-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-04-02
- 在线时间1761小时
-
-
访问TA的空间加好友用道具
|
&`5 :GLV 在测量信号或数据的情况下,很难(如果不是不可能的话)完全避免所有可能的噪声源,因为这些噪声源会干扰任何实验测量。但是,噪声的存在会干扰数据的重要特征(例如,测量光谱的半宽谱)。 pb=HVjW< 因此,有一些后期处理技巧可能会有所帮助。这里我们只讨论一个这样的工具:Savitzky-Golay滤波器,它通过对一组采样点执行回归算法来平滑局部噪声。在这个例子中,我们讨论了VirtualLab Fusion中这个特性的选项和效果,并以一个绿色LED灯在60 nm带宽下发射的光谱为例进行了测试。 h!;MBn`8 @%7/2k
2X +7bM !j'guT&9] 2.如何进入Savitzky-Golay过滤器 ,DQ
>&_DK BC&^]M C890+(D~ 对于每个实值数据数组,都可以在下面找到Savitzky-Golay滤波器 QD6Z=>?S 操作→ ~M(pCSJ[ 杂项→ |O^V)bZmx Savitzky-Golay过滤器 w7[0
.;}pU!S~R
^W{eO@ 8^NE=)cb7w 3.可视化的过滤函数 _4De!q0( -kt1t@O
$M%}Oz3* A'w2GC{. 4.影响过滤器-窗口大小 uFa-QG^Y{ %k~C-+ 更大的窗口大小导致在拟合过程中考虑更多的采样点,因此曲线更平滑。 LE Jlo%M ug>]U ~0
fG^7@Jw:G Y-?51g [u 更高的阶数允许更详细的曲线,但反过来也可以保留局部噪声。 .|tQ=l@I ]oo|o1H87
j=p|'` +._f.BRmX. 5.局部噪声过滤 HXz iDnj S:DcfR=a
aj+zmk~- i,^>uf 6.FWHM 检测 6YB-}>? 8VKb*
Cf.WO %?P 3" 8t)s 7.等距的重采样 DB!uv[c U5T^S
h6K!|-Gq.
|