切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1215阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 ^,@!L-<~(b  
    jJ^p ?  
    成像示意图
    {d`e9^Z:  
    首先我们建立十字元件命名为Target T &.ZeB1  
    5LVhq[}mP  
    创建方法: 25xpq^Zw  
    2[WH8l+  
    面1 : PoyY}Ra  
    面型:plane ]y*AA58;  
    材料:Air F Qtlo+3  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box OnO56,+S^  
    cID{X&or  
    ?L=@Zs  
    辅助数据: IooAXwOF  
    首先在第一行输入temperature :300K, sflH{!;p  
    emissivity:0.1; J }?F4  
    #X&`gDW  
    Ap}^6_YXd  
    面2 : ka_]s:>+  
    面型:plane <gU^#gsGra  
    材料:Air Jv  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box -phwzR\(t  
    "#uXpCuw  
    HCP' V  
    位置坐标:绕Z轴旋转90度, 20[_eu)  
    >kK;IF9h  
    Ns.b8Y  
    辅助数据: JA!O,4  
    56i9V9{2  
    首先在第一行输入temperature :300K,emissivity: 0.1; ElNKCj<M  
    g_ z%L?N  
    NABwtx>.  
    Target 元件距离坐标原点-161mm; 8BUPvaP<[  
    Q v/}WnBk  
    G(7!3a+  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 h-B&m:gD_U  
    ;m/%g{oV  
    v=4,k G  
    探测器参数设定: GC(:}e|  
    V:?exJg9  
    在菜单栏中选择Create/Element Primitive /plane -)%l{@Mr  
    02Z># AE  
    =,B44:`r  
    P$E#C:=  
    <u\j 4<p  
    'F[m,[T%x  
    元件半径为20mm*20,mm,距离坐标原点200mm。 0)/L+P5  
    (8C ,"Dc[0  
    光源创建: \$o5$/oU(  
    :BLD &mb"Y  
    光源类型选择为任意平面,光源半角设定为15度。 ?3ldHWa  
    vu^ '+ky  
    7hPiPv  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ` <+MR6M  
    )l}Gwd]h  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 b(8#*S!U  
    N%Gb  
    BD6oN]  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 }?zy*yL  
    U~krv> I  
    创建分析面: 0zD[mt  
    W0GDn  
    '0z-duu  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 w0n.Y-v4i  
    ;c1ar)G7  
    =b{wzx}e  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 V gLnpPOQ  
    3z$9jN/<u  
    FRED在探测器上穿过多个像素点迭代来创建热图 >BU"C+a8g  
    QkJAjmB  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 v8Ga@*  
    将如下的代码放置在树形文件夹 Embedded Scripts, @BbqYX  
    df}DJB  
    n&V\s0  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 .(T*mk*>  
    BeAkG_uG  
    绿色字体为说明文字, &rY73qfP'  
    SGi(Zkc  
    '#Language "WWB-COM" N?]HWP^pg  
    'script for calculating thermal image map %fY\vd 2  
    'edited rnp 4 november 2005 '1|FqQ\.  
    (~ 6oA f  
    'declarations I<p- o/TP  
    Dim op As T_OPERATION 5U[m]W=B  
    Dim trm As T_TRIMVOLUME F@</Ev  
    Dim irrad(32,32) As Double 'make consistent with sampling 8G&'ED_&  
    Dim temp As Double hS<lUG!9UJ  
    Dim emiss As Double 1D3{\v  
    Dim fname As String, fullfilepath As String ]3B8D<p  
    )$[.XKoT  
    'Option Explicit y8j wfO3  
    T0=8 U; =  
    Sub Main ~4e4G yx c  
        'USER INPUTS Yyl(<,Yi  
        nx = 31 <Lz/J-w  
        ny = 31 'Em5AA`>  
        numRays = 1000 %Z T@&  
        minWave = 7    'microns s];jroW@u  
        maxWave = 11   'microns KxZup\\:v  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 0$8iWL  
        fname = "teapotimage.dat" "UUzLa_  
    $\:;N]Cs~0  
        Print "" Fp3NWvu  
        Print "THERMAL IMAGE CALCULATION" lOk'stLNa&  
    :Kc9k(3&r  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 tWD5Yh>.?$  
    X8l|^ [2F  
        Print "found detector array at node " & detnode ei TG  
    *qM)[XO  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 oT=XCa5  
    ){~]-VK  
        Print "found differential detector area at node " & srcnode :PJ 5~7C  
    F^La\cZ*'  
        GetTrimVolume detnode, trm QQ1|]/)  
        detx = trm.xSemiApe hq.XO=0"k  
        dety = trm.ySemiApe M`1pze_A  
        area = 4 * detx * dety Ft} h&aYP  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety VV'K$v3'N8  
        Print "sampling is " & nx & " by " & ny G)|s(C!  
