-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-02-11
- 在线时间1927小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 F3-<F_4.w WIe7>wkC 成像示意图 oNyVRH ZH 首先我们建立十字元件命名为Target x)Y?kVw21" S'Hb5C2u 创建方法: ne]P -50 q&/<~RC* 面1 : ,g.*Mx`- 面型:plane 5`TbM 材料:Air 64)Fz} 孔径:X=1.5, Y=6,Z=0.075,形状选择Box {XHAQ9' WR&>AOWAD FeW}tKH 辅助数据: =cwQG&as 首先在第一行输入temperature :300K, g[oa'.*OB emissivity:0.1; zTgY=fuz 'qL:7 .!fhy[%o:D 面2 : $+ z3 面型:plane W'|NYw_B 材料:Air 4LEWOWF} 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 1JRM@ !x jL
}bGD "!V-@F$@N 位置坐标:绕Z轴旋转90度, QKW\z aG Nl 4,c[$C ?Uq;> 辅助数据: :3J0Q *oby(D"p 首先在第一行输入temperature :300K,emissivity: 0.1; !"v[\||1 'n:|D7t S:bYeD4 Target 元件距离坐标原点-161mm; %^bHQB% u|ph_?6o {\1:2UKkr 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Uuxx^>"h\ 8t1XZ SmpYH@ 探测器参数设定: ; _ziRy h23"< 在菜单栏中选择Create/Element Primitive /plane AiP#wK; IP LKOT~ r}**^"mFy w#XD4kwQG D6$*#D3U kB)u@`</mV 元件半径为20mm*20,mm,距离坐标原点200mm。 %O69A$Q[m a2!U9->! 光源创建: GM~Ek]9C% _%@dlT? 光源类型选择为任意平面,光源半角设定为15度。 =bBV
A0y DruiiA yTxrbE 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 *;&[q{hz AMw#_8Y 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ]\C wa9 >\7Mf@c vg-Ah6BC{ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 RoFOjCc>D. S8j!?$` 创建分析面: :>|dE%/e$ kl~)<,/@ Ka_g3 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 f:K>o. H|IG"JB :R{pV7<O 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 8.!+Hm4 V0<g$,W= FRED在探测器上穿过多个像素点迭代来创建热图 :R-_EY$k6 `0_,>Z FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 8345
H 将如下的代码放置在树形文件夹 Embedded Scripts, +n%d,Pz 'ti ~TG i91 =h 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 {E;oirv& sXi~cfFaE 绿色字体为说明文字, U *:ju+)k 7>E>`Nc6 '#Language "WWB-COM" :I{9k~ 'script for calculating thermal image map 4J1_rMfh 'edited rnp 4 november 2005 9Tg
k= _-T^YeQ/ 'declarations bZ>dr{%%e Dim op As T_OPERATION O'Q,;s`uC Dim trm As T_TRIMVOLUME dBkM~" Dim irrad(32,32) As Double 'make consistent with sampling HU/2P` DGP Dim temp As Double @__m>8wn Dim emiss As Double kz/"5gX: Dim fname As String, fullfilepath As String x*sDp3f[* Y?qUO2 'Option Explicit 6oI/*`> ICEyz|
C Sub Main mKqXB\< 'USER INPUTS Zq~Rkx nx = 31 O I0N(V ny = 31 R/xT.EQ(N numRays = 1000 ' GUCXx minWave = 7 'microns >V>`}TIH maxWave = 11 'microns D<`M<:nq sigma = 5.67e-14 'watts/mm^2/deg k^4 ~>H,~</` fname = "teapotimage.dat" /9A6"Z [4hi/60 Print "" ~"\WV4}`v Print "THERMAL IMAGE CALCULATION"
;Dbx5-t D4N(FZ0~ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 oj[~H}> 4H^ACw Print "found detector array at node " & detnode !9{hbmF# {r~=mQ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 WH"'Ju5} }4T `) Print "found differential detector area at node " & srcnode yk'L_M(= $NCR
V:J GetTrimVolume detnode, trm
ilXKJJda detx = trm.xSemiApe JeN]sK)8x dety = trm.ySemiApe |@~_&g area = 4 * detx * dety .^2.h Print "detector array semiaperture dimensions are " & detx & " by " & dety RU=\eD Print "sampling is " & nx & " by " & ny !Eg2#a ? OFBEJacy 'reset differential detector area dimensions to be consistent with sampling |
