切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 102阅读
    • 0回复

    [技术]VirtualLab Unity应用:天文望远镜中的金属-介质高反射膜 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6293
    光币
    25610
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 10-15
    摘要 S}Wj+H;  
    在本应用案例中,通过合理的初始结构设计并结合后续优化,我们设计了一种金属-介质高反膜,能够在可见光和近红外都提高都具有良好的反射效果,满足了天文观测要求。 EQDs bG0x  
    应用场景 q -%;~LF  
    在天文观测中,由于需要观测早期星系和深空图像,所以工作波段要求较宽,需要覆盖可见光和近红外(400~1100nm)。本案例中通过优化初始结构的层厚度,目标是在工作波段平均反射率>93%。 7mipj]  
    设计结果   <]6])f,y\  
    优化后的结果如上所示,右图展示了最终的光谱数据,工作波段的平均反射率为93.545%,满足设计要求。 /; ;_l2t  
    设计流程 3okh'P%+  
      
    为了满足深空图像和早期星系探测等不同的科学目标, 天文望远镜的工作波段需要覆盖可见光+近红外波段(400-1100nm)。由于天文望远镜通常的镜片尺寸较大,所以一般都是采用简单低风险的金属+介质反射膜。Al是紫外到红外区都有比较高的材料,所以铝膜最常见的一种作为主镜的反射镜。但由于单层铝膜在反射率有限且在空气中很容易氧化,常用的方法是在金属膜层的表面加镀〖"(HL)" 〗^S 膜堆。 jM8e2z3  
    选择的高低折射率材料分别为 Ce"O" _2 和MgF_2,因为这两个材料都均具有较低的热膨胀系数和良好的化学稳定性,且两种材料的折射率差距较大,高低折射率交替时具有较宽的反射带宽。   8A{n9>jrb  
    使用公式工具构建了上述膜系作为基础结构,右图展示了其在400-1100 nm内0°入射时的光谱。可以看出此时平均反射率没有达标。接下来需要借助优化工具进一步优化介质层 ~y.{WuUD  
    关于公式工具的更多信息:  Tutorial: Formula Tool A`Vz5WB  
    使用Nelder-Mead算法优化非金属层的各层厚度(金属膜层膜厚大于100nm,光谱特性不变,因此不优化金属膜层厚度),目标是在 400~1100nm波段内反射率尽可能大 b4GD}kR  
    关于优化的更多信息:  Tutorial: Optimization Workflow   \F;V69'  
    优化后的结果如上所示,工作波段的平均反射率为93.545%,满足设计要求。 VG*Tdaua~  
     
    分享到