-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-02-11
- 在线时间1927小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 Snvj9Nr _|2";.1E 成像示意图
h hNFp 首先我们建立十字元件命名为Target tI(t%~>^ C J}4V!;| 创建方法: f<xt3 Zq6ebj 面1 : )-6[Bw 面型:plane ^c:eXoU 材料:Air ,'@ISCK^ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box hc~#l # ?\ i,JJO PeR<FSF ,i 辅助数据: \?Oa}&k$F8 首先在第一行输入temperature :300K, iOA3x 8J emissivity:0.1; c9 TkIe U1@P/ z8MpE 面2 : m0K2 p~ 面型:plane aG&kl O>m 材料:Air P24 孔径:X=1.5, Y=6,Z=0.075,形状选择Box pz z`4VS: EC&19 Ql!6I ( 位置坐标:绕Z轴旋转90度, l[OQo|_ Hwi7oXP 1</t #r 辅助数据: tLGwF3e$A n$VPh/ 首先在第一行输入temperature :300K,emissivity: 0.1; Nl>b'G96 -
&LZle&M )fcpE,g' Target 元件距离坐标原点-161mm; |kRx[UL ny;)+v?mN\
Xv;ZA a 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 7.=s1~p N,'qMoNf {hp@j# 探测器参数设定: jYssz4)tp AI`1N%Owi 在菜单栏中选择Create/Element Primitive /plane oz7udY=]0 nT6iS}h j-\^
}K.& xn#I7]]G 2tTV5,(1 CMB$RLf 元件半径为20mm*20,mm,距离坐标原点200mm。 S| ?--vai_ E;*TRr>< 光源创建: C3
c|@7FU mCP +7q7 光源类型选择为任意平面,光源半角设定为15度。 J};,%q_ |zegnq~ |r!Qhb.! 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 =cX"gI[ <.]& FPJ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 jT_Tx\k gG|1$ FKTP0e7=9 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 [UrS%]OSR :'Kx?Es 创建分析面: *" +cP! l3
Bc
g "U~@o4u; 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 8&iI+\lCy \^Q)`Lqp:g Fd=`9N9 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 >LZ)<-Mk 3^Q U4 FRED在探测器上穿过多个像素点迭代来创建热图 I ywx1ac S~`AnX3! FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 "!eT 将如下的代码放置在树形文件夹 Embedded Scripts, i(#c
Yb <JuJ`t Ol^EQLO 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 x@l~*6!K ^qy-el 绿色字体为说明文字, Fi}rv[`XY[ Rs`Y'_B '#Language "WWB-COM" g#&##f 'script for calculating thermal image map nf^k3QS\ 'edited rnp 4 november 2005 ooxzM ` QxL
FN(d 'declarations {;~iq Dim op As T_OPERATION
K8we* Dim trm As T_TRIMVOLUME tOVm~C,R Dim irrad(32,32) As Double 'make consistent with sampling =1?yS3 Dim temp As Double xJ.!Q)[ Dim emiss As Double [l{eJ/W Dim fname As String, fullfilepath As String b,sc T`G"2|ISS 'Option Explicit SuuS!U+i> 55en
D Sub Main 73<yrBxp 'USER INPUTS ~n\ea:. nx = 31 <;"=ah7A ny = 31 |a\TUzq numRays = 1000 H2KY$;X[ minWave = 7 'microns N*-Z Jv maxWave = 11 'microns D'+8]B sigma = 5.67e-14 'watts/mm^2/deg k^4 B)NB6dCp fname = "teapotimage.dat" bME3" e{O
S?tLIi/ Print "" QQcj"s Print "THERMAL IMAGE CALCULATION" 9D21e(7X Hvk?(\x detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 U$Z}<8 N/=3Bs0y- Print "found detector array at node " & detnode e@By@r&nql B\yq%m srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 jgIzB1H boon=;{p Print "found differential detector area at node " & srcnode {P+[CO jXR+>=_ GetTrimVolume detnode, trm K@hUif|([ detx = trm.xSemiApe )UUe5H6Hd0 dety = trm.ySemiApe *5)!y
d area = 4 * detx * dety
