-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-19
- 在线时间1888小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 iw#luHcJ 04(h!@!g: 成像示意图 6@T_1 首先我们建立十字元件命名为Target Y)uNzb6R z` sH 创建方法: 46 77uy f6m^pbQFl 面1 : 'n=FBu^ 面型:plane nZ{~@E2 材料:Air 4
Hu+ljdjB 孔径:X=1.5, Y=6,Z=0.075,形状选择Box _rajm J LJBoS]~ 4TLh'?Xu9 辅助数据: wo*/{KFvh 首先在第一行输入temperature :300K, Db2G)63 emissivity:0.1; `dj/Uk xOkf9k_ xUG|@xIwc 面2 : :!3P4?a 面型:plane vbSz&+52; 材料:Air 6!bf,T] 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Vbwbc5m} HHX9QebiST wi9fYfuv3R 位置坐标:绕Z轴旋转90度, k_!z=6?[: YKk%lZ.8 M]6=Rxq1:E 辅助数据: nrZv>r )d s(/P5b 首先在第一行输入temperature :300K,emissivity: 0.1; B[k"xs BkIvoW_ -5E<BmM Target 元件距离坐标原点-161mm; /]YK:7*98 '2%hc\P6P >Vn!k N6\ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 $+?6U eqLETo@} * EmLPq!C 探测器参数设定: )of_"gZ$3A atPf527\` 在菜单栏中选择Create/Element Primitive /plane ;aD_^XY (=p}b:Z @m(\f n:7=z0
s Ue8_Q8q5 5xRh'Jkyb 元件半径为20mm*20,mm,距离坐标原点200mm。 i~\gEMaO ,,@_r&f: 光源创建: TsR20P@ #BM *40tch 光源类型选择为任意平面,光源半角设定为15度。 Y \j &84 A]R"C:o PY` V]|J 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 IPJs$PtKok >q]r)~8F^ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 v}iJ:' oE5+ k5<lkC2z 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 |px4a" R/ P.m~? 创建分析面: 3?fya8W< #{N#yReh u |#ruFR 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 jkfI,T gAR];(* FxD" z3D 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 &npf
%Eub mv+.5X FRED在探测器上穿过多个像素点迭代来创建热图 L !{^^7 5ptbz<Xv FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 uV;Z 将如下的代码放置在树形文件夹 Embedded Scripts, !rrjA$P<v m
81\cg F.AO 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 x%$Z/ hf%W grO. 绿色字体为说明文字, @^`-VF ]Q^oc '#Language "WWB-COM" 1f~_# EIC 'script for calculating thermal image map 'X`\vTxB 'edited rnp 4 november 2005 !(+?\+U lE {x-g?HB 'declarations Q}I. UG_ Dim op As T_OPERATION .}j@(D Dim trm As T_TRIMVOLUME i3f/{D/ Dim irrad(32,32) As Double 'make consistent with sampling smk0 *m4 Dim temp As Double _Hkc<j/e~ Dim emiss As Double s'/ug Dim fname As String, fullfilepath As String :<nL9y jt k ^+h>B-; 'Option Explicit d'DS7F(c{ @ '<lD*W Sub Main ^gv)[ 'USER INPUTS CuDU~)` nx = 31 q!NwfXJM ny = 31 'd/A+W numRays = 1000 ZVda0lex& minWave = 7 'microns 6"gncB. maxWave = 11 'microns [;};qQ-C2 sigma = 5.67e-14 'watts/mm^2/deg k^4 F7=a|g fname = "teapotimage.dat" .H9!UQ&It `t#C0 Print "" tXfB.[U Print "THERMAL IMAGE CALCULATION" UIzk-.< 7rsrC detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 qB"y'UW8 b/<4\f Print "found detector array at node " & detnode y*_g1q$ bx`(d@ srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 #r0A<+t{T gSC8qip Print "found differential detector area at node " & srcnode 8vnU!r \QYs(nm?k GetTrimVolume detnode, trm 'O2{0 detx = trm.xSemiApe RU[{!E dety = trm.ySemiApe q-p4k`] area = 4 * detx * dety +}z
