K(fLqXE% 1. 简介 Jd"s~n<>K [c[MQA0 这里呈现了ESA/NASA太阳轨道任务
望远镜反射镜单元的设计历程。该任务致力于太阳和日光层,并被选为ESA宇宙视觉2015-2025计划的第一个中级任务。航天器将会携带各种科学装备。加载在它们其中的一种
成像遥感仪器是偏振和日震成像仪(PHI)。PHI仪器将会在可见光的范围内提供光球矢量磁场和视线速度的高分辨率和全盘测量。LOS线速度地图将给出太阳内部详细的日震调查,特别是太阳对流区。通过靠近及从高纬度到35°的位置高分辨率研究太阳,PHI将会处理和解决太阳物理的基本问题。它由两个望远镜组成。离轴Ritchey-Chrétien(RC)高分辨率望远镜(HRT)将会在距离近日点150km处的分辨率下形成太阳圆盘的局部像。折射全盘望远镜(FDT)可以在轨道的各个阶段成像全部太阳圆面。每个望远镜在光路的前面都有自己的偏振调制包(PMP),来最小化偏振串扰效应。在103信噪比水平上的偏振测定是PHI的基线。HRT和FDT会依次将光送入到Fabry-Perot过滤器系统(约100mÅ光谱分辨率)和一个2048×2048像素的CMOS传感器上。太阳日光层的图像如图1所示。在右边中心可以看到一个太阳黑子。此外,日面上的米粒清晰可辨,它们具有几百到1000km的直径。
)Hm[j)YI 图1.太阳光球层的图像
y$V)^-U>fw ~<OjXuYu 下面的模型理论意在反射镜单元的设计。首先,如在FE分析中预测的一样,创建一个样机模型(QM)来检验反射镜的机械、热学和
光学性质。这包括比如在休息和操作期间超出预期负载的振动测试,来证明设计的可靠性。这些测试成功完成后,两个飞行模型已经建好,可以预见,它们将会集成在飞行模型中又叫做PHI仪器飞行备用零件。
zb}+ m#q QF/u^|f 本文的结构如下。在接下来的部分中,呈现了望远镜的
光学设计,为两个反射镜建立了波前预算,以确保在操作条件下所需的光学性能。第一个干涉测量显示了几乎完美的表面。反射镜的表面粗糙度和它对光学成像的影响在第三章讨论。随后是反射镜单元的光机设计的展示。这里呈现了有限元分析的一些结果,并与振动测量的结果作比较。一个简要的总结概括了这方面做出的贡献。
- :z5m+ B&