光纤放大器的教程包含以下十个部分:
=zH)R0!eG 1、光纤中的稀土离子
!hJ!ck]M 2、增益和泵浦吸收
WCY._H>|
3、稳态的自洽解
LawE3CD 4、放大的自发发射
!L+b{ 5、正向和反向泵浦
X\BFvSv8C 6、用于大功率操作的双包层光纤
BZv:E?1z 7、纳秒脉冲光纤放大器
!]?kvf-3e 8、超短脉冲光纤放大器
R{[v#sF ># 9、光纤放大器噪声
#e =E 10、多级光纤放大器
;^JMX4[ 接下来是Paschotta 博士关于光纤放大器教程的第1部分:
S*n5d >; |;:Kn*0/] 有源光纤是一种既能导光又能提供
激光放大的光纤。为此,将一些稀土离子掺入纤维芯中。(我们关于光纤制造的百科全书文章讲述了如何做到这一点。)基本操作原理很容易理解:
fP
3eR>e • 如果将一些泵浦光(通常
波长比要传输的信号短)注入光纤,则该泵浦光会被激光活性离子吸收。这些被激发成一些亚稳态,即具有相对较长的上态寿命的激发电子能级。
x _kT
Wq • 受激离子现在可以通过受激发射放大信号光:信号光将离子降低到较低水平(通常是基态歧管)并带走激发能量。
#"oLz"{ 重要的是,受激发射总是进入导致它的光的相同模式。因此,我们真正得到了信号光的放大,而不仅仅是增强了向各个方向的荧光。
d_ :f- /\qzTo 铒离子
mph9/ %]S 作为一个重要的例子,考虑使用三价铒离子 (Er 3+ )可以做什么,正如在掺铒光纤放大器中所使用的那样。
6W:]'L4! Mq\?J{E 图 1: 三价铒离子的能级结构,以及一些常见的光学跃迁。
\0Xq&CG=E 图 1 显示了这些离子的Stark 能级流形以及它们之间的一些重要跃迁。目前,我们将这些 Stark 能级流形视为简单的能级,尽管稍后我们将不得不重新考虑这一点。为简单起见,让我们从底部数水平流形;例如,让我们将级别4 I 13/2简单地表示为级别 2。
63'%+ 2级到1级的跃迁可作为激光跃迁,用于放大1.5-μm波长范围内的光,常用于光纤通信。使用的泵浦光通常具有接近 980 nm 的波长。这实际上将离子从基态(1 级)泵入到 3 级。从那里,玻璃纤维中的离子迅速衰减到 2 级。在最常用的二氧化硅纤维(更准确地说,是具有二氧化硅基材料的纤维)中,这是主要不是由于 2.9 μm 附近的光发射,而是由于更快的多声子跃迁,即通过发射多个声子(晶格振动的
量子)。上层激光能级(2 级)寿命很长,具有上能级寿命大约 10 毫秒。当离子通过自发或受激发射再次下降到基态歧管(1 级)时,它可以再次被泵送。
<iH 由于非辐射跃迁3 → 2 相当快,因此模型中使用的水平方案通常可以简化。假设所提到的转变根本不需要时间——结果是任何时候一个离子只能处于 2 级或 1 级。在这里,我们也忽略了可能激发到更高能级,例如通过能量转移过程,如果铒浓度足够低,或者通过激发态吸收,则它们很弱,这对于通常使用的泵浦波长不会发生。
vH}VieU !r6Yq,3 带内泵送
XFWE^*e=B 除了在 980 nm 处泵浦,我们还可以使用 1.45 μm 左右的泵浦源,将离子直接置于 2 级;这称为带内抽运。
'k}w|gNB Hi2JG{i 图 2: 由于斯塔克能级歧管内的能量分布,不同波长的泵浦光和信号光可以与同一对歧管相互作用。
H6 ,bpjY 好吧,教科书会告诉你,激光放大不可能用两能级
系统,因为泵浦波也会引起受激发射,无法达到粒子数反转。这原则上是正确的,但不适用于我们的案例,因为我们处理的不是真正的能级,而是斯塔克能级流形,每个流形都由多个子能级组成。它们的能量略有不同,具体取决于局部电场。非晶玻璃材料中的不同离子看到不同的场,总体上我们有一种“涂抹”的能级能量分布,如图 2 中的灰条所示。
'A3*[e|OS 现在这里发生的是泵浦波,其波长比信号波稍短(因此
光子能量更高),最好将离子泵入歧管 2 的更高子级。在每个歧管内,有一个非常快的热化(在皮秒内),因此在低温(如室温)下,大多数离子将始终处于较低的子能级,泵浦光无法再从那里到达它们。因此,泵浦波的受激发射很弱。然而,波长稍长的信号光对受激发射更有效。反过来,它的吸收效果较差,因为吸收具有低光子能量将需要歧管 1 的较高子能级中的离子,这些离子在低温下也只是微弱地填充。
A.yIl`'UP# Ya~Th)'>q 导致简单模型的有效过渡横截面
Bx)!I]gi_ 这部分有点技术性。如果您对了解物理细节以及如何计算光纤放大器的行为不感兴趣,您可以跳过接下来的几段并继续阅读图 4 附近的内容。
+_ 8BJ 查看
光谱细节,人们可能会觉得情况非常复杂:我们有一个实际能级(每个流形的子能级)的统计分布,对于任何光波长,多个子能级之间的跃迁可以发生。很难找出我们玻璃中能级的统计分布以及每对子能级的波长相关跃迁截面。那么我们应该如何设法对这个系统进行建模呢?
:3s^, g 幸运的是,事实证明它比看起来要简单得多。我们可以如下进行:
Ik,N/[ • 我们不关心离子的确切位置,而只关心两个斯塔克能级流形的总人口。由于歧管内的快速热化,我们基本上总是在不同的子水平上具有明确定义的离子分布(玻尔兹曼分布)。(仅在某些具有强烈超短脉冲的极端情况下,可能与该假设存在显着偏差。)因此,我们无需考虑额外的自由变量。
R4 b!?}d • 例如,如果我们现在将离子暴露在某个波长的光下,我们再一次不在乎它们是如何准确地(通过哪些子能级跃迁)从歧管 1 泵送到歧管 2 的。我们只会得到一些整体跃迁率,它与光强I和歧管 1 中的离子密度成正比。在这里,作为比例常数,我们使用有效横截面σ ₁₂,它当然取决于波长(光子能量):
Migl B^]Gv7- • 如果我们将泵浦光和信号光都视为单色光,那么它们中的每一个通常都会有一些吸收截面σ ₁₂和一个发射截面σ ₂₁(泵浦和信号具有不同的值)。
2zbn8tO d~6UJ=]@8 对于通过 3 级(约 980 nm)的泵浦,我们当然会根据该跃迁到 3 级使用跃迁截面,而有效吸收截面为零。(请注意,泵浦光不能将离子再次下推至 1 级,因为泵浦光与 3 → 1 的跃迁不共振。该过程不会发生,因为离子从未在 3 级花费任何时间。)
w`<