-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-03
- 在线时间1893小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 !.2tv '99rXw 成像示意图 k.."_4 首先我们建立十字元件命名为Target #mIgk'kW< c-GS:'J{ 创建方法: :VkuK@Th` OLH[F 面1 : T!f+H?6 面型:plane _p^?_ 材料:Air RJ\'"XQ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box X-,mNvz D`Cy]j
ff;9P5X 辅助数据: B*OEG*t 首先在第一行输入temperature :300K, {4F=].! emissivity:0.1; MyZ5~jnr\ <`Xt?K q`Rc \aWB% 面2 : N*1{yl76x 面型:plane '?Jz8iu- 材料:Air U/#X,Bi~ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;aj4V<@ Jkx_5kk/\ *'-[J 2 位置坐标:绕Z轴旋转90度, J16t&Ha` 7DZZdH$Fm wbpz, 辅助数据: kEYkd@{ (v,g=BS, 首先在第一行输入temperature :300K,emissivity: 0.1; (y^svXU}a 1 u~Xk? F(;=^w Target 元件距离坐标原点-161mm; kgb:<{pJ T5_/*`F 20,}T)}Tm 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Op_(10| EXbaijHQG F"^/R 探测器参数设定:
O`^dy7>{U u|+Dqe` 在菜单栏中选择Create/Element Primitive /plane \S_o{0ZY} jtv<{7a PL|ea~/ iw{rns yog( pwg\b 元件半径为20mm*20,mm,距离坐标原点200mm。 ["H2H rI2 xFScj0Y 光源创建: Aa`R40 yl +zg3/C4 S 光源类型选择为任意平面,光源半角设定为15度。 0: Nw8J ROr|n]aJj Kgw,]E&7 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %BwvA_T'Q AsfmH-4) 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 _[pbfua o_sb+Vn| B%I<6E[D 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 B'-n
^'; SUb:0GUa 创建分析面: E#~J"9k98 -4v2] #G]g 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ?&JKq^9\I X?$"dqA sZ>0*S 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 BC)1FxsGf IP!`;?T= FRED在探测器上穿过多个像素点迭代来创建热图 +F92_a4 i<M
F8$ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 QKI g5I- 将如下的代码放置在树形文件夹 Embedded Scripts, @Yw>s9X 6Zx)L|B Aj*|r
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 {#,?K Hyb_>n 绿色字体为说明文字, f&I5bPS7} 3~\,VO'' '#Language "WWB-COM" 5i-VnG
'script for calculating thermal image map (H;,E- 'edited rnp 4 november 2005 {XH3zMk[ UmL Boy&* 'declarations VKcVwq Dim op As T_OPERATION pwVaSnre` Dim trm As T_TRIMVOLUME 7;a Dim irrad(32,32) As Double 'make consistent with sampling Z=beki] Dim temp As Double G4^6o[ x Dim emiss As Double r8>Qs RnU% Dim fname As String, fullfilepath As String fwi
- y=2nV 'Option Explicit g'NR\<6A XZ: 6A]62I Sub Main EGzlRSgO 'USER INPUTS ;+*/YTkC+P nx = 31 #'97mg ny = 31 1cS*T>` numRays = 1000 4t 0p!IxG minWave = 7 'microns A$n: maxWave = 11 'microns 0py29>"t sigma = 5.67e-14 'watts/mm^2/deg k^4 j/F:j5O* fname = "teapotimage.dat" h\4enu9[RL T%yGSk Print "" fW$1f5g" Print "THERMAL IMAGE CALCULATION" i7mo89S 24k;.o detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 mZ g' Y o\%53w/ Print "found detector array at node " & detnode |Es,$ GHQm$|3I srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 )3ZkKv;zY $ve*j=p Print "found differential detector area at node " & srcnode -0+h&CO !`dMTW GetTrimVolume detnode, trm aWY#gI{ detx = trm.xSemiApe $XcuU
