切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1811阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6553
    光币
    26914
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 gGw6c" FRQ  
    }oYR.UH  
    成像示意图
    VH4P|w[YF  
    首先我们建立十字元件命名为Target |xZDc6HDW  
    bR?-B>EB  
    创建方法: QtJe){(z+  
    uYIw ?fXy  
    面1 : 0(|R N V_  
    面型:plane pu=T pSZ  
    材料:Air +cvz  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box {k1s@KXtd  
    B, xrZs  
    [#V"a:8m}  
    辅助数据: J9)wt ?%j  
    首先在第一行输入temperature :300K, "8ILV`[  
    emissivity:0.1; , M/-lW  
    {*~aVw {k  
    HB {-^9{E  
    面2 : [P OcO  
    面型:plane 6T< ~mn  
    材料:Air |.=Ee+HZ  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box -?e~dLu  
    >4ebvM 0|  
    *0{MAm  
    位置坐标:绕Z轴旋转90度, Z%Y=Lx  
    F) {f{-@)  
    v!t*Ng  
    辅助数据: MFX&+c  
    }zRYT_:  
    首先在第一行输入temperature :300K,emissivity: 0.1; Il2DZ5- )  
    fbB(W E+  
    /AJ ^wY  
    Target 元件距离坐标原点-161mm; t"2WJ-1k}  
    @_Aqk{3  
    ^%M!!wlUH  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 h?.6e9Y4  
    86/CA[Y-  
    $LAaG65V  
    探测器参数设定: ?@|1>epgd  
    Mki(,Y|1~  
    在菜单栏中选择Create/Element Primitive /plane ?8-e@/E#x  
    +hY/4Tx<  
    on*?O O'  
    TmKO/N@}  
    jt"p Js'  
    \b.2f+;3  
    元件半径为20mm*20,mm,距离坐标原点200mm。 3=t}py7M  
    uWx/V+w  
    光源创建: m4 E 6L  
    $msT,$NJ  
    光源类型选择为任意平面,光源半角设定为15度。 PfnhE>[>cf  
    Vt n$*ML  
    $Y$!nPO  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 zY[6Ia{L  
    4 E 4o=Z|K  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 n.$<D[@  
    xVfJ ]Y  
    s7FqE>#c0  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 s=q\BmG  
    q5lRc=.b[  
    创建分析面: hx)Ed  
    .w$v<y6C  
    rM[Ps=5  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 *2 MUG h  
    \5s!lv*&  
    {zbH.V[  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 cJ!wZT`  
    d#ld*\|  
    FRED在探测器上穿过多个像素点迭代来创建热图 L}>9@?;GW  
    AKa{C f  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 xhUQ.(S`r6  
    将如下的代码放置在树形文件夹 Embedded Scripts, t~5>PS  
    L4Nk+R;  
    ,"h$!k"$g  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 EoQ.d|:g  
    J'@ I!Jc  
    绿色字体为说明文字, >GT0 x  
    jXZKR(L  
    '#Language "WWB-COM" 7dPA>5"XD  
    'script for calculating thermal image map 5uDQ*nJ|  
    'edited rnp 4 november 2005 ]lz,?izMR  
    r2""p  
    'declarations uAVV4)  
    Dim op As T_OPERATION xBB:b\  
    Dim trm As T_TRIMVOLUME \hi{r@k>}  
    Dim irrad(32,32) As Double 'make consistent with sampling T]CvfvO5  
    Dim temp As Double Ao{wd1  
    Dim emiss As Double /^#} \<;  
    Dim fname As String, fullfilepath As String }[AIE[  
    ]NTHit^EX  
    'Option Explicit *ArzXhs[  
    kZz;l(?0  
    Sub Main E8%O+x}  
        'USER INPUTS K\?vTgc(  
        nx = 31 ?)]sfJG  
        ny = 31 ]t(g7lc}U  
        numRays = 1000 j{p0yuZ)<  
        minWave = 7    'microns /^4)V8D_S  
        maxWave = 11   'microns !o*oT}6n  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 X+&@$v1  
        fname = "teapotimage.dat" ld9 zOq  
    ShCAkaj_  
        Print "" 5fVdtJk7  
        Print "THERMAL IMAGE CALCULATION" 5n(p 1OM2q  
    x!I7vs~~zW  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 rycscE4,  
    .Z/"L@  
        Print "found detector array at node " & detnode dr9I+c7u  
    UKX'A)$  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 >Pv%E  
    !*CL>}-,  
        Print "found differential detector area at node " & srcnode T*YdGIFO  
    @Chj0wWZ>  
        GetTrimVolume detnode, trm =FwFqjvl  
        detx = trm.xSemiApe zlSwKd(  
        dety = trm.ySemiApe 1 #EmZ{*  
        area = 4 * detx * dety , / 4}CM  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety D.?KgOZ  
        Print "sampling is " & nx & " by " & ny 60`y=!?f  
    tM@TT@.t~  
        'reset differential detector area dimensions to be consistent with sampling oO= 6Kd+T  
