前言 fG2\p&z b.Z K1 通常
激光光强分布呈高斯型,而在许多实际应用中,需要将光强分布加以转换,即
光束整形,如呈平顶状和环状等。以往人们多用计算全息法实现环形分布,但
衍射效率低,难于推广。近年来人们开始研究二元
光学元件(BOE)在光束整形方面的作用。二元光学元件是在计算机制全息图和相息图研究发展的基础上,利用计算机设计和微
电子加工技术研制成的一种高效率的新型光学元件。由于它能灵活控制波前,因此在光束整形方面有着广泛的应用前景。
# ]&=]K1V 二元光学的优点——高衍射效率;独特的色散性能;更多的设计自由度;宽广的
材料选择;独特的光学功能。
s>76?Q:i (,[m}Qb?! 图1表面进行划分从而形成一个二元光学元件 qun#z$
/`?i&\C3r 二元光学器件分为主阶次和带有几个次阶次的连续界面。在二元光学中,每个主阶次上的次阶次数目通常设置为2、4、8等。GLAD中产生二元光学元件命令如下所示:
?_(0cVi binary/lens/surface kbeam xrad yrad level nlevels
z?Hvh int2phase/two kbeam1 kbeam2 [2.*pi*(rindex-1)/lambda]
)CYSU(YTD binary/lens/phasescreen ibeams rindex xrad yrad level nlevels
8s6[?=nM binary/lens/residual ibeams rindex xrad yrad level nlevels
`oXUVr binary/surface kbeam level nlevels
K q: +{' 这些命令执行的是产生二元光学的
光栅和
透镜,其二元光学表面可以由binary/surface 命令产生,并直接或者间接依靠 int2phase、int2waves、sfocus起着相位屏的作用。二元光学表面可以图示为plot的强度项。
ePP-&V"`" binary/surface 命令能够将任意分布的光场转化为二元光学器件的面形。
U[u9RB >-c ; IM7k\ 二元光栅表面计算:
$DJp|(8 这里举一个二元光栅的例子,它是由二元表面组成,然后对其执行“sfocus”命令。表面通过具有一定高度的强度表现出来,高度的单位为厘米,表面的高度可以通过任意一个常规的强度出图命令显示出来。“sfocus”命令将表面的高度作为一个相位差引入,然后乘以α = n – 1,传输距离为z,将其设定为1。“sfocus”命令还包括了2π ⁄ λ这一项。次级数量分别为2,4,8和16,在这样的单位下,16个次级分辨率不好,但是表面却可以以一个近似光滑的分布显示出来。
:L&- c<r`E F!tn|!~ yE.
ZvvQA 二元透镜计算:
`7LN?-
T 下面(a)(b)图为一个半径为100的正透镜,
焦距为200 cm。透镜的净孔径为0.225 cm,设计
波长为0.6328 um。远场中的峰值强度显示在子级阶数上,显示出与光栅相似的渐近行为。(c)(d)图说明了一个与上面正透镜相似的负透镜,在虚拟焦距处,远场位于透镜后面100厘米处。
v@&&5J| .^X IZ XTXRC$B mrS:||,_ 下图展示一个正负组合二元透镜,其等圆柱形焦距为正负200 cm。并可利用可分离传播和转置步骤得到远场分布。
Vdjf
F&q 66,?f<b 正负组合透镜,两层和四层