sG dety = trm.ySemiApe Pk&$#J_ area = 4 * detx * dety _e " Print "detector array semiaperture dimensions are " & detx & " by " & dety l)f 2T@bHl Print "sampling is " & nx & " by " & ny /k KVIlO GQYB2{e> 'reset differential detector area dimensions to be consistent with sampling +&.39q! pixelx = 2 * detx / nx x_- SAyH pixely = 2 * dety / ny Qp-P[Tc SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False K@?K4o
Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 CYdYa| R]l2,0: 'reset the source power U.1&'U* SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) P&Wf.qr{: Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" @%8$k[ |$[.X3i 'zero out irradiance array rxOvYF For i = 0 To ny - 1 6 )lWuY]e For j = 0 To nx - 1 q:mqA$n irrad(i,j) = 0.0 x??H%'rP Next j Wu)An Next i \"P$*y4Le HMw}pp: 'main loop ]) #?rRw EnableTextPrinting( False ) rnC<(f22 7! ~)a ypos = dety + pixely / 2 vofBS For i = 0 To ny - 1 - H`,`#{ xpos = -detx - pixelx / 2 Ki(0s ypos = ypos - pixely yY!@FGsA q&esI EnableTextPrinting( True ) /}(\P@Z Print i q*}$1 zb EnableTextPrinting( False ) awSi0*d~ b<BkI""b " ,]A., For j = 0 To nx - 1 PQ"v o`nJJ:Cxq- xpos = xpos + pixelx C\*0621 1~S''[ 'shift source fo e)_ LockOperationUpdates srcnode, True nMOXy\&mI GetOperation srcnode, 1, op ;oOv~YB7H op.val1 = xpos "sed{? op.val2 = ypos vAtR\Vh SetOperation srcnode, 1, op gyobq'o- LockOperationUpdates srcnode, False EE*FvI` /EwNMU*6 raytrace CIQ9dx7> DeleteRays cUwR6I9 CreateSource srcnode T!|-dYYI TraceExisting 'draw ygxaT"3"= )jMk~;'r 'radiometry 3m"9q For k = 0 To GetEntityCount()-1 <q=]n%nX If IsSurface( k ) Then LG=_>:~t> temp = AuxDataGetData( k, "temperature" ) 5yf`3vV|3@ emiss = AuxDataGetData( k, "emissivity" ) rGzGbI= If ( temp <> 0 And emiss <> 0 ) Then ht*;,[ea ProjSolidAngleByPi = GetSurfIncidentPower( k ) /p)y!5e frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) :!fU+2$`^( irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi IW=%2n(<1 End If ~uuM0POo |^O3~!JP(> End If h YVy 65Ea J74kK#uF= Next k T/q*k)IoR fjHd"!)3 Next j #^w8Y'{? JiGS[tR Next i UC!"1)~mt` EnableTextPrinting( True ) =9A!5 qR^+K@*| 'write out file u9{Z*w3L7 fullfilepath = CurDir() & "\" & fname "SpsSQ Open fullfilepath For Output As #1 sX(rJLbD Print #1, "GRID " & nx & " " & ny `LJ.NY pP Print #1, "1e+308" FwDEYG Print #1, pixelx & " " & pixely
(!T\[6 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 z[0t%]7l ;RW5XnVx maxRow = nx - 1 nu6v@<<F> maxCol = ny - 1 ^F-AZP
/5F For rowNum = 0 To maxRow ' begin loop over rows (constant X) $~T|v7Y% row = "" ORt)sn&~d For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) tA-p!#V<k1 row = row & irrad(colNum,rowNum) & " " ' append column data to row string K?=g
IC: Next colNum ' end loop over columns -9(nsaV MwWN;_#EO) Print #1, row D}?JX5. RYM[{]4b5F Next rowNum ' end loop over rows bJL ,pe+u Close #1 sl*&.F,v= ~\Udl Print "File written: " & fullfilepath "O%xQ N Print "All done!!" 5-"aK~@+ End Sub HCa EETk5 "SV/'0 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: !D9V9p MQVEO5 W<H<~wf# 找到Tools工具,点击Open plot files in 3D chart并找到该文件 &FDWlrGg Y%8[bL$
d S~{}jvc 打开后,选择二维平面图: nb(Od,L yj
mNeZ
|