切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1895阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6613
    光币
    27214
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 z>cIiprX  
    Q3'fz 9v  
    成像示意图
    /^++As0pY  
    首先我们建立十字元件命名为Target vnz[w=U  
    TqS2!/jp  
    创建方法: Y brx%  
    "%{,T  
    面1 : RDUT3H6~  
    面型:plane E|HSwTHe  
    材料:Air 7))y}N:p  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box vC)"*wYB{  
    OZ(Dpx(Q  
    N@k3$+ls  
    辅助数据: !OPSSP]-  
    首先在第一行输入temperature :300K, NFB *1_m  
    emissivity:0.1; w+t#Yb\7  
    lbQ6 a  
    ooTc/QEYi  
    面2 : E)C.eW /  
    面型:plane ! G*&4V3Mg  
    材料:Air 7#~4{rjg  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box rlR !&  
    {/-y>sm  
    S4L-/<s[*  
    位置坐标:绕Z轴旋转90度, ;c1relR2  
    F(d:t!  
    Wu4ot0SZ  
    辅助数据: tS?a){^:c  
    j*tk(o}qG  
    首先在第一行输入temperature :300K,emissivity: 0.1; 8V6=i'GK  
    j3 6,w[Y:  
    y&1%1 #8F  
    Target 元件距离坐标原点-161mm; >eQbipn  
    Rb)|66&3&  
    EbCIIMbe"  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 8QT<M]N%  
    E[S? b=^  
    8s<^]sFP  
    探测器参数设定: A'Gl Cp  
    92ZWU2"  
    在菜单栏中选择Create/Element Primitive /plane w"{bp  
    yB.G=90  
    XcOA)'Py  
    q7|:^#{av  
    0|ZVA+  
    a>U6Ag<  
    元件半径为20mm*20,mm,距离坐标原点200mm。 @cZ\*,T  
    VKy5=2&  
    光源创建: ba8 6 N  
    ZT6V/MD7T.  
    光源类型选择为任意平面,光源半角设定为15度。 J7:9_/ e0T  
    W]_g4,T>  
    [q1Unm  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 Dv@ PAnk3C  
    W@^J6sH  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 S`=n&'  
    [9OSpq  
    h}h^L+4  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 BBxc*alG0  
    #: #Dz.$L  
    创建分析面: '@bJlJB9>  
    dByjcTPA  
    :s"2Da3B  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 #1[z;Mk0  
    |H W( vA  
    1fY>>*oP  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ]KWK}Zyi  
    l xe`u}[  
    FRED在探测器上穿过多个像素点迭代来创建热图 _42Z={pZZq  
    vG~+r<:  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 } ~F~hf>s  
    将如下的代码放置在树形文件夹 Embedded Scripts, mZ7B<F[qV  
    F}'wH-qp  
    L6+C]t}>6  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 GF'f[F6oI  
    MU1E_"Z)  
    绿色字体为说明文字, .xl.P7@JJ  
    L+.H z&*@  
    '#Language "WWB-COM" BxdX WO  
    'script for calculating thermal image map F.?01,J=1  
    'edited rnp 4 november 2005 F+uk AT  
    /;l[I=VI  
    'declarations hbI;Hd  
    Dim op As T_OPERATION rLzW`  
    Dim trm As T_TRIMVOLUME > aG=T{  
    Dim irrad(32,32) As Double 'make consistent with sampling t`YWwI.  
    Dim temp As Double ,[X_]e;  
    Dim emiss As Double O9^T3~x[V  
    Dim fname As String, fullfilepath As String HTk\723Rdw  
    IP ,.+:i  
    'Option Explicit b+{r! D}~  
    *~2cG;B"e  
    Sub Main jXp. qK\"  
        'USER INPUTS Y5Z!og  
        nx = 31 ;iU%Kt  
        ny = 31 j (ygQ4T  
        numRays = 1000 CZ(`|;BC*  
        minWave = 7    'microns ` 1+%}}!$u  
        maxWave = 11   'microns u,o1{% O  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 . I==-|  
        fname = "teapotimage.dat" aGK@)&h$  
    ZzcPiTSO  
        Print "" oa`#RC8N  
        Print "THERMAL IMAGE CALCULATION" }pawIf4V  
    W`M6J}oG  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 .'T40=7  
    Kkv<"^H  
        Print "found detector array at node " & detnode -V5w]F'  
    .z-UOyer  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 H0>yi[2f  
    bL`eiol6  
        Print "found differential detector area at node " & srcnode $a(`ve|  
    dv!r.  
        GetTrimVolume detnode, trm M0w/wt|  
        detx = trm.xSemiApe xu\eXx6H  
        dety = trm.ySemiApe bL1m'^r  
        area = 4 * detx * dety C:i|-te  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety U>F{?PReA?  
