-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-04-23
- 在线时间1766小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 A"vI6ud> BAzc'x&< 成像示意图 [<wy@W 首先我们建立十字元件命名为Target lDMYDy{< (C6Y*Zm\ 创建方法: wKk A
javV 面1 : (ter+rTv 面型:plane qaw5< 材料:Air J)'6 z 孔径:X=1.5, Y=6,Z=0.075,形状选择Box "q#(}1Zd /%)MlG `+"QhQ4w 辅助数据: Kz$Ijj 首先在第一行输入temperature :300K, xU@Z<d,k emissivity:0.1; <6v7_ hH@018+ jVfC 4M7 , 面2 : .~b6wi&n 面型:plane ;GH(A=}/Y 材料:Air Aqp3amW! 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 2cy{d|c HnOF_Twq f3v/Y5) 位置坐标:绕Z轴旋转90度, 0n(Q@O <<UlFE9" .`hlw'20 辅助数据: ISq^V V!ajD!00 首先在第一行输入temperature :300K,emissivity: 0.1; rbP.N
?YU% Ef?_d] *YtITyDS3> Target 元件距离坐标原点-161mm; `bH Eu"(, :+-s7'!4 _a.Q@A4' 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 !r[uwJ= 08.dV<P cDAO5^ 探测器参数设定: @``!P&h !).D 在菜单栏中选择Create/Element Primitive /plane Kt`0vwkjvI ^8fO3<Jg aEL6-['( ~L}0)FZ\9 vWj|[| <rX ?;i6eg17< 元件半径为20mm*20,mm,距离坐标原点200mm。 ,:;_j<g`e P+Hs6Q 光源创建: E%40u.0 =;T971L` 光源类型选择为任意平面,光源半角设定为15度。 .|o7YTcR: y~W6DL} _A%z^&k(i 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 <k^h&1J#g <0lfkeD 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 *SC~_
rJg!2 y]@_DL#J= 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 T>L6 X:d +]I7) 创建分析面: T}fo:aB} o/9 V1" ``zg |h 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 E8)C_[QJ` YSeXCJ:Iy J *^|ojX 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 w~1K93/p! }`*]&I[P FRED在探测器上穿过多个像素点迭代来创建热图 L5PN]<~T HO$s&}t FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 @8DA 将如下的代码放置在树形文件夹 Embedded Scripts, i7Y96] $ V}s3 \@tt$ m% 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 5\qoZs*e hPhN7E03 绿色字体为说明文字, ']4sx_)S $yhQ)@#1 '#Language "WWB-COM" !3d+"tL
S 'script for calculating thermal image map op[OB= 'edited rnp 4 november 2005 He&dVP F)
< f8F 'declarations R.+QK6B& Dim op As T_OPERATION +loD{
Dim trm As T_TRIMVOLUME n T\W| Dim irrad(32,32) As Double 'make consistent with sampling Hz*!c# Dim temp As Double mu|#(u Dim emiss As Double Hza{"I*^ Dim fname As String, fullfilepath As String " c}pY ^( `ag>4?7? 'Option Explicit Hg]Q.SeJ( 9LzQp`In Sub Main wD}[XE?S 'USER INPUTS 3*XX@>|o nx = 31 5\RKT)%X ny = 31 g:O~1jq numRays = 1000 OBl-6W minWave = 7 'microns fg+Q7'*Vq maxWave = 11 'microns |jF)~k6 sigma = 5.67e-14 'watts/mm^2/deg k^4 :!'aP\uE fname = "teapotimage.dat" |oC&;A #Ubzh`v Print "" ZGe+w]( Print "THERMAL IMAGE CALCULATION" `A$yF38! 9<}d98 detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ,8cw jS2E _
B",? } Print "found detector array at node " & detnode KP -g<Zc lmo>z'< srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 >}43MxU? M
E4MZt:> Print "found differential detector area at node " & srcnode Iy6"2$%a 9)3ok#pQ/ GetTrimVolume detnode, trm G!L=W#{ detx = trm.xSemiApe DNq=|?qn] dety = trm.ySemiApe 2.Th29] area = 4 * detx * dety srw5&s(3X Print "detector array semiaperture dimensions are " & detx & " by " & dety 7Ha
+@ Print "sampling is " & nx & " by " & ny t8E'd:pE `.>2h}op 'reset differential detector area dimensions to be consistent with sampling yf2U-s pixelx = 2 * detx / nx '9H7I! L@ pixely = 2 * dety / ny m .le' & SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ;vc$;54K Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ,3!l'|0jJ 3)Wi?
