一.
薄膜设计中数理概念的引入
B-KMlHe Vrlqje_Q 光学薄膜设计的重大变革:Philip Baumeister于1958年提出将设计问题转换为优化问题来考虑。
uZ3do|um wY%t# [T3 而优化问题则由一系列设计
参数(通常为层厚度)构成的评价函数来表达,使评价函数最小化则为膜系设计的目标。
4<PupJ R(&3})VOa "PN4{"`V 二.针式算法的引入及其数理思想:
p&<n_b f2o6GC_ 对于一膜系设计,已完成优化后,则层数和厚度已固定。若仍没有达到预计设计目标(即评价函数并不是足够小),此时一般优化方法难以再进一步进行优化(此时再优化还是会返回原优化状态)。针式优化则通过在膜系中插入一薄层(针式层)来改变层数,从而达到进一步优化的目的。
K2n#;fY % owA8hGF 莫斯科大学的亚历山大教授于1982年发明了针式优化技术,这一核心技术使得
Optilayer运算速度比同时期的任何一款设计软件都要快数百倍。
#m<uG5l` <=6F=u3PtU 下图中图1为一优化后的三层膜的折射率剖面图,其用一般优化已无法再进一步进行优化。故而通过插入一针式层来优化,如图2所示:
ZWS:-]P. o(?9vU 图1. z方向为厚度,n(z)为折射率。
UeZ(@6_: z(.,BB[ 图2. 在薄膜中某一厚度位置插入一折射率为n的狭长薄膜层。
Dmy=_j?ej ;3& wO~lW 上图中最左侧为基底折射率,最右侧为入射媒介,两阴影区为针式变量(needle varition)。
^pew'pHQ ~rjK*_3/ 物理上引入针式层后,数学上必然会引起评价函数值的变化。通过利用评价函数对新层厚度求偏导,考察当针式变量发生于多层膜内z点处且新层折射率为
时(见图2),评价函数(merit function)的变化为:
4:O.x#p $gYGnh_,Q ALO/{:l( 其中,函数
被称为微扰函数(perturbation function)
)Kl@dj xfX|AC 由上式可看出由于新层厚度
为正且方程右边第二项为
的高阶微小量,故而在上式中评价函数的变化极大程度上取决于微扰函数的正负。即微扰函数为负时,评价函数减小。
WnOYU9;% '
i5}`\ 通过数学方法能在不插入新层的情况下计算微扰函数,从而得出评价函数值。
nB :i G VE/m|3%t 针式优化原理:当某点处微扰函数为负值时,插入一针式变量(保证新层厚度
足够小,以使得的
高阶微小量足够小)将能使得评价函数减小。
jJvd!,=) nI(w7qhub T\4>4eX- 如上图所示,在微扰函数最低点插入针式变量将能获得评价函数最大的减小量。
C-,#t5eir }c=Y<Cdh
针式算法思路:不断于扰动函数最低点(且为负值)处插入针式变量至微扰函数无负值区时优化过程终止。其过程如下图:
,d.5K*?aI fn7?g 6q0)/|,@ 三.OptiLayer针式算法的优点:
YB)I%5d;{ wM;=^br 1.计算速度上:
C~.\2D`zy <pG 4g 针式算法通过不断于微扰函数最低点(且为负值)处插入针式变量从而不断获得评价函数最大的减小量,所以针式算法是一种阶越性的能极快地使评价函数最小化的算法。
j3+ hsA/(k HKOSS-`5 针式算法与一般算法的优化进程示意图如下:
U_Mag(^- ;8e}X6YU {Ngut 针式算法(黑线)和一般算法(红线)的优化进程示意图
&FZ~n?;hQ ,PKUgL}w 图中横轴为计算时间,纵轴为评价函数值
td$RDtW[3 KNP^k$=)3c 由上图中优化进程示意图的比较,我们可以看出针式算法运算速度明显优于一般算法,因而使得OptiLayer软件具有比一般设计软件快数百倍的计算速度。
(otD4VR_ @l_rB~ 2.优化效果上:
-Fop<q\b Pu BE=9, 针式优化通过插入新层使得再优化成为可能。从而使得OptiLayer软件能达到更好的优化效果。