改变白光超连续
光源中使用的光子
晶体光纤中的空气填充率,可以消除此类光源中传统的“蓝光缺陷”,从而产生真正的白光超连续光。
bIm$7a`T FZ>*<& 在过去十年间,高非线性光子晶体光纤(PCF)以及紧凑、高功率超快光纤
激光器的出现,使白光激光光源的输出功率达到10W,
光谱功率密度达到10mW/nm。
B>?Y("E {I 7pk6Qd 尽管这些商用光纤超连续光源在工业和生物医学方面表现出了一定的应用潜能,但它们在光谱的蓝光区域都有共同的缺陷。指标最高的系统,其光谱已经包含到450nm,但是如果用光纤超连续
激光器替代
照明光源,仍然存在着一定的限制。
4Uf+t?U9 g]xZ^M+ 然而,最近由巴斯大学(University of Bath)的研究人员开发的非线性PCF可以弥补超连续光纤激光器中的蓝光缺陷,增强了蓝光波段的输出(见图1)。目前,该技术由Fianium公司在进行商业推广。
l@*/1O)v #|XEBOmsQ
V8&/O)} o 图1. 通过一个
棱镜色散,新型(上面的光谱)和传统(下面的光谱)超连续光源在可见光谱区的比较结果显示,使用最新光子晶体光纤获得了在蓝光和紫外光谱的扩展。
K23_1-mbe Kc udWW] 白光激光器
4Sg!NPuu7& A2&&iL=j/ 激光的时间相干性对应于其有限的光谱宽度,这在根本上是由于所有材料的有限增益带宽引起的。即使是最宽的增益曲线宽度,也只有其中心频率的10%~20%。
b=T+#Jb %FFw!eVi 然而,许多应用要求更宽的光谱宽度,并且没有亮度或功率损耗。产生这种超宽光谱的一种方法就是利用在高光功率下材料的非线性响应。基于这种技术的白光激光光源几乎在激光发明的时候就出现了。[1]大多数早期的结构都需要大型、笨重的泵浦激光系统;许多实验采用块状材料作为非线性介质。但是产生宽带光的非线性过程,同时也会因为
光学细丝和击穿使输出光束质量下降。
H>XbqIkL@ YLd
5 光子晶体和微结构光纤的快速发展为业界带来了突破,其中光是在由微小空气孔包围的石英纤芯中传导的。使用掺钛蓝宝石激光作为泵浦源,在这些光纤中产生了可见光波段的高光束质量的宽带超连续光。[2]这使该技术进入了一个快速发展期,研究人员一边试图理解这些过程的本质特性,一边优化系统(泵浦激光与非线性光纤的耦合),以产生宽带、平坦、低噪声的光谱,并使用廉价的泵浦元件。一些潜在的应用引起了研究人员的兴趣,这可能得益于在多个方面与先前有本质区别的新型光源。
/&j4I