切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 8536阅读
    • 5回复

    [推荐]MATLAB入门教程-MATLAB的基本知识 [复制链接]

    上一主题 下一主题
    离线cc2008
     
    发帖
    1007
    光币
    4406
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2008-10-21
    1-1、基本运算与函数     uXJ;A *  
    \F/hMXDlJ  
    在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:   {E9+WFz5  
    QSdHm  
    >> (5*2+1.3-0.8)*10/25   7e|s wJ>4  
    $0>60<J  
    ans =4.2000   $j5K8Ad  
    i]YV {  
    MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答 案(Answer)并显示其数值於萤幕上。  #~2%)  
    G\Cp7:j}  
    小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。   t\~P:"  
    *rs5]U<  
    我们也可将上述运算式的结果设定给另一个变数x:   P3x= 8_#  
    fzb29 -  
    x = (5*2+1.3-0.8)*10^2/25   @s ?  
    N~goI#4  
    x = 42   ao1(]64X"  
    Dwr)0nk  
    此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。   ODNM+#}`  
    =[cS0Sy  
    小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。     n 22zq6m  
    bMg(B-uF7  
    若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例: v &Yi  
    .w=/+TA  
    y = sin(10)*exp(-0.3*4^2);   cl[BF'.H  
    hV8[@&Sx3  
    若要显示变数y的值,直接键入y即可:   "d#Y}@*~o  
    AS'R?aX|C  
    >>y   Z_};|B}  
    ZM !CaR  
    y =-0.0045   C*)3e*T*  
    A&.WH?p  
    在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。 n'wU;!W9  
    ,Ys %:>?  
    下表即为MATLAB常用的基本数学函数及三角函数:   +%T\`6  
    \qdHX  
    小整理:MATLAB常用的基本数学函数 8uc1iB  
    wSzv|\ G  
    abs(x):纯量的绝对值或向量的长度 [842&5Pd?  
    &=Ar  
    angle(z):复 数z的相角(Phase angle) OE_XCZ!5P  
    @=bLDTx;c)  
    sqrt(x):开平方 -LK B$   
    |oH,   
    real(z):复数z的实部 "bFTk/  
    T! Y@`Ox  
    imag(z):复数z的虚 部 5{|7$VqPF  
    0%9 q8 M;  
    conj(z):复数z的共轭复数 fxgPhnaC>  
    `18qbot  
    round(x):四舍五入至最近整数 0bceI  
    >BIMi^  
    fix(x):无论正负,舍去小数至最近整数 $UMFNjL  
    tvkb~  
    floor(x):地板函数,即舍去正小数至最近整数 l4 D+Y  
    .*@;@06?  
    ceil(x):天花板函数,即加入正小数至最近整数 ^crCy-`#  
    "cE7 5  
    rat(x):将实数x化为分数表示 ^=BTz9QM  
    ]e"=$2d$  
    rats(x):将实数x化为多项分数展开 O,+1<.;+  
    MW! srTQ_  
    sign(x):符号函数 (Signum function)。   $:=A'd2  
    Ye"o6_U "  
    当x<0时,sign(x)=-1;   1Ce@*XBU  
    aXQnZ+2e^R  
    当x=0时,sign(x)=0;    ,V,`Jf  
    bx#>BK!  
    当x>0时,sign(x)=1。   +DW~BS3  
    %}SGl${-  
    > 小整理:MATLAB常用的三角函数 8qk?E6  
    O!m vJD  
    sin(x):正弦函数 `_BNy=`s*  
    k52/w)Ro,$  
    cos(x):馀弦函数 sT !~J4  
    W^0w  
    tan(x):正切函数 ebm])~ZL  
    4iqoR$3Fc  
    asin(x):反正弦函数 9%8"e>~  
    ?^H `M|S  
    acos(x):反馀弦函数 ,p4&g)o  
    K0H'4' I  
    atan(x):反正切函数 M}`B{]lLz  
    G^~k)6v=m  
    atan2(x,y):四象限的反正切函数 $:cE ^8K  
    qOe+ZAJ{%N  
    sinh(x):超越正弦函数 :V1W/c  
    "w^!/  
    cosh(x):超越馀弦函数 Uo-)pFN^  
    !g?|9  
    tanh(x):超越正切函数 s:OFVlC%\  
    CpA|4'#  
    asinh(x):反超越正弦函数 =q>'19^Jx  
    *}]Nf  
    acosh(x):反超越馀弦函数 rx $mk  
    ~;QvWS  
    atanh(x):反超越正切函数   ?{\nf7Y  
    | h`0u'#  
    变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算: 8B7cBkl:  
    u\E?Y[1  
    x = [1 3 5 2];   TMAJb+@l:  
    $56Z#'(D  
    y = 2*x+1   Fgkajig  
    bBu,#Mc  
    y = 3 7 11 5   *-+&[P]m  
    [DJflCR&  
    小提示:变数命名的规则   <A<{,:5C  
    0]>u )%  
    1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母   pA`+hQNN  
