-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 nk
9 K\I
H>iZVE 成像示意图 E}/|Lja 首先我们建立十字元件命名为Target 3yB6]U ix @rq# 创建方法: <h51KPo^P M&c1iK\E8 面1 : N-YZ0/c 面型:plane 1>y=i+T/b 材料:Air G5J ZB7C 孔径:X=1.5, Y=6,Z=0.075,形状选择Box K0=E4>z,`q "mDrJTWa e*6` dz@ 辅助数据: R6mJFE*6T9 首先在第一行输入temperature :300K, 0]W]#X4A emissivity:0.1; VDjIs UUX B^~Bv!tHWr vcU\xk") 面2 : z2V8NUn 面型:plane pY>-N 材料:Air 91d`LsP 孔径:X=1.5, Y=6,Z=0.075,形状选择Box \1C!,C S_VncTIO ,<r 3Z$G 位置坐标:绕Z轴旋转90度, !&jgcw/E |0R%!v(, hcc-J)=m 辅助数据: |P0L,R ]m#MwN$ 首先在第一行输入temperature :300K,emissivity: 0.1; ^-*Tn xWe1F2nY XfK.Fj~- Target 元件距离坐标原点-161mm; UA4d|^ev i3&B%JiLX '!h0![OH 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 C{i;spc!bi =&:f+!1$ ::R00gd 探测器参数设定: +Z~!n #33RhJu5, 在菜单栏中选择Create/Element Primitive /plane [Pc[{( l%U_iqL& (My$@l973 yP9wYF^A\ S@zkoj@ UQ?OD~7 元件半径为20mm*20,mm,距离坐标原点200mm。 N?{1'=Om -hFyqIJW 光源创建: Cm<j*Cnl
~
9~\f 光源类型选择为任意平面,光源半角设定为15度。 \j})Kul #Q7x:,f B"Kce"! 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 KPd C9H p vQK6r 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 hd
;S>K/C .A!0.M| $gl<{{ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 8u5
'g1M xm,`4WdG 创建分析面: +\8 krA ._MAHBx+G , 64t 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 /b:t;0G xgT~b9 Ao,!z 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 zP h\3B {+6D-rDw FRED在探测器上穿过多个像素点迭代来创建热图 mV*/zWh_ :{WrS FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 W
aGcoj 将如下的代码放置在树形文件夹 Embedded Scripts, @-&(TRbZo "$IXZ =Wk/q_. 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 9+8!xwR:
^*xHy` 绿色字体为说明文字, y-\A@jJC5 %V(N U_o '#Language "WWB-COM" u|OzW}xb7j 'script for calculating thermal image map H&=n:'k^ 'edited rnp 4 november 2005 r -q3+c^+ 6(J4IzZ 'declarations 4]aiT8)) Dim op As T_OPERATION #3Ej0"A@-B Dim trm As T_TRIMVOLUME 7.e7Fi{ Dim irrad(32,32) As Double 'make consistent with sampling c@ZS|U*( Dim temp As Double .Y(lB=pV Dim emiss As Double VwOG?5W/ Dim fname As String, fullfilepath As String bH\C5zt6( E<<p_hX8R 'Option Explicit B?#k W!wj mo;)0Vq2l Sub Main v"~Do+*+ 'USER INPUTS 6vgBqn[ nx = 31 `/w\2n ny = 31 >^yc=mM(g3 numRays = 1000 5K ,#4EOV minWave = 7 'microns 6mu<&m@ maxWave = 11 'microns UIf ZPf= sigma = 5.67e-14 'watts/mm^2/deg k^4 Z6^QB@moj fname = "teapotimage.dat"
gmRT1T sp=OT-Pfp Print "" AUxM)H Print "THERMAL IMAGE CALCULATION" ] dHB} UK6xkra?# detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ?jri!]ux# ;n}
>C' : Print "found detector array at node " & detnode >sQ2@"y)s2 @GG(7r\/B srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 -Aa]aDAz68 fimb]C I|x Print "found differential detector area at node " & srcnode ^Ue0mC7m \9] I#Ih}M GetTrimVolume detnode, trm Z6Nj<2u2 detx = trm.xSemiApe iUI y,Y dety = trm.ySemiApe hhpv\1h# area = 4 * detx * dety ':\fl.b Print "detector array semiaperture dimensions are " & detx & " by " & dety <Zp^lDxa Print "sampling is " & nx & " by " & ny ieo|%N{' g/8.W 'reset differential detector area dimensions to be consistent with sampling I#U>5"%\a pixelx = 2 * detx / nx {)V? R pixely = 2 * dety / ny ge0's+E+1 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False IS[Vap: Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ohrw\<xsu 'lhP!E_)q 'reset the source power 2yN%~C?$ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) co5y"yj_ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ?fK^&6pI 1$$37?FE 'zero out irradiance array N5nvL)a~ For i = 0 To ny - 1 )n7|?@5U For j = 0 To nx - 1 J3B6X 8P' irrad(i,j) = 0.0 J=UZ){c>:. Next j YC]PN5[1! Next i i`prv& Tu]&^[B(' 'main loop 0Injyc*bMF EnableTextPrinting( False ) j$@?62)6 iQt!PMF. ypos = dety + pixely / 2 R?
