-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-14
- 在线时间1914小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 /h?<MI\7V [{S;%Jj*X/ 成像示意图 Qq'i*Mh 首先我们建立十字元件命名为Target jIAW-hc] 0Jm]f/iZ 创建方法: j~,h)C/v g2g`,"T 面1 : Cz'xGW{ 面型:plane <@u0.-] 材料:Air RGT_}ni 孔径:X=1.5, Y=6,Z=0.075,形状选择Box -Wl)Lez@ `4VO&lRm Xtci0eS#V 辅助数据: y#b;uDY 首先在第一行输入temperature :300K, <A#5v\{.;~ emissivity:0.1; O24Jj\" -M"IVyy@ wl7 M fyU 面2 : qTyg~]e9( 面型:plane N=>- Q) 材料:Air eQ$N:] 孔径:X=1.5, Y=6,Z=0.075,形状选择Box '"oo;`g7 iKg75%;t }Q/G
&F 位置坐标:绕Z轴旋转90度, WwW"fkv !+m@AQ:, %lXbCE:[ 辅助数据: WI,40&< q&u$0XmV 首先在第一行输入temperature :300K,emissivity: 0.1; ?V#Gx>\ iPMB$SdfO %/P=m-K Target 元件距离坐标原点-161mm; /wr6\53J O
x{Q.l D~Z=0yD 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Af`z/:0< ;xL67e%? p?Z(rCp 探测器参数设定: hO#HvW ]x1p!TSU 在菜单栏中选择Create/Element Primitive /plane CNut{4 %>i@F=O2< rqF"QU= l /E)9v$! *yrnK3 H \ 3M 元件半径为20mm*20,mm,距离坐标原点200mm。 ~NxEc8Y iu+3,]7Fm 光源创建: !;i*\
a h9)RJSF4 光源类型选择为任意平面,光源半角设定为15度。 sN-oEqS +Z > < ` "B^{o 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ; VBpp< Te+^J8 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 7UnzIe *MI)]S [6_"^jgH 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 K<#-"Xe; L.kD,'G}> 创建分析面: 8\DME Ee8-- 90p3V\LO 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 3x![8 x 2\5cjdy 85}
ii{S 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 p zg&/m&F` HM):" FRED在探测器上穿过多个像素点迭代来创建热图 IQIbz{bMx _e* c FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 *E}Oh 将如下的代码放置在树形文件夹 Embedded Scripts, 2hy NVG&$ u%xDsTDP b"t")U== 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 _-/x;C 66
N) 绿色字体为说明文字, EX4
C.C|d QNb>rLj52 '#Language "WWB-COM" a!D*)z Y 'script for calculating thermal image map "c,!vc4 'edited rnp 4 november 2005 Ra0=q4vdk 9k}<F z"^. 'declarations |YRY!V_w Dim op As T_OPERATION kxh 5}eB Dim trm As T_TRIMVOLUME v
J-LPTB Dim irrad(32,32) As Double 'make consistent with sampling PPj[;(A Dim temp As Double Y9tV% Dim emiss As Double x{Sd
P$ Dim fname As String, fullfilepath As String 2 h<U [fxuUmU 'Option Explicit ;R!*I% gQ>2!Qc a- Sub Main Xem5@
(u 'USER INPUTS 4>YU8/Rw nx = 31 |!Fk2Je, ny = 31 #
kEOKmO numRays = 1000 TP{Gt.e minWave = 7 'microns um[!|g/ maxWave = 11 'microns (]XbPW sigma = 5.67e-14 'watts/mm^2/deg k^4 +zsZNJ(U fname = "teapotimage.dat" xs%LRF#u uY;R8CiD Print "" G?/c/r G Print "THERMAL IMAGE CALCULATION" bDWeU} l4 "\) ]; detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 sT`^ljp4 ?'wsIH]m Print "found detector array at node " & detnode ik5|,#}m& #Qd'+M srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ~{M@?8wi j o_
sAb Print "found differential detector area at node " & srcnode )* TF" Sl>>SP GetTrimVolume detnode, trm jV^C19 detx = trm.xSemiApe Hbk&6kS dety = trm.ySemiApe C(o.Cy6 area = 4 * detx * dety