     :l~ I  
    我们可以随意更改、增加或删除向量的元素:   Ot:CPm@  
    %u`8minCt  
    y(3) = 2 % 更改第三个元素   iDN;m`a  
    l/BLUl~z  
    y =3 7 2 5   aiQ>xen5C5  
    _,zA ^*b  
    y(6) = 10 % 加入第六个元素   sJ# 4(r`  
    M^MdRu  
    y = 3 7 2 5 0 10   ^g*pGrl#  
    j Yx38_5e  
    y(4) = [] % 删除第四个元素,   I'\kFjc  
    kUq=5Y `D  
    y = 3 7 2 0 10   _6_IP0;  
    $i&e[O7T;  
    在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:   $@sEn4h  
    aY3^C q(r  
    x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算   JCz@s~f\y  
    sqla}~CiX  
    ans = 9   &yGaCq;0  
    8j Mk)-  
    y(2:4)-1 % 取出y的第二至第四个元素来做运算   ~oI1 zNz/  
    8 ![|F:  
    ans = 6 1 -1   IKABBW  
    bQE};wM,  
    在上例中,2:4代表一个由2、3、4组成的向量 vK 7^*qr;j  
    0F@"b{&0  
    ]NjX?XdX<  
    `o<' x.I  
    若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace   ;+0t;B!V  
    L/wD7/ODr  
    小整理:MATLAB的查询命令 HKF H/eV  
    '=[?~0(B  
    help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)   M54j@_81pX  
    U2{ dN>  
    将列向量转置(Transpose)後,即可得到行向量(Column vector):   0*%Z's\M"  
    0%,!jW{`  
    z = x'   &@%W29:  
    k:*S&$S!E  
    z = 4.0000   xG}(5Tt  
    `n$I]_}/%  
       5.2000   NxjB/N  
    N U|d  
       6.4000   bx<RV7>0  
    pcau}5 .  
       7.6000   'pm2n0  
    /3A^I{e74  
       8.8000   Em?d*z  
    _8"O$w  
       10.0000     aD=a,  
    >"gf3rioW  
    不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:   :{qv~&+C  
    QF{4/y^j{  
    length(z) % z的元素个数   f&}k^>N#3  
    KiI!frm1  
    ans = 6   MxWy*|J}  
    8d?g]DEN)6  
    max(z) % z的最大值   kHXL8k#T  
    cU ? 0(z7  
    ans = 10   ^[]}R:  
    )p T?/ J  
    min(z) % z的最小值   i7ISX>%  
    20vXSYa~  
    ans =   4   {S,l_d+(  
    SGh1 DB  
    小整理:适用於向量的常用函数有: )_mr! z(S  
    ,stN  
    min(x): 向量x的元素的最小值 Qi_>Mg`x  
    :/:.Kb  
    max(x): 向量x的元素的最大值 #k_HN}B  
    !6s"]WvF  
    mean(x): 向量x的元素的平均值 T?:glp[4I  
    ojQI7 Uhw  
    median(x): 向量x的元素的中位数 _7IKzUn9g[  
    \cC%!4  
    std(x): 向量x的元素的标准 4Fp0ZVT  
    G"X8}:}  
    diff(x): 向量x的相邻元素的差 la( <8  
    4!+pc-}-  
    sort(x): 对向量x的元素进行排序(Sorting) 6:q"l\n>  
    6T+FH;h  
    length(x): 向量x的元素个数 N` aF{3[  
    r`AuvwHPs[  
    norm(x): 向量x的欧氏(Euclidean)长度 >tO`r.5u9  
    Lg~B'd8m  
    sum(x): 向量x的元素总和 p!sWYui  
    I4i2+ *l}  
    prod(x): 向量x的元素总乘积 Y2d;E.DH8  
    :T]o)  
    cumsum(x): 向量x的累计元素总和 A,\6nO67  
    kGdt1N[  
    cumprod(x): 向量x的累计元素总乘积 eFpTW&9n  
    H2 $GIY  
    dot(x, y): 向量x和y的内 积 Bn61AFy`  
    BT)X8>ct  
    cross(x, y): 向量x和y的外积 (大部份的向量函数也可适用於矩阵,详见下述。)   SV v;q?jZ  
    fO0(Z  
    GP&vLt51  
    8zA=;~GHP  
    @J5Jpt*IE  
    <$F\Nk|x  
    若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:   n| b5? 3  
    iCW*]U  
    A = [1 2 3 4; 5 6 7 8; 9 10 11 12];     a@\D$#2r  
    yU8{i&w4  
    A =     wjh=Q  
    >. '<J]  
    1  2  3  4     3G uH857ov  
    Y$Q|J4z  
    5  6  7  8     P>sFV  
    br0++}vwL  
    9  10 11  12   J|X 6j&-  
    c>/. ;p  
    同样地,我们可以对矩阵进行各种处理:   _R.B[\r@  
    - /(s#D  
    A(2,3) = 5 % 改变位於第二列,第三行的元素值   jCrpL~tWT  
    /[6j)HIS  
    A =     =egW  
    N nk@h  
    1  2  3  4   Ea?XT&,  
    *P 3V  
