-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-11
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 e}2[g '2m"ocaf 成像示意图 #[y2nK3zF 首先我们建立十字元件命名为Target L.%zs <E7y:%L[Go 创建方法: F-2Q3+7$ dXDuO 面1 : 5)p! }hWs 面型:plane x=V3_HI/} 材料:Air Gc<^b 孔径:X=1.5, Y=6,Z=0.075,形状选择Box %m "9 =C
q`HK4~i, z=qxZuFkDs 辅助数据: 14p{V}f3 首先在第一行输入temperature :300K, 0D}k ^W emissivity:0.1; gg$:U OQ4rJ#b tCQf ` 面2 : 4&H&zST//m 面型:plane r,wC5%&Za 材料:Air 5[H1nC
@C 孔径:X=1.5, Y=6,Z=0.075,形状选择Box py9`q7F $2$jV1s gflO0$i 位置坐标:绕Z轴旋转90度, 6V-JyTcxGI zu``F]B (b+o$C 辅助数据: &&te(DC\ Bx0=D:j 首先在第一行输入temperature :300K,emissivity: 0.1; #x(3>} ^1X
6DH` hu:x,;`9H Target 元件距离坐标原点-161mm; oC(.u ? C40W@*6S2 2jyxP6t 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 }Hb_8P Y2(,E e2 i[PksT#p 探测器参数设定: |/!RN[< v|2+7N:[; 在菜单栏中选择Create/Element Primitive /plane EKzYL#(i /(Ryh6M `5Em : 8 M 5>rjL; c~ Q5A BU=Ta$#BZ 元件半径为20mm*20,mm,距离坐标原点200mm。 -m Sf`1l0 6KKQ)DNu_ 光源创建: +}NQ|y V ?# )\SQ 光源类型选择为任意平面,光源半角设定为15度。 BV]$=
e' 42wZy|oqp \7 }{\hY- 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 .$ 5*v `+GiSj8'G 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 tflUy\H> Klqte*! 4,:)%KB"V 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 VBe&of+ gdG#;T' 创建分析面: ~lH2#u>g _ Zzne .<-~k@ P 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 {AAi x dt(Lp_&v H:X(><J 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 \,yg@R OCI{)r<O2m FRED在探测器上穿过多个像素点迭代来创建热图 n$ZxN"q < gBo~NLrf FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Xvn \~Vr 将如下的代码放置在树形文件夹 Embedded Scripts, wO"ezQ 2m2$jp0 TV(%e4U= 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 PpR
eqmo ~{!,ZnO* 绿色字体为说明文字, ,~7+r#q7 BmCBC,j<v> '#Language "WWB-COM" mH!\]fmR~ 'script for calculating thermal image map y?8V'.f| 'edited rnp 4 november 2005 a>Xq I7jIA>ZZi 'declarations qF4DX$$< Dim op As T_OPERATION kk+:y{0V Dim trm As T_TRIMVOLUME |@* Dim irrad(32,32) As Double 'make consistent with sampling mv1|oFVW Dim temp As Double _OR[RGy Dim emiss As Double P:c'W? Dim fname As String, fullfilepath As String +!<{80w UQCond+K 'Option Explicit 1DM$FG_Z- <W88;d33r= Sub Main n_-k <3 'USER INPUTS ^uIKwql
nx = 31 6G>bZ+ ny = 31
h]?[}& numRays = 1000 mbZg2TTy minWave = 7 'microns -/J2;AkGH maxWave = 11 'microns T2i\S9X sigma = 5.67e-14 'watts/mm^2/deg k^4 5C"A*Fg?; fname = "teapotimage.dat" S-G#+Ue2 fFd"21> Print "" ,\E5et4 Print "THERMAL IMAGE CALCULATION" *G;D u`; Dlo4Wy detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 p0j-$*F _ +A$6l Print "found detector array at node " & detnode g<N3 L [ `pYL/[5 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ^HNccr vX"jL Print "found differential detector area at node " & srcnode M@O<b- BZ@v8y _TA GetTrimVolume detnode, trm
He)dm5#fg detx = trm.xSemiApe Gm'Ch}E dety = trm.ySemiApe _CXXgF[OCA area = 4 * detx * dety s&Qil07Vl Print "detector array semiaperture dimensions are " & detx & " by " & dety yy$7{9! Print "sampling is " & nx & " by " & ny /R)(u@jk p?eQN
