-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-20
- 在线时间1915小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 {j6$'v)0 Ij>G7Q*d 成像示意图 B[.$<$}G 首先我们建立十字元件命名为Target $d-$dM?R5 1oc@]0n 创建方法: 4Ei8G]O
$_ "T$LJ1E 面1 : u`CHM:<<? 面型:plane 5e3p9K`5 材料:Air 0QP=$X 孔径:X=1.5, Y=6,Z=0.075,形状选择Box " Tk, Kf-XL),3l 0q4PhxR`e 辅助数据: `?{6L# 首先在第一行输入temperature :300K, (%c&Km7K emissivity:0.1; =8vNOvA c,^W/:CQAB w@"Zjbs` 面2 : NCdDG 面型:plane |:.s6a# ( 材料:Air m@Dra2Cv'@ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 6FYL},.R ?W_8X2(` >V?W_oM) 位置坐标:绕Z轴旋转90度, blLl1Ak <&^[?FdAa &pf"35ll 辅助数据: Egz6rRCvg '>ASr]Q 首先在第一行输入temperature :300K,emissivity: 0.1; #zv&h`gY <:!E'WT#f Vm?# ~}T Target 元件距离坐标原点-161mm; vz(=3C[ w/^_w5 oxBTm|j7 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ^q_wtuQ ] g<$f#S *s#6e} 探测器参数设定: 3ZC@q
#R
A -Bq]E,Xf) 在菜单栏中选择Create/Element Primitive /plane y #C9@C <)pPq+
:f:&B8 HE{UgU:tY dWi<U4 yZ!~m3Q 元件半径为20mm*20,mm,距离坐标原点200mm。 _k :BY 2
FoLJ 光源创建: xbxzB<yL Y4w]jIv 光源类型选择为任意平面,光源半角设定为15度。 }Ml BmD H
"Io!{aKU & kVa*O 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 kOdA8XRY $tF\7.e@ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 {0lu>?< :ssj7wl : U.V/JbXX 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 c#CV5J\Kk3 J5{ 创建分析面: V;g) P ).`v&-cK4E lxCAZa\ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 JU;`c>8=) Pwj|]0Y@
* ] 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 PjX V.gz j/Y]3RSMp FRED在探测器上穿过多个像素点迭代来创建热图 N@Oe[X8 XZ{rKf2 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 {qlcTc 将如下的代码放置在树形文件夹 Embedded Scripts, U}4I29M 4!OGNr$V@ '<vb_8.
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 tBfmjxv FfxD=\ 绿色字体为说明文字, ]b]J)dDI n_rpT.[ '#Language "WWB-COM" %~k>$(u6 'script for calculating thermal image map 2z"<m2a 'edited rnp 4 november 2005 @;KYvDY 3bXfR,U 'declarations ?9O#b1f N Dim op As T_OPERATION b{,v?7^4 Dim trm As T_TRIMVOLUME !s^XWsb8 Dim irrad(32,32) As Double 'make consistent with sampling pZK 1G Dim temp As Double N
P+vi@Ud Dim emiss As Double x:4R?!M. Dim fname As String, fullfilepath As String }apno|W& Q\}-MiI/ 'Option Explicit [&4+
<Nl' < qab\M0W Sub Main +c!HXX 'USER INPUTS MRXw)NAw nx = 31 uYWgNNxdmo ny = 31 E3Y0@r numRays = 1000 U}DE9e{/! minWave = 7 'microns &zB> maxWave = 11 'microns ]LZ#[xnM7 sigma = 5.67e-14 'watts/mm^2/deg k^4 Wu<;QY($5 fname = "teapotimage.dat" /O.Ql,6[ z/h]Jos Print "" Dq<DW2It> Print "THERMAL IMAGE CALCULATION" 1fsNQ!vQP aem gGw< detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 />}zB![(K ||*F.p Print "found detector array at node " & detnode R4VX*qkB m,t{D,
2 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 8f[ztT0`g n"aF#HR?0d Print "found differential detector area at node " & srcnode XEbVsw QEbf]U= GetTrimVolume detnode, trm 7S
8X) detx = trm.xSemiApe T fkGkVR dety = trm.ySemiApe OI6Mx$ area = 4 * detx * dety *xpn-hCp< Print "detector array semiaperture dimensions are " & detx & " by " & dety 2Sa{=x
