切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1194阅读
    • 0回复

    [分享]Zemax & Lumerical | 二维光栅出瞳扩展系统优化 [复制链接]

    上一主题 下一主题
    离线ueotek
     
    发帖
    197
    光币
    446
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2023-05-26
    简介 (+u39NQV  
    A~ +S1  
    本文提出并演示了一种以二维光栅耦出的光瞳扩展(EPE)系统优化和公差分析的仿真方法。 1jPJw3"3h  
    8&~~j7p,  
    在这个工作流程中,我们将使用3个软件进行不同的工作 ,以实现优化系统的大目标。首先,我们使用 Lumerical 构建光栅模型并使用 RCWA 进行仿真。其次,我们在 OpticStudio 中构建完整的出瞳扩展系统,并动态链接到 Lumerical 以集成精确的光栅模型。最后,optiSLang 用于通过修改光栅模型来全面控制系统级优化,以实现整个出瞳扩展系统所需的光学性能。 ./D$dbu3  
    %]6~Eq%s  
    本篇文章将分为上下两个部分。(联系我们获取文章附件) {h2TD P  
    (85Fv&a  
    概述 <Ib[82PU  
    4*mS y  
    我们将首先在 Lumerical 和 OpticStudio 中构建仿真系统,它们是动态链接的。 0=q;@OIf  
    d&u]WVU  
    然后,OpticStudio 通过 Python 节点链接到 optiSLang 进行优化,如图1所示。 P*@2.#oO  
    t" 7yNs(I  
    }gMDXy}  
    $w0lrh[+  
    图1 Lumerical 通过动态链接到 OpticStudio,OpticStudio 通过 Python 节点链接到 optiSLang,优化由 optiSLang 控制。 'GoZqiYT  
    bi&*9K0  
    如图 2 所示,EPE 系统包括两个用于耦入和耦出的光栅。耦出光栅分为几个区,如左侧所示。每个区都将经过优化,以具有不同的光栅形状。右图显示了光在 k 空间中的传播的变化情况。 s^|.Zr;,>  
    ~7t$MF.  
    vZ N!Zl7S  
    +sx 8t  
    图 2 光栅布局图以及光线在K空间的传播 "+ >SJ~  
    5qkH|*Z3  
    第 1 步:系统设置 (Lumerical) ;w-qHha  
    K ryo}  
    打开附件中的 ZAR 文件时,两个光栅文件会被提取到设置的路径中。第一个光栅如图 3 所示,它是耦入光栅中使用的二元光栅。该光栅是固定的,在优化过程中不会改变。 xD /9F18  
    Ppt2A6W  
    ;Y mTw  
    R:AA,^Z  
    图 3 耦入光栅结构为二元光栅。 @]c(V%x   
    {}m PEd b  
    第二个 .fsp 文件如图  4 所示,它是一个具有 7 个变量的平行四边形柱体。在优化期间,耦出中的每个区都将使用不同的变量组合集进行优化  。有关优化设置的更多信息将在优化设置部分中进行说明。 -}4NT{E  
    c$`4*6  
    iQ6epg1wB  
    ,7)C"  
    图 4 耦出光栅中的结构为平行四边形支柱。 za9)Q=6FD  
    $DC*i-}qFg  
    这两个.fsp文件都是用动态链接的形式在 OpticStudio 中用于模拟完整的EPE系统。 kR@Yl Yo  
    6^n0[7  
    第 2 步:系统设置(OpticStudio) \U?n+6 7g  
    t"lyvI[  
    如图5所示,在该系统中,准直光束入射到耦入光栅上,通过波导传播,并与第二个光栅耦合。眼盒位于第二个光栅的较远部分。优化的目标是优化眼盒接收的均匀性和总功率。 l|+BC  
    Rqy0Q8K<  
    Z,;cCxE  
    CGP3qHrXt  
    图 5 初始EPE系统和眼盒辐照度。 u!U"N*Y"  
    0T5=W U  
    在附件中有一个 OpticStudio 中建立的整个EPE系统的 zar 文件。如图  6 所示,仅构建了第二个光栅一半的区域。这是因为系统具有对称性。从图 7 可以看出,探测器的参数镜像设置为  1,这意味着在光线追迹期间,将始终对-x和+x部分进行镜像。这样一来,我们可以只用一半的光线获得相同的模拟结果。 ,j ',x\  
    <{:  
    Op? OruT[  
    5P h X"7  
    图 6 OpticStudio 中的 EPE 系统设置。 XJ+6FT/qss  
    qr50E[  
    %F9{EXJy  
    u@P[Vb   
    图7 探测器的镜像参数设置为 1,这意味着该探测器在 x 方向上镜像。 [;oCYb$9  
    W Qzj[  
    可以看出,  系统中的所有光栅物体都已使用动态链接 DLL 进行设置,如图  8所示。 qxMnp}O  
    vhT_=:x  
    gbStAr.  
    W*:,m8wk  
    图 8 为  EPE 系统中的光栅加载动态链接 DLL。 0g<K[mPr7  
    ~; OYtz  
    第3步:优化设置(optiSLang) 4^' 3&vu  
