切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1201阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 qR4('  
    ,Xs%Cg_Ig  
    成像示意图
    MH[Zw$  
    首先我们建立十字元件命名为Target 0,)B~|+  
    b#bdz1@s  
    创建方法: ^"7tfo8  
    F]]np&UV.  
    面1 : sP$bp Z}  
    面型:plane 06"p ^#  
    材料:Air Mez;DKJ`  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box |};]^5s9  
    qIcQPJn!}  
    g9|B-1[  
    辅助数据: /%C6e )7BL  
    首先在第一行输入temperature :300K, .CdaOWM7  
    emissivity:0.1; J;h4)w~9H3  
    UZ0fw@RM  
    <8Ek-aNNt  
    面2 : [Av#Z)R  
    面型:plane jK/2n}q&]  
    材料:Air TWYz\Hmw  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box :bI4HXT3  
    wLC!vX.S  
    `)e;bLP  
    位置坐标:绕Z轴旋转90度, RR!(,j^M  
    `l@[8H%aw  
    J~KWn.  
    辅助数据: v'Ce|.;  
    (rO_ Vfaa  
    首先在第一行输入temperature :300K,emissivity: 0.1; @?iLz7SPk  
    . +> w0FG.  
    BT;hW7){9  
    Target 元件距离坐标原点-161mm; ~R/w~Kc!/A  
    _F>1b16:/P  
    v#&r3ZW0  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 5,`U3na,  
    +Q_(wR"FS  
    & i"33.#]  
    探测器参数设定: .z&V!2zp  
    g0Qg]F5D~  
    在菜单栏中选择Create/Element Primitive /plane Onb*nm  
    jC+>^=J(  
    ~K%]9  
    )bRe"jxn7  
    kwNXKn/   
    o^dt# &  
    元件半径为20mm*20,mm,距离坐标原点200mm。 /+4Dq4{ t)  
    hh}%Z=  
    光源创建: 3S1V^C-eBx  
    dVc;Tt  
    光源类型选择为任意平面,光源半角设定为15度。 S+>&O3m  
    F7a &-  
    ^(m`5]qr7J  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 YS=|y}Q|7d  
    wpu]{~Y  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 C0/s/p'  
    pC(AM=RY!  
    ac>}$Uw)  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 :Q2\3  
    Tj*o[2mD  
    创建分析面: ?15k~1nA  
    L`FsK64@  
    (ii 5pnq  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ?"+' OOqik  
    Iu|G*~\  
    j{V xB  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 WhE5u&`  
    a1ZGMQq!  
    FRED在探测器上穿过多个像素点迭代来创建热图 R*.XbkW~  
    efMv1>{  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 lnbw-IE!  
    将如下的代码放置在树形文件夹 Embedded Scripts, ]@l~z0^|[_  
    "V~U{(Z  
    . )Fn]x"<  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 R8EDJ2u#  
    <<(~'$~,L  
    绿色字体为说明文字, v0X5`VV  
    <y*#[:i  
    '#Language "WWB-COM" i3: sV5  
    'script for calculating thermal image map ( NjX?^  
    'edited rnp 4 november 2005 y$*?k0=ZX  
    @`}'P115@  
    'declarations N<Bi.\XC  
    Dim op As T_OPERATION WSDNTfpI  
    Dim trm As T_TRIMVOLUME ++,mM7a  
    Dim irrad(32,32) As Double 'make consistent with sampling ?jw)%{iKYV  
    Dim temp As Double 6e  |  
    Dim emiss As Double ./#K@V1  
    Dim fname As String, fullfilepath As String P%Q}R[Q  
    V$q%=Sip  
    'Option Explicit )yJeh  
    DLS-WL  
    Sub Main DX$`\PA  
        'USER INPUTS wk9tJ#}  
        nx = 31 7MGc+M(p  
        ny = 31 mqsf#'ri  
        numRays = 1000 Y#]Y$n  
        minWave = 7    'microns NPB':r-8  
        maxWave = 11   'microns  a$aI%  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 &-cI|  
        fname = "teapotimage.dat" "g=ux^+X\  
    w_U5w  
        Print "" ]|[xY8 5}  
        Print "THERMAL IMAGE CALCULATION" 2tWUBt\,g  
    e6F:['j  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 -\NB*|9m|  
    x<ENN>mW1  
        Print "found detector array at node " & detnode c,D'Hl6(%  
    'rR\H2b   
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 zG @!(  
    wfZ 'T#1  
        Print "found differential detector area at node " & srcnode p!Gf ^  
    a,j!B hu  
        GetTrimVolume detnode, trm W6_3f-4g  
        detx = trm.xSemiApe 9*2hBNp+  
        dety = trm.ySemiApe 1qQgAhoY  
        area = 4 * detx * dety T8KhmO  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety 17 j7j@s)  
        Print "sampling is " & nx & " by " & ny ($cu!$lY~  
    lN1zfM  
        'reset differential detector area dimensions to be consistent with sampling C8t+-p  
        pixelx = 2 * detx / nx {UUVN/$  
