-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-02-02
- 在线时间1925小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 [V:\\$ GRY2?'` 成像示意图 %6_AM 首先我们建立十字元件命名为Target zRPeNdX 0@AAulRl 创建方法: 3MRc4UlB 0T46sm r 面1 : kY'T{Sm1^ 面型:plane `mN4_\] 材料:Air 8zMu7,E 孔径:X=1.5, Y=6,Z=0.075,形状选择Box |hr]>P1 r;m)nRu Zkf0p9h\ 辅助数据: >$ 2V%}; 首先在第一行输入temperature :300K, xZV1k~C emissivity:0.1; VWO9=A*Y| VcoOeAKL ;V<fB/S.=+ 面2 : ":_vK}5 面型:plane _/O25% l 材料:Air i E CrI3s 孔径:X=1.5, Y=6,Z=0.075,形状选择Box R"K#7{p9 Y/7 $1k <^$<#Kd 位置坐标:绕Z轴旋转90度, H9CS*|q6r ~9j%Hm0ht GQ
|Mr{.; 辅助数据: K#"O
a
h 5<w g8y 首先在第一行输入temperature :300K,emissivity: 0.1; k?'B*L_Mzv :^(>YAyHj^ p QizJ6 Target 元件距离坐标原点-161mm; B7!3-1<k> 8(* [Fe9 a1@Y3MQ;i 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 [p<w._b i 8Ac:_Zg *BR ^U$,e 探测器参数设定: [Jv@J\ ,N0#!<}4 在菜单栏中选择Create/Element Primitive /plane H*)NLp q`r**N+zn /E\%>wv r-<F5<H+K@ LGtIm7 h2D>;k 元件半径为20mm*20,mm,距离坐标原点200mm。 Ng_!zrx04 yeMB0Z*r 光源创建:
XcjRO#s\ :ijAqfX 光源类型选择为任意平面,光源半角设定为15度。 v\{!THCSh Q@HopiC ->V<DZK 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 1@-Ns [W7CXZDd 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 GN2Sn`; j*vYBGD )>Yu!8i 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 b1($R[ ,KFapz! 创建分析面: y_?Me] ){b@}13cF pJtex^{!: 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 1 9CK+;b X93!bB WILMH`
到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 kbe-1 <72 5bgs*.s FRED在探测器上穿过多个像素点迭代来创建热图 t)}scf&^x :\o {_ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;4pYK@9w_ 将如下的代码放置在树形文件夹 Embedded Scripts, ~
(jKz}'~U #}y2)g 5yz(>EVH 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 (P:<t6;+ $F5 b 绿色字体为说明文字, EU+S^SyZi LBZ+GB '#Language "WWB-COM" av|g}xnj 'script for calculating thermal image map &eX!#nQ_. 'edited rnp 4 november 2005 W*I(f]8:y` Iepsz 'declarations V6,H}k Dim op As T_OPERATION O[ef#R! Dim trm As T_TRIMVOLUME #^ A* Dim irrad(32,32) As Double 'make consistent with sampling @W"KVPd Dim temp As Double jr:7?8cH0L Dim emiss As Double AiO$<CS Dim fname As String, fullfilepath As String W~7A+=& wLnf@&jQ% 'Option Explicit R1$:~p2m #;2n;.a Sub Main 7V!*NBsl 'USER INPUTS b?lD(fa& nx = 31 F}/S:(6LF2 ny = 31 Su/6Q$0 t numRays = 1000 Tq[kl'_ minWave = 7 'microns /Y2}a<3&0 maxWave = 11 'microns 8b;1FQ' sigma = 5.67e-14 'watts/mm^2/deg k^4
BdH-9n~, fname = "teapotimage.dat" sW'2+|3" t^G"f;Ra+ Print "" LQRQA[^ Print "THERMAL IMAGE CALCULATION" :Ra,Eu 0?:} P detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 WGZ9B^A IS &ZqE(`e Print "found detector array at node " & detnode FW G6uKv ~ls[Sl@ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 UMm!B `M Zy?Hi` Print "found differential detector area at node " & srcnode ic#`N0s? {CGUL|y GetTrimVolume detnode, trm 8y.wSu
detx = trm.xSemiApe V8C:"UZ; dety = trm.ySemiApe q(.sq12<<W area = 4 * detx * dety O
@j} K4 Print "detector array semiaperture dimensions are " & detx & " by " & dety ZJzt~
H Print "sampling is " & nx & " by " & ny 87
