切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1829阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6569
    光币
    26994
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 b,jo94.G  
    5mL4Zq"  
    成像示意图
    OM7AK B=S  
    首先我们建立十字元件命名为Target Zf??/+[  
    &N/dxKZcc  
    创建方法: jc !V|w^  
    !"hzGgOOX  
    面1 : yP` K [/  
    面型:plane C(>g4.-p8  
    材料:Air T~ XKV`LQ  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box `|92!Ej  
    ZcHIk{|  
    (6 }7z+  
    辅助数据: ;>5]KNj  
    首先在第一行输入temperature :300K, 9@Cu5U]  
    emissivity:0.1; o1{3[=G  
    9`H4"H>yG  
    c;a<nTLn  
    面2 : Ix(,gDN  
    面型:plane )@tHS-Jf  
    材料:Air ?} E M,  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box i>-#QKqJ  
    y La E]  
    /&czaAR-  
    位置坐标:绕Z轴旋转90度, ?y  "M>#  
    <4zSh3  
    fb[lL7  
    辅助数据: O^ &m  
    j`Ek:  
    首先在第一行输入temperature :300K,emissivity: 0.1; {}RU'<D  
    w|0:0Rc~u  
    aN,? a@B  
    Target 元件距离坐标原点-161mm; 6u`$a&dR'l  
    Ff =%eg]  
    J5<1 6}*  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 dd +lQJ c  
    VH+3o?nrT  
    b53s@7/mq  
    探测器参数设定: zyP/'X_~:  
    *L Y6hph"  
    在菜单栏中选择Create/Element Primitive /plane DH i@ujr  
    +nB0O/m'U  
    23'{{@30  
    $Tt.r  
    {(t R<z)  
    sint":1FC  
    元件半径为20mm*20,mm,距离坐标原点200mm。 )7#3n(_np  
    '0o^T 7C  
    光源创建: 0~[M[T\  
    2\#$::B9  
    光源类型选择为任意平面,光源半角设定为15度。 ,Qo:]Mj  
    n\BV*AH  
    6p3cMJ'8y  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ,":_CY4(  
    *xj2Z,u  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 uz20pun4B  
    T#I}w\XlhP  
    Tks1gN^^  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ~6QV?j  
    Lm1JiP s d  
    创建分析面: eE;j#2SEO  
    0~DsA Ua  
    ~,8#\]xR  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 k$DRX) e  
    Imclz4'8  
    tuY= )?  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ip*^eS^  
    W?ghG  
    FRED在探测器上穿过多个像素点迭代来创建热图 W(-son~I  
    y~M 6  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Y9st3  
    将如下的代码放置在树形文件夹 Embedded Scripts, +;oR_]l  
    uG YH4  
    nT}i&t!q8@  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 p=i6~   
    =`C K`x  
    绿色字体为说明文字, TXs&*\  
    o,0 Z^"|  
    '#Language "WWB-COM" LFYSur8  
    'script for calculating thermal image map 9d=\BBNZ  
    'edited rnp 4 november 2005 $kkL)O*"]  
    a6It1%a+  
    'declarations f%[xl6VE;  
    Dim op As T_OPERATION *7L1SjZw  
    Dim trm As T_TRIMVOLUME x>A[~s"|N  
    Dim irrad(32,32) As Double 'make consistent with sampling Y OvhMi  
    Dim temp As Double +<B"g{dLuX  
    Dim emiss As Double ]zIIi%  
    Dim fname As String, fullfilepath As String &#.>-D{  
    I\[z(CHg@  
    'Option Explicit EW `WFBjj  
    aJ1{9 5ea  
    Sub Main |}X[Yg=FG  
        'USER INPUTS Lso%1M  
        nx = 31 I58$N+#  
        ny = 31 /{I-gjovy  
        numRays = 1000 C?<-`$0  
        minWave = 7    'microns x7jFYC  
        maxWave = 11   'microns 45jImCm  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 G"6XJYoI  
        fname = "teapotimage.dat" 34_ V&8  
    fZnq5rTk"  
        Print "" `ah"Q;d$  
        Print "THERMAL IMAGE CALCULATION" t23W=U  
    QWC C  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 $ma@z0%8}  
    :}gEt?TUhs  
        Print "found detector array at node " & detnode (FGH t/!  
    |fgh ryI,  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 >S{8sN  
    :<5jlpV(  
        Print "found differential detector area at node " & srcnode 0&tr3!h\  
    jL'R4z  
        GetTrimVolume detnode, trm ;Uy}(  
        detx = trm.xSemiApe 'S&Zq:  
        dety = trm.ySemiApe :6o|6MC!  
        area = 4 * detx * dety lB#7j  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety '0I>  
        Print "sampling is " & nx & " by " & ny Q j|tD+<  
    GsiKL4|mj  
        'reset differential detector area dimensions to be consistent with sampling |~rKDc  
        pixelx = 2 * detx / nx .>1Y-NM  
        pixely = 2 * dety / ny ]kO|kIs  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False O+[s4]  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 (/{bJt~b  
    95ix~cH3q  
        'reset the source power K&T.~2'>  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ^D ;EbR  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" .CW,Td3f!  
