机械制造技术从提高精度与生产率两个方面同时迅速发展起来。在提高生产率方面,提高自动化程度是各国致力发展的方向,近年来,从C N C到C I M S发展迅速,并且在一定范围内得到了应用。从提高精度方面,从精密加工发展到
超精密加工,这也是世界各主要发达国家致力发展的方向。其精度从微米到亚微米,乃至纳米,其应用范围日趋广泛,在高技术领域和军用工业以及民用工业中都有广泛应用。如
激光核聚变系统、超大规模集成电路、高密度磁盘、精密雷达、导弹火控系统、惯导级陀螺、精密机床、精密仪器、录象机磁头、复印机磁鼓、煤气灶转阀等都要采用超精密加工技术。
4y1>!~f 它与当代一些主要科学技术的发展有密切的关系,是当代科学发展的一个重要环节,超精密加工技术的发展促进了机械、液压、电子、半导体、
光学、传感器和测量技术以及材料科学的发展。
@\DD|o67 `HM3YC 1超精密加工技术概述
vaf9b}FL 超精密加工目前就其质来说是要实现以现有普通精密加工手段还达不到的高精度加工,就其量来说是要加工出亚微米乃至毫微米级的形状与尺寸赖皮并获得纳米级的表面粗糙度,但究竟多少精度值才算得上超精密加工一段要视零件大小、复杂程度以及是否容易变形等因素而定。
hY1|qp 超精密加工主要包括超精密切削(车、铣) 超精密磨削、超精密研磨
38m%ifh) (机械研磨、机械化学研磨、研抛、非接触式浮动研磨、弹性发射加工等)以及超精密特种加工(电子束、离子束以及激光束加工等)。上述各种方法均能加工出普通精密加工所达不到的尺寸精度、形状精度和表面质量。每种超精密加工方法都是针对不同零件的要求而选择的。
YMi(Cyja& _RW[]MN3* 1.1超精密切削加工
1SFKP$^ 超精密切削加工的特点是采用金刚石刀具。金刚石刀具与有色金属亲和力小,其硬度、耐磨性以及导热性都非常优越,且能刃磨得非常锋利(刃口圆弧半径可小于 ρ0.01 μm,实际应用一般ρ0,05 μm) 可加工出优于Ra0.01 μm的表面粗糙度。此外,超精密切削加工还采用了高精度的基础元部件(如空气轴承、气浮导轨等)、高精度的定位检测元件(如光栅、激光检测系统等)以及高分辨率的微量进给机构。机床本身采取恒温、防振以及隔振等措施,还要有防止污染工件的装置。机床必须安装在洁净室内。进行超精密切削加工的零件材料必须质地均匀,没有缺陷。在这种情况下加工无氧铜,表面粗糙度可达到Ba0.005μm,加工φ800mm的非球面
透镜,形状精度可达0.2/μm。超精密加工技术在航空航天、光学及民用等领域的应用十分广泛(见表1) 并向更高精度等方向发展(见表2)。
q%k+x) @|GeR
p\{+l;` Z M+Hb_6f
FR}H$R7# w}.'Tebu 1.2超精密磨削
i)2))C 超精密磨削技术是在一般精密磨削基础上发展起来的。超精密磨削不仅要提供镜面级的表面粗糙度,还要保证获得精确的几何形状和尺寸。为此,除要考虑各种工艺因素外,还必须有高精度、高刚度以及高阻尼特征的基准部件,消除各种动态误差的影响,并采取高精度检测手段和补偿手段。
4{DeF@@ 目前超精密磨削的加工对象主要是玻璃、陶瓷等硬脆材料,磨削加工的目标是范成3—5nm的平滑表面,也就是通过磨削加工而不需抛光即可达到要求的表面粗糙度。作为纳米级磨削加工,要求机床具有高精度及高刚度,脆性材料可进行可延性磨削(Ductile Grinding)。纳米磨削技术对燃气涡轮发动机,特别是对要求高疲劳强度材料(如飞机的喷气发动机涡轮用的陶瓷材料)的加工,是重要而有效的加工技术。
F3Y>hs):7 此外,砂轮的修整技术也相当关键。尽管磨削比研磨更能有效地去除
H{f_:z{{ 物质,但在磨削玻璃或陶瓷时很难获得镜面,主要是由于砂轮粒度太细时,砂轮表面容易被切屑堵塞。日本理化学研究所学者大森整博士发明的电解在线修整(ELID)铸铁纤维结合剂(CIFB)砂轮技术可以很好地解决这个问题。
