模型描述 [W[{
4 Xu
这里,我们研究光纤中非线性自聚焦的细节。首先,我们计算了由于非线性自聚焦的影响,大模面积光纤的基模如何收缩。 1wSAwpz
模式解算器实际上忽略了非线性效应。然而,只需几行脚本代码,我们就可以存储包括其非线性变化在内的折射率分布,然后重新计算光纤模式。重复这一过程,直到我们得到一个自洽的解: K<JzIuf&
eJDZ|$
dr := 0.05 um }=R]<`Sj.j
defarray I[0, 200 um, dr] 5Qgu:)}
n_f_nl(r) := n_f(r) + n2 * (if r <= r_max then I~[r]) |IxHtg3>6{
{ nonlinear refractive index profile } 6[bopin
store_I(P) := tV}!_
for r := 0 to 2 * r_co step dr do s!6lZ mPM
I[r] := P * I_lm(0, 1, lambda, r) 8%rD/b6`
{ ignore index changes outside 2 * r_co, where the intensity is small } `Rq=:6U;3
=SDex.ZK]
CalcNonlinearMode(P) := WMbkKC.{J
{ Calculate the lowest-order mode with self-focusing for the power P. } _&KqmQ8$7
begin )u?f| D
var A, A_l; pEyZH!W
A := 0; z]7 WC
repeat zzmC[,u}
A_l := A; {v={q1
store_I(P); ULx:2jz
set_n_profile("n_f_nl", r_max); 'nmGHorp
A := A_eff_lm(0, 1, lambda); 0uy'Py@2<
until abs(A_l / A - 1) < 1e-6; !$I~3_c
end ];bRRBEU
考虑到光纤的非线性,可以对光束的传播进行数值模拟。为此,我们需要定义一个数值网格,并为光束传播设置各种其他输入: 4&)sROjV=
x_max := 30 um { maximum x or y value } 0TN28:hcD
N := 2^5 { number of grid points in x and y direction } ,BdObx
dx := 2 * x_max / N { transverse resolution } }U]jy
z_max := 30 mm { fiber length } ,05PYBc3
dz := 100 um { longitudinal resolution } c
r=Q39{
N_z := z_max / dz { number of z steps } pwSgFc$z
N_s := 100 { number of sub-steps per dz step } f-U zFlU
srS!X$cec
P_11 := 4 MW t~2oEwTm
A0%(x, y) := sqrt(P_11) * A_lm_xy(1, 1, lambda, x, y) { initial field } uHbg&eW
7H
H
calc 2mY!gVi
begin |3$Ew.
bp_set_grid(x_max, N, x_max, N, z_max, N_z, N_s); 4KPnV+h"b
bp_define_channel(lambda); uYW4$6S3
bp_set_n('n_f(sqrt(x^2 + y^2))'); { index profile }
Omd;
bp_set_loss('10e2 * ((x^2 + y^2) / (20 um)^2)^3'); { simulate loss for cladding modes } Jb,54uN
bp_set_n2('n2'); W]4Z4&