切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 3750阅读
    • 2回复

    [分享]激光加工技术的发展、分类及应用 [复制链接]

    上一主题 下一主题
    离线200833
     
    发帖
    1092
    光币
    27706
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2008-11-21
    一、常规激光加工技术的发展与应用 7 \!t/<  
    GTNN4  
    随着加工技术的创新和进步,目前常规激光加工的技术,如钻孔、切断、表面改性等,都有不同程度的进展。 4At%{E  
    'F?T4  
    (一)钻孔 gx#xB8n  
    早期激光钻孔采用定点冲击法:即在一个位置上用脉冲激光束不停地加工,直至孔通。这种加工方法,使加工的孔深和孔径均受到限制。 W'-B)li   
    41^+T<+  
    高重复频率YAG激光器进入实用阶段后,出现了旋切钻孔法(Trepanning),即用专用光学旋转头或数控自动生成圆轨迹进行激光套料加工。这不仅消除了孔径限制,且由于有辅助吹气,加工区呈半敞开式,熔融物易排出,故孔表面质量好。 g,7`emOX  
    ~0!s5  
    对于分布有大量相同规格小孔的零件,特别是回转体,当前又发展了飞行打孔法(Drilling on the fly),即激光对一个孔位加工一个脉冲后,不管孔是否打通,工件都利用光脉冲间隙快速运动(移动或转动)到下一个孔位,如此进行多次循环对同一位置多次冲击,直至完成所有孔的加工。其优点是激光脉冲间隙的时间被用作零件孔的位移,可大大提高加工速度。钻孔速度目前为每秒数10孔,预计可达每秒500孔 (亚毫米孔径)。技术的关键在于激光到达,工件必需运动到位,这对非均布孔来说有很大难度。用CNC闭环控制系统控制,当孔加工速率更高时,为保证圆的孔形,在激光作用时间内,激光束必须与零件同步运动。激光飞行打孔在航空零件加工中已得到了应用,环形燃烧室的冷却孔加工是典型的应用实例。此外,高速飞机的机翼和发动机进气道的前沿,气流极易与翼表面分离,形成紊流增大而气动力损失,为此,设计了有吸气功能的层流翼(短舱)套,其表面是由1mm厚的钛合金板制成,上面分布了1200万至10亿个锥孔,外表面孔径0.06mm,内表面孔径为0.1mm,孔间距为0.3~1mm,层流翼套的小孔也是用飞行打孔法完成的。 My76]\Psh  
    &o= #P2Qd  
    对于微米量级孔径的筛孔,用准分子激光或调Q的YAG激光快速扫描加工(每秒可加工数千孔)可得到满意的结果。 F# y5T3(P  
    V?t^ J7{'  
    (二)切割 ),mKEpf  
    激光切割近期仍以CO 2 激光为主,随着器件功率的加大,切割深度和速度都有大幅度提高。为提高加工质量,采用高压吹气(压力达1.6~2.0MPa),用 3.4kW的功率的CO 2 激光可切割5~6mm厚度的铝板,切口光滑,正、背面不留熔渣。值得提出的是采用两束激光复合切割材料,能取得更低的能耗。图1是两种激光复合切割的实验装置示意图。试验表明,用CO(270W)激光与KrF (30W)激光复合切割,比单用一束CO(300W)激光切割碳钢可提高速度30%,切割厚度可增加40%以上。 S j)&!  
    C!]hu)E  
    \&`S~cV9  
    s}uOht} o  
    (三)焊接 ,Za!  
    激光焊接在仪器仪表业中早有应用,近期研究方向主要集中在航空航天工业中的高温合金、钛合金和铝、镁等难焊接合金的加工;汽车工业中的大厚度、变厚度钢材的深穿透焊接方面。 fDNiU"  
    kTT!gZP$  
    大型客机发动机短舱的吊挂采用2.5kW CO 2 激光焊接技术;发动机的压缩机静子是由激光切割叶型孔后再用激光将叶片和外环焊在一起构成,用2kW连续输出的YAG激光设备加工,焊接速度达7m/min。 p}.L]Y  
    vXAO#'4tm%  
    在汽车行业中,激光焊接所占比例已逐年上升,从车身面板同样材料的焊接发展到不同厚度和不同表面涂层的金属板件的焊接。法国SCIAKY公司建立了一个 6kW的 CO 2 激光加工站,用分光镜将激光束分到12个工位同时进行点焊,5秒钟可焊一件,不仅节省了6~12个电阻点焊机器人,而且因减少搭接宽度使汽车重量减轻 56kg。 8Sd<!  
