-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-02-11
- 在线时间1927小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 0ndk=V nUb0R~wr$G 成像示意图 OeMI 首先我们建立十字元件命名为Target @}K|/ =f~8"j 创建方法: qe^d6 )T0%<(J 面1 : A$ 2 AYQ 面型:plane vNWCv 材料:Air =#=<%HPT 孔径:X=1.5, Y=6,Z=0.075,形状选择Box &BOq%*+ 2bv/-^ 1F|e/h%^ 辅助数据: vC#_PI 首先在第一行输入temperature :300K, =1ltX+
emissivity:0.1; Budo9z_w h95a61a,Vy LOO<)XFJ 面2 : ;D8175px; 面型:plane meF.`fh 材料:Air kz!CxI ( 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 78~;j1^6u wqnrN6$jf b;;mhu[D 位置坐标:绕Z轴旋转90度, %m/W4Nk wn1` 9 U3t$h 辅助数据: /E %^s3S. iVaCX Xf ' 首先在第一行输入temperature :300K,emissivity: 0.1; W^e"()d/Z
[LF<aR5 tRtoA5 Target 元件距离坐标原点-161mm; Uf,fd B+VD53 V BT *z^ZH 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 (J6>]MZ#) !+EE*-c1c |YnT;q 探测器参数设定: x*#9\*@EI 'g5 Gdn 在菜单栏中选择Create/Element Primitive /plane /gH[|d $eu-8E' < C1Jim e)M)q!nG R3bHX%T X~2L 元件半径为20mm*20,mm,距离坐标原点200mm。 ;h~v,h QKHAN{hJ 光源创建: w<|Qezi3
w dbsD\\,2%N 光源类型选择为任意平面,光源半角设定为15度。 5>x?2rp 7Zw.mM!i 9aoGptgN 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 (3VV(18 Dg=!d)\ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 4:0y\M5u S x0QPX dd-`/A@ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 bu:%"l ~Gj%z+< 创建分析面: ^q}cy1"j" O<>cuW(l Dt~ |)L+ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 MhL>6rn 1yd}F`{8UF j3 Ps<<eA 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 +:ih`q][b V`& O` FRED在探测器上穿过多个像素点迭代来创建热图 %] #XI r 2tqj]i FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 p:Hg>Z 将如下的代码放置在树形文件夹 Embedded Scripts, YIn
H8Ex 7 (kC|q\4M S{fFpe- 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 RQO&F$R= _%gu<Ys 绿色字体为说明文字, .P#+V$qhv IBm"VCg{Ew '#Language "WWB-COM" z@Uf@~+U 'script for calculating thermal image map DFM~jlH 'edited rnp 4 november 2005 ;6655C b^^ .$Gu 'declarations xe@11/F Dim op As T_OPERATION 8<:.DFq Dim trm As T_TRIMVOLUME I6vy:5d Dim irrad(32,32) As Double 'make consistent with sampling _eZ*_H,\ Dim temp As Double krMO<(x+ Dim emiss As Double <x[CL,Zg7 Dim fname As String, fullfilepath As String :lE_hY )cV*cDL1j 'Option Explicit m&a 8/5 Kd!.sB/% Sub Main BN%;AQV 'USER INPUTS fWs @ZCt nx = 31 kK~,?l ny = 31 %U?1Gf e numRays = 1000 |))O3]- minWave = 7 'microns _ K Ix7 maxWave = 11 'microns cH48) sigma = 5.67e-14 'watts/mm^2/deg k^4 0BrAgv"3a_ fname = "teapotimage.dat" uW0D m# B1i&HoGbz Print "" ^\Epz*cL Print "THERMAL IMAGE CALCULATION" 6%a:^f] ^_c6Op<F detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 1"wZ [. "ph<V,lg Print "found detector array at node " & detnode y
Q-{
CJ, 9p4=iXfR srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 zff<#yK1 s2`Qh9R
