-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-04
- 在线时间1893小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 6J""gyK. bCbp JZ 成像示意图 :kb2v1{\ 首先我们建立十字元件命名为Target .%x%b6EI uZ/XI {/ 创建方法: Q 2mTu[tx T>cO{I 面1 : (Q4hm ]< 面型:plane _<LJQ 材料:Air pcrarj 孔径:X=1.5, Y=6,Z=0.075,形状选择Box mN&B|KWU %UXmWXF4$ F).7%YfY 辅助数据: P1u(0t 首先在第一行输入temperature :300K, LjEG1$F> emissivity:0.1; Q dPqcw4+X L%Mj{fJ>Wm gx ]5)O 面2 : # X`t~Y' 面型:plane LyuA("xB# 材料:Air N7 ox#=g 孔径:X=1.5, Y=6,Z=0.075,形状选择Box b2 5.CGF RoLN# h; "pAE 位置坐标:绕Z轴旋转90度, dMlJ2\]u +
\jn$>E \~BYY|UB;W 辅助数据: 7RZ HU+ Q*54!^l+_r 首先在第一行输入temperature :300K,emissivity: 0.1; `37%|e 3bQ T jrz_o) "969F(S$ Target 元件距离坐标原点-161mm; N eC]MW 8c3/n Tf{lH9ca$ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 X@pcL{T! ?[#4WH-G 4L _AhX7 探测器参数设定: k@
So l6 uGU-MC* 在菜单栏中选择Create/Element Primitive /plane #\l#f8(l dh-?_|" cES8%UC^i E@J}(76VS 3S=$ng E0*62OI~O 元件半径为20mm*20,mm,距离坐标原点200mm。 k!0vpps @>q4hYF 光源创建: .Mxt
F\ 8'-E>+L 光源类型选择为任意平面,光源半角设定为15度。 "BA& =:=s :/\KVz'fw} 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 gHox>r6.A )u=46EU_ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 '>:%n `1i\8s&O6@ ;-quK%VO! 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 #:E^($v 'byao03 创建分析面: ,Yu2K` T?KM}<$(O %4x,^ K] 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Sd *7jW? "\O{!Hj8 tpQ8
m( 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 nn8uFISb ekCt1^5Y FRED在探测器上穿过多个像素点迭代来创建热图 M!Ywjvw*)3 }+fBJ$ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 $xK(bc'{ 将如下的代码放置在树形文件夹 Embedded Scripts, F#Bi*YY H><!
C p]Q(Z 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 F$HL\y *fp4u_:` 绿色字体为说明文字, 3A'9=h,lVK Q(BM0n)f '#Language "WWB-COM" >K
7]G?+7E 'script for calculating thermal image map 97n,^t2F\ 'edited rnp 4 november 2005 9=9R"X>L fO}Y$y\q 'declarations uiq;{!dop Dim op As T_OPERATION rW[7
_4 Dim trm As T_TRIMVOLUME I@uin|X Dim irrad(32,32) As Double 'make consistent with sampling l<p6zD$l Dim temp As Double '<aFd)- Dim emiss As Double :o_6
Dim fname As String, fullfilepath As String /'L/O;H20 zJTSg 'Option Explicit V/t- ]64?S0p1c! Sub Main g.x]x#BC 'USER INPUTS *W<|5<<u@ nx = 31 yG:Pg MrB ny = 31 V3[>^ZCA numRays = 1000 Zrp9`~_g<! minWave = 7 'microns 3M[5_OK maxWave = 11 'microns {3G2-$yb sigma = 5.67e-14 'watts/mm^2/deg k^4 Wa'm]J fname = "teapotimage.dat" RQW<Sp~ k2DBm q; Print "" G;;iGN Print "THERMAL IMAGE CALCULATION" /;9]LC.g 3k* U/* detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 cp5 +\~Mx>Cn Print "found detector array at node " & detnode *h2)$^P% CDGN}Q2 _ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ek]CTUl* > 72qi*0 Print "found differential detector area at node " & srcnode 0
hS(9y40 wIK&EGQ GetTrimVolume detnode, trm nX-%qc" detx = trm.xSemiApe LYp=o8JW| dety = trm.ySemiApe