        pixely = 2 * dety / ny 6*LU+U=`  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ,\qo   
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 >`NM?KP s  
    cX=` Tl  
        'reset the source power RB\WttI  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) X,q= JS  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Y"lxh/l$}  
    2fLd/x~  
        'zero out irradiance array C= m Y  
        For i = 0 To ny - 1 H@3+K$|v  
            For j = 0 To nx - 1 dyp] y$  
                irrad(i,j) = 0.0 g SwG=e\  
            Next j i&3 0n#  
        Next i oy`m:Xp  
    n=SZ8Rj7  
        'main loop b{ozt\:M  
        EnableTextPrinting( False ) \}Wkj~IX  
    `kv$B3  
        ypos =  dety + pixely / 2 o"FX+ 17  
        For i = 0 To ny - 1 aK>9:{]ez  
            xpos = -detx - pixelx / 2 X|QCa@Foe  
            ypos = ypos - pixely Y1'.m5E  
    1;xw)65  
            EnableTextPrinting( True ) rO`g~>-  
            Print i _Ry.Wth  
            EnableTextPrinting( False ) IX*S:7S[  
    z-gwNE{  
    /2cI{]B  
            For j = 0 To nx - 1 bZ9NnSuH  
    PM.SEzhm  
                xpos = xpos + pixelx %1@<),  
    ,?`1ve_K<  
                'shift source s4gNS eA  
                LockOperationUpdates srcnode, True mCt>s9a)H  
                GetOperation srcnode, 1, op a!:8`X~[/$  
                op.val1 = xpos e87- B1`  
                op.val2 = ypos z;C=d(|nN  
                SetOperation srcnode, 1, op M',D  
                LockOperationUpdates srcnode, False P082.:q"  
    NN 6KLbC(  
    raytrace {?mQqoZ?.  
                DeleteRays i+[3o@  
                CreateSource srcnode i"]8Zw_D  
                TraceExisting 'draw dl6v <  
    b'1d<sD  
                'radiometry L{LU@.;1  
                For k = 0 To GetEntityCount()-1 5; PXF  
                    If IsSurface( k ) Then U('<iw,Yy  
                        temp = AuxDataGetData( k, "temperature" ) p,iCM?[|  
                        emiss = AuxDataGetData( k, "emissivity" ) NceB'YG|  
                        If ( temp <> 0 And emiss <> 0 ) Then +%Y c4  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) ES\Q5)t/fo  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) [b.'3a++  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0O#B'Uu  
                        End If e?| URW  
    [9O~$! <%  
                    End If ZJ9Jf2 c  
    hO/5>Zv?  
                Next k AM[jL'r|  
    \$'m ^tVU  
            Next j qggk:cN1  
    !(*a+ur&i  
        Next i u\XkXS`  
        EnableTextPrinting( True ) FKox0Jmh=  
    OwA~(  
        'write out file qB F!b0lr  
        fullfilepath = CurDir() & "\" & fname abo>_"9-  
        Open fullfilepath For Output As #1 #*$_S@  
        Print #1, "GRID " & nx & " " & ny 1BMB?I  
        Print #1, "1e+308" (/U)> %n  
        Print #1, pixelx & " " & pixely z!s. 9  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 VU! l50   
    E-)VPZ1D  
        maxRow = nx - 1 6F*-qb3  
        maxCol = ny - 1 "{A*(.  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) 2W3NL|P  
                row = "" U{uPt*GUd/  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 0]T.Lh$3  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string JF~1' "_f:  
            Next colNum                     ' end loop over columns xF( bS+(o  
    yo\N[h7  
                Print #1, row  8]q  
    iHAU|`'N)  
        Next rowNum                         ' end loop over rows E X%6''ys  
        Close #1 gq'>6vOj  
    D##+)`dK  
        Print "File written: " & fullfilepath Fe!D%p Qv  
        Print "All done!!" F9(._ow[  
    End Sub 'yp>L|  
    S6v!GQ  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: M|\^UF2e  
    ! z11" c  
    E {tx/$f  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 !^m%O0DT  
      
    !fY7"E{%%  
    qgoJ4Z*  
    打开后,选择二维平面图: #/Ruz'H1>  
    |% z ^N*  
     
    分享到