《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
6u[fCGi% 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
iRQ!J1SGcG 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
i8]EIXbMX
ohx[_}xN _$~>O7 市场价:¥78.00
TW|K.t@5#H 优惠价:¥58.50 免费送货,货到付款!
o) )` "^
I2[U #4n 5'2kP{; 1 Electromagnetism and basic optics
MIMC(< 1.1 Introduction
s9- qR_ 1.2 The Maxwell eqiations
1IXtu 1.3 Linear isotropic media
%OQdUH4x 1.4 Plane electromagnetic waves
_CwTe=K} 1.5 Energy flow
-3K h
>b) 1.6 Scalar wave amplitudes
}7 N6nZj` 1.7 Dispersive media
c -w #` 1.8 Electrical transmission lines
t7=D$ua 1.9 Elementary(ray)optics
'zyw-1 1.9.1 The thin lens
GVY7`k"km 1.9.2 Sign conventions
>eJ<-3L; 1.9.3 Refraction at a spherical surface
5.rAxdP 1.9.4 The thick lens
HC iRk1 1.10 Rays and waves
fz'qB-F
Y Problems
c_8&4 Dqy`7?Kn 2 Fourier series and Fourier transforms
ddHl&+G 2.1 Introduction
I)rnF 2.2 Fourier series:spectrum of a periodic waveform
7KC>?F 2.3 Fourier series:a mathematical reshape
\ .xS 2.4 The Fourier transform:spectrum of a non-periodic waveform
4fLRl-) 2.5 The analytic signal
'|8dt "C 2.6 The Dirac δ-function
q*I*B1p[m 2.7 Frequency and angular frequency
l\<.*6r 2.8 The power spectrum
k^5Lv#Z 2.9 Examples of Fourier transforms
qO6M5g: 2.9.1 A single rectangular pulse
+nYFLe 2.9.2 The double pulse
`TBXJ(Y 2.9.3 A δ-function pulse
yw1&I^7 2.9.4 A regular array of δ-functions
U1\7Hcs$ 2.9.5 A random array of δ-functions
yRXML\Ge 2.9.6 An infinite sinewave
o'2eSm0H 2.10 Convolution and the convolution theorem
$n<a`PdH 2.11 Examples of convoltion
Yy *=@qu>g 2.12 Sign choices with Fourier transforms
Ho &Q}<( problems
F#Lo^ 8 yD+4YD 3 Diffraction
Exb64n-_= 3.1 Introduction
]!/ 3.2 Monochromatic spherical wave
L(y70T 3.3 The Kirchhoff diffraction integral
O}M-6!%<, 3.4 The Kirchhoff boundary conditions
zxR]+9Zh 3.5 Simplifying the Kirchhoff inregral
HP# SR';E 3.6 Complementary screens:the Babinet principle
Af3|l 3.7 The Fraunhofer condition I:provisional
@*z"Hi>4 3.8 Fraunhofer diffraction in'one dimension'
B+W7zv 3.9 Fraunhofer diffraction in'two dimensions'
\n<!
ld 3.10 Two ways of looking at diffraction
*HoRYCL 3.11 Examples of Fraunhofer diffraction
^Jp T8B} 3.12 Fraunhofer diffraction and Fourier transforms
4'QX1p 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
jTa\I&s