    ^, i>'T  
    3-1.Python 用于评估系统 %_aMl  
    Q_"\Q/=?Do  
    附件中包含了一个 python 文件 EPE_2D_for_optiSLang.py,用于将 optiSLang 链接到OpticStudio。使用python代码将  Ansys optiSLang 附带的优化器与求解器Ansys Zemax OpticStudio + Ansys Lumerical 链接非常有用。优势在于可以在每个优化周期中进行数据的预处理跟后处理,灵活性非常高。本章节会对代码结构进行解释。 O0*e)i8  
    TfZ6F8|B  
    代码的基本结构首先由 OpticStudio 中的按钮生成,如图  9 所示。 V' 2EPYB  
    W~B5>;y  
    图 9 生成 Python 交互式扩展代码的样板。 Lj %{y.Rj  
    m:O(+Fl  
    /Go K}W}  
    Zz |MIGHm  
    另外几个模块被导入到样板中。模块 numpy,scipy 用于对来自眼盒的辐照度数据进行后数据处理。模块matplotlib用于在眼盒上绘制和导出辐照度以供以后查看。导入 time 和 random 模块,以便计时器跟踪计算时间。 &MgeYpd  
    8{Fm[ %"  
    0-3rQ~u  
    通过尝试读取变量 OSL_WORKING_DIR,我们可以知道这个 Python 代码是由  optiSLang 调用还是手动调用。当 optiSLang 调用 Python代码时,将创建一些称为环境变量的变量来传递一些 optiSLang 信息。即使这些变量未在 Python 文件中定义,当 optiSLang 调用代码时,它们是可用的。 6ZqgY1  
    yISD/ g  
    kao}(?x%  
    Y/8K;U|  
    在这个 Python 代码中,有32个变量,如 clen1、h2、rot4、w1 和 power,用于优化,需要由 optiSLang 定义。我们会将这些变量设置为 optiSLang 中的参数,在灵敏度分析或优化时,optiSLang将自动改变它们的值。如果我们不是从 optiSLang 直接运行这个 Python 代码,那么这些变量的值将是常量,如下面的代码所示。 r\9TMg`C  
    I5);jgb  
    VnJMmMM  
    i"^<CR@e  
    如图10所示,每个区的光栅参数是通过预设的4个角的数据通过插值来确定的。其中 ν 是 dC、dR、dL、θC、θR、θL 、h ,n 是 1,2,3,4,对应于 4 个角。通过这个公式,每个区上的7个光栅参数可以通过具有一定权重(wn)和非线性值(p)的4个角的参数来控制。 y466A]|  
    A~{f/%8D  
    gCVryB@z2  
    gglQU"=g{  
    7/X"z=Q^|  
    W*xX{$NL  
    图 10  从 4 个角插值的各个区的参数计算。 -#A:`/22  
    ;<G<1+  
    optiSLang 按照预定义的优化算法改变这些参数。不同的参数值被设置到 python 代码中,这将进一步设置 OpticStudio 中每个光栅块的参数。在这个过程中,Python代码扮演着将这些变量转换为 OpticStudio 中精确参数的工作。只有当我们使用 optiSLang 而不是 OpticStudio 中的内置优化器优化系统时,这种预数据处理才有可能。通过这种方式,optiSLang 可以根据一些未直接暴露在OpticStudio UI中的虚拟或高级变量来优化系统。 IdRdW{o  
    88a<{5 :z  
    设置参数后,我们使用以下代码段追迹光线。 Y5!b)vke  
    EZ(^~k=I  
    ?&h3P8  
    ?Zyok]s  
    使用 optiSLang 优化系统的另一个好处是数据后处理。在这个优化过程中,我们不会直接优化眼盒上的辐照度分布。我们首先使用瞳孔函数对辐照度分布进行卷积,如图11所示,然后将优化目标设置为该卷积结果的均匀性。这个结果的x和y轴可以解释为人眼在眼盒中的偏移。z轴是人眼看到的平均辐照度。 dyFKxn`,  
    a~^Srj!}x  
    {rkn q_;0  
    U06o ;s(  
    XqR{.jF.  
    2 6:evid  
    图 11 使用瞳孔函数对辐照度分布进行卷积. 2Q$\KRE  
    5y_"  
    根据卷积结果,我们可以计算对比度 、总功率和均匀性,如下所示。 s"0b%0?A  
    ^4`&EF  
    ]~a_d)  
    h[ 6hM^n  
    这些标准的代码定义如下。在这种情况下,我们主要希望针对 Contrast 和 Total Power 进行优化。均匀性的功能类似于对比度,两者都希望眼盒上的辐照度均匀。尽管它们用于相同的目标,但它们使用不同的定义,在这里我们考虑两者。 bEr.nF  
    iTNqWU-o  
    IB7tAG8  
    >3 Ko.3&  
    Python 代码的最后一部分,如下所示,绘制了眼盒辐照度的结果及其卷积结果。然后导出图片。这对于用户直接在 optiSLang 后处理中检查每个优化系统的辐照度分布非常有用。 uJ'9R`E ]1  
    }NX\~S"  
    6;uBZ &g  
    o|2 87S|$  
    进一步的设置详解我们会在后续的文章中,进行介绍。
     
    分享到