}91mQ`3 当前的超精密磨削技术能加工出0.0 1μm圆度, O.1μm尺寸精度和Ra0.005μm粗糙度的圆柱形零件,平面超精密磨削能加工出0.03μm/100mm的平面。
$CmX
&%L= @g75T` N 1.3超精密研磨
Ib2 @Wi 超精密研磨包括机械研磨、化学机械研磨、浮动研磨、弹性发射加工以及磁力研磨等加工方法。超精密研磨加工出的球面不球度达0.025ttm,表面粗糙度达 RaO.003μm。利用弹性发射加工可加工出无变质层的镜面,粗糙度可达5A。最高精度的超精密研磨可加工出平面度为λ/200的零件。超精密研磨的的关键条件是几乎无振动的研磨运动、精密的温度控制、洁净的环境以及细小而均匀的研磨剂。此外高精度检测方法也比不可少。
tqQ0lv^J GVEWd/:X( 1.4超精密特种加工
gFT~\3jp= 1.4.1电子束加工
U R@BSK' 离子束加工是指在真空中将阴极(电子枪)不断发射出来的负电子向正极加速,并聚焦成极细的、能量密度极高的束流,高速运动的电子撞击到工件表面,动能转化为势能,使材料熔化、气化并在真空中被抽走。控制电子束的强弱和偏转方向,配合工作台 X Y方向的数控位移,可实现打孔、成型切割、刻蚀、光刻曝光等工艺。集成电路制造中广泛采用波长比可见光短得多的电子束光刻曝光,所以可以达到高达 O.25μm的线条图形分辨串。
&{ {DS q~J
oGTv 1.4.2离子束加工
~B&*7Q7 在真空将离子源产生的离子加速、聚焦使之撞击工件表面。由于离子是带正电荷且质量比电子大数千万倍,加速以后可以获得更大的动能,它是靠微观的机械撞击能量而不是靠动能转化为热能来加工的,可用于表面刻蚀、超净清洗,实现原子、分子级的切削加工。
@ >(u:. -m160k3 1.4.3激光束加工
QklNw6, 由激光发生器将高能量密度的激光进一步聚焦后照.射到工件表面,光能被吸收瞬时转化为热能。根据能量密度的高低,可实现打孔、精密切割、加工精微防伪标志等。
=4e=wAO(i w"v'dU^ 1.4.4微细电火花加工
p??/r 电火花加工是指在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时局部高温来熔化和气化去除金属的。加工过程中工具与工件间没有宏观的切削力,只要精密地控制单个脉冲放电能量并配合精密微量进给就可实现极微细的金属材料的去除,可加工微细轴、孔、窄缝、平面以及曲面等。
Uk:.2%S2 QWHy=(! 1.4.5微细电解加工
vSYKe 导电的工作液中水离解为氢离子和氢氧根离子,工件作为阳极,其表面的金属原子成为金属正离子溶入电解液而被逐层地电解下来,随后即与电解液中的氢氧根离子发生反应形成金属氢氧化物沉淀,而工件阴极并不损耗,加工过程中工具与工件间也不存在宏观的切削力,只要精细地控制电流密度和电解部位,就可实现纳米级精度的电解加工,而且表面不会加工应力。常用于镜面抛光、精密减薄以及一些需要无应力加工的场合。
Fd[h9 G AD@PNM 1.4.6复合加工
R9l7CJM@ 复合加工是指采用几种不同能量形式、几种不同的工艺方法,互相取长补短、复合作用的加工技术,例如电解研磨、超声电解加工、超声电解研磨、超声电火花、超声切削加工等,可比单一加工方法更有效,适用范围更广。
M%{?\)s cIr1"5POXK 2纳米技术(Nanotechnology)
S7kT3zB 2.1概述
bV`C;RPn 随着生物、环境控制、医学、航空、航天、精确制导弹药、灵巧武器、先进情报传感器以及数据通讯等的不断发展,在结构装置微小型化方面不断提出更新、更高的要求。目前,纳米技术发展十分迅猛,它使人类在改造自然方面进入一个新的层次。它将开发物质潜在的信息和结构能力,使单位体积物质存储和处理信息的能力实现质的飞跃,从而给国民经济和军事能力带来深远的影响。
