《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
kqFP)!37 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
G3Z)Z)N 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
&5yVxL:
KV(Q;~8"X SLa>7`<Q 市场价:¥78.00
y*qVc E 优惠价:¥58.50 免费送货,货到付款!
D]zwl@sRX:
h&KO<> =vX/{C 1 Electromagnetism and basic optics
qm/)ku0 1.1 Introduction
N sXHO 1.2 The Maxwell eqiations
Q+[n91ey** 1.3 Linear isotropic media
M/b Sud?@% 1.4 Plane electromagnetic waves
]s<[D$ <, 1.5 Energy flow
o~`/_+ 1.6 Scalar wave amplitudes
yD zc<p\` 1.7 Dispersive media
EV]1ml k$ 1.8 Electrical transmission lines
T;r2.Pupn 1.9 Elementary(ray)optics
k>;`FFQU> 1.9.1 The thin lens
F1*>y 1.9.2 Sign conventions
ZOh`(})hy 1.9.3 Refraction at a spherical surface
!|^|,"A) 1.9.4 The thick lens
UtoT 1.10 Rays and waves
B38]~'8 Problems
ofm#'7P 0 Tp/6,EE 2 Fourier series and Fourier transforms
9jM}~XvV 2.1 Introduction
ssfr}fzH 2.2 Fourier series:spectrum of a periodic waveform
>qnko9 V 2.3 Fourier series:a mathematical reshape
0X6YdW _2X 2.4 The Fourier transform:spectrum of a non-periodic waveform
V%rzk*LA 2.5 The analytic signal
ag [ZW 2.6 The Dirac δ-function
Fs9!S a7v 2.7 Frequency and angular frequency
9X}10u: 2.8 The power spectrum
"@V Y 2.9 Examples of Fourier transforms
h4fJvOk|! 2.9.1 A single rectangular pulse
E(>=rD /+ 2.9.2 The double pulse
cr7 }^s 2.9.3 A δ-function pulse
wr$("A( 2.9.4 A regular array of δ-functions
y%"{I7!A 2.9.5 A random array of δ-functions
11Q1AN 2.9.6 An infinite sinewave
A8muQuj]~~ 2.10 Convolution and the convolution theorem
Sc]B#/~B 2.11 Examples of convoltion
n<LEler#M 2.12 Sign choices with Fourier transforms
~!B\(@GU problems
rBQ _iB_ s}vAS~~2L3 3 Diffraction
.s?L^Z^ 3.1 Introduction
&*M!lxDN 3.2 Monochromatic spherical wave
8{^kQ/]'| 3.3 The Kirchhoff diffraction integral
- YEZ]:" 3.4 The Kirchhoff boundary conditions
8V'~UzK 3.5 Simplifying the Kirchhoff inregral
8'HEms 3.6 Complementary screens:the Babinet principle
BtkOnbz8X 3.7 The Fraunhofer condition I:provisional
1+_`^|eK 3.8 Fraunhofer diffraction in'one dimension'
^UP`%egR 3.9 Fraunhofer diffraction in'two dimensions'
B6MB48#0gs 3.10 Two ways of looking at diffraction
|mZxfI 3.11 Examples of Fraunhofer diffraction
p_RsU`[ 3.12 Fraunhofer diffraction and Fourier transforms
94'&b=5+ 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
[_BP)e 3.14 The Fraunhofer condition Ⅲ:object and image
Cjn#00 3.15 The Fresnel case of diffraction
8I =2lK 3.16 Fraunhofer diffraction and optical resolution
/CrSu 3.17 Surfaces whose fields are related by a Fourier transform
5AFJC? 3.18 Kirchhoff boundary conditions:a harder look
"Wct({n Problems
(~p<
P+ R$R *'l 4 Diffraction gratings
IPS4C[v 4.1 Introduction
G<L;4nA) 4.2 A basic transmission grating
{5Q!Y&N.% 4.3 The multiple-element pattern
S,88*F(<^q 4.4 Reflection grating
?qb}?&1 4.5 Blazing