    Nj5Mc>_   
    激光焊接技术研究的前沿,一是大功率或超大功率焊接时,对出现的等离子体的控制,采用侧向吹气压缩法,将等离子云压在熔池形成的缝中来改善等离子云的屏蔽行为。另一个动向是采用模糊逻辑的方法,对焊接过程进行智能控制,这对变厚度变参量的焊接过程具有重要意义。 ?V4?r2$c  
    ^J< I Ia4  
    二、激光领域加工方法的新进展 (xBS~}e  
    ?"N, do  
    (一)激光快速成型 PF2PMEBx!  
    激光快速成型技术是激光技术与计算机技术相结合的一项高新制造技术,主要功能是将三维数据快速转化成实体,具有很大效益。其基本原理是先在计算机中生成产品的CAD三维实体模型,再将它“切成”规定厚度的片层数据(变换成一系列二维图形数据),用激光切割或烧结办法将材料进行选区逐层叠加,最终形成实体模型。成型原理如图2所示。 #;)Oi9{9;  
    -Id4P _y  
    9i*t3W71]  
    B+#!%J_  
    逐层叠加有以下几种方法: "9jt2@<  
    d`5xd@p  
    1.液相树脂固化法(SL)。材质是光敏树脂,紫外波段激光作平面选区扫描照射,使树脂按指定区域固化(悬空部分需设支撑)。机床作下沉运动,使已成型部分浸没于液面之下。这种方法的优点是零件表面光滑,变形小;缺点是强度低,树脂价高且保存期短。 T ]hVO'z  
    g'ha7~w(p  
    2. 选区烧结法(SLS)。材质有石蜡、塑料、尼龙、陶瓷、包覆金属和裸金属等,均为粉末状态。用50~100W的CO 2 激光器作烧结工具,激光束作二维选区扫描,使粉末“烧结”成型。机床须具备送粉、铺粉、刮平及预热等功能。这种方法价格便宜,精度较高(±0.1mm),可直接代替木模制砂型。金属零件的快速制造,金属粉末烧结的关键是防氧化和热传导,一种方法是在金属粉末外涂覆粘合剂,用激光选区照射,粘合剂热溶粘接成型后,将零件由粉末中取出,再往缝隙中灌注金属最后制成零件。另一种新研究的方法是用无涂覆的金属粉末直接烧结制造零件,如用铜、镍或铝粉,颗粒度在 22.5~90μ m间用600W的YAG激光烧结。采用这种方法加工的零件材质会出现空隙,为改善空隙,也有采用选区激光直接喷涂叠加成型,原材料为粉状 Inconel625,用3kW射频激励的CO 2 激光作光源 ?{NP3  
    PTWP7A[  
    3.叠层粘接法(LOM)。材质是纸,经背面涂粘接剂等处理。选用25~50W的 CO 2 激光平面切割机构,机床完成纸带的送进铺平及滚压(粘接)等功能。成型零件尺寸较大,强度较高,但精度较低,腔形零件腔内排废纸难,零件抗潮性差。为此,采用后置表面涂覆环氧加铝粉处理,可大大提高纸质的耐温、耐潮湿变形和强度等性能。 :3pJGMv(  
    OS;qb:;  
    快速成型零件还有几种不用激光作工具的方法,如三维打印(FDM)法,固基光敏液相掩模造模造型(SGC)法以及电弧或喷涂添加法等。 Q0K2md_%x  
    c Owa^;  
    上述诸多快速成型法为零件由设计到生产提供了经济、准确、快速的工艺路线。 5I`j'j  
    w=Ac/ 12  
    (二)激光成形与校形 P$ZIKkf  
    激光成型和校形是通过激光对材料局部加热产生的热应力,使板材零件发生形变的加工方法。根据对局部的均匀和不均匀的加热和冷却方式,可加工不同形状的零件(如图3所示)。 h.d-a/  
    1@rI4U@D  
    18f!k  
    thy)J.<J  
    该加工方法十分经济,通过选择不同的激光参数,如波长、作用时间、功率等可加工所有材料,适合于许多领域,特别是微电子工业。 tgSl (.  
