-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-12
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 :8
:>CHa {lJpcS 成像示意图 L4%LE/t|e 首先我们建立十字元件命名为Target o~p^`5# 4G ?k31,k 创建方法: cyyFIJj] GYO"1PM 面1 : xH uyfQLk 面型:plane ?Fu.,srt 材料:Air IZLX[y 孔径:X=1.5, Y=6,Z=0.075,形状选择Box @}:(t{>;e7 ;p8xL)mUP 00+5a
TrE 辅助数据: wC~Uy% 首先在第一行输入temperature :300K, Sb.;$Be5g emissivity:0.1; pP&~S<[ uQCS%|8C yFjSvm6 面2 : fmh]Y/UC 面型:plane X +R_TC 材料:Air cxV3Vrx@A 孔径:X=1.5, Y=6,Z=0.075,形状选择Box G].Z| Z9 %VCHM GP= -L@=j 位置坐标:绕Z轴旋转90度, }<p%PyM w'C(? ?mH :M16ijkx 辅助数据: b.(^CYYQ I6+5 mv\ 首先在第一行输入temperature :300K,emissivity: 0.1; fqxMTTg@ +FI]0r 90a=
39kI Target 元件距离坐标原点-161mm; *&s_u)b lOZZ- umk[\}Ip+P 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 .vg;K@{ Gwe9<
y ^<c?I re 探测器参数设定: uP.3(n[& t V</x0# 在菜单栏中选择Create/Element Primitive /plane NeH^g0Q2,g v2NzPzzyb /OEj]DNY S:wmm}XQ p)`JVq,H/B G9;WO* 元件半径为20mm*20,mm,距离坐标原点200mm。 :7gIm|2"] L fhd02 光源创建: 5K0Isuu>> $P$OWp?b 光源类型选择为任意平面,光源半角设定为15度。 t5S S] ~O!v?2it8q *5^h>Vk/ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 tG'c79D\ 2]|+.9B 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 &0'BCT dXZV1e1b 5 Jd,]~KAP 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 1:?WvDN= b@Fa|>"_ 创建分析面: B|tP3< :7'anj -70Ut
4B 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 7+fFKZFKF |2Q;SaI^\ MOXDR 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ,Ao8QN @AJt/wPk FRED在探测器上穿过多个像素点迭代来创建热图 6H@=O1W 1r$q $\ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 J}BS/Tr}= 将如下的代码放置在树形文件夹 Embedded Scripts, _|3n h;-m o`G@Je_}x xRb-m$B}L 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ^j@,N&W:lG \\_Qv 绿色字体为说明文字, *+5AN306 bx1' '#Language "WWB-COM" koFY7;_<? 'script for calculating thermal image map )!'SSVaRs 'edited rnp 4 november 2005 OX!9T.j 9k1n-po 'declarations Lf3:' n Dim op As T_OPERATION Gt' %:9r Dim trm As T_TRIMVOLUME ip~PF5 Dim irrad(32,32) As Double 'make consistent with sampling J?HYN% Dim temp As Double vV8}> Dim emiss As Double MbYAK-l.h Dim fname As String, fullfilepath As String =F6J%$ DJhi>!xJ 'Option Explicit aB.`'d)V Ie4}F|#= Sub Main 5TqX;=B 'USER INPUTS q*8^938 nx = 31 '6WaG
hvO ny = 31 CtS*"c,j numRays = 1000 SBs_rhe minWave = 7 'microns 5F$W^N maxWave = 11 'microns :Fm)<VN" sigma = 5.67e-14 'watts/mm^2/deg k^4 z>~Hc8*]3 fname = "teapotimage.dat" :`25@<*u !ce5pA Print "" !h4L_D0 Print "THERMAL IMAGE CALCULATION" <^{|5u {x
s{ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 >O?5mfMK ,*Jm\u Print "found detector array at node " & detnode r!'\$(m E x pT85D srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 1jpcoJ@s F.zn:y X5 Print "found differential detector area at node " & srcnode YQLp# _Uc le GetTrimVolume detnode, trm