- 'reset the source power )PVX)2P_C SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 0<Vw0%! Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 9<W0'6%{/ {~.h;'m 'zero out irradiance array [^A 93F For i = 0 To ny - 1 M#IGq For j = 0 To nx - 1 pMHY2t irrad(i,j) = 0.0 Xv|~1v%s7 Next j JLp.bxx Next i ]<WKi= j$4Tot 'main loop +D&W!m EnableTextPrinting( False ) Z6
E-FuO #E3Y;
b%v ypos = dety + pixely / 2 `[0.G0i For i = 0 To ny - 1 9mIq9rQ|* xpos = -detx - pixelx / 2 W1w)SS ypos = ypos - pixely Q>cLGdzO sV@kQ:
EnableTextPrinting( True ) !E'jd72O Print i D[x0sly EnableTextPrinting( False ) JVD#wwic X8~cWW I@08F For j = 0 To nx - 1 _S7GkpoK s_yY,Z: xpos = xpos + pixelx T_lexX[\ {*bXO8vi(( 'shift source vZ\~+qV,A LockOperationUpdates srcnode, True Y? =+A4v GetOperation srcnode, 1, op ?_3K]i1IS op.val1 = xpos hR
Y*WL op.val2 = ypos ~M6Q8Y9 SetOperation srcnode, 1, op =5a~xlBjD LockOperationUpdates srcnode, False x>8=CiUE MM"{ehd{^a 'raytrace H1N_ DeleteRays Xhe2 5 CreateSource srcnode UxzZr%>s TraceExisting 'draw <v&>&;>3 RcitW;{|Kg 'radiometry lwIU|T<4 For k = 0 To GetEntityCount()-1 !n~p?joJ* If IsSurface( k ) Then *IJctYJaX temp = AuxDataGetData( k, "temperature" ) /[`bPKr emiss = AuxDataGetData( k, "emissivity" ) {x40W0 If ( temp <> 0 And emiss <> 0 ) Then x3xBl_t ProjSolidAngleByPi = GetSurfIncidentPower( k ) 5 5>^H1M frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Lj6$?(x} irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi DJr{;t$7~ End If "15mOW(!+ JeU|e$I4> End If 6H\3 J~9l+? Next k c~[L;_ Jb
Hn/$ Next j P(8zJk6h), 8q{
%n Next i m{gx\a.5 EnableTextPrinting( True )
3#}5dO ^P
>; % 'write out file xw(KSPN fullfilepath = CurDir() & "\" & fname pi[:"}m]/P Open fullfilepath For Output As #1 R_eKKi@VH Print #1, "GRID " & nx & " " & ny >y#<WB$i Print #1, "1e+308" ^$c+r%9k Print #1, pixelx & " " & pixely OV8Y)%t" Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 B@D3aOvO @6w\q?.s maxRow = nx - 1 ,Ua`BWF maxCol = ny - 1 d#cw`h<c~ For rowNum = 0 To maxRow ' begin loop over rows (constant X) Q"n|<!DN row = "" ;0( |06= For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) (Vnv"= ( row = row & irrad(colNum,rowNum) & " " ' append column data to row string N
'2Nv Next colNum ' end loop over columns V\r!H>
fT9$0:eO Print #1, row vzA)pB~; A
q;]al Next rowNum ' end loop over rows gF,9Kv~ Close #1 #9uNJla BR*,E~% Print "File written: " & fullfilepath . S4Xw2MS Print "All done!!" m?VA 1 End Sub |{udd~oE& .I_Mmaq;i 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ^3C8GzOsO W;en7v;#I} `Nmw 找到Tools工具,点击Open plot files in 3D chart并找到该文件 6O uB}* 'F.Da#st!} o<Hk/e~ 打开后,选择二维平面图: {3cT\u
MgkeD
|