-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-28
- 在线时间1922小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 gKPqU @$* {w99~? 成像示意图 3zM>2)T- 首先我们建立十字元件命名为Target !+Sd%2o $uK[[k~=S 创建方法: IZ.b N$Tzxs 面1 : gJ$m'kC; 面型:plane 2Myz[)<P_ 材料:Air ~%: TE} 孔径:X=1.5, Y=6,Z=0.075,形状选择Box |l?*' = @XKVdtG ;b,
bHL 辅助数据: ,/Y$%.Rp 首先在第一行输入temperature :300K, pSpxd|k emissivity:0.1; {UhpN"'"n sNC~S%[ S8]YS@@D 面2 : "+4r4 面型:plane 2QIo|$ 材料:Air 3+D4$Y" 孔径:X=1.5, Y=6,Z=0.075,形状选择Box S?~/
V ] +j6^g* elP#s5l4 位置坐标:绕Z轴旋转90度, t@`Sa< SR9M:%dga `{J(S'a` 辅助数据:
t;[?Q\ (i^<er q 首先在第一行输入temperature :300K,emissivity: 0.1; "LVN:|! HR?a93 7)Bizlf Target 元件距离坐标原点-161mm; Yp9%u9tNq 7{
QjE ogE|8`Tq^ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 8uetv 2fdC @V sH)40QmO{ 探测器参数设定: 8';huq@C{ ]i'gU(+;` 在菜单栏中选择Create/Element Primitive /plane 9
J~KM=p HwZ@T &_4 %0eVm
KWT[b? D4QLlP i}ti 元件半径为20mm*20,mm,距离坐标原点200mm。 xgB-m[Xi "NO*(<C.R 光源创建: f1/if:~6 'ewVn1ME[ 光源类型选择为任意平面,光源半角设定为15度。 o}lA\ A ~`Rooh3m 0]t7(P"F6 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 K9euNa + WFa4NZ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Tn\59 ( SV_b(wP9 tumYZ)nW 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 VxGR[kq$] )m$i``*<
创建分析面: <o&\/uO~H :.NCS`z_ =doOt 7Rj 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 l#%G~c8x YU%U >WW5;7$ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 q#1CmKt4R tp=/f
!bv FRED在探测器上穿过多个像素点迭代来创建热图 Yu9.0A_) : $8Y|&P FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 TY*q[AWG 将如下的代码放置在树形文件夹 Embedded Scripts, 2o9IP>#u ^>!~%Vv7! |th"ET 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Sc3 B*. /c-%+Xd 绿色字体为说明文字, 8AVG pL 7e`h,e= '#Language "WWB-COM" S?LUSb 'script for calculating thermal image map /s~&$(d59o 'edited rnp 4 november 2005 BpZ17"\z RiM!LX 'declarations UG<`m] Dim op As T_OPERATION `?xE-S
;Pn Dim trm As T_TRIMVOLUME O_/|Wx Dim irrad(32,32) As Double 'make consistent with sampling cu$i8$?t Dim temp As Double ` z!?!"= Dim emiss As Double Z }Z]["q Dim fname As String, fullfilepath As String *%`jcF 7`Bwo*Y 'Option Explicit ?513A>U / :@X< Sub Main |9cSG),z 'USER INPUTS Gf1O7L1rX nx = 31
66s h r ny = 31 `tZ`a numRays = 1000 "jG-)k`a minWave = 7 'microns aXO|%qX maxWave = 11 'microns 1brKs-z sigma = 5.67e-14 'watts/mm^2/deg k^4 dX:#KdK fname = "teapotimage.dat" %G>V .d &C7HG^;W9 Print "" rCdf*; Print "THERMAL IMAGE CALCULATION" 1$G'Kg/ G`r*)pdm detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 uA2-&smw nH^RQ'19 Print "found detector array at node " & detnode $*i"rlJC 5!)_"u3 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 esVZ2_eL d8Kxtg
Y Print "found differential detector area at node " & srcnode /*yPy? fKZgAISF GetTrimVolume detnode, trm [e+$jsPl detx = trm.xSemiApe :Y ;\1J<b1 dety = trm.ySemiApe Nt#a_ area = 4 * detx * dety >E3 lY/[ Print "detector array semiaperture dimensions are " & detx & " by " & dety [r5k8TB1 Print "sampling is " & nx & " by " & ny SQd`xbIuL &BDdJwE 'reset differential detector area dimensions to be consistent with sampling YKsc[~
