切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1909阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6613
    光币
    27214
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 +%UfnbZ  
    jL<:N 8  
    成像示意图
    6:fe.0H 9  
    首先我们建立十字元件命名为Target 3ktjMVy\  
    pi 7W8y  
    创建方法: L 1H!o!*  
    SRRqIQz  
    面1 : |~Z.l  
    面型:plane @aAB#,  
    材料:Air AVF(YD<U  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ; {iX_%  
    8LB,8 *L^  
    YNRpIhb  
    辅助数据: |k\4\a Lj  
    首先在第一行输入temperature :300K, |a*VoMZ  
    emissivity:0.1; #.'0DWT \-  
    ^<}9#q/rt  
    .D!0$W mOZ  
    面2 : nQy.?*X  
    面型:plane sf<S#;aYqn  
    材料:Air (y *7 g f  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box %@k@tD6  
    %M]%[4eC  
    %JF^@\E!|  
    位置坐标:绕Z轴旋转90度, -GCC  
    MHeUh[%(  
    w9< <|ZaU  
    辅助数据: BiT #bg  
    ?x1sm"]p'  
    首先在第一行输入temperature :300K,emissivity: 0.1; ;h<(vc3@f  
    N?hQ53#3  
    LmWZ43Z"@  
    Target 元件距离坐标原点-161mm; qIS9.AL  
    duFVh8  
    lqe|1vN  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 (0dy,GRN  
    |;sL*Vr  
    U6cpj  
    探测器参数设定: hjf!FY*F  
    c%+/TO  
    在菜单栏中选择Create/Element Primitive /plane xvw @'|  
    N-Fs-uB  
    55q!2>Jh.  
    Heh.CD)Q  
    =z^ 2KH  
    #{K}o}  
    元件半径为20mm*20,mm,距离坐标原点200mm。 ,.DTJ7H+  
    Oy EOb>  
    光源创建: \kWL:uU  
    K)b@,/5  
    光源类型选择为任意平面,光源半角设定为15度。 \A7{kI  
    W>TG!R 5  
    &n$kVNE  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 4PK/8^@7)>  
    Cm@rX A/  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 _|+}4 ap  
    k;/K']4y  
    "o_s=^U  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 E{s p  
    =r|e]4  
    创建分析面: 3 PkVMX  
    f euATL]  
    X1* f#3cm#  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 WbJ|]}hJ\  
    q)j b9e   
    d ~#B,+  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 _D+pJ{@W  
    {g9*t}l4  
    FRED在探测器上穿过多个像素点迭代来创建热图 ?vt#M^Q   
    f/xQy}4+~E  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 u00w'=pe)  
    将如下的代码放置在树形文件夹 Embedded Scripts, M>qqe!c*  
    FEY_(70  
    B(|*u  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 |7%has3"  
    K* R  
    绿色字体为说明文字, 90wGS_P04  
    J.;!l   
    '#Language "WWB-COM" r=6N ZoZ  
    'script for calculating thermal image map [~NJf3c"  
    'edited rnp 4 november 2005 Xwp6]lx  
    :; z]:d  
    'declarations qu\cU(H|  
    Dim op As T_OPERATION cMs8D  
    Dim trm As T_TRIMVOLUME e5AZU7%.  
    Dim irrad(32,32) As Double 'make consistent with sampling M mmg3%G1  
    Dim temp As Double E] 6]c!2:  
    Dim emiss As Double P2Jo^WS  
    Dim fname As String, fullfilepath As String MO^Q 8v  
    knfEbH  
    'Option Explicit ?e{hidg  
    CdZ. T/x  
    Sub Main 2Tp @;[!3  
        'USER INPUTS d`gKF  
        nx = 31 o75l&`  
        ny = 31 Qli#=0{`  
        numRays = 1000 aT4I sPA?_  
        minWave = 7    'microns 4A0v>G`E*#  
        maxWave = 11   'microns d\ I6Wn  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 3AcS$.G  
        fname = "teapotimage.dat" a B$x(8pP@  
    ]z O6ESH  
        Print "" q2 b>Z6!5  
        Print "THERMAL IMAGE CALCULATION" %i6/= 'u  
    E- jJ!>&K  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 WA6reZ  
    Wr3z%1  
        Print "found detector array at node " & detnode d>gQgQ;g  
    CJjT-(a  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ~9y/MR  
    HTLS$o;Q  
        Print "found differential detector area at node " & srcnode >*MGF=.QG  
    ."Kp6s`k  
        GetTrimVolume detnode, trm z6*r<>Bf+b  
        detx = trm.xSemiApe ;V?3Hwl  
        dety = trm.ySemiApe W(}2R>$  
        area = 4 * detx * dety ;Q8`5h   
        Print "detector array semiaperture dimensions are " & detx & " by " & dety aX,6y1  
        Print "sampling is " & nx & " by " & ny I`77[  
    6d`qgEM3  
        'reset differential detector area dimensions to be consistent with sampling wRdN(`;v  
        pixelx = 2 * detx / nx `>4"i+NFF8  
        pixely = 2 * dety / ny [Kg3:]2A  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False eZ]>;5  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 z}Lf]w?  
