-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-01
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 CNj |vYj /QlzWson 成像示意图 Y$^vA[]c> 首先我们建立十字元件命名为Target A$~H`W<yxB V[^AV"V 创建方法: 1h162 _;x` 6LM 面1 : 7!o#pt7 面型:plane D}{]5R 材料:Air ;eFV}DWW 孔径:X=1.5, Y=6,Z=0.075,形状选择Box wko9tdC=U !}`[s2ji $rjm MSxi 辅助数据: 9l[C&0w#\ 首先在第一行输入temperature :300K, \'w.<)(GI emissivity:0.1; iN Lt4F[i V#4ox km 4*n1Xu7^x 面2 : /gaC 面型:plane I8W9Kzf 材料:Air 0aGauG[ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box K)Ya%%6[U# Q[!?SSX% cy8r}wD 位置坐标:绕Z轴旋转90度, 0ikA@SAq MD0d isnpSN"z 辅助数据: ev7A;; iF:NDqc 首先在第一行输入temperature :300K,emissivity: 0.1; /K,@{__JP Zic:d-Q47 (:+Wc^0 Target 元件距离坐标原点-161mm; t1#f*G5 L]X Lv9J0 s}^W2 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 bL:+(/: g]b%<DJ wqE2n 探测器参数设定: vXSpn71Jb xy)W_~Mk 在菜单栏中选择Create/Element Primitive /plane A,#z_2~ c!$~_?] obX2/ 3=Xvl 58k wC<FF2T aXbj pb+ 元件半径为20mm*20,mm,距离坐标原点200mm。 *z'Rl'j9[ pL.~z 光源创建: 7pH[_]1" q~\[P4m 光源类型选择为任意平面,光源半角设定为15度。 =lh&oPc1 }V+&o\4 xLbF9ASim 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 4
$)}d %CrpUx 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 _2})URU<S Pi[(xD8 kgX"I ?>d 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 :r_/mzR# [}l
1`> 创建分析面: taSYR$VJ w 3L+7V,! k~1{|HxrE 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 y$|OE%S m`,h nDp xAf?E%_pi 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 B/EGaYH i+Xb3+R FRED在探测器上穿过多个像素点迭代来创建热图 aXD|XE% {f>e~o
FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 <
$rXQ 将如下的代码放置在树形文件夹 Embedded Scripts, ( 2KopL Ed"p|5~ .18MMzdN 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 tH4+S?PI <*4r6UFR 绿色字体为说明文字, M`G#cEc qEPC]es|T '#Language "WWB-COM" `9VRT`e 'script for calculating thermal image map SM`n:{N( 'edited rnp 4 november 2005 #|} EPD9$
["Jt2 'declarations 5lm>~J!/^ Dim op As T_OPERATION 0~nub Dim trm As T_TRIMVOLUME UZW)% Dim irrad(32,32) As Double 'make consistent with sampling X
gA(
D Dim temp As Double S?(/~Vb% Dim emiss As Double H[iR8<rhQ Dim fname As String, fullfilepath As String )!D,;,aQ ^pvnUODW[ 'Option Explicit 4{=^J2z ]A:G>K Sub Main }xy[&-dh 'USER INPUTS WS ^%<
h# nx = 31 =&?BPhJE ny = 31 G+Zm numRays = 1000 )m(?U minWave = 7 'microns y$HV;%G{26 maxWave = 11 'microns c0:`+>p2 sigma = 5.67e-14 'watts/mm^2/deg k^4 k iY1 fname = "teapotimage.dat" ;ywUl`d J?bx<$C@ Print "" <825?W| Print "THERMAL IMAGE CALCULATION" )ocr.wU@ hW-?j&yJ? detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 H<wkD9v}H5 fnU;DS]W Print "found detector array at node " & detnode 10e~Yc Z[zRZ2'i5 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ,CQg6-[ kG3m1: : Print "found differential detector area at node " & srcnode =E-V-?N\ :0j_I\L GetTrimVolume detnode, trm IX 2 dic' detx = trm.xSemiApe ?hnxc0~P dety = trm.ySemiApe 'C<4{agS area = 4 * detx * dety </jTWc'} Print "detector array semiaperture dimensions are " & detx & " by " & dety IpI|G!Y, Print "sampling is " & nx & " by " & ny 18gApRa 3 etW4 'reset differential detector area dimensions to be consistent with sampling 9g`o+U{ pixelx = 2 * detx / nx 4Yya+[RY pixely = 2 * dety / ny W 33MYw SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False TKZ[H$Z Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 PFPZ]XI%F WBY_%RTx 'reset the source power EHX/XM SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) YS+|n%? Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Fhk`qh'i ~-o[v-\ 'zero out irradiance array K)F6TvWv For i = 0 To ny - 1 %*Lv For j = 0 To nx - 1 ) i=.x+Q irrad(i,j) = 0.0 i5jsM\1j Next j 4S3uzy% Next i 6~c:FsZ) ($r-&]y 'main loop o==:e EnableTextPrinting( False ) cCbZ* %oHK=],|1 ypos = dety + pixely / 2 [e;c)XS[ For i = 0 To ny - 1 TnQ"c)ta xpos = -detx - pixelx / 2 T43Jgk, ypos = ypos - pixely Av_JcH $ucA.9pJ EnableTextPrinting( True ) @PAT|6 Print i _%:$sAj EnableTextPrinting( False ) ^n&_JQIXb 5v,_ Hgh sA!$}W For j = 0 To nx - 1 mL]a_S{H K:(E"d; xpos = xpos + pixelx OV,t| )4e?-?bK! 'shift source <S68UN(Ke LockOperationUpdates srcnode, True jWqjGX` GetOperation srcnode, 1, op kqQT^6S op.val1 = xpos 6,a:s:$>}R op.val2 = ypos +Fa!<txn SetOperation srcnode, 1, op z^^)n LockOperationUpdates srcnode, False Z]qbLxJV G[$g-NU+ 'raytrace :kQydCuK DeleteRays f O ,5
u; CreateSource srcnode h1 pEC TraceExisting 'draw _kXq0~ '|^x[8^ 'radiometry k{ ~0BK For k = 0 To GetEntityCount()-1 ]I'dnd3e If IsSurface( k ) Then Cd2A&RB temp = AuxDataGetData( k, "temperature" ) +o-jMvK9 emiss = AuxDataGetData( k, "emissivity" ) 7m:ZG If ( temp <> 0 And emiss <> 0 ) Then dTZ$92< ProjSolidAngleByPi = GetSurfIncidentPower( k ) IRyZ0$r:e\ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) wl7 (|\- irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 7!U^?0?/ End If #g= `Vl9/IEk End If {2F@OfuCF a(uZ}yS$ Next k #+#^cqjZ M>[e1y>7 Next j ]p!)8[< B,A,5SuMk Next i E.N EnableTextPrinting( True ) ,0a\Ka{^
s>*xAIx
'write out file 7>lM^ :A fullfilepath = CurDir() & "\" & fname JIPBJ Open fullfilepath For Output As #1 f~ wgMp.W0 Print #1, "GRID " & nx & " " & ny gVNoC-n) Print #1, "1e+308" c{
([U Print #1, pixelx & " " & pixely -nXlW Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 bEm9hFvd AVi&cvhs maxRow = nx - 1 lFl(Sww!\ maxCol = ny - 1 U0U y
C For rowNum = 0 To maxRow ' begin loop over rows (constant X) LwYWgT\e row = "" ! k 1 Ge+ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) YS:p(jtd row = row & irrad(colNum,rowNum) & " " ' append column data to row string F3[,6%4v Next colNum ' end loop over columns g%<n9AUl f@[qS7ok Print #1, row wJj:hA} u4j"U6"]M Next rowNum ' end loop over rows s'|t2`K(" Close #1 XY#.?<"Q8 V503 Print "File written: " & fullfilepath ;y_ ]w6|n Print "All done!!" Zm0' p! End Sub 9dmoB_G _b$ yohQ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: t)1`^W} %&S9~E
D te4= 找到Tools工具,点击Open plot files in 3D chart并找到该文件 "}V_.I*+ ^t:dcY7 XO+rg&Pu 打开后,选择二维平面图: +Qf}&D_ 7[PEiAI
|