    9c `Vrlu  
        'reset differential detector area dimensions to be consistent with sampling 6S`J7[  
        pixelx = 2 * detx / nx ;gE]*Y.Z.p  
        pixely = 2 * dety / ny >)V1aLu=  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ;:2:f1_  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 'WF Ey>1#  
    \piHdVD  
        'reset the source power K<#Q;(SFU  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) @fjVCc;  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" }iOFB&)w  
    2m! T .$  
        'zero out irradiance array R]Iv?)Y  
        For i = 0 To ny - 1 P LHiQ:  
            For j = 0 To nx - 1 .=I:cniw\r  
                irrad(i,j) = 0.0 ONc-jU^  
            Next j 6qAs$[  
        Next i Ms * `w5n  
    cN]e{|  
        'main loop m+3U[KKvG  
        EnableTextPrinting( False ) r]6X  
    !Z0p94L  
        ypos =  dety + pixely / 2 5Xe1a'n5]  
        For i = 0 To ny - 1 qFV }Y0w  
            xpos = -detx - pixelx / 2 R WfC2$z  
            ypos = ypos - pixely ,)u7PMs  
    G; onJ>  
            EnableTextPrinting( True ) /8$*{ay  
            Print i uaiCyh1:  
            EnableTextPrinting( False ) N\f={O8E  
    p  K=  
    O|ODJOQNol  
            For j = 0 To nx - 1 `fL81)!jI#  
    1I^uq>r  
                xpos = xpos + pixelx /kK%}L_D  
    IN{ 1itE  
                'shift source q>n0'`q   
                LockOperationUpdates srcnode, True s]lIDp}  
                GetOperation srcnode, 1, op K1*oYHB  
                op.val1 = xpos q-k~L\Ys  
                op.val2 = ypos ug?])nO.C  
                SetOperation srcnode, 1, op Lt<KRs  
                LockOperationUpdates srcnode, False 4fuK pLA  
    W)OoHpdw  
    raytrace (hb\1 wZ  
                DeleteRays qhIO7h  
                CreateSource srcnode q.GA\o  
                TraceExisting 'draw - C  
    SniKC qmC]  
                'radiometry >}?4;:.=  
                For k = 0 To GetEntityCount()-1 KeIk9T13O  
                    If IsSurface( k ) Then |o5F%1o  
                        temp = AuxDataGetData( k, "temperature" ) zA<Hj;9SM  
                        emiss = AuxDataGetData( k, "emissivity" ) @/DHfs4O  
                        If ( temp <> 0 And emiss <> 0 ) Then })Pq!u:3  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) >^U$2P  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) S1`;2mAf*  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi A/xo'G  
                        End If $@ R[$/  
     Ie<`WU K  
                    End If dM^1O-K:  
    qh]ILE87(  
                Next k .3Ag6YI0N  
    #&oL iz=hZ  
            Next j p1mY@  
    c}l?x \/  
        Next i G\I DgPj`  
        EnableTextPrinting( True ) 5Vj t!%?r  
    X-mhz3Q&a  
        'write out file }2X"  
        fullfilepath = CurDir() & "\" & fname +hW^wqk/.  
        Open fullfilepath For Output As #1 d9E'4Zm  
        Print #1, "GRID " & nx & " " & ny H:x{qS4Si  
        Print #1, "1e+308" uPvE;E_  
        Print #1, pixelx & " " & pixely >U2[]fu  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 A=+ |&+? t  
    QE b ^'y  
        maxRow = nx - 1 `'gadCTb=  
        maxCol = ny - 1 K9@F1ccQ/  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ^Hplrwj}  
                row = "" /Ayo78Pi  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 4|EV`t}EV  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 2y"|l  
            Next colNum                     ' end loop over columns bt2`elH|  
    ZB|y  
                Print #1, row VuiK5?m  
    1(;_1@P  
        Next rowNum                         ' end loop over rows WF!u2E+  
        Close #1 S.Z2gFE&tu  
    Sj`GP p  
        Print "File written: " & fullfilepath U,_jb}$Sq7  
        Print "All done!!" ;%/Kh :Vg  
    End Sub 7E}.P1  
    -*QxZiKD  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: x U1](O  
    Mjr19_.S  
    P*\h)F/3}t  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 uv}?8$<\  
      
    C'a%piX  
    Go8?8*  
    打开后,选择二维平面图: G5R"5d'  
    TS~>9h\;  
     
    分享到