Ig1m |n*nByL/ 7 Ray matrices and Gaussian beams
50<QF 7.1 Introduction
Gr),o6}p 7.2 Matrix methods in ray optics
f ye=8
r 7.3 Matrices for translation and refraction
J~}%j.QQ7 7.4 Reflections
^k*h 7.5 Spherical waves
5_H`6-q 7.6 Gaussian beams
C\3;o] 7.7 Properties of a Gaussian beam
0*=[1tdWY 7.8 Sign conventions
bfE4.YF 7.9 Propagation of a Gaussian beam
!R`E+G@ 7.10 Electric and magnetic fields
sz"N,-<Ig Problems
bR\Oyd~e (dH "b
* 8 Optical cavities
IonphTcU! 8.1 Introduction
Z,jR:_p 8.2 Gauss-Hermite beams
X[e:fW[e) 8.3 Cavity resonator
Z9)-kRQz=r 8.4 Cavity modes
K *QRi/O 8.5 The condition for a low-loss mode
rf ?\s/#OY 8.6 Finding the mode shape for a cavity
{Xjj-@ 8.7 Longitudinal modes
3i*HwEh 8.8 High-loss cavities
cF2!By3M 8.9 The symmetrical confocal cavity
hw @)W 8.10 The confocal Fabry-Perot
M ^89]woC 8.11 Choice of cavity geometry for a laser
&1 BACKu 8.12 Selection of a desired transverse mode
aVE/qXB 8.13 Mode matching
6T9?C|q Problems
~Y_5q)t( ]B2%\}c 9 Coherence:qualitative
vWs#4JoG 9.1 Introduction
|7$Q'3V 9.2 Terminology
qexnsL 9.3 Young fringes:tolerance to frequency range
: Yb_ 9.4 Young fringes:tolerance to collimation
+{r~-Rn3 9.5 Coherence area
2+oS'nL 9.6 The Michelson stellar interferometer
>d9b"T 9.7 Aperture synthesis
5qL;@Y 9.8 Longitudinal and transverse coherence
] >4CBm$ 9.9 Interference of two parallel plane waves
jap5FG+2 9.10 Fast and slow detectors
zMg(\8 9.11 Coherence time and coherence length
(g*mC7 HN 9.12 A Michelson interferometer investigating longitudinal coherence
EK%J%NY 9.13 Fringe visibility
{hH8+4c7 9.14 Orders of magnitude
yt4sg/]: 9.15 Discussion
N hY`_?) 9.15.1 What of lasers?
HOr.(gL! 9.15.2 The Young slits:another look
<1pRAN0 9.15.3 Fast and slow detectors:another look
=^5#o)~BB 9.15.4 Grating monochromator:another look
%_L~"E 2e 9.15.5 Polarized and unpolarized light
_qf$dGqc
Problems
M/abd 7q 8+n*S$ 10 Coherence:correlation functions
_, r6t 10.1 Introduction
kZK1{ 10.2 Correlation function:definition
mb?r{WCi 10.3 Autocorrelation and the Michelson interferometer
mD_sf_2> 10.4 Normalized autocorrelation function
C9j3|]nyL 10.5 Fringe visibility
Njmb{L]Cps 10.6 The Wiener-Khintchine theorem
aInh?- 10.7 Fourier transform spectroscopy
MFtC2* 10.8 Partial coherence:transverse
"MPr'3 10.9 The van Cittert-Zernike theorem
g@Z7f y7 10.10 Intensity correlation
E5X#9;U8E" 10.11 Chaotic light and laser light
($X2SIZh 10.12 The Hanbury Brown-Twiss experiment
g/W&Ap;qVL 10.13 Stellar diameters measured by intensity correlation
#GfM!<q< 10.14 Classical and quantum optics
(Rs|"];?Z Problems
7csMk5NU'< 5?34<B 11 Optical practicalities:étendue,interferometry,fringe localization
%%{f-\-7Ig 11.1 Introduction
3>#io^35 11.2 Energy flow:étendue and radiance
l,k.Jo5 11.3 Conservation of étendue and radiance
g?gF*^_0 11.4 Longitudinal and transverse modes
K9_@[}Ge 11.5 étendue and coherence area
w gkY\Q 11.6 Field modes and entropy
bNG7A[|B 11.7 Radianee of some optical sources
E G J/r 11.7.1 Radiance of a black body
[l*;+N+ 11.7.2 Radiance of a gas-discharge lamp
iTVepYv4m 11.7.3 Radiance of a light-emitting diode (
LED)
y(yBRR 11.8 étendue and interferometers
_X~xfmU 11.9 大Etendue and spectrometers
c{{RP6o/j= 11.10 A design study:a Fourier-transform spectrometer
Y?4N%c_; 11.11 Fringe locahzation
fU>4Ip1?y/ Problems
-1%AM40j wqF_hs(O 12 Image formation:diffraction theory
P0l.sVqL 12.1 Introduction
GDwijZw 12.2 Image formation with transversely Coherent illumination informal
CPLsSv5 12.3 Image formation:ideal optical system
KS R'X0' 12.4 Image formation:imperfect optical system
gJJ BRn{MI 12.5 Microscope resolution:Abbe theory
|o#pd\ 12.5.1 Abbe theory:introduction
@0D 12.5.2 Abbe theory:explanation
X8 A$&