Print "found differential detector area at node " & srcnode <?FkwW\? \e9rXh% GetTrimVolume detnode, trm !hjA detx = trm.xSemiApe Sp/<%+2( dety = trm.ySemiApe RdqB^>X area = 4 * detx * dety :^rt8>~ Print "detector array semiaperture dimensions are " & detx & " by " & dety :r4o:@N' Print "sampling is " & nx & " by " & ny {1;R& c^1tXu|& 'reset differential detector area dimensions to be consistent with sampling 4l'`q+^- pixelx = 2 * detx / nx "[dfb#0z` pixely = 2 * dety / ny Vrn+"2pdJ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False p(6KJK\ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 VT [TE .]YTS 'reset the source power 4o|<zn SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ^v5<* uf%m Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" t.Yf8Gy } fJLY\ 'zero out irradiance array ):lH For i = 0 To ny - 1 ~@$RX:p For j = 0 To nx - 1 7 T irrad(i,j) = 0.0 Qs,4PPEg Next j |8?DQhd} Next i <DZ$"t TW6F9}'f& 'main loop "\+.S]~ EnableTextPrinting( False ) 4 '5|YGQj hsHbT^Qm ypos = dety + pixely / 2 +_1sFH` For i = 0 To ny - 1 d_7hh xpos = -detx - pixelx / 2 xF6byTi ypos = ypos - pixely s#H_QOE an2Yluc; EnableTextPrinting( True ) mXs.@u/ Print i $wC'qV
* EnableTextPrinting( False ) ..7"<"uH 8j)*T9 &B\ sG= For j = 0 To nx - 1 yoH,4,! G K\FLA_J xpos = xpos + pixelx _FxeZ4\ &2bqL!k 'shift source Bo$dIn2_ LockOperationUpdates srcnode, True :$*@S=8 O GetOperation srcnode, 1, op ^yX >^1 op.val1 = xpos C55Av%-= op.val2 = ypos K /$-H#;N SetOperation srcnode, 1, op 1Qw_P('} LockOperationUpdates srcnode, False &z#`Qa3NI /gn!="J raytrace szCB}WY DeleteRays ;!A=YXB CreateSource srcnode ]$=#:uf TraceExisting 'draw <eZ*LK?
~owodc 'radiometry O-huC:zZh For k = 0 To GetEntityCount()-1 )-X/"d If IsSurface( k ) Then [
ebk u_ temp = AuxDataGetData( k, "temperature" ) OA^6l# emiss = AuxDataGetData( k, "emissivity" ) 2 w6iqLr? If ( temp <> 0 And emiss <> 0 ) Then ( k,?) ProjSolidAngleByPi = GetSurfIncidentPower( k ) )<lQJ#L86a frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) S=j
pn irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi _+.JTk End If MdN0 Y@Ll 3W%j^nM End If \ef:H&r N=\weuED Next k VVDW=G *`8JJs0g Next j `FEa(Q+s lQd7p+21 Next i c8T| o=`k6 EnableTextPrinting( True ) [r!f&R S9{A}+"K 'write out file +I?k8',pi fullfilepath = CurDir() & "\" & fname f>bL
}L Open fullfilepath For Output As #1 rzs-c ? Print #1, "GRID " & nx & " " & ny &B]1 VZUp Print #1, "1e+308" l6L?jiTl_ Print #1, pixelx & " " & pixely 3I(;c ,S Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 x[0O*ty-*< Tw7] maxRow = nx - 1 91]sO%3 maxCol = ny - 1 +H28 F_# For rowNum = 0 To maxRow ' begin loop over rows (constant X) a{@}vZx>3 row = "" T];dFv-GT For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) BNj_f row = row & irrad(colNum,rowNum) & " " ' append column data to row string P8Wv&5A Next colNum ' end loop over columns QZtQogNy# ~d].<Be Print #1, row ]jYFrOMy4S R1D ; Next rowNum ' end loop over rows E7M_R/7@y Close #1 {VKFw=$8 PfZS"yk Print "File written: " & fullfilepath {0j_.XZ Print "All done!!" Nke!!A}\| End Sub o+B) +<j7^AEG 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: mBE&>}G< loO"[8i.k Bp3E)l 找到Tools工具,点击Open plot files in 3D chart并找到该文件 &!OEd] |q58XwU ` L,[Q{:C S 打开后,选择二维平面图: I/%v`[ 6pSi-FH
|