-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-04
- 在线时间1893小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 D|'[ [= ?0lz!Nq'S 成像示意图 Ss\FSEN!/ 首先我们建立十字元件命名为Target n`T4P$pt (N`GvB7; 创建方法: }$(\,SzW v'r)d-T 面1 : eAG)+b 面型:plane \(r$f!` 材料:Air 8uA!Vrp3 孔径:X=1.5, Y=6,Z=0.075,形状选择Box a TPq1u Xx\,<8Xn >qd=lm <, 辅助数据: D/hq~- g 首先在第一行输入temperature :300K, h,,B"vPS emissivity:0.1; ,
YlS 5gb:,+ pX1Us+% 面2 : Ei=rBi 面型:plane lR]FQnZ 材料:Air v 7%}ey[ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box d qO]2d Oz)/KZ `g0^W/j 位置坐标:绕Z轴旋转90度, Z$zX%w po.QM/b
\ k$pND,Ws 辅助数据: <`wOy[e :[0)Uu{ 首先在第一行输入temperature :300K,emissivity: 0.1; m;L3c(r. zL'S5'<F| M }q;\} Target 元件距离坐标原点-161mm; GK[9IF#_> Gl[1K/,* (]PH2<3t 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 u7j,Vc'~ <FI*A+I4\ 7PBE(d%m 探测器参数设定: sf:IA%.4t T8x8TN" 在菜单栏中选择Create/Element Primitive /plane )d2:r 07a uh \Tf5 owb+,Gk( PsD)]V9%: Cpy&2o-%v `(=?k[48 元件半径为20mm*20,mm,距离坐标原点200mm。 q8FpJ\ 1LAd5X 光源创建: 6NHP/bj<1V DiTpjk]c` 光源类型选择为任意平面,光源半角设定为15度。 O'{kNr{u .D\oKhV( Fw
t 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 v~jm<{={g {9.UeVz 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 rm$dv%q *::.Uo4O Ei\>gXTH1- 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ;[[6[i x$D^Bh, 创建分析面: cMnN} ' 1~3dX[& <r`;$K
到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 nZ (wfNk YRr,{[e 5??}9 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 z@pa;_ 2FV@?x0po FRED在探测器上穿过多个像素点迭代来创建热图 V2M4g CR%h$+dzy FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 \~(kGE--+ 将如下的代码放置在树形文件夹 Embedded Scripts, U{LS_VI~ t u{~:Z( 5>daWmD 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 W[
W)q%[) 0GeL">v,:= 绿色字体为说明文字, {;& U5<NO ^blw\;LB '#Language "WWB-COM" EG$-D@o\I 'script for calculating thermal image map g1"ZpD 'edited rnp 4 november 2005 K[0z$T\
<)T~_s 'declarations lNyyLLt Dim op As T_OPERATION jgG9?w)|u Dim trm As T_TRIMVOLUME QRBx}!:NZ# Dim irrad(32,32) As Double 'make consistent with sampling ~u2f`67{ Dim temp As Double QT^b-~^ Dim emiss As Double (l-=/6- Dim fname As String, fullfilepath As String $qdynKK Q1x&Zm1v 'Option Explicit PsXCpyY!s {"{]S12N Sub Main Og1vD5a 'USER INPUTS 3Wv^{|^ nx = 31 NW`.7'aWT ny = 31 ,zHL8SiTX numRays = 1000 U0:*?uA. minWave = 7 'microns :Hm'o} maxWave = 11 'microns 42"nbJ sigma = 5.67e-14 'watts/mm^2/deg k^4 .IdbaH
_a fname = "teapotimage.dat" m[3c,Axl7 2 (l0Lq* Print "" v G\J8s Print "THERMAL IMAGE CALCULATION" qmFbq<& la-:"gKC detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 \OFmd!Cz `VO;\s$5j Print "found detector array at node " & detnode GuU-<*u(d s=jYQ5nv srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 :" !Z9l\@ 0LL0\ly] Print "found differential detector area at node " & srcnode <iU@ M31 C{uT1` GetTrimVolume detnode, trm kG!hqj detx = trm.xSemiApe zs
