切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1366阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 gDgP;i d  
    cC*zj \O  
    成像示意图
    %Td+J`|U+  
    首先我们建立十字元件命名为Target xy2eJJq  
    >!CH7wX  
    创建方法: FC|y'j 0  
    'Sm/t/g"|  
    面1 : +G>aj '\M|  
    面型:plane `V$cz88b  
    材料:Air k0Oc,P`'*  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box w4 >:uyE  
    jCdZ}M($  
    GhaAvyN  
    辅助数据: e{d_p%(  
    首先在第一行输入temperature :300K, X*D5y8<  
    emissivity:0.1; ~6pCOS}  
    "dFdOb"O-  
    rQAbN6  
    面2 : E}E7VQjM  
    面型:plane = D;UMSf  
    材料:Air xNkwTDN5  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box _~(M A-l  
    *&~sr  
    D z]}@Z*jK  
    位置坐标:绕Z轴旋转90度, $]`'Mi  
    `RL(N4H  
    j8F~j?%!  
    辅助数据: 4l#T_y  
    1-ndJ@Wlz  
    首先在第一行输入temperature :300K,emissivity: 0.1; 8=b{'s^^F  
    #m[w=Pu}  
    "fX8xZdS  
    Target 元件距离坐标原点-161mm; -+Awm{X_@  
    'bQ s_  
    bE%mgaOh  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 }*{\)7g  
    U(=f5|-  
    l)2HHu<  
    探测器参数设定: jn#N7%{Mk  
    !F}J+N=}  
    在菜单栏中选择Create/Element Primitive /plane P"[l86:  
    Vf\?^h(tP  
    ~]D \&D9=?  
    "m\UqQGX  
    4jue_jsle  
    {{#a%O  
    元件半径为20mm*20,mm,距离坐标原点200mm。 @[Jt~v  
    dk, I?c &  
    光源创建: QL|:(QM  
    _mq*j^u,j  
    光源类型选择为任意平面,光源半角设定为15度。 S{r)/ ~/  
    y("0Xve  
    a5Acqa  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 xaq=?3QOH  
    \!4ghev3  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 n!E H>'T  
    5)o-]S>  
    LMhY"/hAXa  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 Duo#WtC  
    XiZ Zo  
    创建分析面: qS[p|*BL  
    cq+M *1;  
    F.* snF  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 7;#dX~>@{  
    :4L5@>b-  
    @8 yE(  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 9W,}A Wf:Y  
    /x"pj3  
    FRED在探测器上穿过多个像素点迭代来创建热图 Y=wP3q  
    e|+;j}^C  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 DF&jZ[##  
    将如下的代码放置在树形文件夹 Embedded Scripts, :e9jK[)h0  
    O|g!Y(  
    7=ga_2  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 RAkFgC~  
    do?n /<@o  
    绿色字体为说明文字, .f!eRV.&  
    <t|9`l_XW  
    '#Language "WWB-COM" =[-- Hf  
    'script for calculating thermal image map #5"<.z  
    'edited rnp 4 november 2005 Zp(P)Obs#  
    pQ2)M8 gf  
    'declarations T4, Zc  
    Dim op As T_OPERATION qt&"cw  
    Dim trm As T_TRIMVOLUME ^OcfM_4pN  
    Dim irrad(32,32) As Double 'make consistent with sampling $@f3=NJ4k  
    Dim temp As Double d/99!+r  
    Dim emiss As Double p<nBS" /  
    Dim fname As String, fullfilepath As String ;<GTtt# D  
    ;s/b_RN  
    'Option Explicit 8`*9jr  
    0tL/:zID  
    Sub Main Vv"wf;#  
        'USER INPUTS =$z$VbBv  
        nx = 31 gB{R6 \<O  
        ny = 31 m_U6"\n 5  
        numRays = 1000 ?g*T3S"  
        minWave = 7    'microns bb_jD^  
        maxWave = 11   'microns PY:#F|uHS`  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 =}o>_+"  
        fname = "teapotimage.dat" <"Cwy0V kp  
    5pyvs;As  
        Print "" 5J#g JFA  
        Print "THERMAL IMAGE CALCULATION" {%k;V ~  
    &,kB7r"  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 xla^A}{  
    !?M_%fNE  
        Print "found detector array at node " & detnode \gQ+@O&+  
    iOXP\:mPo  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Zdg{{|mm  
    vl(v1[pU  
        Print "found differential detector area at node " & srcnode eii7pbc  
    12DdUPOi  
        GetTrimVolume detnode, trm !eoec2h#5  
        detx = trm.xSemiApe 5GxM?%\  
        dety = trm.ySemiApe KKXb,/  
        area = 4 * detx * dety d<m>H$\Dm  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety s(9rBDoY(8  
        Print "sampling is " & nx & " by " & ny @Lv_\^2/}  
    +VCo=oA  
        'reset differential detector area dimensions to be consistent with sampling $i] M6<Vxn  
        pixelx = 2 * detx / nx M<m64{m1  
