彭艳锋 来源:e-works
JeUFCWm ,A
=%!p+ 摘要 介绍了激光快速成型技术的起源和发展,通过精密铸件生产过程质量问题分析和解决方案论述,系统阐述了快速成型蜡模尺寸控制、蜡模变形控制、表面质量控制的要点,对激光快速成型与精铸结合技术在复杂、薄壁、大型精密型号产品领域的应用做出了探索性的研究。
<5[wP)K@ 关键词 快速成型 蜡模 熔模精密铸造
k'%c| kx8U 1 引言 7x-k-F3 快速自动成型(Rapid Prototyping)技术是近年来发展起来的直接根据CAD模型快速生产样件或零件的成组技术总称。该技术解决了计算机辅助设计(CAD)中三维造型的“看得见,摸不着”的问题,能将屏幕上的几何图形快速自动实体化。它集成了CAD技术、数控技术、激光技术和材料技术等现代化科技成果,是先进制造技术的重要组成部分。其本质是用积分法制造三维实体,将计算机中储存的任意三维型体信息传递给成型机,通过材料逐层添加法直接制造出来,而不需要特殊的模具、工具或人工干涉。
lEZ[0oa 2 国内外动态和发展趋向 #&r^~>,#L- 美国在发展快速自动成型技术方面,一直处于领先地位,一些著名的高校如麻省理工学院、得克萨斯大学和一批研究机构从政府和工业界取得了大笔开发、研究经费,用于这项技术的进一步研究。各大公司纷纷购入成型机,以满足争分夺秒的市场需求。日本、德国、英国等都在研究新的成型技术,开发新产品。现已有2500 多套快速成型机分布在世界各地的不同领域。
Zi@?g IiX 自从快速自动成型问世后,国外就很重视其与传统精密铸造技术相结合,继而产生了快速铸造。快速成型技术在熔模精密铸造中的应用可以分为三种:一是消失成型件(模)过程,用于小量件生产;二是直接型壳法,也用于小量件生产;三是快速蜡模模具制造,用于大批量生产。这三种方法与传统精密铸造相比,解决了传统方法的蜡模制造瓶颈问题,其流程示意如图1。
>eAlz4 国内目前主要有北京隆源、华北工学院、华中理工大学等在进行快速成型设备生产与工艺研究。使用快速自动成型技术生产精铸用蜡模的厂家主要有航空部材料研究所、北京钢铁研究总院、西安航天发动机厂等,取得了良好的经济效益。目前,该项技术已经应用于航空、航天、机械、化工、医药等行业。
1oj7R7 我公司选用的是北京隆源快速成型公司生产的AFS-320MZ设备。该设备采用固态粉末材料逐层选区激光烧结技术,目前主要是与公司现有的精密铸造工艺相结合,生产用于熔模铸造的蜡模。
_\sm$ `q 3 蜡模的激光快速成型 Qh/yPOSm: 我公司在引进快速成型技术前,采用图1 所示的传统精铸工艺生产。对于新产品的研制,生产周期相当长,其中压型的设计及生产又占据了较长的时间。如图2 所示的支架类零件,其形状并不复杂,如果采用设计压型进行生产,其模具的设计、生产周期约需2~3 个月,模具投入生产到得到铸件还需半个月的时间。而快速成型设备恰好具备这方面的优势,利用其特点,3 天内可以得到零件蜡模样件,再花半个月即可得到铸件。
+#1WOQfAD 使用激光快速成型设备制作蜡模,最关键是要控制蜡模的尺寸和变形,同时尽可能地提高蜡模的表面质量。
Wz:MPdz3( p5)A"p8"9, 3.1 蜡模尺寸控制
vCbqZdy? 我公司现使用Pro_Engineer 进行三维造型,并将其转换成STL 文件格式;再使用Magics RP 软件导入该STL 文件,合理放置后进行切片处理,导出CLI格式文件;然后使用隆源公司的ARPS 软件将其转换为设备使用的AFI 文件;最后导入快速成型设备进行生产。
