切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1593阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6429
    光币
    26290
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 -cyJj LL*  
    %\N.m/5  
    成像示意图
    A}C&WT~  
    首先我们建立十字元件命名为Target T'i9_V{  
    ,]Yjo>`tW  
    创建方法: 2g-'.w  
    Noz+\O\  
    面1 : 2#_9x7g+  
    面型:plane ~6U@*Svk  
    材料:Air p9R`hgx  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box "Nd$sZk=  
    yGgHd=?  
    a1ZGMQq!  
    辅助数据: 1pXAPTV  
    首先在第一行输入temperature :300K, 95(c{ l/  
    emissivity:0.1; [ /*$?PXt  
    m hJ>5z  
    (HLy;^#R  
    面2 : +f\tqucI3  
    面型:plane %_M B-  
    材料:Air Fdd$Bl.&XS  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ]w%7/N0R  
    N rVQK}%K  
    (~-q}_G;Q  
    位置坐标:绕Z轴旋转90度, }@@1N3nnxV  
    X ~4^$x  
    h 7kyz  
    辅助数据: !IoD";Oi  
    2t1WbP1  
    首先在第一行输入temperature :300K,emissivity: 0.1; *Dh.'bB!  
    ^]'p927  
    [rTV)JsTb  
    Target 元件距离坐标原点-161mm; gtJ^8khME  
    OI %v>ns  
    0VoC|,$U  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ~FZLA}  
    PNT.9 *d  
    pSQ3 SM  
    探测器参数设定: QC4_\V>[  
    DetBZ.  
    在菜单栏中选择Create/Element Primitive /plane #` z!f0 P  
    v{H23Cfh:  
    wVE"nN#  
    ^!{oyw   
    ?jw)%{iKYV  
    K/Q;]+D  
    元件半径为20mm*20,mm,距离坐标原点200mm。 !SJmu}OB]  
     i+(`"8W  
    光源创建: Uw61X>y=  
     Ea\a:  
    光源类型选择为任意平面,光源半角设定为15度。 VmBLNM?  
    V$q%=Sip  
    ct~lt'L\  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 5 1 x^gX|  
    UeHS4cW  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ih+kh7J-  
    7azxqa5:  
    D:n0d fPU  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 0)ST_2Ci  
    W\} VZY  
    创建分析面: xR#hU;E}  
    m 7 Fz&bN  
    bs+KcY:N]  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 \SLYqJ~m  
    u8o7J(aQsR  
    J\;~(: ~  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 v{% /aw  
    "a,Tc2xk  
    FRED在探测器上穿过多个像素点迭代来创建热图 2vWkAC;   
    uT-WQ/id  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 +bRL.xY  
    将如下的代码放置在树形文件夹 Embedded Scripts, JH)&Ca>S  
    5V?1/  
    Jr''S}@|x  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 6_XX[.%  
    zLxWyPM0;  
    绿色字体为说明文字, W_sDF; JP  
    e6F:['j  
    '#Language "WWB-COM" Rdnd|  
    'script for calculating thermal image map 8L=QfKr  
    'edited rnp 4 november 2005 yaX,s 4p  
    k*M{?4  
    'declarations "{V,(w8Dt  
    Dim op As T_OPERATION ,E>VYkoA  
    Dim trm As T_TRIMVOLUME l^Lg"m2  
    Dim irrad(32,32) As Double 'make consistent with sampling *JpEBtTv=5  
    Dim temp As Double Fa/i./V2  
    Dim emiss As Double P@5^`b|  
    Dim fname As String, fullfilepath As String ;<&s _C3  
    x_@ev-  
    'Option Explicit zP9 HYS  
    6@I7UL >  
    Sub Main uWfse19  
        'USER INPUTS T.1z<l""  
        nx = 31 |f>y"T+1  
        ny = 31 Y7{|EI+@  
        numRays = 1000 6iC}%eU  
        minWave = 7    'microns 5#d(_  
        maxWave = 11   'microns 9CN / v  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 v5 9>  
        fname = "teapotimage.dat" 6u.b?_u  
    P' J_:\  
        Print "" ,LMme}FFeb  
        Print "THERMAL IMAGE CALCULATION" 3p^WTQ>(  
    K^w9@&g6  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 #g|j;{P  
    $PTedJ}*Y  
        Print "found detector array at node " & detnode 6*LU+U=`  
    DC$ S. {n  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 FF_$)%YUp  
    NF a ;  
        Print "found differential detector area at node " & srcnode i#-Jl7V[a  
    w"BTu-I  
        GetTrimVolume detnode, trm )5&m:R9  
        detx = trm.xSemiApe Vm.u3KE  
        dety = trm.ySemiApe W4#:_R,&,  
        area = 4 * detx * dety X,q= JS  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety JPpYT~4  
        Print "sampling is " & nx & " by " & ny 4kz8U  
    6?a(@<k_  
        'reset differential detector area dimensions to be consistent with sampling T.|0;Eb  