    m*wDJEKo  
        'reset the source power KVevvy)W  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :9DyABK=Cv  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" /PVx  
    Kv)Kn8df  
        'zero out irradiance array :N !s@6  
        For i = 0 To ny - 1 ;}lsD1S:  
            For j = 0 To nx - 1 Wf3{z D~  
                irrad(i,j) = 0.0 #qu;{I#W3  
            Next j n&!q9CR`  
        Next i Mtl`A'KQ/K  
    I<Cm$8O?  
        'main loop T/0cPn0>  
        EnableTextPrinting( False ) :%gM Xsb  
    PWeWz(]0Z4  
        ypos =  dety + pixely / 2 .HN4xL  
        For i = 0 To ny - 1 D9  Mst6  
            xpos = -detx - pixelx / 2 s{OV-H  
            ypos = ypos - pixely i=R%MH+  
    SKF0p))BJ  
            EnableTextPrinting( True ) ~|[i64V<^  
            Print i #)#J`s1R  
            EnableTextPrinting( False ) ]XcWGQv~  
    8`s*+.LI!  
    IB$i ^  
            For j = 0 To nx - 1 0nvT}[\H*  
    g*Pn_Yo[.  
                xpos = xpos + pixelx D9H%jDv  
    u aYI3w@^  
                'shift source 6-~ZOMlV  
                LockOperationUpdates srcnode, True l9]nrT1Hy  
                GetOperation srcnode, 1, op V["'eJA,,  
                op.val1 = xpos ^I9U<iNIL  
                op.val2 = ypos 9@?|rj e9  
                SetOperation srcnode, 1, op nXk9 IG(  
                LockOperationUpdates srcnode, False 2I3H?Lrx!m  
    }+}Cl T  
    raytrace ecx_&J@D  
                DeleteRays bxPJ5oT  
                CreateSource srcnode CfO{KiM(2  
                TraceExisting 'draw p I.~j]*:{  
    :`K2?;DC8  
                'radiometry vM-kk:n7f  
                For k = 0 To GetEntityCount()-1 ]N,'3`&::  
                    If IsSurface( k ) Then LN) yQ-  
                        temp = AuxDataGetData( k, "temperature" ) O 3?^P"C  
                        emiss = AuxDataGetData( k, "emissivity" ) lKf kRyO_S  
                        If ( temp <> 0 And emiss <> 0 ) Then 7L!}F;yT  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) nTw:BU4jd  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) f'MRC \  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi QkWEVL@uM  
                        End If 9ei<ou_s  
    }O+S}Hbwy  
                    End If ^$mCF%e8H  
    q,_E HPc  
                Next k tKeozV[V  
    ?9 W2ax-4  
            Next j EiP N44(  
    |9F-ZH~6  
        Next i aO}p"-'  
        EnableTextPrinting( True ) vXZP>  
    (uX"n`Dk  
        'write out file h#Mx(q  
        fullfilepath = CurDir() & "\" & fname B qINU  
        Open fullfilepath For Output As #1 \II^&xSF  
        Print #1, "GRID " & nx & " " & ny ny!80I  
        Print #1, "1e+308" ?v-!`J>EF#  
        Print #1, pixelx & " " & pixely <Fv7JPN%  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 5!wjYQt3  
    c,]fw2  
        maxRow = nx - 1 _{ 2`sL)  
        maxCol = ny - 1 )Jw$&%/{1  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) U6o]7j&6  
                row = "" _,v>P2)  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 9xK#( M  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 1D2RhM%  
            Next colNum                     ' end loop over columns z_#HJ}R=  
    82V;J 8T?  
                Print #1, row ILiOEwHS7F  
    4/_! F'j  
        Next rowNum                         ' end loop over rows . Y$xNLoP[  
        Close #1 $VP\Ac,!  
    U ]B-B+-  
        Print "File written: " & fullfilepath h#dfhcU>  
        Print "All done!!" 6OJhF7\0&  
    End Sub c/=\YeR  
    sk_xQo#Y 3  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ,1.Td=lY$  
    Q \S Sv;3_  
    b\kA  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 pV!WZ Ufg  
      
    loHMQKy@  
    {lUaN0O:  
    打开后,选择二维平面图: [\%a7ji#  
    R:ecLbC  
     
    分享到