微型激光芯片为量子通信增加新维度
美国宾夕法尼亚大学工程学院领导的研究小组发明了一种芯片,其安全性和稳健性超过了现有的量子通信硬件。他们的技术通过“量子电码”进行通信,使任何一种以前的芯片上激光器的量子信息空间的两倍。该项研究成果发表在近期的《自然》杂志上。
非量子芯片使用比特存储、传输和计算数据,而最先进的量子设备使用量子比特。比特可以是1或0,而量子比特是能够同时为1和0的数字信息单位。在量子力学中,这种同时状态被称为“叠加”。叠加状态大于两个能级的量子比特被称为量子电码,它可存在于0、1和2等多个态中。 由于只有两个能级的叠加,量子比特的存储空间有限,对干扰的容忍度很低。新超维微型激光器(上图)生成量子电码,即具有四个同步信息级别的光子。维度的增加使得强大的量子通信技术更适合现实世界的应用。 此次,新实验室设备的四能级量子密钥使量子密码学取得了重大进展,将信息交换的最大密钥速率从每脉冲1比特提高到每脉冲2比特。该设备提供了四个层次的叠加,并为进一步增加尺寸打开了大门。 研究人员表示,最大的挑战是标准设置的复杂性和不可扩展性。虽然知道如何生成这些四能级系统,但它需要一个实验室和许多不同的光学工具来控制与维度增加相关的所有参数。现在,他们在单一芯片上实现了这一点。 量子通信使用处于严格控制的叠加态的光子。像位置、动量、极化和自旋这样的属性在量子水平上以多重性的形式存在,每一个属性都由概率决定。只有在探测、观察或测量时,才能确定量子系统在瞬间呈现出的特定性质。 此次的超维自旋轨道微激光器建立在该团队早期使用涡旋微激光器的基础上,涡旋微激光器可以灵敏地调整光子的轨道角动量。最新的设备通过在光子自旋上增加另一个级别的命令来升级以前的激光器的能力。这种额外的控制级别能够操纵并耦合轨道角动量和自旋,使研究团队能够生成四能级系统。 同时控制所有这些参数的困难一直是阻碍集成光子学中量子激光产生的原因,也是该团队工作的主要实验成就。 研究人员表示,可把光子的量子态想象成两颗行星堆叠在一起。以前只有关于这些行星纬度的信息,现在也有了经度,这是以耦合的方式操纵光子并实现维度增加所需的信息,从而能将它们叠加成四级。 相关链接:https://phys.org/news/2022-11-microlaser-chip-dimensions-quantum-communication.html 分享到:
|
最新评论
-
xjz0203 2022-11-24 18:47量子堆叠增加新维度
-
谭健 2022-11-24 19:13量子堆叠
-
谭健 2022-11-24 19:25美国宾夕法尼亚大学工程学院领导的研究小组发明了一种芯片
-
copland 2022-11-24 20:21微型激光芯片为量子通信增加新维度
-
jeremiahchou 2022-11-24 21:26研究人员表示,可把光子的量子态想象成两颗行星堆叠在一起。以前只有关于这些行星纬度的信息,现在也有了经度,这是以耦合的方式操纵光子并实现维度增加所需的信息,从而能将它们叠加成四级。
-
谭健 2022-11-26 23:21量子堆叠
-
谭健 2022-11-27 07:18量子堆叠
-
lnoptics 2024-06-01 01:53个人基于浅显认知下的疑问:光通信和量子通信两者哪个更有优势,哪个更值得发展