切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1876阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6593
    光币
    27114
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 FeZGPxc~  
    ^8g<>, $  
    成像示意图
    4tp }  
    首先我们建立十字元件命名为Target 94[8~_{fG  
    Uee$5a>(  
    创建方法: 9_%??@^>  
    8;(3fSNC  
    面1 : #\3X;{  
    面型:plane 6lQP+! EF  
    材料:Air Tnnj8I1v  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box )gxZ &n6  
    m*>gG{3;  
    Qf@ha  
    辅助数据: F||oSJrI  
    首先在第一行输入temperature :300K, nS^,Sq\Ak  
    emissivity:0.1; [5MV$)"!j  
    8iUKG  
    'u:J "  
    面2 : &f/"ir[8i  
    面型:plane Fma#`{va  
    材料:Air jh~E!%d77  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box #nS crs@  
    Rw`64L_  
    di~ [Ivw  
    位置坐标:绕Z轴旋转90度, )H*BTfmt  
    e,@5`aYHM@  
    D.x&N~-  
    辅助数据: F%:o6mT  
    mFuHZ)iQG  
    首先在第一行输入temperature :300K,emissivity: 0.1; ?; tz  
    ,+'VQa"]  
    -N1X=4/fg  
    Target 元件距离坐标原点-161mm; ,y[w`Q\  
    k6|/ik9C  
    AXPdgo6  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 UH7FIM7kX  
    Xcci)",!  
    zQsW*)L  
    探测器参数设定: ce1U}">11  
    ?s9f}>  
    在菜单栏中选择Create/Element Primitive /plane d PF*G$  
    6'1Lu1w  
    'LLpP#(  
    `_<O _  
    8} |!p>  
    D4U<Rn6N_5  
    元件半径为20mm*20,mm,距离坐标原点200mm。 zkHyx[L  
    <-=g)3_  
    光源创建: d@+u&xrd  
    @8|i@S@4  
    光源类型选择为任意平面,光源半角设定为15度。 g"X!&$ &  
    Q6%Pp_$k  
    &B} ,xcNO  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 vH>s2\V"  
    r<_qU3Eaj  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 vk|xYDD  
    m~8=?R+m  
    5DVSaI$ =  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 <d$t*vnq  
    c- "#  
    创建分析面: 4siq  
    o(oD8Ni  
    8>!-|VSn  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 z v:o$2Z  
    @eN,m {b  
    cf*SWKs  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 m/ngPeZ  
    }n?D#Pk,  
    FRED在探测器上穿过多个像素点迭代来创建热图 T)Pr%kF  
    wo\O 0?d3{  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 3Hhu]5  
    将如下的代码放置在树形文件夹 Embedded Scripts, SnG XEQ  
    2mfG: ^^c  
    GT-ONwVDq  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 v=x)]<E" _  
    muIJeQ.C  
    绿色字体为说明文字, ZtX \E+mC  
    (iY2d_FQ[  
    '#Language "WWB-COM" ]1|OQYG  
    'script for calculating thermal image map }}4uLGu)  
    'edited rnp 4 november 2005 rh6 e  
    4+F@BxpB  
    'declarations C@9K`N[*  
    Dim op As T_OPERATION !>6`+$=U  
    Dim trm As T_TRIMVOLUME hCB _g  
    Dim irrad(32,32) As Double 'make consistent with sampling >,c'Z<TM  
    Dim temp As Double >\!k~Zi  
    Dim emiss As Double z]1g;j  
    Dim fname As String, fullfilepath As String cC TTjx{  
    FQ]5W |e  
    'Option Explicit +D M,+{}  
    ez[$;>  
    Sub Main C0H@  
        'USER INPUTS <E7y:%L[Go  
        nx = 31 MO *7:hI  
        ny = 31 7}vx]p2  
        numRays = 1000 CiIIlE4  
        minWave = 7    'microns =+"-8tz8FV  
        maxWave = 11   'microns DU:+D}v l  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 P$"s*otr  
        fname = "teapotimage.dat" X^d}eWP`I  
    "QM2YJ55m`  
        Print "" /1?{,Das=  
        Print "THERMAL IMAGE CALCULATION" #kAk d-QY6  
    bJFqyK:6  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 gTg[!}_;\N  
    5 $. az  
        Print "found detector array at node " & detnode [m9=e-KS$Q  
    2\G[U#~bi  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ^*WO*f>y  
    @mEB=X(-l=  
        Print "found differential detector area at node " & srcnode 9zaSA,}  
    3OJGBiDAr  
        GetTrimVolume detnode, trm ]O&yy{yYK  
        detx = trm.xSemiApe ;:P} s4p  
        dety = trm.ySemiApe zu``F]B  
        area = 4 * detx * dety {N@tJ,Fh{  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety -9$.&D|  
        Print "sampling is " & nx & " by " & ny Bx0=D:j  
    #x(3>}  
        'reset differential detector area dimensions to be consistent with sampling ^1X 6DH`  
