-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-04
- 在线时间1893小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 +<sv/gEt o AM)<#U> 成像示意图 +LaR_n[ 首先我们建立十字元件命名为Target \!4_m8? +3r4GEa
Z 创建方法: }%S#d&wh$_ ;Lk07+3G 面1 : 1-8G2e 面型:plane =L,7~9 材料:Air P u,JR 孔径:X=1.5, Y=6,Z=0.075,形状选择Box g<YN# 4X$|jGQ\ \mNN ) K@ 辅助数据: 1"RC! 首先在第一行输入temperature :300K, n?8xRaEf emissivity:0.1; vFi+ExBU e^or qw/I RFLw)IWkL_ 面2 : hfRxZ>O2 面型:plane 6Vu) 材料:Air A0H6}53, $ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box *m[[>wE \y+@mJWa J{PNB{v 位置坐标:绕Z轴旋转90度, a}'dIDj __,F_9M ;AJ6I*O@+ 辅助数据: 8l
>Xbz nc.:Wm6Mj 首先在第一行输入temperature :300K,emissivity: 0.1; oGz5ZDa# Qv1cf qR9!DQc' Target 元件距离坐标原点-161mm; @8lT*O2j Uh3N#O oVIc^yk5a 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 f<3lxu B1b9
JS(> NwNjB
w%v 探测器参数设定: k;l^y%tzp O+ xzM[[ 在菜单栏中选择Create/Element Primitive /plane ]+T$D h.5KzC
S > QG@P
O<y65#68Z 3shd0q< nt*K@ 元件半径为20mm*20,mm,距离坐标原点200mm。 TPNKvv!s &M6Zsmo 光源创建:
!xEGN@ UZJ#/x5F 光源类型选择为任意平面,光源半角设定为15度。 | *N;R+b <AU0ir '8;'V%[+ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 !JA//{? o~26<Lk 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Koc5~qUY] $Ao'mT RhkTN'vO 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 "&@{f:+ z+<ofZ(. 创建分析面: o&>aYlXd x pBQ(6Y [R<>3}50Y 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 3|bbJ6*.< bmO(tQS$5 `Nv P)| 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 +6:jm54 D_ XOYzN} FRED在探测器上穿过多个像素点迭代来创建热图 2W}jbOy )oy+-1dE FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 F[>Y8e<[ 将如下的代码放置在树形文件夹 Embedded Scripts, &!B4v<#, U ;KT/;I H/ar:j 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 +g_m|LF Op:$7hv 绿色字体为说明文字, PCnu?e3F -@.FnFa '#Language "WWB-COM" LR3>_t 'script for calculating thermal image map %uvA3N> 'edited rnp 4 november 2005 0 KA@]! hP$5>G(3 'declarations }H|'W[Q. Dim op As T_OPERATION ]rji]4s Dim trm As T_TRIMVOLUME .z^O y_S{ Dim irrad(32,32) As Double 'make consistent with sampling DC0ON` Dim temp As Double SNSHX2 Dim emiss As Double 0/uy'JvWru Dim fname As String, fullfilepath As String >v)V2,P
- vb3hDy 'Option Explicit M9?f`9 Tt4Q|"CJA Sub Main -FW^fGS+ 'USER INPUTS eu'~(_2 nx = 31 c[Z#q*Q ny = 31 ha7mXGN% numRays = 1000 3 6t^iV*3 minWave = 7 'microns ?RS4oJz,5g maxWave = 11 'microns w!-MMT4y sigma = 5.67e-14 'watts/mm^2/deg k^4 p$cb&NNh*H fname = "teapotimage.dat" Gh352 |?TX^) Print "" $GYy[8{:V Print "THERMAL IMAGE CALCULATION" cUn>gT HhwAzk/G~ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 1'|gxYT B qLL]%F Print "found detector array at node " & detnode gH*(1* XW~a4If srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Y7;=\/SV Hz%<V*\{ Print "found differential detector area at node " & srcnode Vq'n$k} tToP7q^ GetTrimVolume detnode, trm I=
a?z< detx = trm.xSemiApe W