    {}kE=L5  
    (三)微细加工 cVYDO*N2T  
    j*+[=X/  
    在电子、仪表、航空航天工业中,激光加工可以高效率高质量地完成微细小孔、划片微调、切割、焊接以及标记等加工,其中尤以准分子激光的应用最为广泛。由于材料对紫外波吸收率高,准分子激光脉宽窄,因而有极高的功率密度。准分子激光除作常规的钻、切、划加工外,还可用掩模法直接在工件上生成图案。激光辐照的地方,材料被光化学的消融作用而除去,无论钻孔、切割或刻划,都是直壁尖角,没有热影响区。加工尺寸小,可达亚微米量级,精度取决于掩模,效率取决于激光的功率。掩模法又有工件表面直接掩模和掩模投影两种,如图4所示。近期在微细加工领域开发激光清洗和激光作为夹持工具(镊子)的研究。激光清洗是指去除超净超光滑表面污染微粒,其原理是激光能量被微粒或表面或人为的清洗介质(如水)吸收后产生爆炸性汽化时,把微粒从表面上除去。该法可有效地用于半导体器件、激光陀螺的研制中。激光镊子主要用于有机材料的 微粒搬运和固定,其原理是微米量级的有机微粒在激光的束腰处,要受一对极子力(当微粒?1μ m时)或折射力(当微粒>1μ m时)的作用,这些力都是把微粒拉向激光的束腰(光最强处)中心处,因此,可借移动或固定激光束来夹持微粒。 %N$,1=0*  
    <E/4/ ANN  
    |ZZl3l=]  
    xl8=y  
    (四)纳米材料的制备 e&sZ]{uD  
    纳米材料被称为21世纪新材料的基础,所谓纳米材料是指材料的颗粒直径在1~100nm之间的材料。当材料颗粒达到这个量值时,由于表面效应、小尺寸效应和量子效应,导致材料特性发生变化,如反射率和熔点下降,硬度增高等。应用激光技术可制备纳米材料。准分子激光对材料有很强的消融作用,如铝材在强激光照射下,表面出现等离子体云,注入氧气或氮气,便可生成Al 203或AlN的微粒,直径在3~7nm范围,每小时可产生十余毫克。 E}LuWFZ&  
    Fk=Sx<TX  
    (五)激光复合加工 `2-6Qv  
    不同的激光复合或激光和其它能源共同对材料的复合加工,目前大多用于材料表面改性处理。日本新制铁公司用CO[_2]激光束和离子束,利用物理气相沉积技术 (LPVD)制备超硬薄膜。图5是该装置的示意图。用LPVD先制得非晶态氮化硼,再用0.5~2.0kV辐照氮离子,则可生成超硬的立方氮化硼薄膜。两种激光复合加工也可取得特殊效果,如CO+KrF激光切割。可提高工效30%以上,用CO 2 激光切割木制商标模或雕刻木质、塑料等非金属装饰品,切口变黑。据日本刊物报道称,用准分子激光后续处理,还会恢复材料本色。同样,如用准分子激光或其他调整Q激光作精修工具,可大大提高激光加工的价值,因此激光复合加工是很有发展前途的加工方法。 1BK!<}yI{  
    %Xc50n2Z  
    W^#HR  
    yw2Mr+9I  
    三、新型工业激光器 zGzeu)d  
    工业激光器主要是指用于加工的激光器,它的发展是激光加工技术发展的前提条件。90年代前,CO 2 激光器和YAG激光器占工业激光器的96%以上,进入90年代,这两类激光器的发展主要表现在功率和光束质量的提高两个方面。CO 2 激光器的功率整整提高了一个量级,但是,真正用于生产加工的CO 2 激光器功率,切割一般不超过3kW,焊接在10kW左右。为提高光束质量,快速轴流CO 2 (准基模输出)激光器发展很快,主要用于切割和深穿透焊。对于YAG激光器,商品器件的功率由500W提高到1000W。采用激光谐振腔内加压缩发散角装置,使激光光束发散角减至5 mrad以下,提高了聚焦功率密度,强化了加工能力。 sA$x2[*O  
    TgMa! Vz  
    近几年下述几种激光器输出功率和工作稳定性方面均有突破性进展,使激光加工技术跃上一个新的台阶。 eB%hP9=:x  
    +yYxHIOZ(  
    (一)YAG激光器 cq:<,Ke  
    1.板条(Slab)Nd:YAG激光器 [rk*4b^s  
    t6u>_Sh e  
    该激光器从结构上克服了激光棒的热变形(热透镜效应),故有功率大(达2kW以上)、光束发散角小(接近衍射极限)的高质量激光输出,提高了加工能力,可进行超深加工,如钻孔深达76mm,切割厚度达40mm。 KYa}k0tVAp  
    cj K\(b3  