rN"Xz Print "detector array semiaperture dimensions are " & detx & " by " & dety 9!}q{2j Print "sampling is " & nx & " by " & ny JUQg 'D ZPyM>XK$4 'reset differential detector area dimensions to be consistent with sampling Q0~j$Jc pixelx = 2 * detx / nx 2]2H++ pixely = 2 * dety / ny >zmzK{A= SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False s<&[\U Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 $"8d:N?I[ 5+K;_) 'reset the source power q (>c`5 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ,J(lJ,c Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" xo Gb k)":v3^ 'zero out irradiance array g19S For i = 0 To ny - 1 bRPO:lAy For j = 0 To nx - 1 6peyh_ irrad(i,j) = 0.0 QU/3X 1W Next j \84v-VK Next i =& -[TPW mW4%2fD[ 'main loop O>V(cmqE` EnableTextPrinting( False ) PLdn#S}. ;S JF%@x ypos = dety + pixely / 2 i8~r For i = 0 To ny - 1 IgM
v =^U xpos = -detx - pixelx / 2 Y"!uU.=xJ ypos = ypos - pixely | ^GyH$. i:Y\`J EnableTextPrinting( True ) <o0~H Print i >"("*3AO EnableTextPrinting( False ) /IR#A%U 6OB" , Mw^*yW For j = 0 To nx - 1 <>=mCZ2 rLF*DB3l xpos = xpos + pixelx ssl&5AS @6&JR<g*t 'shift source s[AA7>]3 LockOperationUpdates srcnode, True {'R)4hL GetOperation srcnode, 1, op %8FN0 op.val1 = xpos q`Q}yE>9 op.val2 = ypos l,d, T SetOperation srcnode, 1, op c2<,|D| LockOperationUpdates srcnode, False |LmSWy*7 G7-!`-Nk raytrace ?)i1b\4Go DeleteRays iiNSDc CreateSource srcnode qLjT.7 .x TraceExisting 'draw \##5O7/1 eVt1d2.O 'radiometry !wh&>3~ For k = 0 To GetEntityCount()-1 5=Lq=,K$ If IsSurface( k ) Then lS9n@ temp = AuxDataGetData( k, "temperature" ) #I%s3 emiss = AuxDataGetData( k, "emissivity" ) ^Mytp> 7 If ( temp <> 0 And emiss <> 0 ) Then {gU&%j ProjSolidAngleByPi = GetSurfIncidentPower( k ) !LIlt`ag9 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 4%_M27bu[ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi pbn\9C/ End If MYdx .NZT g1|w? pI1 End If N.hzKq][ Zdn!qyR` Next k YYUe)j{T 3&*'6D
Tg Next j ^o eJKjJ =~|:t&v=c Next i SY
_='9U EnableTextPrinting( True ) NP_?f%( : F9|&q-W, 'write out file BSzkW}3q9 fullfilepath = CurDir() & "\" & fname 7NF/]y4w Open fullfilepath For Output As #1 ;p Z[| Print #1, "GRID " & nx & " " & ny BHr|.9g]%% Print #1, "1e+308" li/aN Print #1, pixelx & " " & pixely )Yj%# Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 <qeCso 3!#/k+,C maxRow = nx - 1 JwP:2-o maxCol = ny - 1 !B^K[2`)N For rowNum = 0 To maxRow ' begin loop over rows (constant X) o4Q3<T7nI row = "" r@$ w*% For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) K=\&+at1 row = row & irrad(colNum,rowNum) & " " ' append column data to row string L
*Y|ey Next colNum ' end loop over columns 0I%: BT FvXqggfGv Print #1, row &drFQ| I>n
g` Next rowNum ' end loop over rows ! OE*z $\ Close #1 V4K'R2t $>w/Cy Print "File written: " & fullfilepath Y&f\VNlT Print "All done!!" HL 8eD^ End Sub QLr9dnA tT5pggml 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: {fz$Z!8- dM]#WBOPy YfDWM7x7, 找到Tools工具,点击Open plot files in 3D chart并找到该文件 jw>hk Eipp~GD oln<yyDs 打开后,选择二维平面图: ]U_ec*a n-afDV
|