Y 'reset differential detector area dimensions to be consistent with sampling S:xG:[N@ pixelx = 2 * detx / nx 5 }F6s pixely = 2 * dety / ny Ov8{ny SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False QzA/HP a Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 h*?/[XY 4p_@f^v~QH 'reset the source power [[d@P%X& SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) AC/8 2$ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" t&Z:G<; Vr%!rQ 'zero out irradiance array A49HYX-l For i = 0 To ny - 1 KoO\<_@"; For j = 0 To nx - 1 n{r_Xa irrad(i,j) = 0.0 K>fY9`Whm Next j OX/}j_8E^( Next i D1<$]r, [:\8Ug8 'main loop ^)|1T#Tz EnableTextPrinting( False ) -YP>mwSN? JIyIQg'5i ypos = dety + pixely / 2 B%d2 tsDw For i = 0 To ny - 1 $2\k| @)s xpos = -detx - pixelx / 2 ce P1mO ypos = ypos - pixely ij~023$DTt #y%?A; EnableTextPrinting( True ) dsJHhsu6 Print i UHW;e}O5 EnableTextPrinting( False ) :i ft{XR' 3Q"4-pd d ;W(Vm6 For j = 0 To nx - 1 {,rVA(I@ Zf%6U[{ T xpos = xpos + pixelx SH5G y*Wl(w3 'shift source 8y,
]>n LockOperationUpdates srcnode, True NP*M#3$[ GetOperation srcnode, 1, op ,ZLg= op.val1 = xpos |k^ * op.val2 = ypos {|J'd+ SetOperation srcnode, 1, op y}bE'Od LockOperationUpdates srcnode, False H:HJHd"W .5x+FHu7 raytrace *m[ow s DeleteRays bqDHLoB\1 CreateSource srcnode Fv6<Cz6L TraceExisting 'draw ndIU0kq3 ]h$,=Qf
hD 'radiometry V+kU^mI For k = 0 To GetEntityCount()-1 `?ijKZ}y5 If IsSurface( k ) Then 8?rRLM4 temp = AuxDataGetData( k, "temperature" ) $xf{m9 8 emiss = AuxDataGetData( k, "emissivity" ) 'M#'BQQ5 If ( temp <> 0 And emiss <> 0 ) Then q0hg0DC[; ProjSolidAngleByPi = GetSurfIncidentPower( k ) G:2m)0bW frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) &LS&O irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi E5<}7Pt End If {~"6/L ?Q)z5i'g# End If ^3L6mOoA Bld $<uU Next k $3Ct@}=n 6Q._zk Next j |[VtYV _{ ^{T3lQvt Next i LA.xLU3 EnableTextPrinting( True ) r%g?.4o*b ''f07R 'write out file Uaho.(_GP fullfilepath = CurDir() & "\" & fname j:9kJq>mv Open fullfilepath For Output As #1 ^vjN$JB
Print #1, "GRID " & nx & " " & ny )k8=< =s Print #1, "1e+308" |6pNe T[ Print #1, pixelx & " " & pixely w-%H\+J Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 q1Si*?2W Oop;Y^gG} maxRow = nx - 1 oO4
Wwi maxCol = ny - 1 bV#U&)| For rowNum = 0 To maxRow ' begin loop over rows (constant X) ^ )Lh5 row = "" K`nI$l7hg For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ?5#Ng,8iT row = row & irrad(colNum,rowNum) & " " ' append column data to row string pH%cbBm Next colNum ' end loop over columns uLsGb=m%b *JX)q Print #1, row [UVxtM J ~O)Uz| Next rowNum ' end loop over rows kN4nRW9z Close #1 9K@>{69WQ uw@z1'D[i" Print "File written: " & fullfilepath u":D{+wC| Print "All done!!" &rX..l End Sub -}m#uUqI UlHRA[SCv 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Hut
au^l .[hQ#3)W dUtxG ~9 找到Tools工具,点击Open plot files in 3D chart并找到该文件 mAFqA n<p`OKIV3 x=yU
}lsV 打开后,选择二维平面图: qwu++9BM ${#5$U+kI
|