摘要 随着
光纤通信的飞速发展,
光纤通信有向全光网发展的趋势。文中介绍了全光网的概念、优点及一些关键技术,展望了未来
光通信的发展前景。
JX<W[P>M _Cs}&Bic_ 关键词
全光网络 光通信
光交换 j7 3@Yi% oVsazYJ|? 在以光的复用技术为基础的现有通信网中,网络的各个节点要完成光/电/光的转换,仍以电信号处理信息的速度进行交换,而其中的电子件在适应高速、大容量的需求上,存在着诸如带宽限制、时钟偏移、严重串话、高功耗等缺点,由此产生了通信网中的“电子瓶颈”现象。为了解决这个问题,人们提出了全光网(AON)的概念,全光网以其良好的透明性、波长路由特性、兼容性和可扩展性,已成为下一代高速宽带网络的首选。
=8D4:Ds h4i$z-! 1、全光网的概念
twS3J)UH Oo .Qz
所谓全光网,是指从源节点到终端用户节点之间的数据传输与交换的整个过程均在光域内进行,即端到端的完全的光路,中间没有电信号的介入。全光网的结构示意如图1所示。
~,1q :Kue %$KO]
* c
c+Fd 图1 全光网的结构示意图
|;-r}; ng*E9Puu[ 2、全光网的优点
q,&T$Tw ~8{3Fc 0 基于波分复用的全光通信网可使通信网具备更强的可管理性、灵活性、透明性。它具备如下以往通信网和现行光通信系统所不具备的优点:
e>Y2q|S85 f)P/@rh (1)省掉了大量电子器件。全光网中光信号的流动不再有光电转换的障碍,克服了途中由于电子器件处理信号速率难以提高的困难,省掉了大量电子器件,大大提高了传输速率。
LkB!:+v |B }]?G"f
t K (2)提供多种协议的业务。全光网采用波分复用技术,以波长选择路由,可方便地提供多种协议的业务。
Y"%o\DS* *?"{T;4u~O (3)组网灵活性高。全光网组网极具灵活性,在任何节点可以抽出或加入某个波长。
iRtDZoiD' zL}hFmh (4)可靠性高。由于沿途没有变换和存储,全光网中许多光器件都是无源的,因而可靠性高。
jdf@lb=5l lhj2u]yU0S 3、全光网中的关键技术
e!Okc*, u.FDe2|[) 3.1 光交换技术
5/ju
it A\.*+k/B 光交换技术可以分成光路交换技术和分组交换技术。光路交换又可分成3种类型,即空分(SD)、时分(TD)和波分/频分(WD/FD)光交换,以及由这些交换形式组合而成的结合型。其中空分交换按光矩阵开关所使用的技术又分成两类,一是基于波导技术的波导空分,另一个是使用自由空间光传播技术的自由空分光交换。光分组交换中,异步传送模式是近年来广泛研究的一种方式。
9X` QlJ2| hyoZh Y 3.2 光交叉连接(OXC)技术
R!qrb26k Z$XpoDbOy OXC是用于光纤网络节点的设备,通过对光信号进行交叉连接,能够灵活有效地管理光纤传输网络,是实现可靠的网络保护/恢复以及自动配线和监控的重要手段。OXC主要由光交叉连接矩阵、输入接口、输出接口、管理控制单元等模块组成。为增加OXC的可靠性,每个模块都具有主用和备用的冗余结构,OXC自动进行主备倒换。输入输出接口直接与光纤链路相连,分别对输入输出信号进行适配、放大。管理控制单元通过
编程对光交叉连接矩阵、输入输出接口模块进行监测和控制、光交叉连接矩阵是OXC的核心,它要求无阻塞、低延迟、宽带和高可靠,并且要具有单向、双向和广播形式的功能。OXC也有空分、时分和波分3种类型。
.U%"oD e_-/p`9 3.3 光分插复用
