切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1791阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6531
    光币
    26804
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 >OK#n)U`  
    %&h c"7/k  
    成像示意图
    z6I%wh  
    首先我们建立十字元件命名为Target *1$    
    {rDq_^  
    创建方法: ^^U%cuKg  
    b!^@PIX  
    面1 : tb,9a!?  
    面型:plane IXWQ)  
    材料:Air 6Hk="$6K  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box {jW%P="z$"  
    b# u8\H  
    dw9T f^V  
    辅助数据: nR[^|CAR  
    首先在第一行输入temperature :300K, doR4nRl9  
    emissivity:0.1; CW p#^1F  
    /P:EWUf'  
    Zj!Abji=O  
    面2 : y^R4I_* z  
    面型:plane 0e16Ow6\!1  
    材料:Air |@wyC0k!  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box Q+'nw9:;T  
    ,F9nDF@)  
    ~8{sA5y  
    位置坐标:绕Z轴旋转90度, O,'#C\   
    8{ gXToK  
    T<yb#ak  
    辅助数据: Q|c|2byb  
     to>  
    首先在第一行输入temperature :300K,emissivity: 0.1; RV;!05^<  
    "VTF}#Uo  
    J+ts  
    Target 元件距离坐标原点-161mm; E oe}l   
    ^~1<f1(  
    vy9dAl  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 z_&P?+"Df  
    $FX,zC<=  
    =wrP:wYF  
    探测器参数设定: >;9NtoE  
    rt}^4IqL  
    在菜单栏中选择Create/Element Primitive /plane (s&&>M]r_  
    "@yyXS r  
    :kG)sw7  
    %u!b& 5]e  
    |`0n"x7  
    B<,YPS8w  
    元件半径为20mm*20,mm,距离坐标原点200mm。 JN(-.8<  
    {dzoEM[ 1s  
    光源创建: Qihdn66  
    e;(  
    光源类型选择为任意平面,光源半角设定为15度。 >cgpajx*  
    6R4<J% $P  
    v&;:^jJ8  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 eB]R3j{  
    e|lD:_1i  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 _A'{la~k  
    @ D[`Oj)  
    r*XLV{+4  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 (CE7j<j  
    5/@UVY9_  
    创建分析面: #*^+F?o,(  
    RUo9eQIPD  
    h-QLV[^  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 |He=LQ }0  
    %!|O.xxRR  
    +ts0^;QO2{  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 |.U)ll(c  
    {y-^~Q"z  
    FRED在探测器上穿过多个像素点迭代来创建热图 $kPHxD!"  
    ]Kh2;>= Xj  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 | C+o;  
    将如下的代码放置在树形文件夹 Embedded Scripts, 1[PMDS_X  
    'jfRt-_-  
    !mnUdR|>(  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 /'wF2UR  
    r>t1 _b+nu  
    绿色字体为说明文字, KoBW}x9Jp  
    [hh/1[   
    '#Language "WWB-COM" Q8nId<\(  
    'script for calculating thermal image map d) ahF[82  
    'edited rnp 4 november 2005 K5 KyG  
    iiC!|`k"  
    'declarations yVJ%+d:6  
    Dim op As T_OPERATION Q[u6|jRt  
    Dim trm As T_TRIMVOLUME \'v(Xp6  
    Dim irrad(32,32) As Double 'make consistent with sampling 1hmc,c  
    Dim temp As Double P'$ `'J]j  
    Dim emiss As Double I 3$dVls}  
    Dim fname As String, fullfilepath As String `/IKdO*!S  
    h<l1U'Bn7  
    'Option Explicit mUP.rb6  
    T.:+3:8|F  
    Sub Main \}"m'(\c  
        'USER INPUTS N#z~  
        nx = 31 01@t~v3!Z  
        ny = 31 rf K8q'@  
        numRays = 1000 U1R4x!ym4  
        minWave = 7    'microns -:Rp'SJ  
        maxWave = 11   'microns #JW+~FU`  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 +j/~Af p5f  
        fname = "teapotimage.dat" F -gE<<  
    *_-'/i  
        Print "" <V&5P3)d9  
        Print "THERMAL IMAGE CALCULATION" zJN7<sv  
    iCQ>@P]nE  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 L ^`}J7r  
    ,xi({{L*  
        Print "found detector array at node " & detnode  kLP0{A  
    b/("Y.r=  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 =H`Q~ Xx  
    ;0%OB*lcgE  
        Print "found differential detector area at node " & srcnode P 7D!6q  
    {MBTP;{*~  
        GetTrimVolume detnode, trm 6g:|*w  
        detx = trm.xSemiApe Bi%x`4Lf  
        dety = trm.ySemiApe b^CNVdo'  
        area = 4 * detx * dety YTaLjITG  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety mTDVlw0dh  
        Print "sampling is " & nx & " by " & ny 5Rv+zQ#GR  
    ~qP[eWe  
        'reset differential detector area dimensions to be consistent with sampling C(?blv-vM0  
