切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1011阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5987
    光币
    24088
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 cMUmJH  
    E-rGOm" m  
    成像示意图
    K?wo AuY  
    首先我们建立十字元件命名为Target ]T<RC\o  
    ]gb?3a}A  
    创建方法: B?XqH_=0L  
    ! "^//2N+,  
    面1 : JOq&(AZe  
    面型:plane xirZ.wjW  
    材料:Air LZpqv~av  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box o 3 G*   
    mVyF M -`  
    3}?]G8iL?L  
    辅助数据: k5Df9 7\s  
    首先在第一行输入temperature :300K, W GMEZx  
    emissivity:0.1; sU?%"q  
    c(S66lp  
    gM#]o QOGE  
    面2 : !vSj1w  
    面型:plane SnW>`  
    材料:Air #F >R5 D  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box I_h&35^t  
    :'gX//b):  
    IsiCHtY9  
    位置坐标:绕Z轴旋转90度, z/S}z4o/  
    [lAZ)6E~=  
    y[:xGf]8@  
    辅助数据: <bOi}  
    TzY[- YlvF  
    首先在第一行输入temperature :300K,emissivity: 0.1; )1 !*N)$  
    7%^ /Jm  
    G8p6p6*  
    Target 元件距离坐标原点-161mm; 39,7N2uY  
    H(j983  
    QPpC_pZh  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 S_56!  
    kEM|;&=_  
    0)-yLfTn  
    探测器参数设定: zH+a*R  
    EJ`"npU  
    在菜单栏中选择Create/Element Primitive /plane /aD3E"Op  
    t5WW3$Nf  
    7^Q4?(A  
    V17SJSC-  
    1$ C\ `  
    ?Q%X,!~ \:  
    元件半径为20mm*20,mm,距离坐标原点200mm。 5QUL-*t  
    dBMr%6tz  
    光源创建: z#elwL6  
    IX) \z  
    光源类型选择为任意平面,光源半角设定为15度。 KI{B<S3*Z  
    $4a;R I  
    aaM76;  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 P<A_7Ho  
    ?#P@N4Uw}y  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 JQ)w/@Vu=  
    S 7 *LV;  
    m_g2Cep  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 tjTnFP/=  
    fC$(l@O?  
    创建分析面: &`IC 3O5  
    }grel5lq  
    )Cfk/OnRd  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 P4S]bPIp  
    ?m>!P@ M  
    CDU$Gi  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 5ps7)]  
    ,4tuWO)"  
    FRED在探测器上穿过多个像素点迭代来创建热图 >Kjl>bq  
    HSsG0&'-Y  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 QlCs ,bT  
    将如下的代码放置在树形文件夹 Embedded Scripts, hFp\,QSx  
    7dbGUbT  
    &nyJ :?  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ~ '/Yp8 (  
    )eaEc9o>  
    绿色字体为说明文字, 51&K  
    14 Toi  
    '#Language "WWB-COM" >q7/zl  
    'script for calculating thermal image map +1o4l i  
    'edited rnp 4 november 2005 T z?0E"yx  
    BL^\"Xh$|  
    'declarations /l&$B  
    Dim op As T_OPERATION sOUQd-!"  
    Dim trm As T_TRIMVOLUME VW/ICX~"d  
    Dim irrad(32,32) As Double 'make consistent with sampling gJC~$/2  
    Dim temp As Double Ufr,6IX  
    Dim emiss As Double U8gf_R'  
    Dim fname As String, fullfilepath As String b>Em~NMu_  
    P/XCaj3a[  
    'Option Explicit ]5Mq^@mD'  
    6A23H7  
    Sub Main 8.m9 =+)8  
        'USER INPUTS FZ~^cK9g:  
        nx = 31 ZGZ1Q/WH  
        ny = 31 -b`O"Ck*  
        numRays = 1000 eN{ewn#0.  
        minWave = 7    'microns ]u<8j r  
        maxWave = 11   'microns (@&+?A"6`  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 x^]J^L45  
        fname = "teapotimage.dat" `+0K~k|DC  
    z<u*I@;  
        Print "" e=u?-8  
        Print "THERMAL IMAGE CALCULATION" !/RL.`!>  
    :.bBV]6q  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 w1J%%//(h  
    &6q67  
        Print "found detector array at node " & detnode Lsb`,:  
    P4{!/&/  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 UsQh+W"?  
    d;FOmo4  
        Print "found differential detector area at node " & srcnode ,|G~PC8  
    =Hf`yH\#  
        GetTrimVolume detnode, trm DT#F?@LG(  
        detx = trm.xSemiApe N,ysv/zq7  
        dety = trm.ySemiApe @b{I0+li"/  
        area = 4 * detx * dety O'[r,|Q{  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety }$X/HK  
        Print "sampling is " & nx & " by " & ny fZka$ 4  
    T6M=BkcP  
        'reset differential detector area dimensions to be consistent with sampling #L`'<ge'g*  
        pixelx = 2 * detx / nx $;VY`n  
        pixely = 2 * dety / ny .hVB)@/  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False e.VR9O]G  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 i!u:]14>  
    >1S39n5z.  
