-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-01
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 bK6^<,~ 9_wDh0b~p 成像示意图 5 <k)tF% 首先我们建立十字元件命名为Target zV}:~;w WA2NjxYz 创建方法: Y\WQ0'y |kh{EUE
; 面1 : $B?8\>_? 面型:plane ]*=!lfrV 材料:Air HTQTDbhV^ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 0p.MH~mx 4*Hzys[{ lZRO"[< 辅助数据: sxr,]@ 首先在第一行输入temperature :300K, l F64g emissivity:0.1; &iWTf K7 ,EHLW4v H_@6!R2 面2 : odca? 面型:plane *g*"bi* 材料:Air _*UI}JtlS 孔径:X=1.5, Y=6,Z=0.075,形状选择Box c/88|k ^f>c_[fR 1\,k^Je7 位置坐标:绕Z轴旋转90度, 6I RRRt O( 9nVb$pf e# (hOD 辅助数据: ASov/<D_q 64mh. j 首先在第一行输入temperature :300K,emissivity: 0.1; 4z P"h0 vcj(=\
e8v tJu:N'=Dy Target 元件距离坐标原点-161mm; \mLEwNhRY &I=o1F2B) H.|I|XRG/ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 G^ k8Or2 43h06X` 8y5"X"U 探测器参数设定: ]#4kqj}
;UXV!8SM 在菜单栏中选择Create/Element Primitive /plane .n+
;&5 VDOC> rb@[Edj 68GH$ji Jc?zX8>Ae: =Pn"nkpML 元件半径为20mm*20,mm,距离坐标原点200mm。 9mk@\Gqqm ;39a` 光源创建: jA {BG_ 2He R1m< 光源类型选择为任意平面,光源半角设定为15度。 E4o{Z+C qbSI98rw {hN\=_6*EW 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 /"="y'Wx N`7OJ)l 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 uSYI
X H(K!{k 2hNl_P~z1u 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 8J&9}@y x1`w{5;C 2 创建分析面: q&[G^9 d, g~.iS~ 1H.;r(c 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 [ <d~b*/ y`$qcEw {q$U\y%Rq 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 e8):'Cb Ff>X='{ FRED在探测器上穿过多个像素点迭代来创建热图 `qd5+~c :9L}jz FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 0LC]%x+" 将如下的代码放置在树形文件夹 Embedded Scripts, rtJ@D2Hj^ x])j]k w(_:+-rqQ< 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 nm\f$K>Pg g qORE/[ 绿色字体为说明文字, c8]%,26. Z%ZOAu&p '#Language "WWB-COM" 4e\w C 'script for calculating thermal image map Ow1+zltgj- 'edited rnp 4 november 2005 @G#`uoD +KExK2= 'declarations ?nu<)~r53 Dim op As T_OPERATION 8hy1yt6t4~ Dim trm As T_TRIMVOLUME D->E& # Dim irrad(32,32) As Double 'make consistent with sampling JcP<@bb>B Dim temp As Double M@q)\UQ' Dim emiss As Double N1g;e?T': Dim fname As String, fullfilepath As String <l,e6K G,Yctv 'Option Explicit M7Z&t'= S9[Up}` Sub Main E{-pkqx 'USER INPUTS 8KP nx = 31 R.*
k7-(; ny = 31 ~ cu+QR) numRays = 1000 ?vD<_5K;I minWave = 7 'microns P*Jk 8MK#G maxWave = 11 'microns M{u 7Ef sigma = 5.67e-14 'watts/mm^2/deg k^4 /;Cx|\ fname = "teapotimage.dat" ](-[
I# c\P}ZQ Print "" b!SIs* Print "THERMAL IMAGE CALCULATION" <.lN'i;( @:'E9J06 detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 /Yww G;1 {Xpjm6a7 Print "found detector array at node " & detnode c}=[r1M* NJ}xqg srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Tnf&32IA @$QtY(a Print "found differential detector area at node " & srcnode tx3p,
X ;SA+|, GetTrimVolume detnode, trm 3PzF^ 8KJ detx = trm.xSemiApe {![E)~ dety = trm.ySemiApe y fS area = 4 * detx * dety *0a7H$iQ(] Print "detector array semiaperture dimensions are " & detx & " by " & dety B%[#["Ol Print "sampling is " & nx & " by " & ny )d
{8Cu6 iu+H+_ 'reset differential detector area dimensions to be consistent with sampling .$G^c pixelx = 2 * detx / nx .b*-GWx pixely = 2 * dety / ny =>TXo@rVN SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False N9Fu Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 CS"k0V44} ?