    5  6  5  8     /}Lt,9  
    D K=cVpN%s  
    9  10 11  12     ++aL4:  
    K-f1{ 0  
    B = A(2,1:3) % 取出部份矩阵B   FL8g5I  
    om |"S  
    B = 5 6 5   TYlbU<  
    0H0-U'l  
    A = [A B'] % 将B转置後以行向量并入A   ^)?d6nI  
    j6  
    A =     @#P,d5^G  
    Zum0J{l h  
    1  2  3   4  5     u{FDdR9<  
    +<}0|Xl&  
    5  6  5   8  6     9elga"4:'  
    t9Y=m6  
    9  10 11  12  5   f]G>(V=i  
    ]D@0|  
    A(:, 2) = [] % 删除第二行(:代表所有列)   fx@j?*Qb  
    zO V=9"~{  
    A =     2MATpV#BT  
    ?x+Z)`w_  
    1  3  4  5     6<N5_1  
    w,O,W[C  
    5  5  8  6     u5~Ns&o&N  
    "*;;H^d  
    9  11 12  5   N<Q jdD&  
    H*bs31i{  
    A = [A; 4 3 2 1] % 加入第四列     ?%VI{[y#>  
    M;0]u.D*=  
    A =     @x eAc0.^  
    ,^gyH \  
    1  3   4   5     CH fVQ|!\  
    :> &fV  
    5  5   8   6     rU;RGz6}  
    Qfky_5R\  
    9  11  12  5   5C"QE8R o  
    aA'|Rg,  
    4  3   2   1   4GR!y)  
    8/t$d#xHI  
    A([1 4], :) = [] % 删除第一和第四列(:代表所有行)   +rIL|c}J  
    1Nu1BLPm  
    A =     5OO'v07b  
    T \CCF  
    5  5   8   6     +4\U)Z/\  
    S}f?.7  
    9  11  12  5   DAwqo.m  
    gr-fXZO  
    这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。   :QWq"cBem  
    `)qVF,Z}  
    小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented )的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3) (二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。   f50L,4,  
    Y-'78BJk  
    此外,若要重新安排矩阵的形状,可用reshape命令:   * ,v|y6  
    v4RlLg dS%  
    B = reshape(A, 4, 2) % 4是新矩阵的列数,2是新矩阵的行数   hky;CD~$  
    or k=`};  
    B =   |ou b!fG4  
    c*`>9mv  
    5   8     []0mX70N  
    , * ]d~Y  
    9   12     tTN?r 8  
    GabYfUkO  
    5   6   PyA&ZkX>  
    8?*RIA.a  
    11  5   k8,?hX:  
    U!XS;a)  
    小提示: A(:)就是将矩阵A每一列堆叠起来,成为一个行向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8, 1)和A(:)同样都会产生一个8x1的矩阵。   0wFH!s/B  
    3+J0!FVla  
    MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:   M7>(hVEAW'  
    -`f04_@>d  
    x = sin(pi/3); y = x^2; z = y*10, *_ +7ni  
    l%Gw_0.?e  
    z =     <!pQ  
    Qm8) 4?FZ  
    7.5000   z4@k$ L8  
    |3+m%;X  
    若一个数学运算是太长,可用三个句点将其延伸到下一行:   !;6Jng%  
    rdnRBFt   
    z = 10*sin(pi/3)* ...   Z+pom7A"E  
    E42eOGp9i  
    sin(pi/3);   fbFX4?-  
    6DL[ aD  
    若要检视现存於工作空间(Workspace)的变数,可键入who:   "4H8A =  
    |wox1Wt|E  
    who   }X;U|]d  
    +%N KQ'49I  
    Your variables are:   Pv<FLo%u<  
    o{*ay$vA]  
    testfile x   *2}O-e  
    M[~{Vd  
    这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:   `]$?uQ  
    yMLOUUWa8x  
    whos   mL~z~w*s  
    8hA^`Y  
    Name Size Bytes Class   wA`"\MWm  
    M}DH5H"s  
    A 2x4 64 double array   ha;l(U>  
    _,6f#t  
    B 4x2 64 double array   Ufo>|A6;$  
    BpO9As 1um  
    ans 1x1 8 double array   kC$&:\Rh  
    w:o-klKXY  
    x 1x1 8 double array   # x>ga  
    }a&mY^  
    y 1x1 8 double array   9umGIQHnil  
    `ya;:$(6  
    z 1x1 8 double array    Voh hQ  
    oUx[+Gnv  
    Grand total is 20 elements using 160 bytes    .Qt4&B  
    O`cu_  
    使用clear可以删除工作空间的变数:   @\(vX]  
    J NC  
    clear A   :f'&z47  
    &"uV~AM  
    A   1u]P4Gf=  
    K#K\-TR|$  
    ??? Undefined function or variable 'A'.   %'L;FPxB  