        'reset the source power }>$3B5}  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) L)yc_ d5  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" /:-Y7M*   
    $*q^7ME  
        'zero out irradiance array B`mTp01  
        For i = 0 To ny - 1 teX)!N [  
            For j = 0 To nx - 1 /w "h'u  
                irrad(i,j) = 0.0 /0z#0gNp  
            Next j &<oJw TC  
        Next i kxWcWl8  
    S2<evs1d  
        'main loop Lm1  -  
        EnableTextPrinting( False ) _MxKfah'  
    < VrHWJo  
        ypos =  dety + pixely / 2 W!B\VB  
        For i = 0 To ny - 1 HIsB)W&%@  
            xpos = -detx - pixelx / 2 7&w$@zs87  
            ypos = ypos - pixely P TMJ.;  
    vugGMP;D(  
            EnableTextPrinting( True ) u`?v-   
            Print i J-5E# v  
            EnableTextPrinting( False ) k@}g?X`8  
    w{89@ XRC  
    kO/]mNLG  
            For j = 0 To nx - 1 hp3 <HUU  
    wn/Y 5   
                xpos = xpos + pixelx &ieb6@RO`Q  
    R q9(<' F  
                'shift source SL 5QhP  
                LockOperationUpdates srcnode, True 12LGWhDp  
                GetOperation srcnode, 1, op [ ~:wS@%  
                op.val1 = xpos L['g')g.  
                op.val2 = ypos -=4{X R3  
                SetOperation srcnode, 1, op *IQQsfL)  
                LockOperationUpdates srcnode, False .1YiNmW=  
    %4^NX@1jV  
    raytrace <`")Zxf+  
                DeleteRays [m0G;%KR/  
                CreateSource srcnode P-?R\(QYtR  
                TraceExisting 'draw <~ }NxY\5  
    ypLt6(1j%  
                'radiometry =`E{QCW  
                For k = 0 To GetEntityCount()-1 ;5&=I|xqe  
                    If IsSurface( k ) Then "@(Sw>*o  
                        temp = AuxDataGetData( k, "temperature" ) b*TQKYT  
                        emiss = AuxDataGetData( k, "emissivity" ) ('1]f?:M  
                        If ( temp <> 0 And emiss <> 0 ) Then Ci$?Hm9n  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) l]~mB~  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) -)9aY.  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi '#NDR:J"  
                        End If !EOYqD  
    w,1&s}; g\  
                    End If w`X0^<Fv  
    RC~C}  
                Next k 6Sz|3ms  
    g=e~YM85  
            Next j L XHDX  
    8;$zD]{D1  
        Next i 1 Sz v4  
        EnableTextPrinting( True ) @n^2UJ  
    :vJ1Fo!  
        'write out file ZZrv l4h  
        fullfilepath = CurDir() & "\" & fname Q?V'3ZZF!  
        Open fullfilepath For Output As #1 F*p@hl  
        Print #1, "GRID " & nx & " " & ny UTVqoCHA  
        Print #1, "1e+308" E_-g<Cw  
        Print #1, pixelx & " " & pixely \pVNJ y$`<  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 pcNpr`  
    ?wpl 88z  
        maxRow = nx - 1 TEQs9-Uy  
        maxCol = ny - 1 n8Rsle`a  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) q$kx/6=k  
                row = ""  :X 9_~  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) @*=eqO  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ,SH^L|I  
            Next colNum                     ' end loop over columns \[<8AV"E-'  
    .TO#\!KBv  
                Print #1, row *T2kxN,Ik  
    r<!/!}fE,  
        Next rowNum                         ' end loop over rows jqQGn"!  
        Close #1 IHwoG(A~<  
    o?5;l`.L}  
        Print "File written: " & fullfilepath %mRnJgV5k  
        Print "All done!!" }BAe   
    End Sub V-ONC  
    ~\u~>mtchu  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ^K0oJg.E  
    iQvqifDmh  
    E=]$nE]b  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 C ett*jm_  
      
    #Yx /ubg6  
    Q*8efzgs|  
    打开后,选择二维平面图: jdd3[  
    XGAR8=tic  
     
    分享到