M29[\@zL 要控制蜡模尺寸,先需根据合金收缩率、模壳膨胀系数、工艺方案给出蜡模X、Y、Z 方向上的线收缩率。该收缩率确定后,可以在Magics RP 软件对零件处理时首先进行放缩,这样即可得到理想尺寸的蜡模,继而获得铸件。通过对铸件尺寸的测定反过来可再次对蜡模尺寸进行协调,最终获得合格的蜡模和铸件。例如某铸钢件,按最初的工艺方案生产,设定其综合收缩率为2%,经过对铸件的实际测量,其综合收缩率变为1.7%,只需在Magics RP 软件下,对模型的放缩进行调整即可校正蜡模尺寸。如果采用压型生产,该收缩率的调整将可能导致其报废,除造成成本大幅提高,其生产周期至少耽误半年以上。
_4zlEo-.gU 对于铸件生产过程中存在阻碍收缩等非自由收缩情况,导致铸件非线性收缩严重,继而影响到铸件尺寸精度时,我们可以在使用Pro_Engineer 进行三维造型时考虑,直接根据其收缩关系绘出实际使用的蜡模尺寸,最终获得合格的铸件。
;5" r)F+P 3.2 蜡模变形控制
<B$Lu4b@c 如何有效地控制蜡模的变形,需要先了解激光选区的烧结原理。北京隆源选区激光烧结成型系统的主体结构是:在一封闭成型室中装有两个活塞筒,一个用于供粉,另一个用于成型。加工开始时,供粉活塞上移一定量,铺粉滚筒将粉均匀地铺在加工平面上,激光束在计算机的控制下,透过激光窗口以一定的速度和能量密度扫描,激光束扫过之处,粉末烧结成一定厚度的片层,未扫过的地方仍然是松散的粉末,这样零件的第一层就制造出来了。这时,成型活塞下移一定距离,这个距离与设计零件的切片厚度一致,而供粉活塞上移一定量。铺粉滚筒再次将粉末铺平后,激光束开始依照设计零件第二层的信息扫描。激光扫过之后,所形成的第二个片层同时也烧结在第一层上。如此反复,一个三维实体就制造出来了。如图3所示。
/
)5B 选区激光烧结成型与其它许多快速成型方法不同,不需要先搭支架。在激光烧结前未烧结的松散的粉末作了自然支架。这对含悬臂结构(Overhangs)、中空结构(hollowed areas)、和槽中套槽(nothces withinnotches)结构的零件制造很有效。对这些松散的粉末进行加热处理可以使之粘结,加热温度越高其板结程度越高,其对零件的支撑作用就越显著,可以更好地防止零件(蜡模)变形;但加热温度越高,未烧结粉末越板结,蜡模清理就越困难;因此,我们需要采取多种措施来防止蜡模的变形。以下是几个典型零件的示例。
<LZvG IMl 3.2.1 支座
F2oY_mA fn#b3ee 支座示意图如图4。从剖视图上可以看出,该零件壁厚差别大,按0.2mm 一层切片,激光功率22.5W。烧结制造的蜡模薄壁和厚壁交接处沿圆周方向有一圈缩陷,沿零件轴线方向约10mm,中间缩陷最深处约1.2mm。其产生原因是由于该处壁厚差别大,有热节,粉末烧结收缩不匀造成。因此,我们对蜡模的三维原型进行了镂空处理,同时在悬空凸台部位加上一些支撑薄片,防止变形,如图5 所示。
#hR}7K+@ O%(:8nIgZ
从图5 可以看出,镂空后的三维原型壁厚4mm均匀。然后使用原参数对该模型进行切片、激光选区烧结,获得的蜡模无缩陷,强度能满足后续工作要求。并且该镂空及壁厚均匀化处理极大地缩小了蜡模的截面积,使激光选区烧结的时间从原来的8.5h 减少到现在的4.5h,缩短了约一半的激光烧结时间;同时,由于蜡模内部PSB 粉料未曾烧结,钻孔倒出后可节约大量粉料,而且蜡模镂空后还能缩短浸蜡时间。综上所述,该零件蜡模镂空处理后可极大地降低原材料成本、生产成本,同时由于蜡模重量的减轻可降低后续工作的劳动强度。
I.y|AQB 3.2.2 盒子
X-oou'4< 盒子示意图如图6。该零件最小壁厚2mm,最大轮廓尺寸大于400mm。考虑到薄壁大平面易变形问
N<