    'ul\Q `N3  
    另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不 到,但使用者可直接取用,例如:   l{P\No  
    1'6cGpZY  
    pi   *i$ePVU  
    %@ mGK8  
    ans = 3.1416   Jx-wO/  
    TTI81:fku  
    下表即为MATLAB常用到的永久常数。   0)uYizJce  
    (L6Cy% KgV  
    小整理:MATLAB的永久常数 i或j:基本虚数单位 X`zC ^z}  
    Q |i9aE  
    eps:系统的浮点(Floating-point)精确度 ,:v&4x&=  
    3+OsjZ  
    inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0 Z& !!]"I  
    sCH)gr@gJ^  
    pi:圆周率 p(= 3.1415926...) m.%`4L^`T  
    Uhh l3%p  
    realmax:系统所能表示的最大数值   ,[48Mspp  
    #Gv{UU$]  
    realmin:系统所能表示的最小数值 (N~$x  
    Lx|',6S  
    nargin: 函数的输入引数个数 sLcY,AH  
    ro| vh\y  
    nargin: 函数的输出引数个数   MW Wu@SY  
    >cOei K  
    1-2、重复命令   }4c/YP"a'E  
    P-z`c\Rt  
    最简单的重复命令是for?圈(for-loop),其基本形式为:     <"&'>?8j  
    es.CLkuD7Y  
    for 变数 = 矩阵;     e(\I_  
    whc[@Tyx  
    运算式;     k1N$+h ;\  
    ^nDal':*  
    end   )c tr"&-  
    @ Gjny BJ  
    其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。   v ahoSc;sw  
    y62%26 [  
    举例来说,下列命令会产生一个长度为6的调和数列(Harmonic sequence):   sy<iKCM\  
    O+ .*lo  
    x = zeros(1,6); % x是一个16的零矩阵   J=WB6zi  
    P{oAObP%  
    for i = 1:6,   W"(u^}  
    c{88m/;eP  
    x(i) = 1/i;   oh}^?p  
    VQ |^   
    end     4~u9B/v  
    o)]FtL:mm  
    在上例中,矩阵x最初是一个16的零矩阵,在for?圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:     h W.2p+  
    -}<g-*m"q  
    format rat % 使用分数来表示数值   LdWc X`K  
    eK_*q -  
    disp(x)   jUY+3"?   
    X8 qIia  
    1 1/2 1/3 1/4 1/5 1/6   W);W.:F  
    |cTpw1%I~  
    for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为     nm):SEkC  
    i>GdRG&q  
    h = zeros(6);   HF4Lqh'oco  
    k^*$^;z  
    for i = 1:6,   &va*IR  
    =R9*;6?N  
    for j = 1:6,   |\{Nfm=:%  
    W78o*z[O  
    h(i,j) = 1/(i+j-1);     aL )Hv k:  
    a|.20w5  
    end     H-a^BZ&iU  
    gb_X?j%p7  
    end     k/^g*  
    +S0u=u65  
    disp(h)     o*;2mFP  
    n_;S2KM  
    1 1/2 1/3 1/4 1/5 1/6   1 PIzV:L\  
    @\$Keg=>:  
    1/2 1/3 1/4 1/5 1/6 1/7   /s8/q2:  
    d#7]hF  
    1/3 1/4 1/5 1/6 1/7 1/8   v>:=w|.HC  
    #^; s<YZ`  
    1/4 1/5 1/6 1/7 1/8 1/9     9<Ag1l  
    ] umZJZ#Y  
    1/5 1/6 1/7 1/8 1/9 1/10     I4ctxMVP  
    g z`*|h  
    1/6 1/7 1/8 1/9 1/10 1/11   u#!GMZJN  
    X\'E4  
    小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。   Un\Ubqi0  
    S|) J{~QH  
    26}u4W$  
    IO6MK&R  
    在下例中,for?圈列出先前产生的Hilbert矩阵的每一行的平方和:     zM\IKo_"  
    -O /T?H  
    for i = h,   *bU% @O  
    *{Yi}d@h(  
    disp(norm(i)^2); % 印出每一行的平方和   A{M+vsL  
    )*Vj3Jx  
    end   -Sp/fjlq/  
    l_ZO^E~D_  
    (< :mM  
    +R9%~Z.=  
    1299/871   S;>4i!Mb ^  
    V*>73I  
    282/551     \+G.]|"Y  
    -ywX5B  
    650/2343   x<Iy<v7-  
    Imke/ =h  
    524/2933   T\)dt?Tv#\  
    Kq8 (d`g}  
    559/4431   F9F" F  
    3Hy%SN(  
    831/8801   aD?# ,  
    ,eyp$^2  
    在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。   YfV"_G.ad|  
    ZUv ZN f  
    令一个常用到的重复命令是while?圈,其基本形式为:   l&\t f`~  
    .mC~Ry+t  
    while 条件式;   wEZ,49  
    c5Z;%v |y  
    运算式;   G~JC gi  
    7E;>E9 '  
    end   RA#\x.  
    OY+!aG@.  
