一.
光纤放大器的原理结构
,i:?c zxR]+9Zh 掺铒光纤的放大原理
Fh #QS'[ [.#nM EDFA的放大作用是通过1550nm波段的信号光在掺铒光纤中传输与Er
3+ 离子相互作用产生的。在光与物质相互作用时,光可以被看作由光子组成的粒子束,每个光子的能量为:
2`o
@L X^\D"fmE. E=hv
'ZbWr*bo ]?^V xB7L 其中:E为光子的能量,v为光的频率,h为普朗克常数。
<)7aNW. JR!-1tnc 掺铒光纤中的Er
3+离子所出的能量状态是不能连续取值的,它只能处在一系列分立的能量状态成为能级上,这些能量状态成为能级。当在掺铒光纤中传输的光子能量与Er
3+离子的某两个能级之间的能量差相等时,Er
3+离子就会与光子发生相互作用,产生收激辐射和收激吸收效应。受激辐射是指Er
3+离子与光子相互作用从高能级跃迁到低能级,发射出一个与激发光子完全相同的光子(
激光子的频率、相位、传播方向、偏振态相同);受激吸收是指Er
3+离子与光子相互作用从低能集跃迁到高能级,并且吸收激发光子。为了详细说明EDFA放大原理,图1给出了Er
3+离子与光放大作用有关的能级结构。
}g bLWx'iG v,w af`)J
tZ_'>7) 如图1所示,与Er
3+离子产生光放大效应的能级由三个:高能态、亚稳态、基态。高能态与基态之间的能量差与泵浦光子能量相同,亚稳态与基态之间的能量与1550nm的光子能量相同。
Q-7?'\h *5)UIRd 在掺铒光纤中注入足够强的泵浦光,就可以将大部分处于基态的Er
3+离子抽运到高能态上,处于高能态的Er
3+离子又迅速无辐射地转移到亚稳态上。由于Er
3+离子在亚稳态上能级寿命较长,因此,很容易在亚稳态与基态之间形成粒子数反转,即处于亚稳态的Er
3+粒子数比处于基态的Er
3+粒子数多。当信号光子通过掺耳光弦,与Er
3+离子相互作用发生受激辐射效应,产生大量与自身完全相同的光子,这时通过掺耳光纤传输的信号光子迅速增多,产生信号放大作用;只有少数处于基态的Er
3+离子队信号光子产生受激吸收效应,吸收光子。Er
3+离子的亚稳态和基态具有一定的宽度,使EDFA的放大效应具有一定波长范围,其典型值维1530—1570nm。Er
3+离子处于亚稳态时,除了发生受激辐射和受激吸收以外,还要产生自发辐射,即Er
3+离子在亚稳态上暂短停留还没有机会与光子相互作用,就会自发地从亚稳态跃迁到基态并发射出1550nm波段的光子,这种光子与信号光不同,它构成EDFA的噪声。由于自发辐射光子在掺铒光纤中传输时也会得到放大,因此在EDFA的输入光功率较低时,会产生较大的噪声。
bP18w0>, RpJ7. 1.2光纤放大器的基本结构
{JE [ EI_-5Tt RD 光纤放大器一般由五个基本部分组成,它们是掺铒光纤(EDF)、泵浦
激光器(Pump—LD)、光无源器件、控制单元和监控接口(通信接口)。其中光无源器件包括:波分复用器(WDM)、光隔离器(ISO)、光纤连接器(FC/APC)和光
耦合其实防止光路中反向光对EDFA的影响与通信系统和光缆线路的连接变得容易,光耦合器丛输入和输出光中分路出一部分光(5%左右)送到光探测器(PIN),由控制单元对光纤放大器的工作进行不间断的控制,监控借口向传输系统提供光纤放大器工作状态信息,确保光纤放大器作为传输系统的一个部件,纳入到统一的网络监控之中。图2给出了三种典型惨铒光纤放大器结构原理图。
h;V4|jM
PaCCUF hRf
l\Q[ 
wJC[[_"3 I ~ZKJ:&f