切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1057阅读
    • 3回复

    [原创]RP 系列激光分析设计软件 | 示例案例:光纤中的非线性自聚焦 [复制链接]

    上一主题 下一主题
    离线小火龙果
     
    发帖
    932
    光币
    2176
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2024-01-12
    模型描述 VuO)  
    这里,我们研究光纤中非线性自聚焦的细节。首先,我们计算了由于非线性自聚焦的影响,大模面积光纤的基模如何收缩。 6S! lD=  
    模式解算器实际上忽略了非线性效应。然而,只需几行脚本代码,我们就可以存储包括其非线性变化在内的折射率分布,然后重新计算光纤模式。重复这一过程,直到我们得到一个自洽的解: C$2o o@  
    ?v)"%.  
    dr := 0.05 um T_(e(5  
    defarray I[0, 200 um, dr] Fu1|b2B-x  
    n_f_nl(r) := n_f(r) + n2 * (if r <= r_max then I~[r]) Tg <>B  
      { nonlinear refractive index profile } )'K!)?&d  
    store_I(P) := iP#A-du  
      for r := 0 to 2 * r_co step dr do \K_!d]I {  
        I[r] := P * I_lm(0, 1, lambda, r) D:6x*+jah)  
        { ignore index changes outside 2 * r_co, where the intensity is small } JX2 |  
    +X%fcoc  
    CalcNonlinearMode(P) := ?VOs:sln  
      { Calculate the lowest-order mode with self-focusing for the power P. } $E4O^0%/p  
      begin ',J%Mv>Yf  
        var A, A_l; 0+2Matk>.  
        A := 0; ]mD=Br*r~  
        repeat  jKb=Zkd  
          A_l := A; mISu o  
          store_I(P); COkLn)+0  
          set_n_profile("n_f_nl", r_max); vUIK4uR.  
          A := A_eff_lm(0, 1, lambda); 6M<mOhp@}n  
        until abs(A_l / A - 1) < 1e-6;  a`h$lUb-  
      end R<0!?`b  
    考虑到光纤的非线性,可以对光束的传播进行数值模拟。为此,我们需要定义一个数值网格,并为光束传播设置各种其他输入: n_xQSVI0F  
    x_max := 30 um { maximum x or y value } [r/Seg"  
    N := 2^5 { number of grid points in x and y direction } JI[rIL \Ey  
    dx := 2 * x_max / N { transverse resolution } fbx;-He!  
    z_max := 30 mm { fiber length } +poIgjq0  
    dz := 100 um { longitudinal resolution } j_ywG{Jk  
    N_z := z_max / dz { number of z steps } ++p& x{  
    N_s := 100 { number of sub-steps per dz step } %. 6?\w1e  
    *>&N t  
    P_11 := 4 MW 9^Vx*KVrU  
    A0%(x, y) := sqrt(P_11) * A_lm_xy(1, 1, lambda, x, y)  { initial field } d,Dg"Z  
    c;t(j'k`  
    calc @R-~zOv  
      begin 1o6J9kCq^3  
        bp_set_grid(x_max, N, x_max, N, z_max, N_z, N_s); 5f`XFe$8  
        bp_define_channel(lambda); h}B# 'e  
        bp_set_n('n_f(sqrt(x^2 + y^2))'); { index profile } HU'`kimWb  
        bp_set_loss('10e2 * ((x^2 + y^2) / (20 um)^2)^3');  { simulate loss for cladding modes } 1Sc~Vb|>  
        bp_set_n2('n2'); ]BS{,sI  
        bp_set_A0('A0%(x, y)'); { initial amplitude } {</$ObK  
        bp_set_interpol(2); { quadratic interpolation } ~cg+BAfu  
      end[color=rgba(0, 0, 0, 0.9)] Y;/=3T7An  
    -m x3^  
    - 5-SlQu  
    结果 I3E8vi%B.  
    图1显示了光功率为 5mW (与灾难性自聚焦功率相差不远)的模式分布,以及相应的折射率。 y3o4%K8  
    %ucmJ-< y#  
    图1:计算了有自聚焦和无自聚焦时的归一化模式强度分布
    此外,还显示了折射率分布。可以看到,折射率分布基本上被非线性效应修改了。 b8b PK<  
    图2显示了作为光功率的函数的模式面积。当接近临界功率时,模式面积急剧缩小。
    &40JN}  
    图2:模式面积与光功率的关系,红线表示灾难性自聚焦的临界功率 kV(DnZ#jq  
    图3显示了作为核心半径的函数的最大功率。对于每个核心半径,必须计算轴上强度达到损伤阈值时的光功率。当然,需要为每个功率值重新计算模式。 PJ11LE  
    图3:光纤中的最大光功率与纤芯半径的函数关系 F0ivL`  
    最初,最大功率随核心区而变化。 uF.\dY\xv  
    然而,对于较大的核心,上升变得相当慢,因为模式面积通过自聚焦而减小。 pvwnza1  
    现在,我们研究如果我们将光注入到光纤的 LP11 模(第一高阶模式)中,会发生什么情况,这是在没有非线性的情况下计算的。为此,我们可以使用数值光束传输。图4显示了如果我们注入 4mW 的光功率,不远低于自聚焦的临界功率的结果。在这里,高阶模式变得不稳定。即使是最微小的不对称(这里是由于微小的数值误差引起的),也会导致该模式在大约 10mm 的传播距离之后转变为 LP01 模式和 LP11 模式的叠加:
    PS<tS_.  
    图4:计算了 LP11 模在x-z平面的振幅分布,计算时不考虑非线性 C2,cyhr  
    我们还可以展示导模中光功率的演化:
    图5:LP11 和 LP01 模式下的光功率演化
    _ L:w;Oy9T  
    总功率经历了一些振荡,这似乎令人惊讶:即使我们只有一些损耗(对于包层模式),如何在某些位置增加功率?可以将其理解为通过光纤的非线性实现包层模式的能量交换。还要注意的是,非线性相互作用将光耦合到包层模式,这在低光功率下不会发生。
     
    分享到
    离线jiajia80
    发帖
    664
    光币
    8458
    光券
    0
    只看该作者 1楼 发表于: 2024-01-12
    激光分析设计软件哪个功能最好?
    离线谭健
    发帖
    6849
    光币
    23990
    光券
    0
    只看该作者 2楼 发表于: 2024-01-12
    路过学习中呢
    离线xzkkm
    发帖
    321
    光币
    562
    光券
    0
    只看该作者 3楼 发表于: 2024-01-29
    路过看一下