切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1858阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6589
    光币
    27094
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 XiL~TCkx4  
    ~rDZ?~%  
    成像示意图
    t; 4]cg:_  
    首先我们建立十字元件命名为Target QWD'!)Zb  
    _JHd9)[  
    创建方法: UJM1VAJ0  
    :+qF8t[L  
    面1 : ;nodjbr,j  
    面型:plane y0#u9t"Z;  
    材料:Air x c/}#>ED  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box znxnL,-  
    *1v[kWa?  
    bmfI~8  
    辅助数据: hEBY8=gK  
    首先在第一行输入temperature :300K, 9f hsIe  
    emissivity:0.1; PmKeF}  
    np8gKV D  
    @)|C/oA  
    面2 : ,cB\  
    面型:plane (-ufBYO6  
    材料:Air Y~L2  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box (Tn- >).AO  
    E%r k[wI  
    JT3-AAi[Z  
    位置坐标:绕Z轴旋转90度, In18_ bc  
    !a7[ 8&  
    sE:M@`2L  
    辅助数据: 77\] B  
    QR%mj*@Wle  
    首先在第一行输入temperature :300K,emissivity: 0.1; lu<xv  
    \Ta"}TF8  
    NYrQ$N"  
    Target 元件距离坐标原点-161mm; IF44F3(V4  
    /H8g(  
    =<?+#-;p  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 f"%{%M$K  
    ti I.W  
    ^Wt*  
    探测器参数设定: ^pQCNKLBY  
    #vti+A~n,4  
    在菜单栏中选择Create/Element Primitive /plane {]%0lf:  
    gk"$,\DI  
    :I+Gu*0WD  
    S7/eS)SQR  
    uI1 q>[  
    ,N!o  
    元件半径为20mm*20,mm,距离坐标原点200mm。 mt,OniU=Q  
    ;[M}MFc/`  
    光源创建: z^#;~I @M  
    {(r`k;fB  
    光源类型选择为任意平面,光源半角设定为15度。 >`A9[`$n  
    >zXsNeGQR  
    ]pH-2_  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 q,93nhs "  
    NT e5  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ,*7 (%k^`  
    3|'>`!hb  
    PH+S};Uxv  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 $Zug Bh[b  
    {<R2UI5m5  
    创建分析面: r76J N  
    kXi6lh  
    19E 8'@  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 \=:~ki=@B  
    Y@N,qHtz  
    A8uVK5  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 .QZaGw=,z  
    Wu[&Wv~  
    FRED在探测器上穿过多个像素点迭代来创建热图 =a@j=  
    &#!4XOyB  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 4 QvsBpz@  
    将如下的代码放置在树形文件夹 Embedded Scripts, 3?V_BUoON  
    18+)`M-5o  
    `(_s|-$  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 E\as@pqo\p  
    <}<zgOT[1!  
    绿色字体为说明文字, >8WP0 Qx/  
    C8Qa$._  
    '#Language "WWB-COM" 0 q} *S~  
    'script for calculating thermal image map +nXK-g;)'  
    'edited rnp 4 november 2005 9Iwe2lu  
    1IC~e^"  
    'declarations {`LU+  
    Dim op As T_OPERATION n `&/ D  
    Dim trm As T_TRIMVOLUME .1KhBgy^K  
    Dim irrad(32,32) As Double 'make consistent with sampling jL%x7?*U0  
    Dim temp As Double o0ifp=V y  
    Dim emiss As Double N G "C&v  
    Dim fname As String, fullfilepath As String v"b+$*  
    \;qW 3~  
    'Option Explicit kYG/@7f/  
    + +M$#Er&  
    Sub Main YG@t5j#b  
        'USER INPUTS 5*lT.  
        nx = 31 3Z5D)zuc  
        ny = 31 i V'k}rXC  
        numRays = 1000 *=]&&<  
        minWave = 7    'microns O_wEcJPE  
        maxWave = 11   'microns ([SU:F!uW(  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 B@&4i?yJ  
        fname = "teapotimage.dat" /67 h&j  
    (.D~0a JU  
        Print "" `Aw^H!  