$dBb{ %u5L!W& 'reset differential detector area dimensions to be consistent with sampling Z8@J`0x pixelx = 2 * detx / nx %4,O 2\0?& pixely = 2 * dety / ny Q/(K$6]j SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 2q=AEv/ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 zck#tht4
n uXJ;A * 'reset the source power ;RC{<wBTx SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) UU;(rS/ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" EIf5(/jo xSsa(b 'zero out irradiance array ^cP!\E-^ For i = 0 To ny - 1 Ybs\ES'?A For j = 0 To nx - 1 ;5S9y7[i| irrad(i,j) = 0.0 =JK@z Next j e478U$ Next i p6#g;$V$ NV72 'main loop "$+Jnc!! EnableTextPrinting( False ) ~=6xyc/c "4+&-ms ypos = dety + pixely / 2 'MUv5Th For i = 0 To ny - 1 hIs4@0 xpos = -detx - pixelx / 2 5
ZGNz1)?V ypos = ypos - pixely N `5,\TR2f 1PQ~jfGi EnableTextPrinting( True ) =[cS0Sy Print i dJeNbVd EnableTextPrinting( False ) Ln')QN Rg\z<wPBG c'>/ For j = 0 To nx - 1 Ce9|=Jx! &:9cAIe]H xpos = xpos + pixelx }Jy8.<Gd^ SPX$U5& 'shift source &C,'x4c" LockOperationUpdates srcnode, True :dl]h&C^ GetOperation srcnode, 1, op 4B =7:r op.val1 = xpos ~:kZgUP_f op.val2 = ypos EUD~CZhS"k SetOperation srcnode, 1, op V:In>u$QJ! LockOperationUpdates srcnode, False : UGZ+ `#F{Waww' raytrace +Mo9kC DeleteRays "pi=$/RD9 CreateSource srcnode DBW[{DE TraceExisting 'draw :mh_G C%$edEi 'radiometry A!s`[2 Z For k = 0 To GetEntityCount()-1 TyD4|| % If IsSurface( k ) Then QUq_:t+Dv temp = AuxDataGetData( k, "temperature" ) qON|4+~u% emiss = AuxDataGetData( k, "emissivity" ) ]i&6c If ( temp <> 0 And emiss <> 0 ) Then rdl;M>0@ ProjSolidAngleByPi = GetSurfIncidentPower( k ) 7E r23Q
frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) nhB1D- irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi p `8s End If T*8VDY7 \\PjKAsh End If 1n >X[!
8x 3GaQk- Next k 8p^bD}lN7 \8)U!9,$nn Next j 6]V4muz#c .*@;@06? Next i ^crCy-`# EnableTextPrinting( True ) I
WTwz!+ [pC$+NX 'write out file Q3n,)M[N fullfilepath = CurDir() & "\" & fname A>vBQN Open fullfilepath For Output As #1 q}`${3qQ3 Print #1, "GRID " & nx & " " & ny 5A)2} D] Print #1, "1e+308" $?
m9") Print #1, pixelx & " " & pixely -V-RP;"> Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 PlU*X8 <{dVKf,e maxRow = nx - 1 _Zp}?b5Q maxCol = ny - 1 *rM^;4Zt For rowNum = 0 To maxRow ' begin loop over rows (constant X) j@W.&- _ row = "" *;l]8. For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) T%.8'9 row = row & irrad(colNum,rowNum) & " " ' append column data to row string 9v;Vv0k_ Next colNum ' end loop over columns ,V,`Jf -E^vLB)O Print #1, row b(*!$EB ;;_,~pI?k Next rowNum ' end loop over rows 3B1XZm Close #1
RJL2J]*S W3]_m8,Z Print "File written: " & fullfilepath G! ]k#.^A, Print "All done!!" Nh8Q b/:: End Sub X@$f$= `>gd&u 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: #^`4DhQ/
1 X>1,!I9 Y'c>:;JEe 找到Tools工具,点击Open plot files in 3D chart并找到该文件 KK1gNC4R -MW_|MG HFKfkAl 打开后,选择二维平面图: _K`wG}YIE 9E
zj"
|