j`f^^\HJ dety = trm.ySemiApe W)8Pq9Hnv area = 4 * detx * dety ]GD&EQ Print "detector array semiaperture dimensions are " & detx & " by " & dety KY?ujeF Print "sampling is " & nx & " by " & ny b*ja,I4 #/HZ[Vw 'reset differential detector area dimensions to be consistent with sampling 4/OmgBo' pixelx = 2 * detx / nx g!OcWy)7 pixely = 2 * dety / ny i*@ZIw SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False @FF80U4' Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 <C451+95 q*kLi~Oe 'reset the source power .o]9
HbIk5 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 3#y`6e=5 Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" E<7$!P=z` =`UFg>- 'zero out irradiance array *X^C+F For i = 0 To ny - 1 +O^} t For j = 0 To nx - 1 Gte\=0Wr irrad(i,j) = 0.0 Ihv@2{*(b Next j D
!{e Next i CeM%?fr5 }pGjc_:'] 'main loop "=LeHY=9 EnableTextPrinting( False ) | GN/{KH] h6n!"z8H ypos = dety + pixely / 2 ]c
bXI For i = 0 To ny - 1 "c.-`1,t xpos = -detx - pixelx / 2 y=Z[_L!xr ypos = ypos - pixely .{|SKhXk YMVi7D~;Q$ EnableTextPrinting( True ) yYSoJqj
Q Print i L
>)|l EnableTextPrinting( False ) ddd2w T(Bcp^N {?"X\5n0 For j = 0 To nx - 1 Z4E6J'B8 1hzf+*g xpos = xpos + pixelx T Qx<lw ?*ZQ:jH 'shift source 2cSc
8 LockOperationUpdates srcnode, True ]2YC7 GetOperation srcnode, 1, op +SW|/oIU op.val1 = xpos \v$zU op.val2 = ypos +KWO`WR SetOperation srcnode, 1, op sB$" mJ LockOperationUpdates srcnode, False [j0jAl 6']G HDK raytrace O+/{[9s DeleteRays *{5/" H5 CreateSource srcnode 1$`|$V1 TraceExisting 'draw pred{HEye $yq76 'radiometry d1D=R8P_u For k = 0 To GetEntityCount()-1 ZkO2*; If IsSurface( k ) Then ovdaK"q2 temp = AuxDataGetData( k, "temperature" ) o6:bmKWE emiss = AuxDataGetData( k, "emissivity" ) 'Yh`B8 If ( temp <> 0 And emiss <> 0 ) Then 06Q9X!xD ProjSolidAngleByPi = GetSurfIncidentPower( k ) UZmo?&y frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) m)?0;9bt irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ?$uEN_1O\@ End If =#[t!-@ S%B56|' End If B-$zioZ b5I 8jPj4c Next k qk>SM|{ >AY9F|: Next j qnnRS i_QiE2d Next i "]Uj _d EnableTextPrinting( True ) />pAZa <:T/hm$ 'write out file hh5h \ZI% fullfilepath = CurDir() & "\" & fname <a&xhG} Open fullfilepath For Output As #1 D:?"Rf{) Print #1, "GRID " & nx & " " & ny I+S fZ:q^ Print #1, "1e+308" BwGOn)KL Print #1, pixelx & " " & pixely R y(<6u0 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2
cfRUVe %tC[q maxRow = nx - 1 lj:.}+]r maxCol = ny - 1 |T/s>OW For rowNum = 0 To maxRow ' begin loop over rows (constant X) i)$+#N row = ""
5e1oxSU For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) aBQ@n row = row & irrad(colNum,rowNum) & " " ' append column data to row string bj0<A Next colNum ' end loop over columns (w\|yPBB E:+r.r"Y Print #1, row 9ZR"Lo>3e+ nh80"Ny5 Next rowNum ' end loop over rows x]?V*Jz Close #1 -3wid1SOm qs= i+ Print "File written: " & fullfilepath 49O_A[(d Print "All done!!" @g]+$Yj End Sub ^eefR5^_w 59v=\; UI 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: W$&*i1<a+ -*hPEgcV9 [+#k+*1*o 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ?iEn~9WCS 2
e#"JZ= 6W3."}; 打开后,选择二维平面图: ~E_irzOFP vRD(* S9^
|