        pixelx = 2 * detx / nx H?~u%b@   
        pixely = 2 * dety / ny nRo`O  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ~/#?OLj(T  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 z`Q5J9_<cV  
    CTI(Kh+  
        'reset the source power K9P"ncMt  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) P"]+6sm&es  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" %-*vlNC)  
    \W\6m0-x  
        'zero out irradiance array CX:^]wY  
        For i = 0 To ny - 1 Q O?ha'Sl  
            For j = 0 To nx - 1 05zHLj  
                irrad(i,j) = 0.0 bF Vd v&  
            Next j Mb9q<4  
        Next i iwVra"y  
    7L\GI`y  
        'main loop #0P<#S^7  
        EnableTextPrinting( False ) FU[,,a0<<  
    %F4Q|  
        ypos =  dety + pixely / 2 WR-C_1-pT  
        For i = 0 To ny - 1 c,-x}i0c  
            xpos = -detx - pixelx / 2 |l? ALP_g  
            ypos = ypos - pixely PRLV1o1#  
    XVLuhw i  
            EnableTextPrinting( True ) _F*w ,b$8  
            Print i ,G:4H%?  
            EnableTextPrinting( False ) TZP{=v<  
    @uE=)mP@  
    nn   
            For j = 0 To nx - 1 |HU qqlf  
    ChW0vIL`  
                xpos = xpos + pixelx $oQsh|sTI  
    3D.S[^s*  
                'shift source q7]WR(e  
                LockOperationUpdates srcnode, True 5HIpoj;\(  
                GetOperation srcnode, 1, op WV@Tm$ r  
                op.val1 = xpos xh6x B|Z  
                op.val2 = ypos qN0#=X  
                SetOperation srcnode, 1, op P3yiJ|vP  
                LockOperationUpdates srcnode, False u7C{>  
    ygW@[^g  
    raytrace 9e)+<H  
                DeleteRays *0hiPj:  
                CreateSource srcnode oU@ljSD  
                TraceExisting 'draw +{%4&T<nHw  
    7qUtsDK  
                'radiometry \O8f~zA{G  
                For k = 0 To GetEntityCount()-1 &0eB@8{N  
                    If IsSurface( k ) Then /2cI{]B  
                        temp = AuxDataGetData( k, "temperature" ) +7Lco"\w<  
                        emiss = AuxDataGetData( k, "emissivity" ) ,1[??Y  
                        If ( temp <> 0 And emiss <> 0 ) Then XH *tChf<  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) Yq?I>  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) by U\I5  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi _tReZ(Vw  
                        End If 5An0D V5  
    $.N~AA~0  
                    End If 1a$V{Eag  
    huoKr  
                Next k q-G|@6O  
    8$v7|S6 z  
            Next j ye|a#a9N  
    f>5RAg  
        Next i 3N"&P@/0x  
        EnableTextPrinting( True ) "k<:a2R  
    BR^J y<^F'  
        'write out file W|#ev*'F  
        fullfilepath = CurDir() & "\" & fname |{PJT#W%  
        Open fullfilepath For Output As #1 CdDd+h8  
        Print #1, "GRID " & nx & " " & ny _0*>I1F~  
        Print #1, "1e+308" {&#~t4  
        Print #1, pixelx & " " & pixely .G_3blE;  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ow_y  
    p}A4K#G  
        maxRow = nx - 1 M91lV(Z   
        maxCol = ny - 1 unnx#e]  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) !NYM(6!(  
                row = "" iL_F*iK5  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 2]3HX3  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string n+qVT4o  
            Next colNum                     ' end loop over columns S%X\ ,N  
    5; PXF  
                Print #1, row WQ}!]$<"y  
    _Hu2[lV  
        Next rowNum                         ' end loop over rows !Gp3/<"Wy$  
        Close #1 b3b~T]]  
    zf,%BI[Hr  
        Print "File written: " & fullfilepath  A<Z 5  
        Print "All done!!" X^D9)kel  
    End Sub Dsj|~J3  
    [u9JL3  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 2ly,l[p8  
    '95E;RV&  
    BO4 K#H7  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 @qPyrgy  
      
    'n[+r}3  
    8F^,8kIR  
    打开后,选择二维平面图: {?/8jCVd  
    ~$4.Mf,u  
     
    分享到