    也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while?圈改写如下:     9)#gtDM%J  
    ^xzE^"G6  
    x = zeros(1,6); % x是一个16的零矩阵   ~o}moE/ ;O  
    6{cybD`Ef&  
    i = 1;   d]^\w'w$  
    |*lH9lWJ  
    while i <= 6,     [[#xES21F  
    5JO[+>  
    x(i) = 1/i;     A"Tc^Ij  
    3s3a>  
    i = i+1;     ~l;yr @  
    We[<BJ o4  
    end   0Ei\VVK>  
    ac2}3 $u  
    format short C}x4#bNK  
    ^nG1/}  
    QWU5-p9e8  
    #k"1wSx16  
    1-3、逻辑命令   _JfJ%YXy  
    71K\.[ =-  
    最简单的逻辑命令是if, ..., end,其基本形式为:   , LCH2r  
    HY*l4QK  
    if 条件式;     ~,(0h:8  
    \W3+VG2cA  
    运算式;     h<PYE]?l  
    Yt\E/*%  
    end     6^7)GCq [  
    m~Lf^gbG?  
    if rand(1,1) > 0.5,     6|Ba  
    #R~">g:w  
    disp('Given random number is greater than 0.5.');   pkrl@ jv >  
    'DaNR`9  
    end     {jj]K.&  
    `D&#U'wB   
    Given random number is greater than 0.5. r< d?  
    *#X+Gngo  
    {Sd@u$&  
    &F@tmM~  
    1-4、集合多个命令於一个M档案     20SF<V  
    bTA14&& q  
    若要一次执行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在 MATLAB提示号下键入此档案的主档名即可。此种包含MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。例如一个名为test.m的M档案,包含一连串的MATLAB命令,那麽只要直接键入test,即可执行其所包含的命令:   E-*>f"<h  
    ,d/CU  
    pwd % 显示现在的目录   cG~_EX$  
    ;iwD/=Y  
    ans =     ;DT"S{"7  
    m%BMd  
    D:\MATLAB5\bin   )VSGqYr#  
    LiHXWi{s  
    cd c:\data\mlbook % 进入test.m所在的目录   iG;d0>Sp  
    O(c4iWm  
    type test.m % 显示test.m的内容   A7I8Z6&  
    JY;#]'T\;  
    % This is my first test M-file.   D%5 {A=  
    DI"dY ug#  
    % Roger Jang, March 3, 1997   .[eSKtbc)  
    $yxIE}  
    fprintf('Start of test.m!\n');   <iY 9cV|}3  
    *Kp ^al  
    for i = 1:3,   G1n>@Y'j''  
    l*V72!Mv  
    fprintf('i = %d ---> i^3 = %d\n', i, i^3);     'E4(!H,k  
    %Tm' aY"  
    end   %CfTqbB  
    !UPAEA  
    fprintf('End of test.m!\n');   6b1 Uj<  
    R}=]UOqH-  
    test % 执行test.m   v*T@ <]f3j  
    K`AW?p^$Y  
    Start of test.m!   <P Z\qE*+y  
    &<; nl^  
    i = 1 ---> i^3 = 1   %%-Tjw o  
    f<x t3  
    i = 2 ---> i^3 = 8   M. UUA?d<'  
    oU{-B$w  
    i = 3 ---> i^3 = 27   kQ:>j.^e  
    rH9|JEz  
    End of test.m!   # xE>]U  
    9#A{C!75(y  
    小提示:第一注解行(H1 help line) test.m的前两行是注解,可以使程式易於了解与管理。特别要说明的是,第一注解行通常用来简短说明此M档案的功能,以便lookfor能以关键字比对的方式来找出此M档案。举例来说,test.m的第一注解行包含test这个字,因此如果键入lookfor test,MATLAB即可列出所有在第一注解行包含test的M档案,因而test.m也会被列名在内。   R|^t~h-  
    e[Ul"pMvS`  
    严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。前述的test.m即为命令集,其效用和将命令逐一输入完全一样,因此若在命令集可以直接使用工作空间的变数,而且在命令集中设定的变数,也都在工作空间中看得到。函数则需要用到输入引数(Input arguments)和输出引数(Output arguments)来传递资讯,这就像是C语言的函数,或是FORTRAN语言的副程序(Subroutines)。举例来说,若要计算一个正整数的阶乘 (Factorial),我们可以写一个如下的MATLAB函数并将之存档於fact.m:   U S~JLJI  
    A_dYN?^?|  
    function output = fact(n)   s!zr>N"  
    Vt 5XC~jK  
    % FACT Calculate factorial of a given positive integer.   <H(AS'  
    ieK'<%dxF  
    output = 1;     @eD2<e  
    U*#E aL  
    for i = 1:n,     sRI=TE]s  
    X$Qi[=L  
    output = output*i;     ,@j& q  
    =dJEcC_J  
    end     'Y/V9;`)s  
    P<w>1 =  
    其中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用到的暂时变数。要使用此函数,直接键入函数名及适当输入引数值即可:   vmQ DcCw  
    Vf* B1Zb  
    y = fact(5)   pLFL6\{g  
    wz2)seZY  
    y = 120   So0,)  
    B=qRZA!DQ?  