        Print "THERMAL IMAGE CALCULATION" 3Dng 1}  
    a%kQl^I4  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 Al}6q{E9+8  
    ; <&*rnH  
        Print "found detector array at node " & detnode iII=;:p  
    }&cu/o4  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 YC++& Nk  
    c3 jx+Q  
        Print "found differential detector area at node " & srcnode OGK}EI  
    kD=WO4}  
        GetTrimVolume detnode, trm lAb*fafQy  
        detx = trm.xSemiApe w,#>G07D  
        dety = trm.ySemiApe zHA!%>%'  
        area = 4 * detx * dety \-h%O jf4  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety 8(pp2rlR  
        Print "sampling is " & nx & " by " & ny K^1oDP  
    }>>1<P<8-  
        'reset differential detector area dimensions to be consistent with sampling  Uwf +  
        pixelx = 2 * detx / nx U' H$`$Ov  
        pixely = 2 * dety / ny RRmz"j>  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False [@VP?74  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 OI|[roMK  
    B<5R   
        'reset the source power A P)L:7w'e  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Y<N5# );f  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" >0/i[k-dk  
    C _'%N lJ'  
        'zero out irradiance array idLWe9gC  
        For i = 0 To ny - 1 4 {y)TZ  
            For j = 0 To nx - 1 wH>a~C:  
                irrad(i,j) = 0.0 Gr*r=s  
            Next j J1( 9QN[w  
        Next i Sc\*W0m  
    o_XflzC  
        'main loop wxKX{Bs  
        EnableTextPrinting( False ) pmuvg6@h  
    GWZ }7ake  
        ypos =  dety + pixely / 2 dq(uVW^&ae  
        For i = 0 To ny - 1 ff]6aR/ UQ  
            xpos = -detx - pixelx / 2 s^Y"'`+  
            ypos = ypos - pixely LInz<bc<(  
    ,]|#[8  
            EnableTextPrinting( True ) Vc 1\i  
            Print i %RTBV9LIXr  
            EnableTextPrinting( False ) T -.%  
    #eoome2Q  
    Bo)3!wO8  
            For j = 0 To nx - 1 2^r <{0@n  
    h k] N6+@  
                xpos = xpos + pixelx e%svrJ2   
    c/D+|X*  
                'shift source ]^yFaTfS  
                LockOperationUpdates srcnode, True l{5IUuUi  
                GetOperation srcnode, 1, op s3z$e+A8  
                op.val1 = xpos Kz~ps 5  
                op.val2 = ypos 6/5YjO|a  
                SetOperation srcnode, 1, op ^H~h\,;zQ  
                LockOperationUpdates srcnode, False 6V$Avg\6\  
    aRj9E}  
    raytrace bWH&P/>  
                DeleteRays yQ U{ zY  
                CreateSource srcnode C^O VB-  
                TraceExisting 'draw Pr3qo4t.L  
    =#;3Q~:Jl^  
                'radiometry urbp#G/>  
                For k = 0 To GetEntityCount()-1 @P#N2:jwj  
                    If IsSurface( k ) Then )F}F_Y  
                        temp = AuxDataGetData( k, "temperature" ) N:S/SZI  
                        emiss = AuxDataGetData( k, "emissivity" ) ZGBd%RWjG_  
                        If ( temp <> 0 And emiss <> 0 ) Then >=qf/K +#  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) ynq}76 H0k  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Bc(Y(X$PK  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 1ct;A_48  
                        End If q3mJ782p]  
    X.OD`.!>  
                    End If p)jk>j B  
    TITKj?*o  
                Next k y=fx%~<> 8  
    RmI]1S_=  
            Next j ?iw!OoZ`  
    6g2a[6G5  
        Next i tClg*A;|B  
        EnableTextPrinting( True ) HguT"%iv  
    QqDC4+ p"  
        'write out file Ok|*!!T  
        fullfilepath = CurDir() & "\" & fname y<?kzt  
        Open fullfilepath For Output As #1 |N4.u _hM  
        Print #1, "GRID " & nx & " " & ny {Bk[rCl  
        Print #1, "1e+308" S*==aftl(  
        Print #1, pixelx & " " & pixely ?ME6+Z\  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 +O"!qAiK  
    Z 8S\@I  
        maxRow = nx - 1 ,-$LmECg  
        maxCol = ny - 1 zvvhFN2s  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X)  q['Euy  
                row = "" ot,jp|N>f~  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) mi=Q{>rb  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string !F*5M1Kjd  
            Next colNum                     ' end loop over columns q]\:P.x!>  
    i@C].X  
                Print #1, row .!Qki@  
    p09HL%~R  
        Next rowNum                         ' end loop over rows z#zI1Am(O  
        Close #1 bZ?v-fn\D,  
    @GPCwE1  
        Print "File written: " & fullfilepath spGb!Y`mR  
        Print "All done!!" }d[ kxo  
    End Sub !Xh=k36  
    L(/e&J@><  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: J; 3{3  
    ]S&&|Fc  
    HeK/7IAqp  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 &D >G8  
      
    cW~}:;D4  
    0QB iC]9  
    打开后,选择二维平面图: nii A7Ux  
    szb_*)k  
     
    分享到