利用 Wolfram 语言构建的神经网络促进学生的化学学习利用 Wolfram 语言构建的神经网络促进学生的化学学习 ![]() 我参加了2020 年 Wolfram 神经网络训练营,它启发我将数据科学和机器学习的元素融入我的课程中。机器学习的辅助函数使实验和向学生介绍此类应用程序变得非常容易。我们选择通常引入神经网络和机器学习主题的图像识别和分类问题。 然而,我很快对缺乏面向化学的图像数据集这一事实感到震惊,并在使用了修改后的国家标准与技术研究所 ( MNIST ) 手写数据集示例后,决定创建这种类型的数据集。目标是为学生提供端到端的数据科学项目体验,从创建数据到执行高级机器学习练习的最后一步。因此,该项目创建了一组化学实验室中常见的玻璃器皿图像,目的是构建我们自己的物体识别示例。 方法 以下步骤概述了如何收集每件玻璃器皿的图片: 1. 为空的和装满水的玻璃器皿拍照。 2. 用不同颜色的溶液填充玻璃器皿,使其达到不同的水平,例如,250 毫升锥形瓶将被填充到不同的体积容量。 3. 提供各种背景,例如,一些玻璃器皿被放置在实验室工作台或升高的表面上以提供不同的背景。 4. 整理 Google Drive 上共享文件夹中的所有图片。学生将手机中的图片上传到共享云端硬盘。 分类问题中的项目类别以及每个类别中的项目数量是: ![]() 这幅拼贴画包含 17 种不同类型的实验室设备,每种设备各一张图片。展示移液器图片存在一些困难。在图片中似乎很难看到 5 mL 移液管,因此我们使用白色或黄色纸张背景来突出显示它们。当然,标签还有一些其他问题。一些玻璃器皿通常被悬挂使用,例如滴定管和分液漏斗。 |