    (当然,在执行fact之前,你必须先进入fact.m所在的目录。)在执行fact(5)时, 7.=s1~p  
    N,'qMoNf  
    MATLAB会跳入一个下层的暂时工作空间(Temperary workspace),将变数n的值设定为5,然後进行各项函数的内部运算,所有内部运算所产生的变数(包含输入引数n、暂时变数i,以及输出引数output)都存在此暂时工作空间中。运算完毕後,MATLAB会将最後输出引数output的值设定给上层的变数y,并将清除此暂时工作空间及其所含的所有变数。换句话说,在呼叫函数时,你只能经由输入引数来控制函数的输入,经由输出引数来得到函数的输出,但所有的暂时变数都会随着函数的结束而消失,你并无法得到它们的值。   {`SGB;ho  
    jYssz4)tp  
    小提示:有关阶乘函数 前面(及後面)用到的阶乘函数只是纯粹用来说明MATLAB的函数观念。若实际要计算一个正整数n的阶乘(即n!)时,可直接写成prod(1:n),或是直接呼叫gamma函数:gamma(n-1)。   AI`1N%Owi  
    oz7udY=]0  
    MATLAB的函数也可以是递?式的(Recursive),也就是说,一个函数可以呼叫它本身。 nT6iS}h  
    "Kf~`0P  
    举例来说,n! = n*(n-1)!,因此前面的阶乘函数可以改成递式的写法:   xn#I7]]G  
    t7& GCZ  
    function output = fact(n)   5|H(N}S_  
    Ib<+m%Ac  
    % FACT Calculate factorial of a given positive integer recursively.   6j.(l4}  
    K0bmU(Xxp  
    if n == 1, % Terminating condition   vVRCM  
    9n2%7dLQ*  
    output = 1;   L ~' N6  
    -cC(d$y  
    return;   # SOj4W  
    )qQg n]  
    end   sJ*U Fm{  
    *fyEw\`a  
    output = n*fact(n-1);     <i @jD  
    fXR_)d  
    在写一个递函数时,一定要包含结束条件(Terminating condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将output设为1,而不再呼叫此函数本身。   GeR -k9  
    2G*#Czr"  
    rY+1s^F  
     l3 Bc g  
    1-5、搜寻路径   "U~@o4u;  
    8&iI+\lCy  
    在前一节中,test.m所在的目录是d:\mlbook。如果不先进入这个目录,MATLAB就找不到你要执行的M档案。如果希望MATLAB不论在何处都能执行test.m,那麽就必须将d:\mlbook加入MATLAB的搜寻路径(Search path)上。要检视MATLAB的搜寻路径,键入path即可:   &dMSX}t  
    n/|`Dz.  
    path     >LZ)<-Mk  
    `RLrT3 4  
    MATLABPATH   I ywx1ac  
    m|?J^_  
    d:\matlab5\toolbox\matlab\general   Or~6t}f  
    ]qT r4`.  
    d:\matlab5\toolbox\matlab\ops   , X+(wp  
    xVo)!83+Q  
    d:\matlab5\toolbox\matlab\lang   QE6-(/  
    M/I d\~  
    d:\matlab5\toolbox\matlab\elmat     \r&@3a.>  
    !!pi\J?sk  
    d:\matlab5\toolbox\matlab\elfun     uw&,pq  
    d|HM  
    d:\matlab5\toolbox\matlab\specfun     0X6o  
    pNsLoNZ3w  
    d:\matlab5\toolbox\matlab\matfun      K8we*  
    tOVm~C,R  
    d:\matlab5\toolbox\matlab\datafun   =1?yS3  
    xJ.!Q)[  
    d:\matlab5\toolbox\matlab\polyfun   3`!KndY1  
    b,sc  
    d:\matlab5\toolbox\matlab\funfun   T`G"2|ISS  
    'Z9F0l"Nr  
    d:\matlab5\toolbox\matlab\sparfun   .OUE'5e p  
    <08V-   
    d:\matlab5\toolbox\matlab\graph2d   oVgNG!/c0  
    6XU5T5+P^  
    d:\matlab5\toolbox\matlab\graph3d   LxDhthZi_  
    \C.@ @4{  
    d:\matlab5\toolbox\matlab\specgraph     Bbp9Q,4  
    4(gf!U  
    d:\matlab5\toolbox\matlab\graphics   jg/<"/E  
    e4LNnJU\|  
    d:\matlab5\toolbox\matlab\uitools   Ji=iq=S7  
    h}_q  
    d:\matlab5\toolbox\matlab\strfun   ,6L>f.V^(U  
    F4{<;4N0  
    d:\matlab5\toolbox\matlab\iofun   a^,RbV/  
    8B9zo&  
    d:\matlab5\toolbox\matlab\timefun   'kK%sE   
    </p.OaNe  
    d:\matlab5\toolbox\matlab\datatypes   RkM!BcB  
    tsD^8~ t|h  
    d:\matlab5\toolbox\matlab\dde   |SleSgS<#  
    xx8na8  
    d:\matlab5\toolbox\matlab\demos   EUqG"h5#A{  
    E]Q)pZ{Jb  
    d:\matlab5\toolbox\tour     0rUf'S ?K  
    7L"/4w  
    d:\matlab5\toolbox\simulink\simulink   .IU+4ENSy4  
    cGKk2'v?  