q{GSsDo-:V 纳米技术是指纳米级(<10纳米)的材料、设计、制造、测量和控制技术。随着纳米技术的发展。开创了纳米电子学、纳米材料学、纳米生物学、纳米机械学、纳米制造学、纳米显微学及纳米测量等等新的高技术群。纳米技术是面向21世纪的一项重要技术,有着广阔的军民两用前景。美国、日本及西欧等国家均投入了大量的人力、物力进行开发,并己在航空、航天、医疗及民用产品等方面得到了一定应用。
hRr1#'& ZCBPO~&hO' 2.1.1微型机电系统( microelectron—mechanical systems, MEMS)
ay(!H~q_U 10年前,人们意识到用半导体批量制造技术可以生产许多宏观机械系统的微米尺度的样机后,就在小型机械制造领域开始了新的研究,这导致了微型机电系统(MEMS)的出现,如微米尺度的各类传感器以及各种阀门等。
kz0=GKic MEMS主要的民用领域是:医学、电于工业和航空、航天。如用静电驱动的微型电机控制计算机及通讯系统。在环境、医学应用中,微型传感器可以测量各种化学物质的流量、压力和浓度。在军事主要有以下:有害化学战剂报警传感器、敌我识别、灵巧蒙皮、分布式战场传感器网络、微机器人电子失能系统、昆虫平台等应用。
5Vi]~dZu7 W3/ 7BW` 2.1.2专用集成微型仪器( application specific integrated micro-instrument, ASIM)
YvruK:I 微型工程包括具有毫米、微米、纳米尺度结构的传感器和动作器的设计、材料合成、微型
机械加工、装配、总成和封装问题。利用这项技术可以把传感器、动作器和数据处理采集装置集成在一块普通的基片上。微型机电系统与微电子技术的综合集成,导致了专用集成微型仪器(ASIM)的出现。
Ao":9r[V 具有亚微米特点的ASIM会使亚毫米器件降低研制与试验费用、缩小体积、减轻
重量,同时还可以降低对电源和温控的要求,降低对振动的灵敏性和通过冗余提高可靠性。 ASIM将在航天器和航天.系统技术方面引起一场革命,出现超小型卫星系统,最终实现“纳米卫星”。
]&:b<]K3 PDIclIMS'F 2.1.3材料工程及功能织物
JT|u;Z*n 在材料工程方面,已经能够做到设计与控制一种材料的微观结构,从而获得所要求的宏观性能。因此,对于材料的分子、原子结构,以及在分子尺度上的物理化学性能的测试,以成为当今材料工程中不可缺少的技术。
5}eQaW48 利用纳米粒子的催化特性、极大的化学活性、极大的表面积、优异的电磁特性、光学特性等可以制造具有奇异功能的产品,如抗紫外线、抗可见光、抗红外线、抗电磁等的功能织物。
*w/WHQ`xI 此外,纳米技术在微电子工程、生物遗传工程、微机械光学等方面也具有广泛的应用前景。
Hl3)R*&'J sc8DY!|OYN 2.2纳米加工技术
~pevU`}Uqc 正如制造技术在当今各领域所起的重要作用一样,纳米加工技术在纳米技术的各领域中也起着关键作用。纳米加工技术包含机械加工、化学腐蚀、能量束加工以及 STM加工等许多方法。关于纳米加工技术目前还没有一个统一的定义,尺寸为纳米级(<10纳米)的材料的加工和使用称为纳米加工。加工表面粗糙度为纳米级的也称为纳米加工。笔者认为所谓纳米加工技术是指零件加工的尺寸精度、形状精度以及表面粗糙度均为纳米级(<10纳米)。通过以下加工技术可以实现纳米级加工。
g(<T u^F =#(0)p$EC 2.2.1超精密机械加工技术
uyNJN 超精密机械加工方法有单点金刚石和CBN超精密切削、金刚石和CBN超精密磨削等多点磨料加工,以及研磨、抛光、弹性发射加工等自由磨料加工或机械化学复合加工等。
