-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-02-11
- 在线时间1927小时
-
-
访问TA的空间加好友用道具
|
在本例中, LED红光、绿光、蓝光发射通过优化其各个功率在屏幕上特定区域产生特定的颜色(色坐标值)而目标面上总的功率保持固定不变。LED光源使用任意平面发射光源(Random Plane emitting sources ),波长的光谱范围从厂商数据表中利用数字化工具获取数据。 A ydy=sj .PA?N{z 此例子的布局包含3个任意的平面光源照射到一个接受屏。分析面附加于1)屏幕,计算色坐标值。2)光源,计算LED总功率。第四个无光线追迹面用于优化后的颜色对比。 A7I8Z6& l1`c?Y s525`Q; 优化变量 //4p1^%
t`&s 优化的第一步涉及到变量的定义,本例中,优化3个LED光源的光功率。因为没有对应的光源功率优化变量类型,因此需要使用用户自定义脚本功能, Index #, Subindex #, and Fraction Var# values 可忽略。每一个变量的上限与下限值对应LED功率的最大最小值。 l")o!N? Bt`r6v;\ `qYc#_ELv 三个光源有相似的用户自定义脚本定义其变量类型,红色光源的脚本定义如下所示。这些脚本定义的唯一目的是设定和返回光源功率值。在下面的脚本中,第一行g_success=False作为开始值,其次是If Then...End If代码块检查实体栏中节点数g_entity是否属于光源。在其内部If Then...End If块是设定或返回光源功率取决于g_setvar的值。FRED根据优化周期的范围控制g_setvar值。当FRED需要返回光源功率值, g_setvar = False。当FRED准备设定光源功率值,g_setvar = True。最终,g_success值为True。 *I;Mp ;Kq<',u~ 优化函数 5u=U-- O7L6Htya 在下面的步骤,必须构建优化函数。本例中,一个函数用于约束3个LED的总光源功率,两个优化函数决定x-和y-的色坐标值。 #q^>qX
y *SAcH_I2$> Total LED Power 优化函数 m-pIFL<^N g'l7Jr3 这个优化函数决定总的LED光源的功率,FRED本身内置的优化函数Total power on a surface ,不能用于此例,因为光线并非源于一个面,第二,并非所有的从LED光源发射光线可到达接受屏。变量g_aber等于目标功率值g_power与光源光功率总和的差的绝对值。 CsQ}P) 'DB({s u.xA}yVS 分析面“光源” 3 `C3+ z<C~DH iaq:5||, 色度值优化函数定义 R.n`R|NOd zfT'!kb,( X和y色度坐标优化函数需要彩色图像计算他们的值。输入变量g_ana 是分析面“屏幕”的节点数。这里,只有中心像素点的值用于决定X和y的色度值,只在光束重叠区域产生平均值。 r:S5x. P2 R}=]UOqH- fh5^Gd~ ~A{[=v l<+,(E= 分析面“屏幕” E'6z7m. 0^tJX1L 为了使光线平均,分析面设置为3*3像素。中心像素区域足以包围LEDS照明区域。 [+[fD 4QN6BZJ5 LnACce
?b 为了方便的获取模型参数,x色坐标(g_xchr),y色坐标(g_ychr)及总的功率(g_power)目标值表现为全局脚本变量。 nqw*oLFQ *Sp O|*' 优化方法 rt4|GVa N'1 [t 最后一步是设置优化方法,停止/收敛性判别准则,输出选项及变量强制限制。因为使用多个变量,必须选择Simplex方法。停止/收敛性判别准则选择基于测试运行。选择变量强制限制中的Hard Limit选项以保证LED功率永不会超出厂商规定的额定功率。 v(WL 3[y;
61 HqBa k?_$h<Y 优化 I[YfF F^[Rwzv>c 当优化设置完成后,从主菜单中执行优化。 zJym`NF JO;`Kz_$ 为证实优化结果已经达到要求,有必要比较优化后3LED彩色图像与色度坐标值为0.382,0.471全彩色光源(从光源波长下拉列表合成出颜色选项)。通过下面的对比之后,两种光源的彩色图像吻合的相当好。 /)HEx&SQmZ
|