(La Print "detector array semiaperture dimensions are " & detx & " by " & dety iHB)wC`u Print "sampling is " & nx & " by " & ny b>WT-.b0 vL0Ol-Vt 'reset differential detector area dimensions to be consistent with sampling dG+xr! pixelx = 2 * detx / nx _%B`Y ?I` pixely = 2 * dety / ny kRPg^Fw"Vw SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False \:7EKzQ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 7L"/4w eW%jDsC 'reset the source power ^Quy64M SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 5K<C Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" X;tk\Ixd GAKJc\o 'zero out irradiance array i2E7$[ For i = 0 To ny - 1 - %|I For j = 0 To nx - 1 \9^@,kfP irrad(i,j) = 0.0 b.&YUg[# Next j <Z;BB)I&C` Next i AtI,&S#{ g~b'}^J 'main loop jK53-tF~I EnableTextPrinting( False ) 'iK0Wr f -5ZXpWs' ypos = dety + pixely / 2 `R RORzXoS For i = 0 To ny - 1 ` 0F
IJT xpos = -detx - pixelx / 2 '-=?lyKv ypos = ypos - pixely Z)%p,DiNM $)!Z"2T EnableTextPrinting( True ) "?SnA +) Print i T*m_rDDt EnableTextPrinting( False ) jC%I]#!n h>?OWI , fn=%tiUk For j = 0 To nx - 1
q-#fuD^ )SuJK.IF xpos = xpos + pixelx g,nE iL xmDwoLU 'shift source ~m7+^c@, LockOperationUpdates srcnode, True `Ec+i GetOperation srcnode, 1, op _1ins;c52 op.val1 = xpos "5Mo%cUp op.val2 = ypos ||f4f3R' SetOperation srcnode, 1, op $.Ni'U LockOperationUpdates srcnode, False O9Aooe4W= x&
S >Mr raytrace n^K]R}S DeleteRays d<o CreateSource srcnode _ sd?l TraceExisting 'draw J7ln6 Y _PF><ODX2 'radiometry $)3/N&GXR For k = 0 To GetEntityCount()-1 -SQYr If IsSurface( k ) Then AO6;aT temp = AuxDataGetData( k, "temperature" ) @u^Ib33 emiss = AuxDataGetData( k, "emissivity" ) f+&yc'[ If ( temp <> 0 And emiss <> 0 ) Then s6I]H ProjSolidAngleByPi = GetSurfIncidentPower( k ) Z5Cv$bUc frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) >:=TS"}yS} irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 0Ko,S(M_ End If IWkBq]Y ;
OsN^ End If \iFE,z ~$`b{ Next k hf[K\aAk LBg#KQ@ Next j 3;A1[E6K ?~!h
N,h Next i Nn$$yUkMX EnableTextPrinting( True ) g!$
"CX%8 L>B0%TP^ 'write out file IH5thL@D fullfilepath = CurDir() & "\" & fname bWqGypq4 Open fullfilepath For Output As #1 ]@xc9tlG Print #1, "GRID " & nx & " " & ny T*oH tpFj# Print #1, "1e+308" &IcDUr]L Print #1, pixelx & " " & pixely |l9AgwDg Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 .+y#7-#6 I
?1E}bv maxRow = nx - 1 (/%}a`2#o maxCol = ny - 1 U5Y*xm< For rowNum = 0 To maxRow ' begin loop over rows (constant X) tQ/U'Ap& row = "" &HWH
UWB For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) thh, V row = row & irrad(colNum,rowNum) & " " ' append column data to row string C oaqi`v4T Next colNum ' end loop over columns | c;S'36 J(Bn
n Print #1, row $z<CkMP!U7 P5N"7/PfW Next rowNum ' end loop over rows 4ngiad6bR Close #1 L8V'mUyD t*COzE Print "File written: " & fullfilepath RKe19l_V Print "All done!!" /:S.("Unv End Sub .8"o&%$`V (k[<>$hL* 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: Z8m/8M rTi.k 8'zwyd3 找到Tools工具,点击Open plot files in 3D chart并找到该文件 @FQ@*XD F*a+&% Q *@O;IiSE 打开后,选择二维平面图: 4F'@yi^Gt u",
[ulP
|