切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1822阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    在线infotek
     
    发帖
    6561
    光币
    26954
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 6na^]t~ncm  
    lCIDBBjy^  
    成像示意图
    5~'IKcW<  
    首先我们建立十字元件命名为Target "Sridh?  
    $f$|6jM  
    创建方法: ~"K ,7sw!Y  
    AjkW0FB:1  
    面1 : K j3?ve~  
    面型:plane y(W|eBe  
    材料:Air +f|BiW  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box G[,Q95`w?<  
    {"S6\%=  
    d2N:^vvvR  
    辅助数据: iW%8/$  
    首先在第一行输入temperature :300K, i7*EbaYzUO  
    emissivity:0.1; -e*ZCwQ  
    Hfym30  
    o}$1Ay*q`  
    面2 : "V& I^YSc>  
    面型:plane p H@]Y+W  
    材料:Air 0bS|fMgc  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;dR=tAf0$Q  
    r;&>iX4B  
    T-_"|-k}P%  
    位置坐标:绕Z轴旋转90度, 2]cRXJ7h  
    )h{ ]k=  
    J h&~ToF!  
    辅助数据: )%d*3\Tsd  
    em{(4!W>  
    首先在第一行输入temperature :300K,emissivity: 0.1; r^Zg-|gr  
    47K1$3P  
    "N?+VkZEv  
    Target 元件距离坐标原点-161mm; 8s{?v &p  
    l{j~Q^U})  
    r|u MovnV  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Dd/wUP  
    'cix`l|^  
    0Hxmm@X2  
    探测器参数设定: ?a(L.3 E  
    U1nw- Q+  
    在菜单栏中选择Create/Element Primitive /plane ;r[@v347  
    BZ!v%4^9  
    aJ") <_+  
    gKYfQ+  
    %a+mk E  
    VHJM*&5  
    元件半径为20mm*20,mm,距离坐标原点200mm。 f y:,_#  
    j)C,%Ol  
    光源创建: l vMlL5t  
    *!s;"U  
    光源类型选择为任意平面,光源半角设定为15度。 y){ k3lm0  
    scLn=  
    C CBfKp  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 FCi U  
    N ,8/Y  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 +LM#n#T  
    TJ q~)Bm  
    1cS}J:0P  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 NS%WeAf  
     ;s`sn$@  
    创建分析面: Lzu.)C@Amx  
    s<qe,' Y  
    $,+O9Et  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 r\qj!   
    V-<GT ?  
    h$4Hw+Yxs]  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 =R*qP;#  
    wiz$fj  
    FRED在探测器上穿过多个像素点迭代来创建热图 R" ;x vo*  
    P"B0_EuR<T  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Tb3J9q+ya  
    将如下的代码放置在树形文件夹 Embedded Scripts, S S2FTb-m  
    ~HOy:1QhE=  
    8GvJ0Jq}U  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 DxUKUE  
    _%5R o6  
    绿色字体为说明文字, sZx/Ee   
    B!vmQR*1  
    '#Language "WWB-COM" $5Xh,DOg  
    'script for calculating thermal image map D6>HN[D"  
    'edited rnp 4 november 2005 $STaQ28C  
    { ^cV lC_  
    'declarations (p2K36,9m  
    Dim op As T_OPERATION `s\?w5[  
    Dim trm As T_TRIMVOLUME 0NS<?p~_S  
    Dim irrad(32,32) As Double 'make consistent with sampling ?OkWe<:4  
    Dim temp As Double l c+g&f  
    Dim emiss As Double b )B? F  
    Dim fname As String, fullfilepath As String eeyHy"@  
    G1vNt7  
    'Option Explicit {phNds%  
    28 ?\  
    Sub Main bD/~eIcWL  
        'USER INPUTS Kx>qz.wwI?  
        nx = 31 /Mvf8v  
        ny = 31 0u;4%}pD  
        numRays = 1000 a!=D[Gz*5  
        minWave = 7    'microns .&DhN#EN0  
        maxWave = 11   'microns 7Zlw^'q$:L  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 KET2Ws[w  
        fname = "teapotimage.dat" \O2Rhz  
    Mu+0<>   
        Print "" '.:z&gSqx0  
        Print "THERMAL IMAGE CALCULATION" G"h'_7  
    vX/T3WV  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 LDPUD'  
    hDF@'G8F  
        Print "found detector array at node " & detnode wOU_*uY@6'  
    @7IIM{  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 k?+?v?I =  
    <g"{Wv: h  
        Print "found differential detector area at node " & srcnode e)d`pQ6  
    sS*3=Yh  
        GetTrimVolume detnode, trm Dfmjw  
        detx = trm.xSemiApe nAv#?1cjz  
        dety = trm.ySemiApe j0oR) du  
        area = 4 * detx * dety E|iQc8gr&  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety 'uBu6G  
        Print "sampling is " & nx & " by " & ny .%xn&3  
    45@^L's  
        'reset differential detector area dimensions to be consistent with sampling ]n6#VTz*  
