切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1870阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6589
    光币
    27094
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 CyV(+KBe_  
    W B7gY\Y&M  
    成像示意图
    :Kx6|83  
    首先我们建立十字元件命名为Target :JfT&YYi"  
    $p~X"f?0  
    创建方法: 6;%Ajx  
    m1,yf*U  
    面1 : }8)iFP&"  
    面型:plane KXbD7N.  
    材料:Air pPnJf{  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box boWaH}?0'  
    XpoEZ|0  
    kbKGGn4u  
    辅助数据: `cn}}1Lg]  
    首先在第一行输入temperature :300K, 0 \}%~e  
    emissivity:0.1; O cJ(i#Q~<  
    L__J(6,V2  
    *8#]3M]  
    面2 : X2S:"0?7  
    面型:plane ZGbY  
    材料:Air /I@Dv?  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box <OA[u-ph%S  
    Mxk0XFA  
    ;@ lC08SE  
    位置坐标:绕Z轴旋转90度, PR;A 0   
    5.X`[/]<r  
    SVj4K \F  
    辅助数据:  <6[P5>  
    7@l.ZECJ1  
    首先在第一行输入temperature :300K,emissivity: 0.1; \*.u (8~2o  
    fd/?x^Z  
    ?^3Q5ye  
    Target 元件距离坐标原点-161mm; z57|9$h}w  
    _{f7e^;  
    jO+#$=C  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 *h Z{>  
    ^7$V>|  
    a?5R ;I B  
    探测器参数设定: 5"o)^8!>  
    2nA/{W\hC  
    在菜单栏中选择Create/Element Primitive /plane [ r;hF  
    ?VP07 dQTe  
    F` "bMS  
    V1!;Hvm]+  
    aK4ZH}XHE"  
    NAt; r  
    元件半径为20mm*20,mm,距离坐标原点200mm。 O0cKmh6=  
    M@?,nzs K  
    光源创建: `zBQ:_3J_  
    HDV$y=oHh  
    光源类型选择为任意平面,光源半角设定为15度。 %.`<ud  
    P K9BowlW  
    A<|]>[ax  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ts=KAdcJ  
    ?84B0K2N s  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 .W1i3Z6g  
    ^,WXvOy  
    IolKe:'>@  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 1Z| {3W  
    oNK-^N?-T  
    创建分析面: _q /UDf1  
    "E/UNE6P4  
    pR*)\@ma  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 DgiMMmpE  
    u{dI[?@  
    2,.;Mdl  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 q/l@J3p[qm  
    Y9_OkcW)  
    FRED在探测器上穿过多个像素点迭代来创建热图 s!Y`1h{  
    !3 j@gi2  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 m#kJ((~  
    将如下的代码放置在树形文件夹 Embedded Scripts, vh">Z4  
    @h$4Mt7N  
    l S m7i  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 |E =8  
    ZB@Bj>,b p  
    绿色字体为说明文字, +rcDA|  
    4~YPLu  
    '#Language "WWB-COM" +kN/-UsB  
    'script for calculating thermal image map s_`=ugue  
    'edited rnp 4 november 2005 1`z^Xk8vt  
    ;S_\- ]m&g  
    'declarations lX*IEAc  
    Dim op As T_OPERATION :*0l*j  
    Dim trm As T_TRIMVOLUME 0X'2d  
    Dim irrad(32,32) As Double 'make consistent with sampling tH\ aHU[  
    Dim temp As Double UI}df<Ge  
    Dim emiss As Double '}|sRuftb  
    Dim fname As String, fullfilepath As String @& vtY._  
    JZM:R  
    'Option Explicit U9ZWSDs  
    d9>k5!  
    Sub Main ?}D|]i34  
        'USER INPUTS 4_'($FC1  
        nx = 31 uv$t>_^  
        ny = 31 knU=#  
        numRays = 1000 @cz\'v6E  
        minWave = 7    'microns tbr1mw'G  
        maxWave = 11   'microns 8LZmr|/F*  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 0>KW94  
        fname = "teapotimage.dat" JE$aYs<(TF  
    L dyTB@  
        Print "" 7[}K 2.W.  