mK4|=Q p2(_YN;s 在波分复用(WDM)光网络领域,人们的兴趣越来越集中到光分插复用器上。这些设备在光波长领域内具有传统SDH分插复用器(SDH ADM)在时域内的功能。特别是OADM可以从一个WDM光束中分出一个信道(分出功能),并且一般是以相同波长往光载波上插入新的信息(插入功能)。对于OADM,在分出口和插入口之间以及输入口和输出口之间必须有很高的隔离度,以最大限度地减少同波长干涉效应,否则将严重影响传输性能。已经提出了实现OADM的几种技术:WDM DE-MUX和MUX的组合;光循环器或在Mach-Zehnder结构中的光纤
光栅;用集成
光学技术实现的串联Mach-Zehnder结构中的干涉滤波器。前两种方式使隔离度达到最高,但需要昂贵的设备如WDM MUX/DE MUX或光循环器。Mach-Zehnder结构(用光纤光栅或光集成技术)还在开发之中,并需要进一步改进以达到所要求的隔离度。上面几种OADM都被设计成以固定的波长工作。
59]9-1" + 7# 3)&"j
3.4 光放大技术
:n9^:srGZH ;P~S/j[ 8 光纤放大器是建立全光通信网的核心技术之一,也是密集波分复用(
DWDM)系统发展的关键要素。DWDM系统的传统基础是掺饵光纤放大器(EDFA)。光纤在1550nm窗口有一较宽的低损耗带宽,可以容纳DWDM的光信号同时在一根光纤上传输。采用这种放大器的多路传输系统可以扩展,经济合理。EDFA出现以后,迅速取代了电的信号再生放大器,大大简化了整个光传输网。但随着系统带宽需求的不断上升,EDFA也开始显示出它的局限性。由于可用的带宽只有30nm,同时又希望传输尽可能多的信道,故每个信道间的距离非常小,一般只有O.8~1.6nm,这很容易造成相邻信道间的串话。因此,实际上EDFA的带宽限制了DWDM系统的容量。最近研究表明,1590nm宽波段光纤放大器能够把DWDM系统的工作窗口扩展到1600nm以上。贝尔实验室和NH的研究人员已研制成功实验性的DBFA。这是一种基于二氧化硅和饵的双波段光纤放大器。它由两个单独的子带放大器组成:传统1550nm EDFA(1530nm~1560nm);1590nm的扩展波段光纤放大器EBFA。EBFA和EDFA的结合使用,可使DWDM系统的带宽增加一倍以上(75nm),为信道提供更大的空间,从而减少甚至消除了串话。因此,1590nm EBFA对满足不断增长的高容量光纤系统的需求迈出了重要的一步。
Uroj%xN #wiP{+%b 4、全光网面临的挑战及发展前景
r ngw6?`n- 1D6O=j\ 4.1 面临的挑战
AMz=HN -rlX<(pl) (1)网络管理。除了基本的功能外,核心光网络的网络管理应包括光层波长路由管理、端到端性能监控、保护与恢复、疏导和资源分配策略管理。
?Fpl.t~ <DS6-y (2)互连和互操作。ITU和光互连网论坛(OIF)正致力于互操作和互连的研究,已取得了一些进展。ITU的研究集中在开发光层内实现互操作的标准。OIF则更多的关注光层和网络其他层之间的互操作,集中进行客户层和光层之间接口定义的开发。
p]eD@3Wz ;~1JbP (3)光性能监视和测试。目前光层的性能监视和性能管理大部分还没有标准定义,但正在开发之中。
H/Q)zDP J7vpCw2ni 4.2 发展前景
QovC*1' 3kY4V*9@- 全光网是通信网发展的目标,分两个阶段完成。第一个阶段为全光传送网,即在点对点光纤传输系统中,全程不需要任何光电转换。长距离传输完全靠光波沿光纤传播,称为发端与收端间点对点全光传输。第二个阶段为完整的全光网。在完成上述用户间全程光传送网后,有不少的信号处理、储存、交换以及多路复用/分用、进网/出网等功能都要由光子技术完成。完成端到瑞的光传输、交换和处理等功能,这是全光网发展的第二阶段,即完整的全光网。