望远镜的集光能力随着口径的增大而增强,望远镜的集光能力越强,就能够看到更暗更远的天体,这其实就是能够看到了更早期的宇宙。天体物理的发展需要更大口径的望远镜。
}IaA7f `BXS)xj 但是,随着望远镜口径的增大,一系列的技术问题接踵而来。海尔望远镜的
镜头自重达14.5吨,可动部分的
重量为530吨,而6米镜更是重达800吨。望远镜的自重引起的镜头变形相当可观,温度的不均匀使镜面产生畸变也影响了成象质量。从制造方面看,传统方法制造望远镜的费用几乎与口径的平方或立方成正比,所以制造更大口径的望远镜必须另辟新径。
dJk9@u t?eH'*> 自七十年代以来,在望远镜的制造方面发展了许多新技术,涉及
光学、力学、计算机、自动控制和精密机械等领域。这些技术使望远镜的制造突破了镜面口径的局限,并且降低造价和简化望远镜结构。特别是主动光学技术的出现和应用,使望远镜的设计思想有了一个飞跃。
Xyx"A(v^l kU l 从八十年代开始,国际上掀起了制造新一代大型望远镜的热潮。其中,欧洲南方天文台的VLT,美、英、加合作的GEMINI,日本的SUBARU的主镜采用了薄镜面;美国的Keck I、Keck II和HET望远镜的主镜采用了拼接技术。
N_gD>6I lS5ny 优秀的传统望远镜卡塞格林焦点在最好的工作状态下,可以将80%的几何光能集中在0″.6范围内,而采用新技术制造的新一代大型望远镜可保持80%的光能集中在0″.2~0″.4,甚至更好。
!cX[-}Q ~/#1G.H 下面对几个有代表性的大型望远镜分别作一些介绍:
L,_.$1d KOSM]c\H 凯克望远镜(Keck I,Keck II) o>]`ac0b}Y 0\QR!*'$ =d`5f@'rl Keck I 和Keck II分别在1991年和1996年建成,这是当前世界上已投入工作的最大口径的光学望远镜,因其经费主要由企业家凯克(Keck W M)捐赠(Keck I 为9400万美元,Keck II为7460万美元)而命名。这两台完全相同的望远镜都放置在夏威夷的莫纳克亚,将它们放在一起是为了做干涉观测。
o^p 8At<Wic 它们的口径都是10米,由36块六角镜面拼接组成,每块镜面口径均为1.8米,而厚度仅为10厘米,通过主动光学支撑系统,使镜面保持极高的精度。焦面设备有三个:近红外照相机、高
分辨率CCD探测器和高色散
光谱仪。
^s :y/Kd #1nJ(-D+ "象Keck这样的大望远镜,可以让我们沿着时间的长河,探寻宇宙的起源,Keck更是可以让我们看到宇宙最初诞生的时刻"。
HL K@xKD< Sm{>rR 欧洲南方天文台甚大望远镜(VLT) R{hf9R , XP?rOOn 3`.P'Fh(k ~l E _L1-c 欧洲南方天文台 1R%1h9I4' Wd,a?31| 自1986年开始研制由4台8米口径望远镜组成一台等效口径为16米的光学望远镜。这4台8米望远镜排列在一条直线上,它们均为RC光学系统,焦比是F/2,采用地平装置,主镜采用主动
光学系统支撑,指向精度为1″,跟踪精度为0.05″,镜筒重量为100吨,叉臂重量不到120吨。这4台望远镜可以组成一个干涉阵,做两两干涉观测,也可以单独使用每一台望远镜。
7Ke&0eAw 现在已完成了其中的两台,预计于2000年可全部完成。
JK_OZ fz_nsVD qdD)e$XW, }:Z9Vc ZP` 双子望远镜(GEMINI) \3YO<E!t (8a#\Y[b 双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。
ib6^x:HGU [1G^/K" 该工程于1993年9月开始启动,第一台在1998年7月在夏威夷开光,第二台于2000年9月在智利赛拉帕琼台址开光,整个系统预计在2001年验收后正式投入使用。
K95;rd ^%T7. 1'x d9^E.8p$ 昴星团(日本)8米望远镜(SUBARU) bCv {1]RC2 Rd*[%) 这是一台8米口径的光学/红外望远镜。它有三个特点:一是镜面薄,通过主动光学和自适应光学获得较高的成象质量;二是可实现0.1″的高精度跟踪;三是采用圆柱形观测室,自动控制通风和空气过滤器,使热湍流的排除达到最佳条件。此望远镜采用Serrurier桁架,可使主镜框与副镜框在移动中保持平行。
@ EuFJ=h W6c]-pc 此望远镜将安装在夏威夷的莫纳克亚,从1991年开始,预计9年完成。
J;Rv ~<7 )u:Q)
%$t 大天区多目标光纤光谱望远镜(LAMOST) '-$XX%TOAc ]3{0J 这是我国正在兴建中的一架有效通光口径为4米、
焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它的技术特色是:
coE&24,0 v6(E3)J7 1. 把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。
S56]?M|[ 7*+]wEs 2. 球面主镜和反射镜均采用拼接技术。
F"+o@9] jdA
]2] 3. 多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。
=qVP] 9 YvL?j LAMOST把普测的星系极限星等推到20.5
m,比SDSS计划高2等左右,实现10
7个星系的光谱普测,把观测目标的数量提高1个量级。