-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-04
- 在线时间1893小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 nmw#4yHYy: t=IM"ZgfL 成像示意图 '
-td/w 首先我们建立十字元件命名为Target ;"2(e7ir Wgm{
]9Q 创建方法: PG{"GiZz= QE6L_\l 面1 : awgS5We| 面型:plane zB8J|uG 材料:Air , }B{) 孔径:X=1.5, Y=6,Z=0.075,形状选择Box {#N,&?[ :M$8<03>F `svOPB4C' 辅助数据: 0Wb3M"#9< 首先在第一行输入temperature :300K, mW)C=X% emissivity:0.1; _SrkR7 V9;O1 &4m;9<8\ 面2 : & &:ZY4` 面型:plane \ccCrDz 材料:Air j34lPo ` 孔径:X=1.5, Y=6,Z=0.075,形状选择Box G(hzW%P m }\L i] D26A%[^O 位置坐标:绕Z轴旋转90度, /t04}+,e^ gmCB4MO Ym
wb2]M 辅助数据: SJO^.[ 4Y{&y6 首先在第一行输入temperature :300K,emissivity: 0.1; a;v;% rs i%otvDn1 jN%+)Kj0C) Target 元件距离坐标原点-161mm; l j %k/u 4EFP*7X !}J19]\ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 wV"C ,*V 7jPn6uz>w l)qGG$7$ 探测器参数设定: GD<pqm`vVY pbNW
l/|4 在菜单栏中选择Create/Element Primitive /plane 98!H$6k 3&Fqd ~p$ncIr2Q An=Q`Uxt/ *Edr\P K@@Jt 元件半径为20mm*20,mm,距离坐标原点200mm。 vW03nt86 i; 3qMBVY~ 光源创建: 6gD|QC~; fqZ+CzH 光源类型选择为任意平面,光源半角设定为15度。 &$. x1$% Ffr6P
}I aR0v qRF 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 dMoN19F fZt3cE\ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ~f[91m!+ 1~9AQ[]w8 l(?Yx 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 YbE1yOJ&m hionR)R4 创建分析面: ybVdWOqv mNAp FwZ o/p'eY:) 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 (1}"I
RX. ot.R Gpg% l|K`'YS!<{ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 eE[/#5tK !d=Q@oy5 FRED在探测器上穿过多个像素点迭代来创建热图 dIDs~ eO=!( FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 .@;,'Xw1~ 将如下的代码放置在树形文件夹 Embedded Scripts, Nx"v|" O7\)C]A ^p!bteA> 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 a3oSSkT /'0,cJnm 绿色字体为说明文字, Id'@!U:NA Is !DiB '#Language "WWB-COM" od~`q4p1(- 'script for calculating thermal image map &-6D'@ 'edited rnp 4 november 2005 .j 0]hn] 2\=cv 'declarations 3a#j&] Dim op As T_OPERATION n)rF!a Dim trm As T_TRIMVOLUME O5p]E7/e Dim irrad(32,32) As Double 'make consistent with sampling P1mPC Dim temp As Double r&-Ir3[ Dim emiss As Double vH^^QI:em Dim fname As String, fullfilepath As String 7<VfE`Q3 Q.[^5
8 'Option Explicit mLn =SU{# 2_HPsEx Sub Main ps6c>AN`A& 'USER INPUTS B.J4}Ua nx = 31 ]]Da/^K=Z ny = 31 SAGLLk07G numRays = 1000 [{B1~D- minWave = 7 'microns tr\Vr;zd maxWave = 11 'microns 3fJwj}wL sigma = 5.67e-14 'watts/mm^2/deg k^4 WtTwY8HC fname = "teapotimage.dat" =7`0hS<@F K*Tvo` Print "" kM\O2ay Print "THERMAL IMAGE CALCULATION" `-N&cc {G%!M+n< detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 fE/8;v!= jsvD[ \P Print "found detector array at node " & detnode y]`@%V2P #YSUPO%F srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 %.R_[.W -ijQTB Print "found differential detector area at node " & srcnode 1H_#5hd {q:o}<-L+ GetTrimVolume detnode, trm ]4>[y?k34 detx = trm.xSemiApe ft[g1 dety = trm.ySemiApe 1W5\ area = 4 * detx * dety +B@NSEy/+ Print "detector array semiaperture dimensions are " & detx & " by " & dety #={L!"3?e Print "sampling is " & nx & " by " & ny =#<hT