        Print "THERMAL IMAGE CALCULATION" se:lKZZ]  
    a&*fk?o  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 $Z8=QlG>  
    _ Uxt9 X  
        Print "found detector array at node " & detnode Ous_269cM  
    h;(#^+LH  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 D3BNA]P\2@  
    6I yD7PQ  
        Print "found differential detector area at node " & srcnode ~c*$w O\  
    Np?%pB!Q  
        GetTrimVolume detnode, trm B-`,h pp  
        detx = trm.xSemiApe a?]"|tQ'  
        dety = trm.ySemiApe %1Pn;bUU!  
        area = 4 * detx * dety ?%Pd:~4D  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety qbwX*E~ ;  
        Print "sampling is " & nx & " by " & ny zYW+Goz/C  
    OE4hG xG  
        'reset differential detector area dimensions to be consistent with sampling `J(im  
        pixelx = 2 * detx / nx ee0)%hc1t  
        pixely = 2 * dety / ny )`sEdVxbr  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False G?t<4MT v  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 }%;o#!<N(@  
    $&!i3#FF  
        'reset the source power uR:@7n  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) kkz{;OW  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" +U:U/c5Z^  
    =d{B.BP(  
        'zero out irradiance array {d%% nK~  
        For i = 0 To ny - 1 `qnNEJL,  
            For j = 0 To nx - 1 DnZkZ;E/  
                irrad(i,j) = 0.0 y]veqa  
            Next j <+tSTc4>r  
        Next i !&n'1gJ)kd  
    \9%SR~  
        'main loop `<z"BGQ  
        EnableTextPrinting( False ) R2 I 7d'|v  
    :E>" z6H  
        ypos =  dety + pixely / 2 ^"?fZSC  
        For i = 0 To ny - 1 S?M'JoYy  
            xpos = -detx - pixelx / 2 *88Q6=Mm  
            ypos = ypos - pixely D[NJ{E.{  
    d*e0/#s  
            EnableTextPrinting( True ) %rmn+L),;  
            Print i )M!6y%b67  
            EnableTextPrinting( False ) Nzo;j0 [  
    122%KS  
    i`Tp +e@a>  
            For j = 0 To nx - 1 m4<5jC`-M  
    {7%W /C#A  
                xpos = xpos + pixelx x2m*0D~  
    `k 5'nnyP  
                'shift source Ob+Rnfx37  
                LockOperationUpdates srcnode, True ^Pq4 n%x  
                GetOperation srcnode, 1, op vIL'&~C\y  
                op.val1 = xpos +p%!G1Yz  
                op.val2 = ypos M_+"RKp  
                SetOperation srcnode, 1, op v|WTm#  
                LockOperationUpdates srcnode, False ?OYK'p.  
    E=-ed9({:  
    raytrace OVo3.  
                DeleteRays xn fMx$fD  
                CreateSource srcnode t 8}R?%u  
                TraceExisting 'draw C[Ap&S  
    eYN =?  
                'radiometry NM`5hd{  
                For k = 0 To GetEntityCount()-1 gyz#:z$p^  
                    If IsSurface( k ) Then EU@ BNja  
                        temp = AuxDataGetData( k, "temperature" ) rY~!hZ  
                        emiss = AuxDataGetData( k, "emissivity" ) bK\Mn95]  
                        If ( temp <> 0 And emiss <> 0 ) Then cIL I%W1  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) T ke3X\|  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) G<2OL#Y-  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi f6I$d<  
                        End If [dQL6k";b  
    &^v5 x"  
                    End If 1kd\Fq^z$  
    ]d4`PXI  
                Next k y*BS %xTF  
    [eb?Fd~WB]  
            Next j / bxu{|.  
    YKUb'D:t]  
        Next i hnk,U:7}  
        EnableTextPrinting( True ) 4P406,T]r  
    ,m`>  
        'write out file )}/ ycTs  
        fullfilepath = CurDir() & "\" & fname xzZ2?z Wi  
        Open fullfilepath For Output As #1 AqdQiZ^9  
        Print #1, "GRID " & nx & " " & ny ,R-T( <r  
        Print #1, "1e+308" ,EE,W0/zzM  
        Print #1, pixelx & " " & pixely nOH x^(  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 \4/zvlo]h  
    zeHf(N  
        maxRow = nx - 1 %OIJ.  
        maxCol = ny - 1 Y#/mE!&  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) L<}0}y  
                row = "" .~nk' m  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ($h`Y;4  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string R/_bk7o]H  
            Next colNum                     ' end loop over columns !R 2;]d*  
    pM|m*k  
                Print #1, row Y-&SZI4H  
    I)JqaM  
        Next rowNum                         ' end loop over rows vj_[LFE  
        Close #1 2`Ojw_$W7  
    k%|Sl>{Ir  
        Print "File written: " & fullfilepath 1(q &(p  
        Print "All done!!" eTeZ^G  
    End Sub 3tt3:`g  
    <-]qU}-  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: dbE]&w`?d  
    ]T?Py)  
     y[C++Q  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 As y&X  
      
    ]gw[ ~  
     [f1'Qb  
    打开后,选择二维平面图: \[>Ob  
    wm'a)B?  
     
    分享到