O-x9 For i = 0 To ny - 1 T H|?X0b xpos = -detx - pixelx / 2 izCaB~{/ ypos = ypos - pixely ' _B_&is L@w0N)P<!{ EnableTextPrinting( True ) l8z%\p5cR Print i 6Wj@r!u EnableTextPrinting( False ) ht?CHUu Kw)KA^KF o2DtCU-A For j = 0 To nx - 1 RfKc{V ~32Pjk~ xpos = xpos + pixelx P:
n# S % wL;]1&Qq 'shift source
Dk6?Nwy" LockOperationUpdates srcnode, True #wr2imG6 GetOperation srcnode, 1, op ,Ij=b op.val1 = xpos D%-{q>F!gf op.val2 = ypos Qh\YR\O SetOperation srcnode, 1, op AzZJG v]H LockOperationUpdates srcnode, False sf`PV}a1 /I`3dWL 'raytrace Nz~(+pVWg5 DeleteRays )o{VmXe@@ CreateSource srcnode UxyY<H~Wx TraceExisting 'draw HOfF"QAR$ zLP],wB 'radiometry 'Q5&5UrBr For k = 0 To GetEntityCount()-1 KxY$PgcC If IsSurface( k ) Then <P1rqM9^ temp = AuxDataGetData( k, "temperature" ) ?0{yq>fTu emiss = AuxDataGetData( k, "emissivity" ) R2l[Q){! If ( temp <> 0 And emiss <> 0 ) Then 4IZlUJ?j+c ProjSolidAngleByPi = GetSurfIncidentPower( k ) AM'gnP> frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) (^LS']ybc irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi i3\~Qj;1 End If 1] j^d \<ZLoy_ End If m%pBXXfGYj }qAVN Next k `fz,Lh*v ym\(PCa5` Next j c5("-xB atyu/+U'} Next i &UL_bG} EnableTextPrinting( True ) UFe(4]^ {b1UX9y 'write out file &1_U1 fullfilepath = CurDir() & "\" & fname nd:E9: Open fullfilepath For Output As #1 ZHCr2^w6
Print #1, "GRID " & nx & " " & ny .5.8;/
/ Print #1, "1e+308" ~].ggcl`w Print #1, pixelx & " " & pixely g` [` P@ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 >Q=Ukn;k nLj&Uf& maxRow = nx - 1 $o.Kn9\ maxCol = ny - 1 ! RPb|1Y}+ For rowNum = 0 To maxRow ' begin loop over rows (constant X) P?
(vW&B row = "" H8f]} For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y)
%H& ].47 row = row & irrad(colNum,rowNum) & " " ' append column data to row string \0ov[T N.> Next colNum ' end loop over columns ^P?vkO"pB? 1CkdpYjsj Print #1, row B_k2u b{M}5~e=B Next rowNum ' end loop over rows OQScW2a& Close #1 FW#P*}# 44HiTWQS?l Print "File written: " & fullfilepath _yv Luj Print "All done!!" PK4`5uT End Sub a
}'->H #r<?v 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: fxgU~' (PRBS\*G `ZMK9f: 找到Tools工具,点击Open plot files in 3D chart并找到该文件 lZWK2 LnFWA0y nNaXp*J 打开后,选择二维平面图: u1Ek y/e- ufrqsv]=
|