《现代经典
光学》从现代的视角描述了经典光学,也可称为“半经典光学”。书中内容大都与经典光学相关,包含了相关的现象、仪器和技术,以及一些常见的主题:
衍射、干涉、
薄膜和全息光学,也涉及了高斯
光束.
激光腔、cD阅读器和共焦
显微镜。涉及少量的
量子光学。《现代经典光学》内容丰富、新颖,讲解透彻,各章最后均附有相关习题,书末附有部分习题的解答,可供高年级本科生及低年级研究生参阅,也可作为相关领域研究人员的参考书。
["e3Ez 《现代经典光学》作者为牛津
大学物理系的Geoffrey Brooker。
&7wd?)s 《牛津大学研究生教材系列》介绍了物理学的主要领域的知识和柑关应用,旨在引导读者进入相关领域的前沿。丛书坚持深入浅出的写作风格,用丰富的示例、图表、总结加深读者埘内容的理解。书中附有习题供读者练习。
@Sbe^x
tlp@?(u o W Nh@C 市场价:¥78.00
;<2G 优惠价:¥58.50 免费送货,货到付款!
g5QZ0Qkj
_v=SH$O+ ^vO+(p 1 Electromagnetism and basic optics
&wE%<"aRAl 1.1 Introduction
E6gI,f/p0X 1.2 The Maxwell eqiations
K$_0`>[ 1.3 Linear isotropic media
8j\cL' 1.4 Plane electromagnetic waves
6Yxh9*N~] 1.5 Energy flow
-rli(RR)| 1.6 Scalar wave amplitudes
!|S43i&p 1.7 Dispersive media
7 uKY24 1.8 Electrical transmission lines
!pdb'*,n 1.9 Elementary(ray)optics
RnI&8 1.9.1 The thin lens
>R!jB]5 1.9.2 Sign conventions
//<nr\oP 1.9.3 Refraction at a spherical surface
,.1Psz^U 1.9.4 The thick lens
QR0Q{}wbqU 1.10 Rays and waves
)vb*Ef Problems
ndz]cx |! E)GahM 2 Fourier series and Fourier transforms
u=7J/!H7^ 2.1 Introduction
!~D}/Q;#}\ 2.2 Fourier series:spectrum of a periodic waveform
~C`^6UQr/? 2.3 Fourier series:a mathematical reshape
$LFYoovX 2.4 The Fourier transform:spectrum of a non-periodic waveform
g($DdKc|g 2.5 The analytic signal
M`i\VG 2.6 The Dirac δ-function
],a 5)kV 2.7 Frequency and angular frequency
1@1U/ss1 2.8 The power spectrum
Rt!FPoN,y 2.9 Examples of Fourier transforms
/M4{Wc 2.9.1 A single rectangular pulse
cH?B[S;] 2.9.2 The double pulse
b8SHg^} 2.9.3 A δ-function pulse
(l-ab2' 2.9.4 A regular array of δ-functions
L(-b@Joh 2.9.5 A random array of δ-functions
O-I[igNl 2.9.6 An infinite sinewave
ZR?yDgL 2.10 Convolution and the convolution theorem
Ww%=1M]e- 2.11 Examples of convoltion
u5: q$P 2.12 Sign choices with Fourier transforms
`FTy+8mw problems
DLMM/WJg@ lP@Ki5 3 Diffraction
X_|J@5b7 3.1 Introduction
hB>oJC 3.2 Monochromatic spherical wave
8a'.ZdqC? 3.3 The Kirchhoff diffraction integral
)ZqTwEr@[ 3.4 The Kirchhoff boundary conditions
t@N=kV 3.5 Simplifying the Kirchhoff inregral
lXiKY@R# 3.6 Complementary screens:the Babinet principle
P} SCF 3.7 The Fraunhofer condition I:provisional
DYxCQ
D 3.8 Fraunhofer diffraction in'one dimension'
Z}l3l`h! 3.9 Fraunhofer diffraction in'two dimensions'
OFv%B/O 3.10 Two ways of looking at diffraction
a8iQ4
3.11 Examples of Fraunhofer diffraction
Oz`BEyb]{ 3.12 Fraunhofer diffraction and Fourier transforms
NzSoqh{R 3.13 The Fraunhofer condition Ⅱ:Rayleigh distance and Fresnel number
#( jw!d& 3.14 The Fraunhofer condition Ⅲ:object and image
E}p&2P+MR 3.15 The Fresnel case of diffraction
X/2&!O 3.16 Fraunhofer diffraction and optical resolution
tEK my7'# 3.17 Surfaces whose fields are related by a Fourier transform
U\;6mK)M^J 3.18 Kirchhoff boundary conditions:a harder look
ytoo~n Problems
@EpIh& Q/_f
zg 4 Diffraction gratings
EzV96+ 4.1 Introduction
db6b-Y{ 4.2 A basic transmission grating
OJ$]V,Z00x 4.3 The multiple-element pattern
4/1d&Sg 4.4 Reflection grating
xScLVt<\e 4.5 Blazing