    d:\matlab5\toolbox\simulink\blocks   a/fYD2uNo  
    1 doqznO  
    d:\matlab5\toolbox\simulink\simdemos     nt6"}vO  
    8EA?'~"  
    d:\matlab5\toolbox\simulink\dee   IF1}}[Ht  
    H2vEFnV  
    d:\matlab5\toolbox\local   ^Du_e(TiyK  
    {VG6m Hw  
    此搜寻路径会依已安装的工具箱(Toolboxes)不同而有所不同。要查询某一命令是在搜寻路径的何处,可用which命令:     ":ycyN@g  
    =UY@,*q:c  
    which expo   CS49M  
    rB]/N,R   
    d:\matlab5\toolbox\matlab\demos\expo.m   (n\ cs$  
    vCM'nkXY  
    很显然c:\data\mlbook并不在MATLAB的搜寻路径中,因此MATLAB找不到test.m这个M档案:   D5x^O2  
    6s;x@g]  
    which test   &3V4~L1aEg  
    ~4 ab\hq  
    c:\data\mlbook\test.m   |a+8-@-Tj  
    ZUycJ-[  
    要将d:\mlbook加入MATLAB的搜寻路径,还是使用path命令:   1Jt%I'C?  
    ff0,K#-  
    path(path, 'c:\data\mlbook');     novZ<?7 5;  
    aO1cd_d6x_  
    此时d:\mlbook已加入MATLAB搜寻路径(键入path试看看),因此MATLAB已经"看"得到 kVY@q&p  
    H UjmJu6f{  
    test.m:   SzgVvmM}  
    [>E0(S]  
    which test   0^=S:~G  
    %}/)_RzQ  
    c:\data\mlbook\test.m   dZ*o H#B  
    zv41Yv!x}  
    现在我们就可以直接键入test,而不必先进入test.m所在的目录。   I ; _.tG  
    Xp' KQ1w)  
    小提示:如何在其启动MATLAB时,自动设定所需的搜寻路径? 如果在每一次启动MATLAB後都要设定所需的搜寻路径,将是一件很麻烦的事。有两种方法,可以使MATLAB启动後 ,即可载入使用者定义的搜寻路径:   99 [ "I:  
    x K/`XY  
    1.MATLAB的预设搜寻路径是定义在matlabrc.m(在c:\matlab之下,或是其他安装MATLAB 的主目录下),MATLAB每次启动後,即自动执行此档案。因此你可以直接修改matlabrc.m ,以加入新的目录於搜寻路径之中。   rO NLbrj  
    3]'3{@{} H  
    2.MATLAB在执行matlabrc.m时,同时也会在预设搜寻路径中寻找startup.m,若此档案存在,则执行其所含的命令。因此我们可将所有在MATLAB启动时必须执行的命令(包含更改搜寻路径的命令),放在此档案中。   rP'oU V_  
    *G9;d0  
    每次MATLAB遇到一个命令(例如test)时,其处置程序为:   G 6][@q  
    Th8xh=F[  
    1.将test视为使用者定义的变数。 HV}NT~  
    2dC)%]aLme  
    2.若test不是使用者定义的变数,将其视为永久常数 。 o` e~1  
    @t_<oOI2  
    3.若test不是永久常数,检查其是否为目前工作目录下的M档案。 \1tce`+  
    KT3[{lr  
    4.若不是,则由搜寻路径寻找是否有test.m的档案。 w:qwU\U>x  
    62W3W1: W  
    5.若在搜寻路径中找不到,则MATLAB会发出哔哔声并印出错误讯息。   toF@@ %  
    _%t w#cM  
    以下介绍与MATLAB搜寻路径相关的各项命令。   C. Sb4i*  
    @gZ%>qe  
    R)#"Ab Z'  
    pD){K  
    QPBf++|  
    UOa{J|k>h  
    1-6、资料的储存与载入   $hA[vi\5  
    Lg'z%pi  
    有些计算旷日废时,那麽我们通常希望能将计算所得的储存在档案中,以便将来可进行其他处理。MATLAB储存变数的基本命令是save,在不加任何选项(Options)时,save会将变数以二进制(Binary)的方式储存至副档名为mat的档案,如下述:   n.XT-X^  
    U7{, *  
    save:将工作空间的所有变数储存到名为matlab.mat的二进制档案。 `/0FXb 8h  
    b6#V0bDXHD  
    save filename:将工作空间的所有变数储存到名为filename.mat的二进制档案。 save filename x y z :将变数x、y、z储存到名为filename.mat的二进制档案。   T'w=v-(J  
    FQ);el'_V  
    以下为使用save命令的一个简例:   d=q2Or   
    ,UY],;ib  
    who % 列出工作空间的变数   yXl zImPn  
    nL\BB&  
    Your variables are:   ;X\,-pjv  
    U*)pUJ{&t  
    B h j y   =T9QmEBm  
    + -U7ogs  