    2. 激光二极管(LD-Laser Diode)泵浦的Nd:YAG激光器该激光器是用与YAG光谱吸收带吻合的激光二极管泵浦Nd:YAG,大大减少了非吸收带光能转化的热量,其主要特点是电光转换效率高(高达 20%~40%),能直接获得紫外波长的激光,从而为大功率、小型化、低能耗(工作电压也低)、热负荷小和长寿命稳定工作创造了条件。由于其波长位于紫外波段,光束质量好,可进行多种优质加工,四五年内有望成为主要的激光加工器件。图6给出LD泵浦的Nd:YAG激光器的两种激励形式:(a)为端面激励; (b)为侧面激励,其输出功率达2kW,频率2.5kHz。 -' :;0  
    DwSB(O#X  
     dpG l  
    &! i'Q;q  
    (二)准分子(Excimer)激光器 4SRjF$Bsz  
    所谓准分子是在激发态下结合为分子,基态离解为原子的不稳定缔合物。用作激光工作介质的准分子有KrF,XeCl,AeF等气态物质。其发出的激光属紫外波段,激光器基本结构与CO 2 气体激光器相同。紫外波段的准分子激光加工机理比较复杂,通常的解释是依靠“激光消融”(Laser Ablation)来蚀除材料。即由于紫外光子能量比材料分子原子间的连接键能量大,材料吸收后(吸收率很高),破坏了原有的键连接而形成微小的碎片,当破坏达到一定程序后,碎片材料就自行剥落。每个脉冲可去除亚微米深的材料,如此逐层蚀除材料,达到加工目的。 {zzc/!|  
    pRR1k?  
    激光消融是建立在光化学作用的基础上进行的,与其他激光(热)加工相比,它是在非放热方式下进行的,故又称为“激光冷加工”。准分子激光具有波长短(190~350mm),频率高(达5kHz),效率高(达4%),光束质量好(发散角0.3mrad ,波长线宽1pm以下),工作寿命长,光束截面大等优点,是很有潜力的工业激光器。 TQ`s&8"P  
    ^97u0K3$  
    目前商品化的器件功率在200W左右,世界上功率最大的是日本三菱电机公司1994年研制成功的XeCl激光器,放电管长3m,束截面为80mm×40mm。 Ao?y2 [sE  
    QAGR\~  
    (三)CO激光器 oKyl2jg+,  
    CO激光波长是CO 2 激光波长的一半,因此,光束的聚焦性和材料的吸收性都优于 CO 2 激光。例如3kW的CO激光的切割能力同5kW的CO 2 激光一样。目前最大CO激光达20kW。 <[.{aj]QV  
    6sceymq  
    (四)铜蒸气激光器 ?{=& Ro  
    铜蒸气激光是有望用于微细加工的一种激光器。它可作为倍频YAG激光的取代器件。其波长为511~578nm的可见光,光脉宽20~60ns,重复频率 2~32kHz,目前器件有实用价值的输出功率为10~120W,750W的器件也正在研究中。总之,激光器技术的发展,大大促进了激光加工技术的发展,它不仅给已有的加工方法带来了生机,而且也开辟了新的加工领域。 ~dc o  
    yM,.{m@F<  
    激光加工是制造技术家庭中最具活力的一个新成员,它以能力强、速度快、附加效益高等特点,活跃在各个领域。但对于每一项新开发的激光加工方法,能否最终转换为生产力,还取决于是否有加工设备、工艺技术及测试监控技术等与之配套。这些方面近期也有很大发展,主要体现在多坐标数控化设备的研究;实现高速传输光束的研究;工艺、控制及检测智能化的研究等。我所作为高能束加工国防科技重点实验室,在进行科研生产的同时,密切关注激光领域先进技术的研究方向,跟踪世界激光加工的发展,适时补充或调整实验室研究项目,为发展激光加工业作出贡献,为我国国防建设服务。 B ]*v{?<W  
    @S?`!=M  
    激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。激光加工是激光应用最有发展前途的领域,现在已开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。目前已成熟的激光加工技术包括:激光快速成形技术、激光焊接技术、激光打孔技术、激光切割技术、激光打标技术、激光去重平衡技术、激光蚀刻技术、激光微调技术、激光存储技术、激光划线技术、激光清洗技术、激光热处理和表面处理技术。 Z4ekBdmCL  
    !m]_tB  
    激光快速成形技术集成了激光技术、CAD/CAM技术和材料技术的最新成果,根据零件的CAD模型,用激光束将光敏聚合材料逐层固化,精确堆积成样件,不需要模具刀具即可快速精确地制造形状复杂的零件,该技术已在航空航天、电子、汽车等工业领域得到广泛应用。 <S[]VXy  
    F:$*0!  