h.V]f S 目前利用单点金刚石超精密切削加工已在实验室得到了3纳米的切屑,利用可延性磨削技术也实现了纳米级磨削,而通过弹性发射加工等工艺则可以实现亚纳米级的去除,得到埃级的表面粗糙度。
ADGnBYE rer|k<k;]G 2.2.2能量束加工技术
:,kU#eZ$- 能量束加工可以对被加工对象进行除、添加和表面处理等工艺,主要包括离子束加工、电子束加工和光束加工等,此外电解射流加工、电火花加工、电化学加工、分子束外延、物理和化学气相淀积等也属于能量束加工。
,?k%jcR 离子束加工溅射去除、沉淀和表面处理,离子束辅助蚀刻亦是用于纳米级加工的研究开发方向。与固体工具切削加工相比,离子束加工的位置和加工速率难以确定,为取得纳米级的加工精度,需要亚纳米级检测系统与加工位置的闭环调节系统。电子束加工是以热能的形式去除穿透层表面的原子,可以进行刻蚀、光刻曝光、焊接、微米和纳米级钻削和铣削加工等。
C.>
GVG!sMmnX 2.2.3 LIGA技术( Lithographie, Galvanoformung, Abformung)
%5h^`lp LIGA工艺是由深层同步辐射X射线光刻、电铸成型、塑铸成型等技术组合而成的综合性技术,其最基本和最核心的工艺是深度同步辐射光刻,而电铸和塑铸工艺是LIGA产品实用化的关按。与传统的半导体工艺相比, LIGA技术具有许多独特的优点,主要有:
xP/OsaxN (1)用材广泛,可以是金属及其合金、陶瓷、聚合物、玻璃等。
C]'g:93L (2)可以制作高度达数百微米至一千微米,高度比大于200的三维立体微结构。
lRDxIuTK (3)横向尺寸可以小到O.5μm,加工精度可达0.1μm
HK0::6n{ (4)可实现大批量复制、生产,成本低。
\&iil =H8! 用LIGA技术可以制作各种微器件、微装置,己研制成功或正在研制的LIGA产品有微传感器、微电机、微机械零件、集成光学和微光学元件、微波元件、真空电子元件、微型医疗器械、纳米技术元件及系统等。 LIGA产品的应用涉及面广泛,如加工技术、测量技术、自动化技术、汽车及交通技术、电力及能源技术、航空及航天技术、纺织技术、精密工程及光学、微电子学、生物医学、环境科学和化学工程等。
=3|pHc hJ4 @H\pipT_b 2.2.4扫描隧道
显微镜( STM)技术
a jQqj. $J"%I$%X= C.binning和H.Robrer发明的扫描隧道显微镜不但使人们可以以单个原子的分辨率观测物体的表面结构,而且也为以单个原子为单位的纳米级加工提供了理想途径。应用扫描隧道显微镜技术可以进行原于级操作、装配和改型。S T M将非常尖锐的金属针接近试件表面至1nm左右,施加电压时隧道电流产生,隧道电流每隔0.1nm变化一个数量级。保持电流一定扫描试件表面,即可分辨出表面结构。一般隧道电流通过探针尖端的一个原子,因而其横向分辨率为原于级。
w<65S 扫描隧道显微加工技术不仅可以进行单个原于的去除、添加和移动,而且可以进行STM光刻、探针尖电子束感应的沉淀和腐蚀等新的 S T M加工技术。
URK!W?3c ivzAlwP 2.3纳米测控技术
[5Fd P0 实现纳米级加工离不开纳米级的测量技术,而这二者都离不开控制技术,超高精度的定位技术是实现纳米级控制的关键。
lc[XFc CE#\Roi x) 2.3.1纳米测量技术
*bA+]&dj\ 以表面性貌等为测量对象,纳米级测量技术的主要发展方向有光干涉测量技术和扫描显微技术。
@P:R~m2 ·光外差干涉仪:通常利用干涉条纹图的测量方法进行纳米级测量有其很大的局限性,而利用外差干涉测量技术可以得到O.1nm的空间分辨率,测量范围可达50mm。
)nwZ/&@ · X射线干涉仪:可见光和紫外光的干涉条纹间距为数百纳米,不易测量纳米级的微小位移,而利用 X射线的超短波长干涉测量技术可以实现O.Olnm分辨率的位移测量。测量范围可达200μm。
h2wN<