切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1803阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6553
    光币
    26914
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 >7^+ag~&  
    e;/C}sK:  
    成像示意图
    \1p5$0z  
    首先我们建立十字元件命名为Target ax)j$  
    %Fg}"=f1  
    创建方法: pt!Q%rXm  
    '#b7Z?83C  
    面1 : MN22#G4j^w  
    面型:plane S=wJ{?gzAK  
    材料:Air Mn=5yU  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box &PAgab2$  
    WZ<kk T  
    <?I s~[2  
    辅助数据: 3koXM_4_{)  
    首先在第一行输入temperature :300K, *!gj$GK@%  
    emissivity:0.1; l< y9ue=  
    ;5.o;|w?!  
    b:iZ.I  
    面2 : iWN-X (  
    面型:plane T"GuE[?a  
    材料:Air dWI.t1`i  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box r_kw "9  
    |=frsf~?  
    BI\+ NGrB  
    位置坐标:绕Z轴旋转90度, L#`9# Q  
    BU="BB/[  
    =!#iC?I  
    辅助数据: u%7a&1c  
    2 8j=q-9Z  
    首先在第一行输入temperature :300K,emissivity: 0.1; Bn"r;pqWiT  
    WLAJqmC]  
    lK? Z38  
    Target 元件距离坐标原点-161mm; /Jc?;@{  
    ,Dz2cR6  
    E00zf3Jgv'  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 y%H;o?<WX  
    @J~y_J{  
    jj)9jU z  
    探测器参数设定: h]94\XQ>$  
    vl@t4\@3  
    在菜单栏中选择Create/Element Primitive /plane ?[W(r$IaE  
    %(-YOTDr  
    LC/w".oq?  
    sK:,c5^  
    OU(z};Is6Z  
    6[9E^{(z  
    元件半径为20mm*20,mm,距离坐标原点200mm。 I_yIVw;  
    ]kmOX  
    光源创建: /s%I(iP4  
    0;)6ZU  
    光源类型选择为任意平面,光源半角设定为15度。 /S;o2\  
    6,xoxNoPP3  
    (oxe\Qk  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 SPV'0* Z  
    r2T?LO0N{  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 k~Pm.@,3o  
    cLl fncI  
    Uc0AsUu}?  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 qD\%8l.]Z  
    -aNTFt~|[  
    创建分析面: $ Yz &x%Lb  
    =tcPYYD  
     ZW2#'$b  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ABV\:u  
    B>?Y("E  
    {I 7pk6Qd  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 4Uf+t?U9  
    }bznx[4?I  
    FRED在探测器上穿过多个像素点迭代来创建热图 ; _i0@@J  
    DuvP3(K  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ^@L[0Z`  
    将如下的代码放置在树形文件夹 Embedded Scripts, Gx ZQ{ \  
    ~rCnST  
    !BEOeq@2.  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 >`NY[Mn  
    )O- x1U  
    绿色字体为说明文字, /^[)JbgB  
    LO61J_J<  
    '#Language "WWB-COM" -e(2?Xq9  
    'script for calculating thermal image map (&MSP  
    'edited rnp 4 november 2005 GIVs)~/Eq  
    ,P"R.A  
    'declarations r-YQsu&  
    Dim op As T_OPERATION TjI NxP-O  
    Dim trm As T_TRIMVOLUME 0HD1Ob^@  
    Dim irrad(32,32) As Double 'make consistent with sampling eZHzo  
    Dim temp As Double MF\n@lX  
    Dim emiss As Double N2&aU?`e  
    Dim fname As String, fullfilepath As String \S7OC   
    _ z4rx  
    'Option Explicit |>3a9]  
    G0s:Dum  
    Sub Main 2Bjp{)*  
        'USER INPUTS P)ZSxU  
        nx = 31 >qF KXzI  
        ny = 31 g[M@  
        numRays = 1000 @B9|{[P  
        minWave = 7    'microns LVEVCpp@  
        maxWave = 11   'microns <Z8] W1)  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 Mz++SPG7  
        fname = "teapotimage.dat" @&ZTEznbyt  
    3+|6])Hi1  
        Print "" jATU b-  
        Print "THERMAL IMAGE CALCULATION" ?ha}&##  
    `u>BtAx8  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 rFy9K4D  
    ygf qP  
        Print "found detector array at node " & detnode Fcr@Un'  
    c&Zm>Qo[  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 =-VV`  
    ;W+-x] O  
        Print "found differential detector area at node " & srcnode 17i^|&J6}:  
    u3. PHZ  
        GetTrimVolume detnode, trm ai`:HhE  
        detx = trm.xSemiApe F{"%ey">  
        dety = trm.ySemiApe I@S<D"af  
        area = 4 * detx * dety F>b6fUtR  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety -.*\J|S@g  
        Print "sampling is " & nx & " by " & ny 'j3'n0o  
    R$@.{d&:w  
        'reset differential detector area dimensions to be consistent with sampling |TUpv*pq  