qh9Ix area = 4 * detx * dety yWZ%|K~$ Print "detector array semiaperture dimensions are " & detx & " by " & dety oWdvpvO Print "sampling is " & nx & " by " & ny Hh0a\%! MUqV$#4@I 'reset differential detector area dimensions to be consistent with sampling Q~G>=J9 pixelx = 2 * detx / nx bId@V[9 pixely = 2 * dety / ny 'E~[I"0 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False pax;#*QcQ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 a*nx2d *m`KY)b=l 'reset the source power 2B&|0&WI SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Zn"1qLPF Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" /]"2;e-s+ 3qBZzM
O* 'zero out irradiance array $K*&Wdo For i = 0 To ny - 1 l} UOg
For j = 0 To nx - 1
X00!@
^g irrad(i,j) = 0.0 9Sk?tl Next j [";<YR7iRN Next i ]BBL=$* tQrkRg(E: 'main loop j?'It`s EnableTextPrinting( False ) ) ]3(ue 7cMSJM(]G ypos = dety + pixely / 2 _T[m YY For i = 0 To ny - 1 ay,E!G&H xpos = -detx - pixelx / 2 ({#M*=&" ypos = ypos - pixely J,j! I:G4i}mA EnableTextPrinting( True ) h?ZxS Print i iLD:}yK EnableTextPrinting( False ) b{wj4
p@+r&Mg%W" ds" q1 For j = 0 To nx - 1 BV01&.<| &o$Pwk\p/ xpos = xpos + pixelx x-HN]quhe 9WhZ=
Xk 'shift source Z/hgr|&} LockOperationUpdates srcnode, True +>wBGVvS GetOperation srcnode, 1, op Kt3]r:&J op.val1 = xpos f]Q`8nU op.val2 = ypos NLA/XZ SetOperation srcnode, 1, op L\Y4$e9bF8 LockOperationUpdates srcnode, False t\%gP@? zs~v6y@ 'raytrace hbg:}R=B< DeleteRays I>( \B| \6 CreateSource srcnode *c6o#[l TraceExisting 'draw 5x:dhkW ;5 JzrbtL 'radiometry :v>Nz7SB For k = 0 To GetEntityCount()-1 j6_tFJT If IsSurface( k ) Then cq,0?2R`t temp = AuxDataGetData( k, "temperature" ) $'obj emiss = AuxDataGetData( k, "emissivity" ) }hy,
}2(8 If ( temp <> 0 And emiss <> 0 ) Then t/TWLhx/ ProjSolidAngleByPi = GetSurfIncidentPower( k ) GnzKDDH
' frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) qu:nV"~_ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 8A ;)5! End If gLL8-T[9 at-+%e End If nF!6 !ENDQ?1 Next k vRQ7=N{3 ecRY,MN Next j ?' :v):J} qXw^y Next i ~d072qUos EnableTextPrinting( True ) 6,q}1- $)O=3dNbo 'write out file p2/Pj)2 fullfilepath = CurDir() & "\" & fname Y 3 QrD&V Open fullfilepath For Output As #1 tr t^o Print #1, "GRID " & nx & " " & ny hmQ;!9 Print #1, "1e+308" Oe/\@f0bLT Print #1, pixelx & " " & pixely @z-%:J/$ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 NM{/rvM ?8GggJC maxRow = nx - 1 v{[:7]b_= maxCol = ny - 1 4Lb!Au|Y For rowNum = 0 To maxRow ' begin loop over rows (constant X) Jb (CH4|7 row = "" >3MzsAH\ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) %qYiE!%& row = row & irrad(colNum,rowNum) & " " ' append column data to row string 5u89?-UD Next colNum ' end loop over columns +338z<'Z! ._i|+[ Print #1, row _P{f+HxU [ <,i}z Next rowNum ' end loop over rows H-|%\9&{S Close #1 W Y] j
LS<S_` Print "File written: " & fullfilepath '=X)0GG Print "All done!!" Y*Ra!]62 End Sub Bgvv6(i !JGe
.U5 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: -+ha4JOB =+z +`ot 8%ea(|Wjg 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ~EL3I x,% %^( rn9n _) 打开后,选择二维平面图:
<9bfX 91 .V
|