|
简介 }p-/R' *B\ @L 本文提出并演示了一种以二维光栅耦出的光瞳扩展(EPE)系统优化和公差分析的仿真方法。 u c}tTmB| ?3qp?ea 在这个工作流程中,我们将使用3个软件进行不同的工作 ,以实现优化系统的大目标。首先,我们使用 Lumerical 构建光栅模型并使用 RCWA 进行仿真。其次,我们在 OpticStudio 中构建完整的出瞳扩展系统,并动态链接到 Lumerical 以集成精确的光栅模型。最后,optiSLang 用于通过修改光栅模型来全面控制系统级优化,以实现整个出瞳扩展系统所需的光学性能。 h_\(
$" q`.=/O' 本篇文章将分为上下两个部分。(联系我们获取文章附件) I3b*sx$ A:D9qp 概述 )Vrp<"v Yyd]s\W 我们将首先在 Lumerical 和 OpticStudio 中构建仿真系统,它们是动态链接的。 *4LRdLMn B2* 7H 然后,OpticStudio 通过 Python 节点链接到 optiSLang 进行优化,如图1所示。 iq?T&44& Z_edNf}| (+0(A777M /d">}%Jn 图1 Lumerical 通过动态链接到 OpticStudio,OpticStudio 通过 Python 节点链接到 optiSLang,优化由 optiSLang 控制。 H+-x.l` VbMud]40F 如图 2 所示,EPE 系统包括两个用于耦入和耦出的光栅。耦出光栅分为几个区,如左侧所示。每个区都将经过优化,以具有不同的光栅形状。右图显示了光在 k 空间中的传播的变化情况。 :475FPy] <RpTk*Yo^= U;*t5l =tY%`e 图 2 光栅布局图以及光线在K空间的传播 3$Vx8:Rhdn xpCZlOld 第 1 步:系统设置 (Lumerical) jIwN,H1$- 1RX-`"^+ 打开附件中的 ZAR 文件时,两个光栅文件会被提取到设置的路径中。第一个光栅如图 3 所示,它是耦入光栅中使用的二元光栅。该光栅是固定的,在优化过程中不会改变。 r%WHYhD n*' :,m k3e6y 2{Dnfl'k 图 3 耦入光栅结构为二元光栅。 BOR$R}q ;DhAw 1 第二个 .fsp 文件如图 4 所示,它是一个具有 7 个变量的平行四边形柱体。在优化期间,耦出中的每个区都将使用不同的变量组合集进行优化 。有关优化设置的更多信息将在优化设置部分中进行说明。 B0Ay fAz4>_4 5''k|B> q*,HN(&l? 图 4 耦出光栅中的结构为平行四边形支柱。 3TLym& sZxTsUW 这两个.fsp文件都是用动态链接的形式在 OpticStudio 中用于模拟完整的EPE系统。 K'e,9P{ :SW
vH- ] 第 2 步:系统设置(OpticStudio) )V+/@ 4 #Ef! X 如图5所示,在该系统中,准直光束入射到耦入光栅上,通过波导传播,并与第二个光栅耦合。眼盒位于第二个光栅的较远部分。优化的目标是优化眼盒接收的均匀性和总功率。 PC+Soh* 3-6MGL9 H3vnc\d~ NS""][# 图 5 初始EPE系统和眼盒辐照度。 2<h~:
L !4gHv4v; 在附件中有一个 OpticStudio 中建立的整个EPE系统的 zar 文件。如图 6 所示,仅构建了第二个光栅一半的区域。这是因为系统具有对称性。从图 7 可以看出,探测器的参数镜像设置为 1,这意味着在光线追迹期间,将始终对-x和+x部分进行镜像。这样一来,我们可以只用一半的光线获得相同的模拟结果。 ;($xAAR PhV/WjCZ ?b'(39fj f*88k='\W 图 6 OpticStudio 中的 EPE 系统设置。 xdDe@G;" [`s.fkb8 v@ qDR|?^ {QmK4(k?|c 图7 探测器的镜像参数设置为 1,这意味着该探测器在 x 方向上镜像。 nUVk;0at y`5
? 可以看出, 系统中的所有光栅物体都已使用动态链接 DLL 进行设置,如图 8所示。 X[dH*PV _Gt;= aIQC[ry /*BK6hc 图 8 为 EPE 系统中的光栅加载动态链接 DLL。
