1-1、基本运算与函数 ;QVTb3Th
y /vc\e
在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如: ,OrrGwp&
?yG[VW
>> (5*2+1.3-0.8)*10/25 #bcZ:D@FC
WXo bh
ans =4.2000 n+
H2cl }
~|<'@B!6
MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答 案(Answer)并显示其数值於萤幕上。 0OlT^
P\@kqf~pC
小提示: ">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。 (-J'x%2)
Y{~`g(~9_A
我们也可将上述运算式的结果设定给另一个变数x: UOj*Gt&
aQHR=.S]X
x = (5*2+1.3-0.8)*10^2/25 k v_t6 (qd
qQfNT.
x = 42 JS03BItt
O=LW[h!
此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。 le_aIbB"P
l_;6xkv4
小提示: MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variable declaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。 !5'4FUlJ
;wJe%Nw?
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例: -F(luRBS(W
7'At_oG
y = sin(10)*exp(-0.3*4^2); /)RH-_63
e1b?TF@lz
若要显示变数y的值,直接键入y即可: 0i5S=L`j
u)zv`m
>>y `'3&tAy
xVYa-I[Z
y =-0.0045 !ni
1 qM
GwA\>qXw
在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。 #I MaN%
: &nF>
下表即为MATLAB常用的基本数学函数及三角函数: iDcYyNE
amExZ/
小整理:MATLAB常用的基本数学函数 3_9CREZCl
HNc/p4z
abs(x):纯量的绝对值或向量的长度 O46v
}tBw<7fe
angle(z):复 数z的相角(Phase angle) b)#rUI|O
>\~Er@
sqrt(x):开平方 a;Pn.@NVq
'
-9=>
real(z):复数z的实部 FjizPg/|!
#l`\'0`.
imag(z):复数z的虚 部 F+NX
[
-da: j-_
conj(z):复数z的共轭复数 KT 6ppo
3(t3r::&
round(x):四舍五入至最近整数 |Vlx:
F/1m&1t
fix(x):无论正负,舍去小数至最近整数 +84
p/B#
- q(a~Ge
floor(x):地板函数,即舍去正小数至最近整数 6WIs*$T2*
Gj%q:[r
ceil(x):天花板函数,即加入正小数至最近整数 p{v*/<.;
F?jD5M08t/
rat(x):将实数x化为分数表示 bJ9*z~z)e
3*\Q]|SI!
rats(x):将实数x化为多项分数展开 D
vU1+y
q$b4S4Z7
sign(x):符号函数 (Signum function)。 {jwLVKT$
=j~:u.hc'
当x<0时,sign(x)=-1; NX8hFwR
Qv'x+GVW]
当x=0时,sign(x)=0; 8D@J d
JC9$"0d7
当x>0时,sign(x)=1。 ~H
VpB)5>
> 小整理:MATLAB常用的三角函数 K1R?Qt,qDF
79}jK"Gc
sin(x):正弦函数 dHg[r|xC
~:0w%
cos(x):馀弦函数 zkqn>
z%T|L[(6
tan(x):正切函数 $`%Om WW{
3OKs?i3A
asin(x):反正弦函数 zG/? wP"
G3]#Du
acos(x):反馀弦函数 h6?Z
_emW#*V
atan(x):反正切函数 %I!2dXNFRF
Wb cm1I)
atan2(x,y):四象限的反正切函数 QS\wtTXj
}(XKy!G6
sinh(x):超越正弦函数 kw#-\RR_c
S3WUccv
cosh(x):超越馀弦函数 >KdV]!H
Z
zp"CK 5
tanh(x):超越正切函数 $)X8'1%6
YHu]\'Ff
asinh(x):反超越正弦函数 >mR8@kob<
L@zhbWY
acosh(x):反超越馀弦函数 VlL%dN;
0
n|rKo<Y0
atanh(x):反超越正切函数 u,d5/`E
h9}*_qc&kV
变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算: i`+bSg
Gky^S#
x = [1 3 5 2]; FY^Nn
nP*% N|0
y = 2*x+1 cL03V? }
~
k 9z9{
y = 3 7 11 5 1(:!6PY
mK"s*tD
小提示:变数命名的规则 s/C'f4
eMFxdtH
1.第一个字母必须是英文字母 2.字母间不可留空格 3.最多只能有19个字母,MATLAB会忽略多馀字母 xh9$ZavB*
idX''%"
我们可以随意更改、增加或删除向量的元素: hh%?E\qM
*W^ZXhrZ
y(3) = 2 % 更改第三个元素 uZJfIC<>
ysp`(n=
y =3 7 2 5 C&*1H`n
BL_0@<1X
y(6) = 10 % 加入第六个元素 5dE=M};v
8=joVbs
y = 3 7 2 5 0 10
rJCb8x+5a
pPo xx"y
y(4) = [] % 删除第四个元素, -]D/8,|s
\#B<'J9.`
y = 3 7 2 0 10 LfFXYX^
fbbbTZy
在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算: n;N79`mZC
s<k2vbhI
x(2)*3+y(4) % 取出x的第二个元素和y的第四个元素来做运算 i 61k
,J!$Q0 e
ans = 9
HDZl;=
h"0)spF"d
y(2:4)-1 % 取出y的第二至第四个元素来做运算 hEsiAbTyF
cY_ke
ans = 6 1 -1 p:Lmf8EI
N8#j|yf
在上例中,2:4代表一个由2、3、4组成的向量 aVc{ aP
L*A-&9.p3
Z
f\~Cl
*`Vm ncv3
若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line help):help linspace A 0k?$ko
b7Z o~Z
小整理:MATLAB的查询命令 vI5lp5( -3
X<[ qX*
help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!) lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入 lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後 ,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。) 5ct&fjmR_
tLfhW1"
将列向量转置(Transpose)後,即可得到行向量(Column vector): a6e{bAuq
Xw!\,"{s
z = x' Jut&J]{h
\P?X`]NwnO
z = 4.0000 ]FTi2B{}H
0Q_*Z (
5.2000 _"yA1D0d_
fTvm2+.nX
6.4000 'EAskA]*
wL
4Y%g
7.6000 V<H9KA
9iZio3m
8.8000 n%J=!z3
p T 8?z
10.0000 u%)gnj_
%g.cE}^
不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等: AO|9H`6U6F
6xJffl
length(z) % z的元素个数 &EQhk9j
Rxd4{L
)n
ans = 6 PKSfu++Z
$P0q!
max(z) % z的最大值 Kh(`6 f
*<