        pixelx = 2 * detx / nx {PVu3 W  
        pixely = 2 * dety / ny wwAT@=X*}  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False cY"^3Ot%^  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 |"-,C}O  
    *(scSC>  
        'reset the source power @iP6 N  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 3 #wj-  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 2>!ykUw^O  
    _[ phs06A  
        'zero out irradiance array ;Pa(nUE@  
        For i = 0 To ny - 1 Td  F<  
            For j = 0 To nx - 1 8 KkpXaz  
                irrad(i,j) = 0.0 "QF083$  
            Next j }6bLukv  
        Next i I>5@s;  
    \fz j fZ1n  
        'main loop lX4p'R-h  
        EnableTextPrinting( False ) `SwnKg  
    |:#mw 1  
        ypos =  dety + pixely / 2 J7_H.RPa  
        For i = 0 To ny - 1 0/ Ht;(  
            xpos = -detx - pixelx / 2 \+u qP:Ty  
            ypos = ypos - pixely "P{&UwMmh  
    =R'v]SXj  
            EnableTextPrinting( True ) 19.cf3Dh  
            Print i :z\f.+MI  
            EnableTextPrinting( False ) ?},ItJ#>)q  
    VL{#.;QQa  
     5q ,  
            For j = 0 To nx - 1 <C$<(Dw5  
    >&&xJ5  
                xpos = xpos + pixelx -"zu"H~t4  
    i4I0oRp  
                'shift source AVr!e   
                LockOperationUpdates srcnode, True wF uh6!J  
                GetOperation srcnode, 1, op 3I5WDuq  
                op.val1 = xpos u,m-6@ il  
                op.val2 = ypos vs. uq  
                SetOperation srcnode, 1, op _o.Z`]  
                LockOperationUpdates srcnode, False ^PQV3\N  
    #FB>}:L{h*  
    raytrace W\,lII0  
                DeleteRays 0'hxw3#  
                CreateSource srcnode .NT&>X~.V  
                TraceExisting 'draw gn"&/M9E  
    yU|ji?)e  
                'radiometry ?X'* p<`  
                For k = 0 To GetEntityCount()-1 k^pu1g=6I  
                    If IsSurface( k ) Then A7C+&I!L  
                        temp = AuxDataGetData( k, "temperature" ) 2 mZ/ 3u  
                        emiss = AuxDataGetData( k, "emissivity" ) 6Qb)Uq3}]  
                        If ( temp <> 0 And emiss <> 0 ) Then [bv@qBL  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) pU ]{Z(  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) l,u{:JC  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi v$G*TR<2  
                        End If <S$21NtM87  
    cf'}*$[S  
                    End If f hG2  
    ({KAh?  
                Next k z4641q5'm  
    ~Ls I<z  
            Next j {,FeNf46  
    [T]qm7 ?  
        Next i WWcm(q =  
        EnableTextPrinting( True ) [\9(@Bx  
    eH955[fVd4  
        'write out file %"Q!5qH&  
        fullfilepath = CurDir() & "\" & fname .p9h$z^  
        Open fullfilepath For Output As #1 F[=lA"F^  
        Print #1, "GRID " & nx & " " & ny / JeqoM"x  
        Print #1, "1e+308" a{HgIQg_>R  
        Print #1, pixelx & " " & pixely j{R|]SjW2H  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 THgzT\_zq  
    .eNwC.8i  
        maxRow = nx - 1 8.Ef5-m  
        maxCol = ny - 1 HoE.//b  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) kQd[E-b7  
                row = "" &NjZD4m`=  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) eBTedSM?t  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 2{kfbm-89t  
            Next colNum                     ' end loop over columns *rz(}(r  
    'lsq3!d.  
                Print #1, row \G=R hx f  
    jfPJ5]Z  
        Next rowNum                         ' end loop over rows ICbdKgLz  
        Close #1 /B@% pq  
    qb> r\bc  
        Print "File written: " & fullfilepath qm8n7Z/  
        Print "All done!!" &@utAuI  
    End Sub Usf"K*A  
    5rA!VES T  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: fyq] M_5  
    :.[5('  
    JJ9e{~0 I  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 x";.gjI |g  
      
    a-A+.7  
    K'5sn|)  
    打开后,选择二维平面图: bC4* w O  
    Qv0>Pf  
     
    分享到