摘要
8Dn~U:F/? V7cr%tY5 光栅是
光学中最常用的衍射元件之一。如今,它们经常被用于复杂的
系统中,并与其他元件一起工作。在这种情况下,非常需要将光栅不仅仅是作为孤立的元件来
模拟,而是与系统的其余部分结合,以评估整个系统性能。VirtualLab Fusion提供了一个独特的光栅元件,允许在光路中轻松地包含各种不同形状的光栅,无论是一维周期光栅(层状),二维周期光栅,或体(布拉格)光栅。本用例介绍了该元件的功能,包括光栅级次的设置和堆栈的定位。
su3Wk,MLP Sl@Ucc31 zJ@^Bw;A^@ cmU>A721 系统内光栅建模
9}H]4"f7 在一般光路中,光栅元件可以插入到系统的任何位置。
BO%'/2eV 这使得在一个复杂的系统中对光栅进行建模,并因此评估整个系统的性能成为可能,同时考虑光栅的可能影响。
*dPbV.HCl 光栅元件可以通过元件 > 单个表面&堆栈 > 光栅找到。
{faIyKtW Fh|{ib Mz\l
C)\B >`0mn|+ 附着光栅堆栈
$dA]GWW5A *kEzGgTzoS 为了描述系统内的光栅,光栅堆栈总是附着在一个虚拟参考面上(仅平面)。
*%E\mu,,c 元件的大小仅用于在3D光线追迹视图中显示;
仿真中不考虑孔径效应。
\NKQ:F1 参考面可以在三维系统视图中可视化,以帮助排列光栅。
ydAiH*> 所应用的光栅
结构可以是一维周期(层状),也可以是二维周期(交叉光栅)。
2(m#WK7>F aPQxpK? ?0?3yD-!9 C2\zbC[qm 堆栈的方向
j0s$}FPUI O~Bh(_R& 堆栈的方向可以用两种方式指定:
uL^`uI#I <XN=v!2; 它既可以应用在表面的正面,也可以应用在背面(在固体标签中定义)。
"M3;>"`G /'b7q y 请注意,如果堆栈位于正面,堆栈将绕Z轴旋转180°。这会影响堆栈的内部坐标系,需要在定义高度轮廓时加以考虑。
FZLx.3k4 UM<s#t`\3 U]@?[+I0] [^^ Pl:+ 基底的处理、菲涅耳损耗和衍射角
TwI'XMO;A o?6m/Klw6 作为一种惯例,往往忽略基底的影响,例如衍射效率的计算。
&HtTh { 然而,任何实际的光栅结构必须建立在基底上,因此,我们使用一个平面元件和中间的自由空间延伸对其进行建模。
0%4OmLBT 平面的建模包括菲涅耳效应(S矩阵求解器)。
u8M_2r b};o: p@[ fZj "F6gV;{Bt 高级选项和信息
oR/_{#Mz" 在求解器菜单中有几个高级选项可用。
!&NrbiuN 求解器选项卡允许编辑所使用FMM(“傅里叶模态法”,也被称为RCWA,“严格耦合波分析”)算法的精度设置。
J_.cC 既可以设置考虑的总级次数,也可以设置倏逝级次数。
tw&v@HUP 如果考虑金属光栅,这可能是有用的。相反,对于介质光栅,默认设置就足够了。
&b7_%,Bx4 5;,h8vW 0/9]TIc D/GE-lq 结构分解
?_cOU@n i'4.w?O Z 结构分解选项卡提供了关于结构分解的信息。
&;=/^~EG 层分解和转换点分解设置可以用来调整结构的离散化。默认设置适用于几乎所有光栅结构。
6U.|0mG[ 此外,还提供了有关层数和转换点数的信息。
N_Kdi%q 分解预览按钮提供了用于FMM计算的结构数据的描述。折射率用色标表示。
u05Yy&(f /,UnT(/k( Iy&,1CI"] NzTF2ve( 光栅级次通道选择
Ip:54 V; CPn 可以定义具体的透射和反射级次,以供模拟中考虑。在表面被从背面
照明的情况下,也可以有不同的级次。
C/'w 并不总是需要考虑所有的衍射级,我们建议只使用那些感兴趣的,以确保更有效的模拟。
)*S:C 光栅级次通道的选择不影响FMM计算中的内部衍射级次(即精度)。
Am_>x8z zn7)>cQ905
qLP/z ,v,rY' 光栅的角度响应
E)ZL+( 在VirtualLab Fusion中,光栅元件的运算符通过FMM(又名RCWA)在k域中建模。
KIag(!& 对于给定的光栅,其衍射行为与输入场有关。
RjVmHhX 不同波长/偏振态下的衍射效率不同,不同入射角度下的衍射效率也不同。
w,$qsmR 为了解决角度相关的衍射行为,可能需要指定k域(角空间)的采样点。请参阅下面的示例以进一步说明。
Y#tur`N D79:L: Z7RBJK7|. Y[dq" 例:谐振波导光栅的角响应
/ of K7/ TlRc8r| " aCAA#$J H;l_;c` 谐振波导光栅的角响应
dRnf Dfa3#{