h pixelx = 2 * detx / nx ^U4|TR6mub pixely = 2 * dety / ny _z3YB SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False _{5t/^w&! Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 B 8ycr~ fCxF3m(O 'reset the source power {b6g!sE SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) j,/t<@S> Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" |6.1uRF E2 3qc o2{nz 'zero out irradiance array )c$)am\I{ For i = 0 To ny - 1 IN%04~=H For j = 0 To nx - 1 Ma`Goi\vFk irrad(i,j) = 0.0 H^no&$2`1 Next j b|HH9\ Next i zsx12b^w XiB]I5(hcc 'main loop g6. =(je EnableTextPrinting( False ) aab?hR 0w_2E ypos = dety + pixely / 2 `1[GY){?) For i = 0 To ny - 1 {PCf'n xpos = -detx - pixelx / 2 >%D=#}8l@ ypos = ypos - pixely /:}z*a FiQx5}MMhu EnableTextPrinting( True ) mxRe2<W Print i -^JGa{9* EnableTextPrinting( False ) :a4FO 6v9{$: Uieg4I ro For j = 0 To nx - 1 }bs2Rxkh 6GD Uo}. xpos = xpos + pixelx 7BX%z$_)A 2F[;Z*& 'shift source YTco;5/ LockOperationUpdates srcnode, True M\s^>7es GetOperation srcnode, 1, op 0CD2o\`8 op.val1 = xpos B43o_H|s op.val2 = ypos DvuL1MeKo SetOperation srcnode, 1, op >)N}V'9 LockOperationUpdates srcnode, False .F~EQ % %-4e8d74/ raytrace Yb|zE DeleteRays ]rh)AE!Y( CreateSource srcnode ^w<:UE2a! TraceExisting 'draw IP1|$b}sq A*h)p@3t< 'radiometry mP)<;gm, For k = 0 To GetEntityCount()-1 $Q:5KNF+p If IsSurface( k ) Then ^/Hj^4~_U temp = AuxDataGetData( k, "temperature" ) .~5cNu'#m emiss = AuxDataGetData( k, "emissivity" ) e;=G|E If ( temp <> 0 And emiss <> 0 ) Then >oc7=F<8lS ProjSolidAngleByPi = GetSurfIncidentPower( k ) (WW,]#^
frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) t3/!esay irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi w?AE8n$8 End If ]sjOn?YA+ ``kKi3TWJ End If r,6~?hG] Jz#ZDZkm Next k (D8'qx-M Y54*mn Next j )^!-Aj\x XEZ6%Q_ Next i 0zpP$q$ EnableTextPrinting( True ) }}qR~.[ 5b B[o6+ 'write out file q_f
v1U3 fullfilepath = CurDir() & "\" & fname r _r$nl Open fullfilepath For Output As #1 /$rS0@p Print #1, "GRID " & nx & " " & ny zck)D^,aO Print #1, "1e+308" xiRTp:> Print #1, pixelx & " " & pixely }7$\F!R Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 YA^9, q6u? iA ZtV'VQ) maxRow = nx - 1 gr=ke #
maxCol = ny - 1 g{$&j*Q9 For rowNum = 0 To maxRow ' begin loop over rows (constant X) bi^LpyEn row = "" "_)
For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) }qz58]fyx row = row & irrad(colNum,rowNum) & " " ' append column data to row string 4r(rWlM Next colNum ' end loop over columns 7<.f&1MgI n.lp
ena Print #1, row oS_p/$F, 8}\"LXRbo Next rowNum ' end loop over rows !s)2H/KM 8 Close #1 wU#Q>ut'% `bC_J,>_ Print "File written: " & fullfilepath iCx'`^HnP Print "All done!!" v!`M=0k End Sub Q|G[9HBI P6=|C;[ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: w\t{' E/GI:}YUy_ V,M8RYOnC! 找到Tools工具,点击Open plot files in 3D chart并找到该文件 G8oQSo;D cRg$~rYd rbtPG=t_R 打开后,选择二维平面图: 3YT _GW{ ]c5GG!E-g
|