    ans i x z   Uh*V>HA#  
    z~Gi/Ln  
    save test B y % 将变数B与y储存至test.mat   o ;.j_  
    =p$1v{L8  
    dir % 列出现在目录中的档案   l\a 0 k4  
    4h?[NOA"  
    . 2plotxy.doc fact.m simulink.doc test.m ~$1basic.doc   }VdohX-  
    CsXIq.9  
    .. 3plotxyz.doc first.doc temp.doc test.mat   zuXJf+]  
    v 6Tz7  
    1basic.doc book.dot go.m template.doc testfile.dat   V{ECDg P  
    ^lf{IM-Y  
    delete test.mat % 删除test.mat   BA53   
    +,f|Y6L<  
    以二进制的方式储存变数,通常档案会比较小,而且在载入时速度较快,但是就无法用普通的文书软体(例如pe2或记事本)看到档案内容。若想看到档案内容,则必须加上-ascii选项,详见下述:   DhYQ>Gv8U  
    "}Vow^vb  
    save filename x -ascii:将变数x以八位数存到名为filename的ASCII档案。 .sgP3Ah  
    q0&g.=;  
    Save filename x -ascii -double:将变数x以十六位数存到名为filename的ASCII档案。   QJjqtOf>  
    -xPv]j$  
    另一个选项是-tab,可将同一列相邻的数目以定位键(Tab)隔开。   |1uyJ?%B  
    7X*$Fu<  
    小提示:二进制和ASCII档案的比较 在save命令使用-ascii选项後,会有下列现象:save命令就不会在档案名称後加上mat的副档名。 FIDV5Y/f  
    $i;%n1VBg  
    因此以副档名mat结尾的档案通常是MATLAB的二进位资料档。 #41~`vq3  
    yyW;VKN  
    若非有特殊需要,我们应该尽量以二进制方式储存资料。     +`>Tuz~  
    Q$^oIFb  
    load命令可将档案载入以取得储存之变数:   SvLI%>B=9  
    ZxF RE#y~2  
    load filename:load会寻找名称为filename.mat的档案,并以二进制格式载入。若找不到filename.mat,则寻找名称为filename的档案,并以ASCII格式载入。load filename -ascii:load会寻找名称为filename的档案,并以ASCII格式载入。   ).0klwfV  
    p#g o<Y#  
    若以ASCII格式载入,则变数名称即为档案名称(但不包含副档名)。若以二进制载入,则可保留原有的变数名称,如下例:   f~ kz=R=  
    DybuLB$f  
    clear all; % 清除工作空间中的变数   589hfET  
    6}4?, r  
    x = 1:10;   )_BQ@5NK  
    0}H7Xdkp  
    save testfile.dat x -ascii % 将x以ASCII格式存至名为testfile.dat的档案   KcKdhqdN-  
    BQTZt'p  
    load testfile.dat % 载入testfile.dat   [@ >}  
    [}:;B$,  
    who % 列出工作空间中的变数   wr>[Eo@%\  
    ]t0]fb[J  
    Your variables are:   c@f?0|66M  
    %x{jmZ$}  
    testfile x   ~P!\;S  
    3ScOJo  
    注意在上述过程中,由於是以ASCII格式储存与载入,所以产生了一个与档案名称相同的变数testfile,此变数的值和原变数x完全相同。   Pa)'xfQ$Y6  
    `st3iTLZY  
    1-7、结束MATLAB   &FrUj>i  
    4, EX2  
    有三种方法可以结束MATLAB:   z H|YVg  
    uvG' Kx  
    1.键入exit <cm(QNdcC  
    xQUskjv/  
    2.键入quit pYN.tD FO  
    wF=?EK(;P{  
    3.直接关闭MATLAB的命令视窗(Command window)
     
    分享到
    离线zhengzhijian
    发帖
    15
    光币
    15
    光券
    0
    只看该作者 1楼 发表于: 2009-12-02
    总算是看懂了一点点
    离线zhengzhijian
    发帖
    15
    光币
    15
    光券
    0
    只看该作者 2楼 发表于: 2009-12-02
    离线gougouben
    发帖
    65
    光币
    5
    光券
    0
    只看该作者 3楼 发表于: 2009-12-02
    好东西啊,matlab算是用起来比较简便的软件了啊
    离线凯风自北
    发帖
    17
    光币
    12
    光券
    0
    只看该作者 4楼 发表于: 2014-03-17
    谢楼主分享
    发帖
    43
    光币
    2
    光券
    0
    只看该作者 5楼 发表于: 2016-03-23
    多谢 好人