光学设计资料分享
在实际工作中,设计镜头的时候,客户是告诉你要用几片玻璃几片塑胶的,而你也不需要搭建结构,因为有很多的设计好的镜头,和专利镜头,你要做的是找到相近相近的,然后去尝试,慢慢的一点点的去逼近设计要求。
当然在实际镜头设计中大多数人会选择用CODEV,用CODEV去跑初始架构,因为codev本身自带镜头库很方便检索,你别反驳说zemax也有,我想说的是zemax全英文我表示看不懂,用codev的另一个好处是他优化的非常块,能够很快的去让你判断出这个架构的潜力,当你设计优化边界时可以直接给出目标值,然后调节迭代参数,就可以挖掘出架构的潜力了。 当架构稳定,光线不怎么出错就可以早zemax中进行参数的微调,进一步提升像质,然后很方便的输出。进行好高低温模拟等一系列操作。 根据多年经验,编写的一份资料,能够很轻松自学光学设计,又需要可以找我购买qq 694854290 书的目录如下;里面分享了很多的高阶优化方法,和实际中的经验优化 第一章高阶高阶光学设计优化顺序 第二章手机镜头基本理论 第三章手机镜头光学设计 第四章公差和鬼像分析 第五章重要概念讲解 第六章 系统孔径 第七章像差深度理解 分享到:
|
最新评论
-
游客 2022-03-09 16:50你这那是分享呀,明明就是发广告,好几个帖子看到你发了,来点实际的东西不行吗?
-
闫祥龙 2022-03-10 08:06你管这个叫分享,这个叫广告!
-
彼贤思与君齐 2022-03-10 08:58
你想学习什么
-
彼贤思与君齐 2022-03-10 08:58
你想学什么
-
彼贤思与君齐 2022-03-10 09:00光学设计结构除了找初始结构,经验丰富的设计师能够依赖自己的丰富经验从无到有生成初始结构。有经验的设计师往往能根据需求方提出的像质要求,在了解镜头焦距、孔径以及视场等参数的前提下,决定采用简单结构还是复杂结构,大致需要几组、几片透镜,正、负透镜如何组合,光焦度如何分配,能够大致搭建光学系统架构并根据色差校正的基本原理提出初步的透镜材料搭配方案,然后将初步搭建的光学系统架构输入光学系统设计软件(如ZEMAX、CODEV等),根据二维图中显示的结构与光线走向再手工修改参数,光线没有明显错乱,并能达到像平面后就可以编写优化操作数进入优化步骤,优化过程中再根据像质变化情况施加人工干预直到设计结构满足设计要求。
这里总结一些常用的经验法则:
1、对同一类型的光学系统,如果不采用特殊面型的话,像质要求与系统复杂程度密切相关。
2、通常需要采用正负光焦度透镜组合来校正像差,如果对像质有一定的要求,就不要寄希望于仅使用若干正透镜或者负透镜,除非是如聚光镜那样的照明系统或对特定位置成完善像的齐明透镜系统。
3、每个光学表面不要承担太大的光焦度.即光线在各透镜表面上的偏角不要太大,光线与光轴的夹角不要大起大落。因为光线在表面上的偏角越大,该表面的相对孔径也就越大,所产生的高级像差越大,这会导致像差平衡困难。
4、对于宽光谱成像系统则必须考虑色差问题,这就要求采用不同的光学材料组合,并且越是长焦距系统,色差的影响就越严重,有的需要采用超低色散材料.如萤石等。只要是需要校正色差的光学系统,总要用到冕牌玻璃和火石玻璃的组合,通常在正光焦度的光组中,正透镜用冕牌玻璃,负透镜用火石玻璃;而在负光焦度的光组中,负透镜用冕牌玻璃、正透镜用火石玻璃。半导体光学材料在中远红外光学系统中所起的作用也相当于冕牌玻璃和火石玻璃。
红外光学材料锗的特性
5、大视场光学系统如果要校正像面弯曲,只有正负光焦度分离这一种方法,可以采用弯月形厚透镜或正负薄透镜分离。
6、一些新技术应用于成像光学系统会带来意想不到的效果,如非球面的应用可以大大简化系统的结构,并提高像质。二元光学元件由于具有与常规元件完全不同的色差特性.在校正宽光谱色差方面表现优异,这种元件也具有良好的热像差特性,利用它可以使光学系统在较大的温度范围内保持良好像质。
衍射光学透镜的特点
但新技术的应用通常需要付出额外的代价,如成本提高、检测困难、非球面公差更严重、二元面会产生多级衍射杂光等,因此在应用时需要权衡利弊。
-
qingfeng945 2022-03-12 11:26灯具照明可以吗
-
彼贤思与君齐 2022-03-14 08:42
可以做
-
谭健 2022-03-18 12:31一般成像光学系统,譬如舞台灯光应用领域是否可以呢?
-
彼贤思与君齐 2022-03-18 13:58
可以的,没问题
-
谭健 2022-03-20 09:39谢谢无私分享