s
t=]&q. 'reset differential detector area dimensions to be consistent with sampling %d9UW Q pixelx = 2 * detx / nx }x1mpPND pixely = 2 * dety / ny #7U,kTj9 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False soZw""|v Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 j]<T\O>t> R6Cm:4m}I 'reset the source power _|Ml6;1aZ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ]Nvtiw 6 Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" |Tz4 xTK k[Iwxl;/ 'zero out irradiance array v[6 BESu For i = 0 To ny - 1 |pp @ For j = 0 To nx - 1 &hba{!`y irrad(i,j) = 0.0 Y(SgfWeK@1 Next j |b/J$.R Next i r<O^uz?Di *ma/_rjK 'main loop 9VN@M EnableTextPrinting( False ) fT8Id\6js [JVI@1T ypos = dety + pixely / 2 2ezuP F For i = 0 To ny - 1 z>i D xpos = -detx - pixelx / 2 $#@4i4TN- ypos = ypos - pixely R\:C|/6f A0rdQmrOL EnableTextPrinting( True ) NI(`o8fN Print i J6 [x(T EnableTextPrinting( False ) 4_N)1u ! nHKEtKDd }C7tlA8,7 For j = 0 To nx - 1 dtM@iDljj _T5~B"* xpos = xpos + pixelx 9zO3KT2 ,mYoxEB kl 'shift source ~~zw[#' LockOperationUpdates srcnode, True `z` `d*_ GetOperation srcnode, 1, op !icpfxOpjQ op.val1 = xpos \Zf&&7v op.val2 = ypos 31>k3IP& SetOperation srcnode, 1, op bOck^1Hk y LockOperationUpdates srcnode, False M:`hb$k: B@zJ\Ir[ 'raytrace f/;\/Q[Z7 DeleteRays I I>2\d|
CreateSource srcnode R|+R4' TraceExisting 'draw i8B%|[nm 2J4|7UwJ 'radiometry G<jpJ For k = 0 To GetEntityCount()-1 ,uKvE`H If IsSurface( k ) Then N0vd>b temp = AuxDataGetData( k, "temperature" ) Xp} vJl emiss = AuxDataGetData( k, "emissivity" ) Xb^\{s?b If ( temp <> 0 And emiss <> 0 ) Then f6L_uk`{ ProjSolidAngleByPi = GetSurfIncidentPower( k ) LDBR4@V frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Km <Wh= irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi J82{PfQ" End If Yn<0D|S;X D8?$Fn= End If doR'=@ W i9!Urq- Next k 5&X n/,7ryu Next j zi?'3T%Ie %o"Rcw| Next i "{x~j\< EnableTextPrinting( True ) <go~WpA|r T![K
i 'write out file /2@%:b) fullfilepath = CurDir() & "\" & fname amBz75N{ Open fullfilepath For Output As #1 #h3+T*5} 6 Print #1, "GRID " & nx & " " & ny 3-mw-;. Print #1, "1e+308" phc1AN=[E Print #1, pixelx & " " & pixely
l#~FeD Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 44W3U~1 %C3cdy_c maxRow = nx - 1 *}_/:\v maxCol = ny - 1 y2 +a2 For rowNum = 0 To maxRow ' begin loop over rows (constant X) :>X7(&j8 row = "" h+74W0
$ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 4iLU "~ row = row & irrad(colNum,rowNum) & " " ' append column data to row string JA{YdB;il Next colNum ' end loop over columns CD&m4^X5D Vd?v"2S(9 Print #1, row /B!m|)h5~ oba*w; Next rowNum ' end loop over rows 6fV)8,F3 Close #1 r/4]b]n GBphab| Print "File written: " & fullfilepath Z>,X$Y6< Print "All done!!" *.*:(7` End Sub -Y[-t; 4 P;O8KA5y 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: }-L@AC/\# 2T3DV])Q =P#!>*\ar 找到Tools工具,点击Open plot files in 3D chart并找到该文件 yQA[X} p&4n3%(R@ Nb#7&_f= 打开后,选择二维平面图: V1:3 P\s+2/
|