hT]\*}, detx = trm.xSemiApe %&0_0BU dety = trm.ySemiApe UoCFj2?C area = 4 * detx * dety se2ay_<F+ Print "detector array semiaperture dimensions are " & detx & " by " & dety a!vF;J-Zqa Print "sampling is " & nx & " by " & ny q3n(Z "CX&2Xfe 'reset differential detector area dimensions to be consistent with sampling :A.dlesv6 pixelx = 2 * detx / nx u?r=;:N|y pixely = 2 * dety / ny ;b-Y$< SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 8SR ~{ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 %3!DRz q3<Pb,Z 'reset the source power l@Uo4b^4x SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) g)nsP Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" SjgjGJw .-Yhpw>f 'zero out irradiance array fO|oV0Rw For i = 0 To ny - 1 kdcr*7w For j = 0 To nx - 1 Us P1bh4 irrad(i,j) = 0.0
!*5vXN Next j S3l$\X;6X Next i Hx5t![g2K! ;H}XW=vO 'main loop =^#^Mq) EnableTextPrinting( False ) KeFEUHU ~\<aj(m(| ypos = dety + pixely / 2 e:#c\Ay+ For i = 0 To ny - 1 PZ06
_ xpos = -detx - pixelx / 2 ;n0VF77>O ypos = ypos - pixely N{w)}me[YY KG=h!]Meq EnableTextPrinting( True ) 6HeZ<.d& Print i g:V8"' EnableTextPrinting( False ) b+7!$ 9O1#%
p}I,!~}
For j = 0 To nx - 1 rXgU*3RG 99)m d xpos = xpos + pixelx ay4E\=k "-bsWC 'shift source %an"cQ
] LockOperationUpdates srcnode, True +a7J;-| GetOperation srcnode, 1, op 2GkJ7cL op.val1 = xpos oS.fy31p op.val2 = ypos Cp {
j+Ia SetOperation srcnode, 1, op jr,j1K@_t LockOperationUpdates srcnode, False *>"k/XUn$ BUhLAO
raytrace Teo&V DeleteRays ,z8<[Q-# CreateSource srcnode H&
L TraceExisting 'draw ;]/>n:[E SY &)?~C 'radiometry ,j^z]; For k = 0 To GetEntityCount()-1 u^5X@. If IsSurface( k ) Then &"G4yM temp = AuxDataGetData( k, "temperature" ) fjGYp emiss = AuxDataGetData( k, "emissivity" ) %uA\Le If ( temp <> 0 And emiss <> 0 ) Then bvpP/LeY ProjSolidAngleByPi = GetSurfIncidentPower( k ) !LDuCz
- frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) {6E&\ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi x|3f$
=b End If 3"9'MDKH 'Ll,HgU; End If q4Z9;^S s{q)P1x Next k Dj 0`#~ @!;EW
R] Next j AC'$~4 7=Vs1TVc Next i ZMFV iE;8 EnableTextPrinting( True ) k#*tf:R =6o,{taZ.~ 'write out file n+Bh-a V fullfilepath = CurDir() & "\" & fname @t W;(8- Open fullfilepath For Output As #1 KB3zQJY Print #1, "GRID " & nx & " " & ny AL(YQ)-Cg Print #1, "1e+308" !+Ia#( Print #1, pixelx & " " & pixely 8+gti*C?\ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 7-*QF>w<a Tno[LP, maxRow = nx - 1 F%<hng%k maxCol = ny - 1 )}{V#,xz@ For rowNum = 0 To maxRow ' begin loop over rows (constant X) *C>B-j$ row = "" ?$:;hGO.<~ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) e@B+\1 row = row & irrad(colNum,rowNum) & " " ' append column data to row string 3)5Gzn Next colNum ' end loop over columns X}!r4<;( C9?R*2L> Print #1, row g(9\r j9sK P]w Next rowNum ' end loop over rows c_oI?D9 Close #1 k{fTqKS%h #+X|,0p Print "File written: " & fullfilepath G|WO Print "All done!!" auzrM4<tz End Sub !`S`%\" Km)5;BQxg 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: g\Gx
oR mQVc ZV fa~u< |