《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
^dWa;m]l 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
LBeF&sb6 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
>58YjLXb
K-)]
1BG 0D.Mke ) 市场价:¥78.00
uh0VFL*@ 优惠价:¥58.50 免费送货,货到付款!
,Zx0%#6
P8:dU(nlW ~7w"nIs<c 1 Electromagnetism and basic optics
RMV/&85?y 1.1 Introduction
v4TQX<0s 1.2 The Maxwell eqiations
CZwXTHe 1.3 Linear isotropic media
{lzWrUGO 1.4 Plane electromagnetic waves
?>:g?.+ 1.5 Energy flow
0],r0 1.6 Scalar wave amplitudes
4\N;2N 1.7 Dispersive media
Pbn*_/H 1.8 Electrical transmission lines
%A/0 ' 1.9 Elementary(ray)optics
d'gfQlDny 1.9.1 The thin lens
HVCe;eI 1.9.2 Sign conventions
C[AqFo 1.9.3 Refraction at a spherical surface
! I:%0D 1.9.4 The thick lens
X,%
0/6*] 1.10 Rays and waves
W+c<2?d: Problems
_yx>TE2e ($MlX BI 2 Fourier series and Fourier transforms
oCv.Ln1;Z 2.1 Introduction
R%WCH?B<} 2.2 Fourier series:spectrum of a periodic waveform
G$"h&Xy1c 2.3 Fourier series:a mathematical reshape
n38p !oS 2.4 The Fourier transform:spectrum of a non-periodic waveform
Xu'&ynID 2.5 The analytic signal
Vm(y7}Aq{ 2.6 The Dirac δ-function
BwEN~2u6 2.7 Frequency and angular frequency
u~:y\/Y6 2.8 The power spectrum
05#1w#i 2.9 Examples of Fourier transforms
|^I0dR/w: 2.9.1 A single rectangular pulse
(8DC}kckE 2.9.2 The double pulse
k"%~"9 2.9.3 A δ-function pulse
eKgBy8tNS0 2.9.4 A regular array of δ-functions
-);Wfs 2.9.5 A random array of δ-functions
+o{R _ 2.9.6 An infinite sinewave
#Vt%@*
i 2.10 Convolution and the convolution theorem
B]wk+8SMY. 2.11 Examples of convoltion
2wg5#i 2.12 Sign choices with Fourier transforms
W\,s:6iqz problems
1=c\Rr9] ,-c6dS 3 Diffraction
d"mkL- 3.1 Introduction
n,(sBOQ 3.2 Monochromatic spherical wave
%(#y5yJ ] 3.3 The Kirchhoff diffraction integral
i>A s;* 3.4 The Kirchhoff boundary conditions
4B1v4g8} 3.5 Simplifying the Kirchhoff inregral
%XDc,AR[ 3.6 Complementary screens:the Babinet principle
/t57!& 3.7 The Fraunhofer condition I:provisional
5lmHotj# 3.8 Fraunhofer diffraction in'one dimension'
TER=*"! 3.9 Fraunhofer diffraction in'two dimensions'
[ ({nj` 3.10 Two ways of looking at diffraction
}eU*(
}<^
3.11 Examples of Fraunhofer diffraction
z,
)6"/; 3.12 Fraunhofer diffraction and Fourier transforms
\ZFGw&yN 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
<c-=3}=U\ 3.14 The Fraunhofer condition Ⅲ:object and image
jD]~ AwRJ 3.15 The Fresnel case of diffraction
H5B:;g@ 3.16 Fraunhofer diffraction and optical resolution
<?6|.\& 3.17 Surfaces whose fields are related by a Fourier transform
wu!59pL 3.18 Kirchhoff boundary conditions:a harder look
YUD`!C Problems
h 8S. x) 6 7.+
.2 4 Diffraction gratings
3{64 @s 4.1 Introduction
[A~xy'T 4.2 A basic transmission grating
%D34/=(X 4.3 The multiple-element pattern
S(lO(gY 4.4 Reflection grating
z+wA
rPxc 4.5 Blazing
]i)c{y 4.6 Grating spectrometric instruments
IB"w&