    激光切割技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。现代的激光成了人们所幻想追求的“削铁如泥”的“宝剑”。 B`{7-Asc1  
    6&oaxAp<s  
    激光焊接技术具有溶池净化效应,能纯净焊缝金属,适用于相同和不同金属材料间的焊接。激光焊接能量密度高,对高熔点、高反射率、高导热率和物理特性相差很大的金属焊接特别有利。激光焊接,用比切割金属时功率较小的激光束,使材料熔化而不使其气化,在冷却后成为一块连续的固体结构。激光在工业领域中的应用是有局限和缺点的,比如用激光来切割食物和胶合板就不成功,食物被切开的同时也被灼烧了,而切割胶合板在经济上还远不合算。 :O?+Ywn  
    g \.O5H9Od  
    激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。这样要在硬度最大的金刚石上打孔,就成了极其困难的事。激光出现后,这一类的操作既快又安全。但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。 oS>VN<  
    $Gs9"~z?;  
    激光打标技术是激光加工最大的应用领域之一。激光打标是利用高能量密度的激光对工件进行局部照射,使表层材料汽化或发生颜色变化的化学反应,从而留下永久性标记的一种打标方法。激光打标可以打出各种文字、符号和图案等,字符大小可以从毫米到微米量级,这对产品的防伪有特殊的意义。准分子激光打标是近年来发展起来的一项新技术,特别适用于金属打标,可实现亚微米打标,已广泛用于微电子工业和生物工程。 B`<a~V  
    K92nh/}y  
    激光去重平衡技术是用激光去掉高速旋转部件上不平衡的过重部分,使惯性轴与旋转轴重合,以达到动平衡的过程。激光去重平衡技术具有测量和去重两大功能,可同时进行不平衡的测量和校正,效率大大提高,在陀螺制造领域有广阔的应用前景。对于高精度转子,激光动平衡可成倍提高平衡精度,其质量偏心值的平衡精度可达1%或千分之几微米。 pu-X -j  
    ]g] ]\hS  
    激光蚀刻技术比传统的化学蚀刻技术工艺简单、可大幅度降低生产成本,可加工0.125~1微米宽的线,非常适合于超大规模集成电路的制造。 ] 6Y6q])Z  
    ZuLW%z.  