        pixely = 2 * dety / ny d7zE8)DU7  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False tf79Gb>  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 *B}R4Y|g  
    s;f u  
        'reset the source power rbS= Ewk  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) H)fo4N4ii  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" _1%^ ibn  
    K'/x9.'%  
        'zero out irradiance array `IQC\DSl/  
        For i = 0 To ny - 1 VQ 3&  
            For j = 0 To nx - 1 | N,nt@~  
                irrad(i,j) = 0.0 L6 # d  
            Next j sjkl? _  
        Next i /7)G"qG~F~  
    DNO%J^  
        'main loop phSP+/w  
        EnableTextPrinting( False ) 9h=WWu',  
    jC8BLyGE_  
        ypos =  dety + pixely / 2 xT>V ;aa\  
        For i = 0 To ny - 1 bFXCaD!{G  
            xpos = -detx - pixelx / 2 Di=6.gm[<  
            ypos = ypos - pixely )pH{b]t  
    Om{ML,d  
            EnableTextPrinting( True ) %LW~oI.  
            Print i .lS6KBf@  
            EnableTextPrinting( False ) R:<AR.)K  
    m_f^#:  
    Bv*h ?`Q  
            For j = 0 To nx - 1 7si.]  
    'z5 ;o :T  
                xpos = xpos + pixelx H9[.#+ln  
    Nh-* Gt?  
                'shift source O$^YUHD  
                LockOperationUpdates srcnode, True [_Z3v,vt,  
                GetOperation srcnode, 1, op qm_E/B  
                op.val1 = xpos (<-0UR]%q;  
                op.val2 = ypos `-2`UGB-  
                SetOperation srcnode, 1, op Bqj *{m  
                LockOperationUpdates srcnode, False 014!~c  
    GMI >$$<  
    raytrace @#">~P|Hp  
                DeleteRays =T6\kz9)`  
                CreateSource srcnode h|Qh/jCX  
                TraceExisting 'draw D1a2|^zt  
    H^0KNMf(  
                'radiometry CeemR>\t  
                For k = 0 To GetEntityCount()-1 ^2tCDm5  
                    If IsSurface( k ) Then )63w&  
                        temp = AuxDataGetData( k, "temperature" ) ``D-pnKK  
                        emiss = AuxDataGetData( k, "emissivity" ) 7c7SU^hD  
                        If ( temp <> 0 And emiss <> 0 ) Then y.OUn'^d4  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) d4tVK0 ~  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) :l{-UkbB  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi _uacpN/<|  
                        End If 3]A'C&  
    %/p5C  
                    End If W'yICt(#G  
    ZN/")  
                Next k BZsxf'eN'  
    6zSN?0c  
            Next j \WEC1+@  
    NKN!X/P  
        Next i 14O/R3+  
        EnableTextPrinting( True ) ,P]{*uqGiB  
    |/Z4lcI  
        'write out file E.brQx#}  
        fullfilepath = CurDir() & "\" & fname ygG9ht  
        Open fullfilepath For Output As #1 ~-x\E#(  
        Print #1, "GRID " & nx & " " & ny J<D =\  
        Print #1, "1e+308" -i4gzak  
        Print #1, pixelx & " " & pixely [a2/`ywdV  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 H>?@nYP  
    -lHJ\=  
        maxRow = nx - 1 F{S.f1Bsp  
        maxCol = ny - 1 [aW#7  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) [ q}WS5Cp  
                row = "" oUH\SW8?  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) b $!l* r  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string /on p<u  
            Next colNum                     ' end loop over columns #v1 4"sZ}  
    6gn|WO=W f  
                Print #1, row `1dr$U  
    X9>ujgK  
        Next rowNum                         ' end loop over rows _*_zyWW_j  
        Close #1 +4 dHaj6  
    ! JN@4  
        Print "File written: " & fullfilepath 0Pe.G0 #  
        Print "All done!!" Al?XJ C B@  
    End Sub BC^WPr  
    1Pbp=R/7ar  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ?hO*~w;UU|  
    6_7d1.wv9  
    G{<wXxq%  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 ^gy(~u  
      
    }[|"db  
    R_csKj  
    打开后,选择二维平面图: +KZc"0?  
    & b%6pVj  
     
    分享到