    ]bstkf}~u  
        'zero out irradiance array 2dbn~j0  
        For i = 0 To ny - 1 2a 7"~z~  
            For j = 0 To nx - 1 Lnq CHe  
                irrad(i,j) = 0.0 >CHb;*U  
            Next j oc[z dIk  
        Next i 6X4r2Vq  
    # 00?]6`z  
        'main loop nmyDGuzk  
        EnableTextPrinting( False ) )/2TU]//  
    4jjo%N  
        ypos =  dety + pixely / 2 Eb5BJ-XeS^  
        For i = 0 To ny - 1 ?t/\ ID  
            xpos = -detx - pixelx / 2 PM&NY8|Zy  
            ypos = ypos - pixely -q&,7'V  
    J90 )v7  
            EnableTextPrinting( True ) s'Qmr s a  
            Print i Qx_N,1>S  
            EnableTextPrinting( False ) GBT219Z@8  
    vw-y:,5`t8  
    z&jASL  
            For j = 0 To nx - 1 ob|^lAU  
    O]61guxro  
                xpos = xpos + pixelx 6#a82_  
    3bQq Nk  
                'shift source u0qTP]  
                LockOperationUpdates srcnode, True  OAgZeK$  
                GetOperation srcnode, 1, op xokA_3,1F  
                op.val1 = xpos /neY2D6  
                op.val2 = ypos OXB 5W#$  
                SetOperation srcnode, 1, op b%d,X-3  
                LockOperationUpdates srcnode, False Q~KzcB<  
    gQ<{NQMzvd  
    raytrace g(G$*#}o8A  
                DeleteRays XdnpL$0  
                CreateSource srcnode TFz k5  
                TraceExisting 'draw =T)y(] ;M$  
    J.O{+{&cd  
                'radiometry HJd{j,M  
                For k = 0 To GetEntityCount()-1 `91Z]zGpU  
                    If IsSurface( k ) Then %Z-xh< &  
                        temp = AuxDataGetData( k, "temperature" ) MIN}5kc<  
                        emiss = AuxDataGetData( k, "emissivity" ) `_BmVms  
                        If ( temp <> 0 And emiss <> 0 ) Then BQs\!~Ux2  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) :% +9y @%  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) (.5Ft^3W  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi :u)Qs#'29  
                        End If C]h_co2eI  
    '+c@U~d*7  
                    End If /Kd'!lMuz  
    abS3hf  
                Next k ]Z52L`k  
    *&V"x=ba,  
            Next j KUU ZN  
    0r?]b*IEK  
        Next i *nv ^s  
        EnableTextPrinting( True ) p1T0FBV L  
    @xk;]H80  
        'write out file mXyg\5  
        fullfilepath = CurDir() & "\" & fname j9-.bGtm?.  
        Open fullfilepath For Output As #1 H.o3d/8:  
        Print #1, "GRID " & nx & " " & ny C^:{y  
        Print #1, "1e+308" pOj8-rr  
        Print #1, pixelx & " " & pixely J*AYZS-tSE  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 w@\4ft6d  
    w$ ""])o,  
        maxRow = nx - 1 ?30pNF|  
        maxCol = ny - 1 yQ&C]{>TS  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) CioS}K  
                row = "" Zlygx  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) #/\Zo &V8  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 3T[zieX  
            Next colNum                     ' end loop over columns "I@akM$x  
    o|_9%o52'  
                Print #1, row n;~'W*Ln0  
    kjt(OFh'Y+  
        Next rowNum                         ' end loop over rows }Nma %6PfV  
        Close #1 o>&-B.zq  
    M-e|$'4u  
        Print "File written: " & fullfilepath AKS. XW  
        Print "All done!!" /2Ok;!.  
    End Sub uC[F'\Y  
    m\_v{1g  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: LKZv#b[h  
    J0o,ZH9  
    8v=t-GJW  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 JIf.d($ ~:  
      
    Z2-"NB  
    *Xn6yL9  
    打开后,选择二维平面图: x1" 8K  
    `3z6y& dmx  
     
    分享到