        pixelx = 2 * detx / nx 2H]&3kM3X  
        pixely = 2 * dety / ny C}+(L3Z  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Dhef|E<  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 `0 .5aa  
    A;2?!i#f  
        'reset the source power ;Vp&f%u+v  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Kx<bVK4"  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" \UNw43EL  
    ->93.sge  
        'zero out irradiance array *a$z!Ma3h  
        For i = 0 To ny - 1 2RM0ca _F  
            For j = 0 To nx - 1 @x{;a9y  
                irrad(i,j) = 0.0 u9VJ{F  
            Next j )ZiJl5l@  
        Next i  p&ZD1qa  
    t%8*$"~X  
        'main loop T}4RlIZF  
        EnableTextPrinting( False )  : [AW  
    y YF80mnJz  
        ypos =  dety + pixely / 2 '<XG@L  
        For i = 0 To ny - 1 bLf }U9  
            xpos = -detx - pixelx / 2 2+ 9">a@  
            ypos = ypos - pixely E-! `6  
    /u#uC(Uwl  
            EnableTextPrinting( True ) d_]MqH>R\  
            Print i tSQ>P -O  
            EnableTextPrinting( False ) wt)tLMEv  
    %Xp}d5-  
    B-eYWt8s  
            For j = 0 To nx - 1 L*L3;y|  
    N^`F_R1Z  
                xpos = xpos + pixelx L4Kkbt<x  
    >i`'e~%  
                'shift source A:;KU  
                LockOperationUpdates srcnode, True NCl={O9<j  
                GetOperation srcnode, 1, op pT[C[h:  
                op.val1 = xpos 3YRhqp"E  
                op.val2 = ypos KeXQ'.x5O  
                SetOperation srcnode, 1, op eR5swy&  
                LockOperationUpdates srcnode, False * =r,V  
    NFc< %#H  
    raytrace 'MsxZqW"~  
                DeleteRays <\yM{ V\  
                CreateSource srcnode 8HTV"60hTs  
                TraceExisting 'draw o1kLT@VCl  
    i<&2Ffvq  
                'radiometry yNI} =Z  
                For k = 0 To GetEntityCount()-1 !&19%C4  
                    If IsSurface( k ) Then yQCfn1a)  
                        temp = AuxDataGetData( k, "temperature" ) h4.ZR={E  
                        emiss = AuxDataGetData( k, "emissivity" ) N5oao'7|A  
                        If ( temp <> 0 And emiss <> 0 ) Then u^V`Ucd"R  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) Y+WOU._46I  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) nc&V59*   
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi zf2]|]*xz  
                        End If xt40hZ$  
    ,=z8aiUu  
                    End If i}M&1E  
    3QGg;  
                Next k 3pq&TYQU  
    n;!t?jnf.  
            Next j P3@[x  
    QbS w<V  
        Next i %.<w8ag  
        EnableTextPrinting( True ) B4&x?-0ZC  
    KWhw@y-5j@  
        'write out file HtS:'~DYo  
        fullfilepath = CurDir() & "\" & fname !y?g$e`  
        Open fullfilepath For Output As #1 R+, tn,<<  
        Print #1, "GRID " & nx & " " & ny wCc:HfmjJ  
        Print #1, "1e+308" o),i2  
        Print #1, pixelx & " " & pixely ~@L$}Eu  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 j1<@ *W&b  
    m",$M>  
        maxRow = nx - 1 e 0!a &w  
        maxCol = ny - 1 o-7>^wV%BD  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) P1H`NOC  
                row = "" {P-KU RQ  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) %VSST?aUvX  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string UGr7,+N&w  
            Next colNum                     ' end loop over columns "S)4Cjk  
    /1Rm^s)2z  
                Print #1, row y]M/oH  
    N.BD]_C  
        Next rowNum                         ' end loop over rows >l 'QX(  
        Close #1 b^^Cj(  
    8pt;''  
        Print "File written: " & fullfilepath [#uX{!q'  
        Print "All done!!" z26zl[.  
    End Sub Y.jg }oV  
    Wc03Sv&FZ  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: $eRxCX?b2  
    *F~"4g  
    3vmLftZE}  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 %E~4Ur  
      
    K'n^, t  
    0qZ{:}`3  
    打开后,选择二维平面图: 7P:0XML}  
    b*r1Jn"h  
     
    分享到