g@d*\ P) 4.6 Grating spectrometric instruments
Yj&F;_~ 4.7 Spectroscopic resolution
u+9hL4 4.8 Making gratings
)HEa<P^kJl 4.9 Tricks of the trade
.yoH/2h 4.9.1 Normal spectrum
/J]5H 4.9.2 Correct illumination
/!0={G 4.9.3 Shortening exposure times with a spectrograph
on4HKeO 4.9.4 Vacuum instruments
|Tv#4st 4.9.5 Double monochromator
ld[I}88$ 4.9.6 An inventor's paradise
xVw9v6@`h 4.10 Beyond the simple theory
lov!o:dJ Problems
$zUP?Gq! &sl0W-;0 5 The Fabry-Perot
f[]dfLS"W 5.1 Introduction
Sh/08+@+L: 5.2 Elementary theory
lt/1f{v[: 5.3 Basic apparatus
#NQMy:JHD) 5.4 The meaning of finesse
(^ JI%> 5.5 Free spectral range and resolution
Pd8![Z3 5.5.1 Free spectral range
S;Fi?M 5.5.2 Resolution
l5~os> 5.6 Analysis of an étalon fringe pattern
4VHn \ 5.7 Flatness and parallelism of Fabry-Perot plates
u2tfF 5.8 Designing a Fabry-Perot to do a job
EfqX
y>W 5.9 Practicalities of spectroscopy using a Fabry-Perot
rjK%t|aV^ 5.10 The Fabry-Perot as a source of ideas
T; 4NRC Problems
&j;wCvE4+ Q3 ea{!r 6 Thin films
|NlO7aQ>2H 6.1 Introduction
:@yEQ#nFp 6.2 Basic calculation for one layer
[|v][Hwv 6.3 Matrix elimination of'middle'amplitudes
(|2t#'m 6.4 Reflected and transmitted Waves
kj Jn2c:y 6.5 Impedance concepts
QL(n} {.% 6.6 High-reflectivity mirrors
pd?Mf=># 6.7 Anti-reflection coatings
M*0]ai|; 6.8 Interference filters
p#-Z4- ` 6.9 Practicalities of thin-film deposition
W" scV@HKu Problems
Zj(AJ* r x5pdS: 7 Ray matrices and Gaussian beams
j/DzCc p7 7.1 Introduction
;[ZEDF5H 7.2 Matrix methods in ray optics
MxKS4k 7.3 Matrices for translation and refraction
"MeVE#O 7.4 Reflections
`>o{P/HN 7.5 Spherical waves
8|gIhpO?^ 7.6 Gaussian beams
9+|$$) 7.7 Properties of a Gaussian beam
/WcG{Wdp 7.8 Sign conventions
6bg
;q(*7 7.9 Propagation of a Gaussian beam
hW<%R]^| 7.10 Electric and magnetic fields
YP oSRA L Problems
Lj({[H7D! @FAA2d 8 Optical cavities
Xg6Jh`` 8.1 Introduction
4Z3su^XR 8.2 Gauss-Hermite beams
ijv(9mR 8.3 Cavity resonator
{p2!|A&a 8.4 Cavity modes
$c!p& 8.5 The condition for a low-loss mode
v&\Q8!r_
8.6 Finding the mode shape for a cavity
<sbu;dQ` 8.7 Longitudinal modes
70d 1ReQ 8.8 High-loss cavities
Z-%\
<zT 8.9 The symmetrical confocal cavity
=IZT(8 8.10 The confocal Fabry-Perot
2k~l$p>CN! 8.11 Choice of cavity geometry for a laser
#~]zhHI 8.12 Selection of a desired transverse mode
Fe*R 8.13 Mode matching
!)f\%lb Problems
`7E;VL^Y1 ZvM(Q=^ 9 Coherence:qualitative
WCZjXDiwJ 9.1 Introduction
]h`&&B qt 9.2 Terminology
)MVz$h{c.] 9.3 Young fringes:tolerance to frequency range
u[;\y|75 9.4 Young fringes:tolerance to collimation
+fB5w?Rg 9.5 Coherence area
uh0VFL*@ 9.6 The Michelson stellar interferometer
,Zx0%#6 9.7 Aperture synthesis
l\H=m3Bg 9.8 Longitudinal and transverse coherence
5vQHhwO50k 9.9 Interference of two parallel plane waves
RMV/&85?y 9.10 Fast and slow detectors
r8?gD&