7~aM=8r 4.6 Grating spectrometric instruments
ws|;` 4.7 Spectroscopic resolution
b6F4>@gjg 4.8 Making gratings
Uo>]sNP~ 4.9 Tricks of the trade
7-T{a<g 4.9.1 Normal spectrum
I`LuRlw
4.9.2 Correct illumination
`_{`l4i5 4.9.3 Shortening exposure times with a spectrograph
WKIoS"?-F 4.9.4 Vacuum instruments
T}P".kpbS 4.9.5 Double monochromator
V=V:SlS9| 4.9.6 An inventor's paradise
Nkl_Ho, 4.10 Beyond the simple theory
^Z#W_R\l Problems
}J1tdko# _/!y)&4" 5 The Fabry-Perot
w1#gOwA,$ 5.1 Introduction
?5cI' 5.2 Elementary theory
xAe~]k_D 5.3 Basic apparatus
?)X,0P' 5.4 The meaning of finesse
3G~@H>j 5.5 Free spectral range and resolution
ur@Z|5 5.5.1 Free spectral range
;b(p=\i 5.5.2 Resolution
oifv+oY 5.6 Analysis of an étalon fringe pattern
*B{j.{
p( 5.7 Flatness and parallelism of Fabry-Perot plates
rZ^v?4Z\ 5.8 Designing a Fabry-Perot to do a job
,JN8f]a^"g 5.9 Practicalities of spectroscopy using a Fabry-Perot
h{p=WWK 5.10 The Fabry-Perot as a source of ideas
S9`flo Problems
p)3U7"q fKeT~z{~ 6 Thin films
pg%aI, 6.1 Introduction
x{c/$+Z[ 6.2 Basic calculation for one layer
F>[,zN 6.3 Matrix elimination of'middle'amplitudes
^? ]%sdT q 6.4 Reflected and transmitted Waves
:!b'Vk 6.5 Impedance concepts
{0^&SI"5`E 6.6 High-reflectivity mirrors
`zXO_@C 6.7 Anti-reflection coatings
EEZw_ 1 6.8 Interference filters
,|plWIl~ 6.9 Practicalities of thin-film deposition
)!:Lzi Problems
MFm"G E7)=`kSl 7 Ray matrices and Gaussian beams
FMkzrs 7.1 Introduction
oK%K}{` 7.2 Matrix methods in ray optics
09kt[
7.3 Matrices for translation and refraction
Fa_VKAq 7.4 Reflections
wz.6du6- 7.5 Spherical waves
yK2^Y]Ku? 7.6 Gaussian beams
"=za??\K} 7.7 Properties of a Gaussian beam
~\3kx]^10 7.8 Sign conventions
@wC5 g 4E 7.9 Propagation of a Gaussian beam
3UQ;X**F 7.10 Electric and magnetic fields
R@#G>4 Problems
Ch%m w{90` 8 Optical cavities
Cp]"1%M, 8.1 Introduction
;~u{56 8.2 Gauss-Hermite beams
-7&Gi
+] 8.3 Cavity resonator
+_xOLiu
8.4 Cavity modes
!o+_T? 8.5 The condition for a low-loss mode
3LTcEd 8.6 Finding the mode shape for a cavity
M7+h(\H]2 8.7 Longitudinal modes
<rL/B
k 8.8 High-loss cavities
AT)a :i 8.9 The symmetrical confocal cavity
4bJZmUb 8.10 The confocal Fabry-Perot
%8M)2?E 8.11 Choice of cavity geometry for a laser
4bEf 8.12 Selection of a desired transverse mode
x5WW--YR+ 8.13 Mode matching
9{8GP Problems
>ap1"n9k )){9&5,0: 9 Coherence:qualitative
}sFm9j7yR 9.1 Introduction
S#Sb ] 9.2 Terminology
( nab 9.3 Young fringes:tolerance to frequency range
I1>N4R-j 9.4 Young fringes:tolerance to collimation
D.6,VY H 9.5 Coherence area
FSbHn{@ 9.6 The Michelson stellar interferometer
t/PlcV_M" 9.7 Aperture synthesis
\VFHHi:I 9.8 Longitudinal and transverse coherence
i^!ez5z 9.9 Interference of two parallel plane waves
V$rlA'+1v 9.10 Fast and slow detectors
)&<=.q 9.11 Coherence time and coherence length
F5qFYL; 9.12 A Michelson interferometer investigating longitudinal coherence
\yGsr Bl 9.13 Fringe visibility
c9nH}/I_ 9.14 Orders of magnitude
~|AwN [ 9.15 Discussion
7 +@qB]Bi< 9.15.1 What of lasers?