T][9w Print "detector array semiaperture dimensions are " & detx & " by " & dety nj)M$' Print "sampling is " & nx & " by " & ny =g?r.;OO _3ZZ-=J:=* 'reset differential detector area dimensions to be consistent with sampling w)3LY F pixelx = 2 * detx / nx R-Uj\M> pixely = 2 * dety / ny 2R.YHj SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False b/WVWDyob/ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ~d>O.*Q)
%lEPFp 'reset the source power ]}C#"Xt SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) <w08p*? Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ca$D|3 Jg: Uv6eN+ 'zero out irradiance array u!;kBs For i = 0 To ny - 1 &a1agi7M For j = 0 To nx - 1 +Hv%m8'0| irrad(i,j) = 0.0 A9F&XF7{ Next j Z<xSU?J Next i Z=n& fsE `[Kh[| 'main loop cLJ|VD7 EnableTextPrinting( False ) \:^$ZBQr<n <9B43 ypos = dety + pixely / 2 (S1$g ~t; For i = 0 To ny - 1 i_f"?X;D xpos = -detx - pixelx / 2 )FE'#\ ypos = ypos - pixely |+ @ W9.ZhpM EnableTextPrinting( True ) trM8p Print i qo4AQ}0 < EnableTextPrinting( False ) pHKj*Y ; N!K/[p= NIQa{R/H For j = 0 To nx - 1 >P+V!-%# # P18vK5 xpos = xpos + pixelx #S_LKc ;I]TM#qGF 'shift source }?8KFe7U LockOperationUpdates srcnode, True V?5QpBKI GetOperation srcnode, 1, op &<k)W op.val1 = xpos ;%Jp@'46 op.val2 = ypos h.=YAcR0D SetOperation srcnode, 1, op o y}( LockOperationUpdates srcnode, False 1*G7Uh@K} AaKILIIQZ raytrace Zna
}h{ DeleteRays G74<sD CreateSource srcnode O:pQf/Xn TraceExisting 'draw Je+L8TB $kkdB,y 'radiometry eGtIVY/D For k = 0 To GetEntityCount()-1 LlnIn{C If IsSurface( k ) Then j@2-^q:` temp = AuxDataGetData( k, "temperature" ) S &cH1QZ emiss = AuxDataGetData( k, "emissivity" ) gO_^{>2 If ( temp <> 0 And emiss <> 0 ) Then bAt!9uFn ProjSolidAngleByPi = GetSurfIncidentPower( k ) >PL/>
frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) (47jop0RDQ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0Rrz
End If p;X[_h l<GRM1^kU End If "yL&?B"9@ e Hd{'J< Next k j3sUZg|d s^js}9]p Next j >-EoE;s g 9>p?XY Next i ;MNEe%
TJ EnableTextPrinting( True ) z[IG+2 /O/u5P{J 'write out file ;,@3bu>r fullfilepath = CurDir() & "\" & fname
9CUMqaY2 Open fullfilepath For Output As #1 5j,)}AYO Print #1, "GRID " & nx & " " & ny C'*1w Print #1, "1e+308" G@ed2T Print #1, pixelx & " " & pixely r 3pfG Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 {%b>/r ,&z_ 2m maxRow = nx - 1 si%f.A # maxCol = ny - 1 2zArAch For rowNum = 0 To maxRow ' begin loop over rows (constant X) %+xh row = "" P^VV8Z>\& For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ax7ub row = row & irrad(colNum,rowNum) & " " ' append column data to row string 9tk}_+ Next colNum ' end loop over columns C
Hyb{:< G'}%m;-mt Print #1, row ;2#H M^Mu d=N5cCqq Next rowNum ' end loop over rows kX5v!pm[ Close #1 yd#4b`8U` P8z++h Print "File written: " & fullfilepath x\I9J4Q Print "All done!!" q\d'}:kfu End Sub oV,>u5:B pd>EUdbrp& 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: h#;fBQ]
n3~xiQ' ~A>3k2N/e 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ~wh8)rm (O/hu3 |Z#)1K 打开后,选择二维平面图: *kZJ [4PG_k[uTJ
|