        pixelx = 2 * detx / nx !nf-}z e{  
        pixely = 2 * dety / ny \IM4Z|NN"  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False r%]Qlt ~K  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 qSU| =  
    PL=^}{r  
        'reset the source power O6s.<` \  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) }j {!-&  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" )xU-;z0"~  
    9J-b6,  
        'zero out irradiance array 2-+f1,  
        For i = 0 To ny - 1 6dqsFns}e  
            For j = 0 To nx - 1 'Prxocxq  
                irrad(i,j) = 0.0 0#p/A^\#7M  
            Next j V|D] M{O  
        Next i }FqA ppr  
    5g5'@vMN  
        'main loop  ZI>km?w  
        EnableTextPrinting( False ) JCniN";r[  
    LRb, VD:/Y  
        ypos =  dety + pixely / 2 ~.g3ukt  
        For i = 0 To ny - 1 B 9dt=j3j2  
            xpos = -detx - pixelx / 2 ( )T[$.(  
            ypos = ypos - pixely #/S {6c  
    MjL)IgT  
            EnableTextPrinting( True ) c,\i"=!$  
            Print i &"Ux6mF-"  
            EnableTextPrinting( False ) , \)a_@@k  
    2h=%K/hhY  
    oA-:zz> wL  
            For j = 0 To nx - 1 !0VfbY9C  
    ]2SI!Ai7  
                xpos = xpos + pixelx S::=85[>z  
    KFRw67^  
                'shift source g=@_Z"  
                LockOperationUpdates srcnode, True ^rNUAj9Z  
                GetOperation srcnode, 1, op }WLh8i?_  
                op.val1 = xpos Pt,ebL~  
                op.val2 = ypos giY80!GX  
                SetOperation srcnode, 1, op k"UO c=   
                LockOperationUpdates srcnode, False `6=-WEo  
    D=f7NVc>Q  
    raytrace OW;tT=ql  
                DeleteRays gk0.zz([  
                CreateSource srcnode $rB3m~c|  
                TraceExisting 'draw 3Hi+Z}8  
    -T@`hk`  
                'radiometry S^I,Iz+`S'  
                For k = 0 To GetEntityCount()-1 >H][.@LyR  
                    If IsSurface( k ) Then \;5\9B"i  
                        temp = AuxDataGetData( k, "temperature" ) s54nF\3V  
                        emiss = AuxDataGetData( k, "emissivity" ) +|cI:|H>  
                        If ( temp <> 0 And emiss <> 0 ) Then c~}l8M %  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) }=](p-]5  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ^Mkk@F&1  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi J97R0  
                        End If Yf_6PGNzX  
    ,U,By~s  
                    End If (46 {r}_O  
    DPgm%Xq9(!  
                Next k Ol /\t  
    3L>IX8_   
            Next j Pz_Oe,{.I  
    f7urJ'!V  
        Next i iO w3MfO  
        EnableTextPrinting( True ) RF}X ER  
    R{Z-m2La  
        'write out file ,Dmc2D  
        fullfilepath = CurDir() & "\" & fname q-$`k  
        Open fullfilepath For Output As #1 Oft arD  
        Print #1, "GRID " & nx & " " & ny  ,*id'=S  
        Print #1, "1e+308" #EO1`9f48x  
        Print #1, pixelx & " " & pixely U%B(5cC  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 M6|I6M<  
    jF ^5}5U  
        maxRow = nx - 1 R@ Y=o].2  
        maxCol = ny - 1 _cH@I?B  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) I`RBj`IF  
                row = "" P@}Pk  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) U 5w:"x  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ]DG?R68DQ  
            Next colNum                     ' end loop over columns :t$aN|>y  
    OWjJxORB  
                Print #1, row *O$CaAr\s  
    D>L2o88  
        Next rowNum                         ' end loop over rows 8^^[XbH  
        Close #1 j`*N,*ha  
    m4w ') r~  
        Print "File written: " & fullfilepath &a)eJF]:!  
        Print "All done!!" P,pnga3Wu  
    End Sub ~,6b_W p/  
    u0)7i.!M  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: [dX`K`k  
    o}Cq.[G4k  
    mABe'"8  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件  l]!9$  
      
    FN[R(SLbL  
    -<_$m6x"A  
    打开后,选择二维平面图: 's x\P[a  
    GyI-)Bl DC  
     
    分享到