A?T<",bO 9.15.2 The Young slits:another look
KyO8A2'U 9.15.3 Fast and slow detectors:another look
I;?X f 9.15.4 Grating monochromator:another look
h<\_XJJ 9.15.5 Polarized and unpolarized light
zn@N'R/ Problems
xN@Pz)yo `3'0I /d"z 10 Coherence:correlation functions
Iu35#j 10.1 Introduction
$eBX 10.2 Correlation function:definition
s{4 \xAS> 10.3 Autocorrelation and the Michelson interferometer
&h,5:u 10.4 Normalized autocorrelation function
aRJ>6Q} 10.5 Fringe visibility
A=-F,=k(!/ 10.6 The Wiener-Khintchine theorem
OcSEo7W 10.7 Fourier transform spectroscopy
2. X" f 10.8 Partial coherence:transverse
:ECi+DxBK 10.9 The van Cittert-Zernike theorem
0G2g4DSKD 10.10 Intensity correlation
45H!;Qsk 10.11 Chaotic light and laser light
irZFV
10.12 The Hanbury Brown-Twiss experiment
Px>va01n 10.13 Stellar diameters measured by intensity correlation
pBC<u 10.14 Classical and quantum optics
z>[tF5 Problems
/)rkiwp *$M'`vj: 11 Optical practicalities:étendue,interferometry,fringe localization
0J8K9rP;z 11.1 Introduction
P~FUS%39"o 11.2 Energy flow:étendue and radiance
:9|W#d{o 11.3 Conservation of étendue and radiance
oQj=;[ 11.4 Longitudinal and transverse modes
.6pOvGKb 11.5 étendue and coherence area
h
!(>7/Gi 11.6 Field modes and entropy
V=:_ d, 11.7 Radianee of some optical sources
NS,5/t 11.7.1 Radiance of a black body
[&qA\ 11.7.2 Radiance of a gas-discharge lamp
PZD>U)M 11.7.3 Radiance of a light-emitting diode (
LED)
Pu>N_^ C 11.8 étendue and interferometers
Ut)r&? 11.9 大Etendue and spectrometers
t=#Pya 11.10 A design study:a Fourier-transform spectrometer
5ZAb]F90 11.11 Fringe locahzation
ARfRsPxr Problems
ehAu^^Q> H_IGFZ Ch 12 Image formation:diffraction theory
s
Fgadz6O 12.1 Introduction
L {ymI)Y^ 12.2 Image formation with transversely Coherent illumination informal
efuK 12.3 Image formation:ideal optical system
qOG}[%<^n7 12.4 Image formation:imperfect optical system
b r,+45: 12.5 Microscope resolution:Abbe theory
;#G%U!p 12.5.1 Abbe theory:introduction
:<~7y.*O{ 12.5.2 Abbe theory:explanation
$YG1z 12.6 Improving the basic microscope
sst,dA V$ 12.7 Phase contrast
<Jp1A#
%p 12.8 Dark-ground illumination
#rYENR[ 12.9 Schlieren
]wuy_+$ 12.10 Apodizing
.#5l$[' 12.11 Holography
I2HT2c$ 12.12 The point spread function
WO,xMfK 12.13 Optical transfer function;modulation transfer function
y02u?wJ Problems
]9S`[c$ 13 Holography
swpnuuC- 13.1 Introduction
B">yKB:D}t 13.2 Special case:plane-wave obiect beam and plane-wave reference beam
[]&(D_e" 13.3 The intensity of the reference beam
=<<3Pkv7@ 13.4 The response of a photographic emulsion
`HX3|w6W; 13.5 The theory of holography
Vul+]h[!h 13.6 Formatiol of an image
twk&-:' 13.7 What if we break a hologram in half?
$~'Tf>e 13.8 Replay with changed optical geometry
=J|sbY"] 13.9 The effect of a thick photographic emulsion
n!N\zx8 13.10 Phase holograms
Dr"/3xm 13.11 Gabor's holograms
hPufzhT 13.12 Practicalities
N)43};e 13.13 Applications of holography
wy4q[$.4v Problems
5su.+4z\ ibF#$&! 14 Optical fibres
?(im+2 14.1 Introduction
+CTmcbyOi 14.2 Fibre optics:basics
<uF [, 14.3 Transverse modes
>v0 :qN7| 14.4 Dispersion
(buw^
,NwZ 14.4.1 Material dispersion
;WI]vn 14.4.2 Intermodal and intramodal dispersion
mPmB6q%)] 14.5 Multimode fibres
+*t|yKO>[ 14.6 Single-mode fibres
{:Vf0Mhb Problems
Z|`fHO3j M<