        pixelx = 2 * detx / nx OCe!.`  
        pixely = 2 * dety / ny nLXlU*ES  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False LRL,m_gt  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 hgPa6Kd  
    pR=@S>!|  
        'reset the source power ].-1v5  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) IxY|>5z  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" !|^|,"A)  
    IG2r#N|C#  
        'zero out irradiance array H?yK~bGQ  
        For i = 0 To ny - 1 %)1y AdG 8  
            For j = 0 To nx - 1 h9}+l  
                irrad(i,j) = 0.0 9jM}~XvV  
            Next j C5o#i*|  
        Next i ekWD5,G  
    0X6YdW_2X  
        'main loop ;U/&I3dzV  
        EnableTextPrinting( False ) ztcp/1jIvS  
    m*&]!mM"0G  
        ypos =  dety + pixely / 2 ]d$8f  
        For i = 0 To ny - 1 ldU?{o:\s  
            xpos = -detx - pixelx / 2 &u$Q4  
            ypos = ypos - pixely j#!IuH\]  
    .*OdqLz  
            EnableTextPrinting( True ) 5_GYrR2  
            Print i f%][}NN)Xr  
            EnableTextPrinting( False ) J,'M4O\S  
    <cps2*'  
    8\&X2[oAD  
            For j = 0 To nx - 1 &6/[B_.  
    xQ7l~O b  
                xpos = xpos + pixelx "H'B*vc-  
     -*1d!  
                'shift source G#ZH.24Y  
                LockOperationUpdates srcnode, True ~~D{spMVO  
                GetOperation srcnode, 1, op P) Jgs  
                op.val1 = xpos n\mO6aJ  
                op.val2 = ypos /6)<}#  
                SetOperation srcnode, 1, op f\|w '  
                LockOperationUpdates srcnode, False o_izl \  
    D+rxT: d  
    raytrace KLST\ Ln:  
                DeleteRays cuax;0{%  
                CreateSource srcnode g];!&R-  
                TraceExisting 'draw p $S*dr  
    ER%^!xA  
                'radiometry ~[t[y~Hup  
                For k = 0 To GetEntityCount()-1 G30-^Tr   
                    If IsSurface( k ) Then wON!MhA;  
                        temp = AuxDataGetData( k, "temperature" ) ` 'DmDg  
                        emiss = AuxDataGetData( k, "emissivity" ) rDdoOb]B  
                        If ( temp <> 0 And emiss <> 0 ) Then {&&z-^  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) 4>wP7`/+y  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) g9 .Q<JwO  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi Xr,1&"B&t  
                        End If 8SMxw~9$  
    0{5w 6  
                    End If S\CCrje  
    /:cd\A}  
                Next k ?tWaI{95I  
    LQ@"Xe]5  
            Next j AP3a;4Z#  
    )HEa<P^kJl  
        Next i )*$lp'~7N  
        EnableTextPrinting( True ) M[NV )q/)  
    )*u8/U  
        'write out file 1.}d.t  
        fullfilepath = CurDir() & "\" & fname { a =#B)6  
        Open fullfilepath For Output As #1 mVj9, q0  
        Print #1, "GRID " & nx & " " & ny KYB`D.O   
        Print #1, "1e+308" lov!o: dJ  
        Print #1, pixelx & " " & pixely #$.;'#u'so  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 %Tfbsyf%f  
    f[]dfLS"W  
        maxRow = nx - 1 ?>VLTp8]  
        maxCol = ny - 1 x'8x   
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X)  {y)=eX9  
                row = "" Fn wJ+GTu  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Pd8![Z3  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string B`EJb71^Xy  
            Next colNum                     ' end loop over columns u^&^UxCA  
    A[B<~  
                Print #1, row kXViWOXU^  
    "fb[23g%@k  
        Next rowNum                         ' end loop over rows T~-ycVc  
        Close #1 t$`r4Lb9/  
    &j;wCvE4+  
        Print "File written: " & fullfilepath |44Ploz2b  
        Print "All done!!" (O\ )_#-D  
    End Sub <;lkUU(WT2  
    Q1Kfi8h}'  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \<bx [,?  
    ]>!K3kB  
    aHD]k8 m z  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 RTYvS5 G  
      
    HVRZ[Y<^  
    6W/`07 '  
    打开后,选择二维平面图: P1!qbFDv8  
    [z:!j$K  
     
    分享到