TG 6-e_ pixelx = 2 * detx / nx ,zuS)? pixely = 2 * dety / ny 2$MoKOx8$ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False (?g+.]Dt, Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ;B;@MD,B 5
1N/XEk 'reset the source power vS"h`pL SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) +'Y?K]zbt Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" P*B@it j{'_sI{{ 'zero out irradiance array Rc3!u^?u For i = 0 To ny - 1 ?PS?_+E\L For j = 0 To nx - 1 a0+q^*\d\R irrad(i,j) = 0.0 9Zj3 "v+b Next j 71>,tq Next i m+(g.mvK> XjCx`bX^< 'main loop 'sXrtl7{^ EnableTextPrinting( False ) 5Po:$( b`$qKO ypos = dety + pixely / 2 pg!MtuC} For i = 0 To ny - 1
EADN xpos = -detx - pixelx / 2 0g6sGz= ypos = ypos - pixely XI|k,Ko< 8V}|(b# EnableTextPrinting( True ) Yi,`uJKh Print i S~ Z<-@S EnableTextPrinting( False ) t#@z_Mn\ ?hGE[.(eh] I]i(
B+D For j = 0 To nx - 1 F\&{ >& M)!"R [V xpos = xpos + pixelx fI`gF^u( NtM ?Jh 'shift source (sQXfeMz LockOperationUpdates srcnode, True ;/_htdj GetOperation srcnode, 1, op ]{#=WTp] op.val1 = xpos n?$c"} op.val2 = ypos W7'<Jom|? SetOperation srcnode, 1, op ?>U=bA LockOperationUpdates srcnode, False z/+{QBen8 [U",yN]d raytrace Bm,Vu 1]t DeleteRays .D ^~!A CreateSource srcnode J _dgP[ TraceExisting 'draw x>B\2; Ha|}Oj
'radiometry h@NC#Iod For k = 0 To GetEntityCount()-1 8#lq: If IsSurface( k ) Then 8C8S)
; temp = AuxDataGetData( k, "temperature" ) PuREqa\_[ emiss = AuxDataGetData( k, "emissivity" ) GC7 WRA If ( temp <> 0 And emiss <> 0 ) Then A-:k4] {%P ProjSolidAngleByPi = GetSurfIncidentPower( k ) lq "X_M$ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) g hmn3 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi pZlsDM/= End If H7.l)' ohqThl End If x 55W"q7 I=#`8deH( Next k R'`'q1=R wEM=Tr/h Next j Lo_+W1+ 8ta@@h Next i Sx QA*}N EnableTextPrinting( True ) d8vf
kVB z2t+1In, 'write out file 5v)bs\x6 fullfilepath = CurDir() & "\" & fname Pb>/b\&JS Open fullfilepath For Output As #1 3p&T?E% Print #1, "GRID " & nx & " " & ny 0y,w\'j Print #1, "1e+308" 3sdL\ Print #1, pixelx & " " & pixely x1#>"z7 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Uzzm2OS` |&JeJ0k>~ maxRow = nx - 1 ciN\SA ZY maxCol = ny - 1 '7el`Ff For rowNum = 0 To maxRow ' begin loop over rows (constant X) QHZ",1F row = "" K2yNIq_ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) aH{)|? row = row & irrad(colNum,rowNum) & " " ' append column data to row string zaHZ5%{LQD Next colNum ' end loop over columns -)oUb=Lk{ hI!BX};+} Print #1, row |mQ Fi\ EZ .3Z` Next rowNum ' end loop over rows KH;~VR8"/ Close #1 E3O^Tg?j )
yMrET
m Print "File written: " & fullfilepath Y /_CPY Print "All done!!" F!EiF&[\J End Sub 2L 1,; q/U-6A[0 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \(P?=] - !Yb !Au[ f;
|fS~ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ?$109wZ:9 \OVtvJV] R\3a Sx L 打开后,选择二维平面图: tj@(0}pi4 ":Tm6Nj
|