W/u(9 Y,yU460T8 第3步:优化设置(optiSLang) KF@%tR}V{ VAjl?\}6 3-1.Python 用于评估系统 6/Yo0D>M$ PX0N7L 附件中包含了一个 python 文件 EPE_2D_for_optiSLang.py,用于将 optiSLang 链接到OpticStudio。使用python代码将 Ansys optiSLang 附带的优化器与求解器Ansys Zemax OpticStudio + Ansys Lumerical 链接非常有用。优势在于可以在每个优化周期中进行数据的预处理跟后处理,灵活性非常高。本章节会对代码结构进行解释。 8.^`~ta @jjxgd'%& 代码的基本结构首先由 OpticStudio 中的按钮生成,如图 9 所示。 `#85r{c$: $I/ !vV 图 9 生成 Python 交互式扩展代码的样板。 wu11)HFL|z c yP+a d(d3@b4Ta uHbbPtk 另外几个模块被导入到样板中。模块 numpy,scipy 用于对来自眼盒的辐照度数据进行后数据处理。模块matplotlib用于在眼盒上绘制和导出辐照度以供以后查看。导入 time 和 random 模块,以便计时器跟踪计算时间。 \*BRFUAc =jpRv<X|, 9!_LsQ\) 通过尝试读取变量 OSL_WORKING_DIR,我们可以知道这个 Python 代码是由 optiSLang 调用还是手动调用。当 optiSLang 调用 Python代码时,将创建一些称为环境变量的变量来传递一些 optiSLang 信息。即使这些变量未在 Python 文件中定义,当 optiSLang 调用代码时,它们是可用的。 lx0BKD?n ",[ /pb UHTxNK@} kB5y}v.3 S 在这个 Python 代码中,有32个变量,如 clen1、h2、rot4、w1 和 power,用于优化,需要由 optiSLang 定义。我们会将这些变量设置为 optiSLang 中的参数,在灵敏度分析或优化时,optiSLang将自动改变它们的值。如果我们不是从 optiSLang 直接运行这个 Python 代码,那么这些变量的值将是常量,如下面的代码所示。 z#|Auc0 hH-!3S2' $7xfLS8Vo .YH#+T' 如图10所示,每个区的光栅参数是通过预设的4个角的数据通过插值来确定的。其中 ν 是 dC、dR、dL、θC、θR、θL 、h ,n 是 1,2,3,4,对应于 4 个角。通过这个公式,每个区上的7个光栅参数可以通过具有一定权重(wn)和非线性值(p)的4个角的参数来控制。 4T"L#o1 [;
$:Lr Y#-c<o}f ;9fWxH yLnTIE 3) g2}aEfp!H 图 10 从 4 个角插值的各个区的参数计算。 WLh!L='{BK 8@rF~^-_ optiSLang 按照预定义的优化算法改变这些参数。不同的参数值被设置到 python 代码中,这将进一步设置 OpticStudio 中每个光栅块的参数。在这个过程中,Python代码扮演着将这些变量转换为 OpticStudio 中精确参数的工作。只有当我们使用 optiSLang 而不是 OpticStudio 中的内置优化器优化系统时,这种预数据处理才有可能。通过这种方式,optiSLang 可以根据一些未直接暴露在OpticStudio UI中的虚拟或高级变量来优化系统。
]SL+ZT q3-cWfU 设置参数后,我们使用以下代码段追迹光线。 )@y'$)5s -`Zk`s|! ;Z;` BGZJ Eg&Q,dH[ 使用 optiSLang 优化系统的另一个好处是数据后处理。在这个优化过程中,我们不会直接优化眼盒上的辐照度分布。我们首先使用瞳孔函数对辐照度分布进行卷积,如图11所示,然后将优化目标设置为该卷积结果的均匀性。这个结果的x和y轴可以解释为人眼在眼盒中的偏移。z轴是人眼看到的平均辐照度。 ]d%Ou]609 $:-C9N29 e$Y7V >Rdi]:]Bv i!JSEQ_8 @Xh8kvc81 图 11 使用瞳孔函数对辐照度分布进行卷积. Dk")/ ib G%i&C)jZ 根据卷积结果,我们可以计算对比度 、总功率和均匀性,如下所示。 ;F71f#iY 6"rS?>W/mO ov\%*z2= c^&:':Z%' 这些标准的代码定义如下。在这种情况下,我们主要希望针对 Contrast 和 Total Power 进行优化。均匀性的功能类似于对比度,两者都希望眼盒上的辐照度均匀。尽管它们用于相同的目标,但它们使用不同的定义,在这里我们考虑两者。 QZO<'q`L eISHV.QV +, rm XC390t Python 代码的最后一部分,如下所示,绘制了眼盒辐照度的结果及其卷积结果。然后导出图片。这对于用户直接在 optiSLang 后处理中检查每个优化系统的辐照度分布非常有用。 g&ba]?[A GIR12%-EO ]i
`~J ~+RrL,t# 进一步的设置详解我们会在后续的文章中,进行介绍。
|