    激光微调技术可对指定电阻进行自动精密微调,精度可达0.01%~0.002%,比传统加工方法的精度和效率高、成本低。激光微调包括薄膜电阻(0.01~0.6微米厚)与厚膜电阻(20~50微米厚)的微调、电容的微调和混合集成电路的微调。 My6a.Kl  
    E+Eug{+  
    激光存储技术是利用激光来记录视频、音频、文字资料及计算机信息的一种技术,是信息化时代的支撑技术之一。 zrDcO~w  
    q"LE6?hs  
    激光划线技术是生产集成电路的关键技术,其划线细、精度高(线宽为15~25微米,槽深为5~200微米),加工速度快(可达200毫米/秒),成品率可达99.5%以上。 oaac.7.fV  
    w;b;rHAZ\  
    激光清洗技术的采用可大大减少加工器件的微粒污染,提高精密器件的成品率。 %+pF4f8]  
    %2@O,uCo@  
    激光热、表处理技术包括:激光相变硬化技术、激光包覆技术、激光表面合金化技术、激光退火技术、激光冲击硬化技术、激光强化电镀技术、激光上釉技术,这些技术对改变材料的机械性能、耐热性和耐腐蚀性等有重要作用。 %ztv.K(8  
    !kW~s_gUb*  
    激光相变硬化(即激光淬火)是激光热处理中研究最早、最多、进展最快、应用最广的一种新工艺,适用于大多数材料和不同形状零件的不同部位,可提高零件的耐磨性和疲劳强度,国外一些工业部门将该技术作为保证产品质量的手段。 ew+>?a'&L  
    D[p_uDIz  
    激光包覆技术是在工业中获得广泛应用的激光表面改性技术之一, 具有很好的经济性,可大大提高产品的抗腐蚀性。 BbIg]E/G  
    F+<e9[  
    激光表面合金化技术是材料表面局部改性处理的新方法, 是未来应用潜力最大的表面改性技术之一,适用于航空、航天、兵器、核工业、汽车制造业中需要改善耐磨、耐腐蚀、耐高温等性能的零件。 ~o8  
    /OD@Xl];K  
    激光退火技术是半导体加工的一种新工艺,效果比常规热退火好得多。激光退火后, 杂质的替位率可达到98%~99%, 可使多晶硅的电阻率降到普通加热退火的1/2~1/3, 还可大大提高集成电路的集成度, 使电路元件间的间隔缩小到0.5微米。 GI5#{-)  
    f]4j7K!e]  
    激光冲击硬化技术能改善金属材料的机械性能, 可阻止裂纹的产生和扩展, 提高钢、铝、钛等合金的强度和硬度, 改善其抗疲劳性能。  u> @@  
    n@=D,'cn  
    激光强化电镀技术可提高金属的沉积速度, 速度比无激光照射快1000倍, 对微型开关、精密仪器零件、微电子器件和大规模集成电路的生产和修补具有重大意义。使用该技术可使电镀层的牢固度提高100~1000倍。 mYx6JU*`  
    4e20\q_{  
    激光上釉技术对于材料改性很有发展前途, 其成本低, 容易控制和复制, 有利于发展新材料。激光上釉结合火焰喷涂、等离子喷涂、离子沉积等技术, 在控制组织、提高表面耐磨、耐腐蚀性能方面有着广阔的应用前景。电子材料、电磁材料和其它电气材料经激光上釉后用于测量仪表极为理想。 oUd R,;h9  
    vJ?j#Ch  
    激光在电子工业中也得到广泛应用。可以用它来进行微型仪器的精密加工,可以对脆弱易碎的半导体材料进行精细的划片,也可以用来调整微型电阻的阻值。随着激光器性能的改善和新型激光器的出现,激光在超大规模集成电路方面的应用已经成为许多其他工艺所无法取代的关键性技艺,为超大规模集成电路的发展展现出令人鼓舞的前景。 BMdcW MYU\  
    W0+m A  
    激光技术是高科技的产物,其产生又推动了科学研究的深入发展,并开拓出许多新的学科领域,如非线性光学、激光光谱学、激光化学、激光生物学等。激光被用来研究与生命密切相关的光合作用、血红蛋白、DNA 等的机制。激光还将成为时间和长度的新标准,以后任何高精度的钟表和米尺都可以用某一特定波长的激光束来标定。 pgw_F  
    Oh=E!  
    激光在核能应用上也将大显身手。乐观的专家们估计,到2020年强大的激光会产生安全经济的热核聚变,这类似恒星内部的核反应过程。如果实现,热核聚变将带来巨大无比的社会和经济效益,能源危机亦将不复存在。到那时,一桶水中的氢聚变后所产生的电力足够一个城市使用。 dKpUw9C#/  
    IkP; i_|  
    目前,激光技术已经融入我们的日常生活之中了。在未来的岁月中,激光会带给我们更多的奇迹。
     
    分享到
    离线haha9528
    发帖
    21
    光币
    14
    光券
    0
    只看该作者 1楼 发表于: 2011-12-12
    不错,很全面,就是少了一项,多光子微纳加工技术光还原制备金属微纳结构
    离线aoxiwaly
    发帖
    127
    光币
    2
    光券
    0
    只看该作者 2楼 发表于: 2013-03-07
    激光谐振腔内加压缩发散角装置   是什么东东~