N) Print "sampling is " & nx & " by " & ny ?D2a"a$^ ,j`48S@ 'reset differential detector area dimensions to be consistent with sampling Yq51+\d pixelx = 2 * detx / nx +>1?ck pixely = 2 * dety / ny c1i:m'b_5 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 1goRO Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 z9OpMA ?B;7J7 T 'reset the source power 4G' E<ab SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) %X.g+uu Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" YaSBIq{z QtG6v<A 'zero out irradiance array r,.j^a For i = 0 To ny - 1 $V`1<>4 For j = 0 To nx - 1 T:'JA irrad(i,j) = 0.0 Z}0xK6 Next j Ri`6X_xU Next i 4t
}wMOR ;A@DE@^5w 'main loop XC~"T6F EnableTextPrinting( False ) -N^Ah_9ek *A8*FX>\F ypos = dety + pixely / 2 Spx%`O< For i = 0 To ny - 1 ]g ;+7 xpos = -detx - pixelx / 2 \/j, ypos = ypos - pixely %JiF269 s#aj5_G EnableTextPrinting( True ) p&Qm[! Print i |hi,]D^Kc EnableTextPrinting( False ) /D;ugc*3 CC"a2Hu/ DMsqTB` For j = 0 To nx - 1 }T\.;$f 5vR])T/S0 xpos = xpos + pixelx cMT:Ij]; }PBL 'shift source 'Z.C&6_ LockOperationUpdates srcnode, True M \k[?i GetOperation srcnode, 1, op !lFNG:&` op.val1 = xpos H.>EO|p op.val2 = ypos /0gr?I1wr7 SetOperation srcnode, 1, op ak_y:O| LockOperationUpdates srcnode, False Hc>yZ:c; GXD<X_[ raytrace L"dN
$ A DeleteRays <+q`Dk CreateSource srcnode NrXIaN TraceExisting 'draw \ILNx^$EL '&,p>aM 'radiometry pL[3,.@WA For k = 0 To GetEntityCount()-1 Hik=(pTu> If IsSurface( k ) Then
~XWBLU< temp = AuxDataGetData( k, "temperature" ) @XtrC|dkkE emiss = AuxDataGetData( k, "emissivity" ) M6Xzyt| If ( temp <> 0 And emiss <> 0 ) Then zY*~2|q,s ProjSolidAngleByPi = GetSurfIncidentPower( k ) zGz}.-F frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) YRBJ(v"9 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi '-N5F End If MS#*3Md&y u tkdL4G}' End If sxRKWM@4 ackeq# Next k Z}vDP^rf cU ?F D Next j UNiK6h_% dwUDhQt3Q Next i gXs9qY%= EnableTextPrinting( True ) 1fIx@ "HqmS 'write out file Q=DMfJ" fullfilepath = CurDir() & "\" & fname RR+kjK? Open fullfilepath For Output As #1 =Gzs+6A8 Print #1, "GRID " & nx & " " & ny t&w.Wc X) Print #1, "1e+308" t@MUNW`Q Print #1, pixelx & " " & pixely 4<PupJ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 a]5y
CBm _fY9u2Y maxRow = nx - 1 "PN4{"`V maxCol = ny - 1 DOFW"Sp E For rowNum = 0 To maxRow ' begin loop over rows (constant X) gSwHPm%zn row = "" a;IOL For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) FMF mn| row = row & irrad(colNum,rowNum) & " " ' append column data to row string lo6upirZX Next colNum ' end loop over columns Rsq EAdZw[ (vD==n9Hd Print #1, row 7_j t =sr v9 /37AU Next rowNum ' end loop over rows Rm)hgmZ Close #1 )jUPMIo 1oiSmW\ Print "File written: " & fullfilepath gk?H@b* Print "All done!!" X|!@%wuGC End Sub w<h8`K`3 ~J~R.r/ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ZQ`4'|" $ `\qY ^.( #tsP 找到Tools工具,点击Open plot files in 3D chart并找到该文件 u0k'Jh]K N>a~k}pPH ju;OQC~[L] 打开后,选择二维平面图: ONpvx5'# F,VWi$Po\N
|