        Print "sampling is " & nx & " by " & ny Y#HI;Y^RP  
    HB iBv-=,  
        'reset differential detector area dimensions to be consistent with sampling mgQIhXH5L  
        pixelx = 2 * detx / nx Ef@,hX  
        pixely = 2 * dety / ny 5 1dSFr<#  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Ri)uq\E/#  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 vt1lR5  
    uMmXs% 9T  
        'reset the source power x({C(Q'O  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) *Y6xvib9*  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" L/Vx~r`P  
    2@khSWV  
        'zero out irradiance array ke%pZ 7{u  
        For i = 0 To ny - 1 ;Ii1B{W  
            For j = 0 To nx - 1 $yu?.b 9H#  
                irrad(i,j) = 0.0 wtH~-xSB|  
            Next j p&Ed\aQ%z;  
        Next i 3BQ!qO17^d  
    Q(Gl{#b  
        'main loop ig+4S[L~n  
        EnableTextPrinting( False ) cWLqU  
    N#ioJ^}n:  
        ypos =  dety + pixely / 2 c#cx>wq9  
        For i = 0 To ny - 1 'V&Y[7Aeq  
            xpos = -detx - pixelx / 2 M;.ZM<Ga  
            ypos = ypos - pixely L'Q<>{;Ig  
    GTl xq%?b  
            EnableTextPrinting( True ) dl~|Izm  
            Print i -e]7n*}H$  
            EnableTextPrinting( False ) '0Q,  
    iG<Som  
    ytAWOt}`  
            For j = 0 To nx - 1 ~E5z"o6$  
    hdma=KqZ(  
                xpos = xpos + pixelx ]! *[Q\  
    @)6jE!LC  
                'shift source #& ?g %'  
                LockOperationUpdates srcnode, True '{b1!nC;  
                GetOperation srcnode, 1, op 7h9U{4r: M  
                op.val1 = xpos kG0Yh2;#  
                op.val2 = ypos ('[TLHP  
                SetOperation srcnode, 1, op 9KuD(EJS  
                LockOperationUpdates srcnode, False tJ0NPI56yP  
    t^tmz PWA  
    raytrace yxWO [ Z  
                DeleteRays r'7LR  
                CreateSource srcnode &[[K"aM1  
                TraceExisting 'draw SPkn 3D6  
    SU.ythU2,c  
                'radiometry EHf\L  
                For k = 0 To GetEntityCount()-1 {y)s.b~JB  
                    If IsSurface( k ) Then X[yNFW}S2W  
                        temp = AuxDataGetData( k, "temperature" ) rNDrp@A>  
                        emiss = AuxDataGetData( k, "emissivity" )  C})'\1O%  
                        If ( temp <> 0 And emiss <> 0 ) Then BMyzjteS+  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) ca<"  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) .ic:`1  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi  |a^U]  
                        End If Nf41ZT~  
    {FO$yw=>  
                    End If V ~{fB~  
    K4ZolWbU  
                Next k qoMfSz"(  
    gb|Q%LS9R  
            Next j f. }c7  
    C~% 1w%nn  
        Next i nw:-J1kWR  
        EnableTextPrinting( True ) iA }vKQ  
     t+uE  
        'write out file -V.d?A4"  
        fullfilepath = CurDir() & "\" & fname $.%rAa_H  
        Open fullfilepath For Output As #1 E0n6$5Uc?  
        Print #1, "GRID " & nx & " " & ny O[@ q%&_  
        Print #1, "1e+308" yY).mxRN  
        Print #1, pixelx & " " & pixely _l`e#XbG  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 OX]V) QHVZ  
    fh8j2S9J  
        maxRow = nx - 1 bpAv1udX-W  
        maxCol = ny - 1 gY-5_Ab  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) #]WqM1u  
                row = "" y[};J vk  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) lCd@jB{  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string HeGY u?&  
            Next colNum                     ' end loop over columns x3+oAb@o/  
    l\0w;:N3  
                Print #1, row E>LkJSy=  
    2-*V=El  
        Next rowNum                         ' end loop over rows iSLGwTdLn  
        Close #1 ]  ]U<UJ  
    u^Ku;RQo  
        Print "File written: " & fullfilepath w8Q<r.  
        Print "All done!!" YUU-D(  
    End Sub Z6C=T;w  
    m0w;8uF2UV  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: )m3Uar  
    8LkP)]4^sO  
    wBj-m  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 .jw}JJ  
      
    qVqRf.-\  
    Vgb *% I  
    打开后,选择二维平面图: (:V>Hjt  
    /'2O.d0}.  
     
    分享到