回音壁微探针为光谱学开辟了新的机遇
光与物质的相互作用是人类观察物质世界最基本的途径之一。光的反射和折射揭示了物质的形态,而光的非弹性散射,如拉曼散射,将化学键的分子指纹编码为光子的能量变化。然而,这种相互作用的可能性微乎其微。 在过去的几十年里,研究人员一直在开发特定的机制和结构来增强拉曼信号。表面增强拉曼光谱(SERS)是此类研究中最有前景的平台之一,其中引入了金属纳米结构,显著增强了样品表面附近的电磁场,并调整了目标能态密度,有利于拉曼散射。另一方面,回音壁模式(WGM)微谐振器已成为增强光物质相互作用的前沿,在传感、光谱、成像等领域得到应用。 这些亚毫米谐振器可以作为光库,积累光并实现时间增强的光场。这两个平台的结合无疑是有前景和吸引人的,在空间和时间上提供了增强的光物质相互作用。然而,需要进行系统的研究和概念验证演示。 在最近发表在《光:科学与应用》杂志上的一篇论文中,由圣路易斯华盛顿大学的 Lan Yang 教授领导的一个研究小组提出了一种新的拉曼增强平台,其中 WGM 微探针与纳米等离子体 SERS 结构相匹配。纳米等离子体热点通过相位匹配的腔天线耦合机制与 WGM 耦合,以最大限度地提高各种化学和生化样品的自发拉曼散射。 据报道,在常规由聚焦的自由空间光束激发的独立纳米等离子体热点的基础上,该平台实现了两个数量级的增强。该团队还展示了该微探针与不同类型SERS基板的兼容性,包括光刻定义的纳米等离子体热点阵列和商用SERS基板纸,展示了该新型平台的多功能性。 |