zic1i 'reset the source power mp]UUpt SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :e_yOT}} Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" a 6fH *2E 6l>016 x 'zero out irradiance array 9fSX=PVRmQ For i = 0 To ny - 1 *i7-_pT For j = 0 To nx - 1 Zr\G=0` irrad(i,j) = 0.0 Z q}Cl'f Next j ?0E-Lac= Next i =)6|lz^ |TBKsx8 'main loop V SH64 EnableTextPrinting( False ) UB;~Rf( . `p^xdj} ypos = dety + pixely / 2 D>q?My For i = 0 To ny - 1 WgV[,( xpos = -detx - pixelx / 2 %}Ob~m>P ypos = ypos - pixely 0jefV*3qpB vr>Rd{dm EnableTextPrinting( True ) %eqL)pC] Print i Q#$dp EnableTextPrinting( False ) YC~kq? (e{pAm 1T7;=<g` For j = 0 To nx - 1 \?.M1a[ O~g0 R6M6e xpos = xpos + pixelx w`0r`\#V/ h|=&a0 'shift source {5:V
hW} LockOperationUpdates srcnode, True T/l2B1 GetOperation srcnode, 1, op le`_ op.val1 = xpos </d&bS op.val2 = ypos x~O_v SetOperation srcnode, 1, op .7GAGMNS LockOperationUpdates srcnode, False OK9D4
7X MU&P+Wr raytrace b<rJ@1qtJ DeleteRays v:]
AS: CreateSource srcnode =l9H]`T/ TraceExisting 'draw 80ms7 B GwVSRI:[N 'radiometry C,m
o4,Q For k = 0 To GetEntityCount()-1 jG3i
)ALx If IsSurface( k ) Then 7^:0?Q temp = AuxDataGetData( k, "temperature" ) Ijj]_V{, emiss = AuxDataGetData( k, "emissivity" ) u
kKp,1xz If ( temp <> 0 And emiss <> 0 ) Then Me*]Bh ProjSolidAngleByPi = GetSurfIncidentPower( k ) , frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 2L_ts= irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi \uV;UH7qe End If o93A:f c G(~"Zt}? End If ztS'Dp}q< d<v>C-nk% Next k f)+fdc D ~Y3\KP Next j l;g8_uyjv7 vb.`rj6 Next i .sDVBT'% EnableTextPrinting( True ) V+l>wMeo e$^ O_e 'write out file "8"7AoE fullfilepath = CurDir() & "\" & fname 7MT[fA8^ Open fullfilepath For Output As #1 6!n%SUt Print #1, "GRID " & nx & " " & ny ?qQRA|n* Print #1, "1e+308" "syf@[tz7 Print #1, pixelx & " " & pixely (HkMubnqg Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 0 .dSP$e s^$zOp9 maxRow = nx - 1 eS
jXaZh maxCol = ny - 1 AjZ@hid For rowNum = 0 To maxRow ' begin loop over rows (constant X) `?VB) row = "" { LJRdV For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) bg)yliX row = row & irrad(colNum,rowNum) & " " ' append column data to row string ,wlh0;, Next colNum ' end loop over columns 1qb 3. *Gm%Dn Print #1, row PU^Z7T); ;o#R(m@Lx Next rowNum ' end loop over rows ET`;TfqM Close #1 &k?Mt#J iCIu]6 Print "File written: " & fullfilepath $vdGkz@6 Print "All done!!" HzT"{N9 End Sub QO)Q%K, fO.gfHI 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: lfKrd3KS_ l
49)Cv/ #]|9aVrr 找到Tools工具,点击Open plot files in 3D chart并找到该文件 C``%<)WC swnov[0 CBTa9|57 打开后,选择二维平面图: 2Fce| Tn >b0e"eGt
|