        pixelx = 2 * detx / nx hu:x,;`9H  
        pixely = 2 * dety / ny oC(.u?  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False C40W@*6S2  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 2jyxP6t  
    {$v>3FG  
        'reset the source power q (}#{OO  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Fc a_(jw  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" cfPQcB>A  
    1#nY Z%  
        'zero out irradiance array HLl"=m1/>  
        For i = 0 To ny - 1 g3\1 3<  
            For j = 0 To nx - 1 # 0/,teJ k  
                irrad(i,j) = 0.0 Qz([\Xx:  
            Next j DC*6=m_  
        Next i ^fvx2<  
    \`8?=_ST  
        'main loop 6KKQ)DNu_  
        EnableTextPrinting( False ) +}NQ |y V  
    DK(8Ml:k  
        ypos =  dety + pixely / 2 BV]$= e'  
        For i = 0 To ny - 1 42wZy|oqp  
            xpos = -detx - pixelx / 2 y_{v&AGmgm  
            ypos = ypos - pixely .$ 5*v  
    `+GiSj8'G  
            EnableTextPrinting( True ) Tywrh9[  
            Print i A7TV-eWG  
            EnableTextPrinting( False ) poXT)2^)  
    _cQhT  
    5>~q4t)6z}  
            For j = 0 To nx - 1 ,w7ZsI4:[  
    p\r V6+  
                xpos = xpos + pixelx BDPF>lPf<  
    Lq{/r+tt/  
                'shift source dt(Lp_&v  
                LockOperationUpdates srcnode, True wyv%c/WlS  
                GetOperation srcnode, 1, op q8 Rep  
                op.val1 = xpos OCI{)r<O2m  
                op.val2 = ypos YG>6;g)Zm  
                SetOperation srcnode, 1, op fl<j]{*v  
                LockOperationUpdates srcnode, False 3y-P-NI~=  
    yeN(_t2.  
    raytrace +<f!#4T  
                DeleteRays <"!'>ZUt  
                CreateSource srcnode 420cbD3a  
                TraceExisting 'draw TXfG@4~kC  
    wy?Hp*E  
                'radiometry ;Dc\[r  
                For k = 0 To GetEntityCount()-1 XC\'8hL:  
                    If IsSurface( k ) Then uN(N2m  
                        temp = AuxDataGetData( k, "temperature" ) @wa<nY d  
                        emiss = AuxDataGetData( k, "emissivity" ) ;;n=(cM|z  
                        If ( temp <> 0 And emiss <> 0 ) Then FO?I}G22  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) .jRv8x b  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) K?,`gCN}v  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi $kn"S>jV  
                        End If SNtOHTQ  
    )iCg,?SSw=  
                    End If *ZF:LOnU  
    EtA,ow  
                Next k gEnc;qb  
    n|!O .+\b  
            Next j ^%Fn|U\u  
    %YI!{  
        Next i B \>W  
        EnableTextPrinting( True ) Y~I6ee,\  
    t 2&}  
        'write out file 6G>bZ+  
        fullfilepath = CurDir() & "\" & fname " {Nw K  
        Open fullfilepath For Output As #1 mbZ g2TTy  
        Print #1, "GRID " & nx & " " & ny -/J2;AkGH  
        Print #1, "1e+308" Oa -~}hN  
        Print #1, pixelx & " " & pixely {aWfD XB1  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 sys;Rz2  
    fFd"21 >  
        maxRow = nx - 1 ,\E5et4  
        maxCol = ny - 1 jp+#N pH  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) QlWkK.<Z3_  
                row = "" 1Yy*G-7}  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) uCGn9]  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string g<N3 L [  
            Next colNum                     ' end loop over columns f{f|frs  
    %{^kmlO  
                Print #1, row vX"jL  
    v$bR&bCT  
        Next rowNum                         ' end loop over rows _@ @"'  
        Close #1 He)dm5#fg  
    Gm'Ch}E  
        Print "File written: " & fullfilepath _CXXgF[OCA  
        Print "All done!!" s&Qil07 Vl  
    End Sub K2t|d[r  
    ?&r >`H E  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: p?eQN Y  
    S:xG:[N@  
    5 }F6s  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 Ov8{ny  
      
    QzA/HP a  
    h*?/[XY  
    打开后,选择二维平面图: 4p_@f^v~QH  
    Q OP8{~O  
     
    分享到