I?X>4 dety = trm.ySemiApe &Y=~j?~Xm area = 4 * detx * dety E\s1p:% Print "detector array semiaperture dimensions are " & detx & " by " & dety ez[x8M> Print "sampling is " & nx & " by " & ny ?i#x13 @XzfuuE] 'reset differential detector area dimensions to be consistent with sampling $RY GAh pixelx = 2 * detx / nx
O]=jI pixely = 2 * dety / ny zE$HHY2ovi SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False SIrNZ^I Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 7JQ4*RM @#,/6s7? 'reset the source power E#rQJ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) W)Y`8&, Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Q2m[XcnX :+jg311} 'zero out irradiance array L
QV@]z& For i = 0 To ny - 1 <H60rON For j = 0 To nx - 1 $aJay]F irrad(i,j) = 0.0 zi6J|u Next j F=e;[uK\ Next i B;=Z^$%T 3R%JmLM+R9 'main loop ~v2(sRJ EnableTextPrinting( False ) }?mSMqnB "]]LQb$ ypos = dety + pixely / 2 7!jb For i = 0 To ny - 1 K(upzn*a xpos = -detx - pixelx / 2 *Ts$Hj[ ypos = ypos - pixely 8h=m()Eu zx\-He EnableTextPrinting( True ) Bcv{Y\x;ko Print i =L#&`s@)_ EnableTextPrinting( False ) nsi?.c&0! @uRJl$3 Xv!Gg6v6 For j = 0 To nx - 1 %zGv+H? 4pT^* xpos = xpos + pixelx N(4y}-w$ Qm3F=*)d 'shift source OV;VsF LockOperationUpdates srcnode, True ]}b GetOperation srcnode, 1, op (kY0< op.val1 = xpos Rf`_q7fm op.val2 = ypos jcj8w SetOperation srcnode, 1, op v+{{j|x= LockOperationUpdates srcnode, False 1\@PrO35J /Q7q2Ne^* 'raytrace %"(HjanH DeleteRays iupkb CreateSource srcnode up['<Kt+a TraceExisting 'draw ;Z0&sFm S{l)hwlE 'radiometry /# Jvt For k = 0 To GetEntityCount()-1
K!9K^ h If IsSurface( k ) Then .GJbrz temp = AuxDataGetData( k, "temperature" ) XZk%5t|t emiss = AuxDataGetData( k, "emissivity" ) Rkk`+0K7$J If ( temp <> 0 And emiss <> 0 ) Then ,m`&J? ProjSolidAngleByPi = GetSurfIncidentPower( k ) .?3roQ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ~),%w*L irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ,_(=w.F
End If NvIg,@} /f?;,CyI End If \9p.I?= (@*|[wN Next k zP0<4E$M` ] H;E(1iU Next j qk'&:A N
e{=KdzT Next i rMJ@oc EnableTextPrinting( True ) gh[q*%# 'q;MhnU+ 'write out file 'qiAmaX fullfilepath = CurDir() & "\" & fname i03S9J Open fullfilepath For Output As #1 um$U3'0e Print #1, "GRID " & nx & " " & ny dkEbP*yXg Print #1, "1e+308" <`Fl Igo Print #1, pixelx & " " & pixely 8g{Mv#b% Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 cu5}( ']2d^'TH maxRow = nx - 1 *^] maxCol = ny - 1 P]}:E+E<.I For rowNum = 0 To maxRow ' begin loop over rows (constant X) 9:RV5Dt row = "" kb~
s,@p For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) YY tVp_) row = row & irrad(colNum,rowNum) & " " ' append column data to row string bt1bTo Next colNum ' end loop over columns EmUt/] E%E`\mFD Print #1, row #
{k$Fk 7ZAxhFC Next rowNum ' end loop over rows -6_<] Close #1 %jj-\Gz! xG
edY*[` Print "File written: " & fullfilepath fl4@5AVY Print "All done!!" (L4C1h_]9 End Sub -ys/I,}< .
&}x[~g 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: d<ES ?\4kV*/Cqz ]S?G]/k} 找到Tools工具,点击Open plot files in 3D chart并找到该文件 R3_;!/1 [m< jM[w{ ^oC>,%7 打开后,选择二维平面图: ?6vGE~MuR "S{GjOlEDF
|