-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-02-11
- 在线时间1927小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 !S',V&Yb __V6TDehJ$ 成像示意图 uz+b 首先我们建立十字元件命名为Target WwDxZ>9jw L%.GKANM 创建方法: 8}W06k>)% Lay+)S.ta[ 面1 : B$ )6X 面型:plane , eZL&n 材料:Air ^50/.Z> 孔径:X=1.5, Y=6,Z=0.075,形状选择Box <`q|6XWL PaFJw5f 7o+!Gts] 辅助数据: ^eEj
5Rh 首先在第一行输入temperature :300K, +mT}};-TS emissivity:0.1; S!n
9A D4r5wc% 'gojP 面2 : FZ/l
T-" 面型:plane <nj[=C4v 材料:Air Sn/~R|3XA7 孔径:X=1.5, Y=6,Z=0.075,形状选择Box $E4W{ad2jW QWf)5S 0\jOg 位置坐标:绕Z轴旋转90度, Tf"DpA!_ L&'0d$Tg8 y=\jQ6Fc 辅助数据: ys;e2xekg K0\a+6kh 首先在第一行输入temperature :300K,emissivity: 0.1; %1]2+_6 O`dob&C Co19^g* Target 元件距离坐标原点-161mm; 9hT^Y,c0 h& (@gU`A g}3c r. 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 vmOXB#7W )B*?se]LJ }FMl4 _}u 探测器参数设定: 4T9hT~cT7 ZZE 在菜单栏中选择Create/Element Primitive /plane fu=}E5ScK RQU5T 2,
5!Z+2Cu] AEnS_Q B:z -?u#B ok\+$+$ju 元件半径为20mm*20,mm,距离坐标原点200mm。 "\BP+AF J5Fg]O* 光源创建: DcbL$9UI ^^?DYC
光源类型选择为任意平面,光源半角设定为15度。 ;^DUtr
; !nj%n dY\"'LtF 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 (4 {49b 9v
cUo?/ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 .3|9 ~] Ti3BlWQH sp**Sg) 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。
A]U] MmWJYF= 创建分析面: BQS9q'u_ 4!k={Pd : 6>H\ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 [k'Ph33c y-n\;d>[( DJQ]NY| 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 j5'Jp} &{]%=stI FRED在探测器上穿过多个像素点迭代来创建热图
GoEIY
eN>
(IW FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 k) v[/#I 将如下的代码放置在树形文件夹 Embedded Scripts, )i_FU~ LRq Ix"c<1I jm-0]ugY&` 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Jl]]nOBQ/ <Z m ,q} 绿色字体为说明文字, }uHc7gTBF7 h{* O9O< '#Language "WWB-COM" uCu,'F,6Y 'script for calculating thermal image map G'Q7(c 'edited rnp 4 november 2005 y9*H +cV!=gDT 'declarations K%pmE?%,8 Dim op As T_OPERATION oy r2lfz* Dim trm As T_TRIMVOLUME HJJ^pk& Dim irrad(32,32) As Double 'make consistent with sampling >|Jw,,uf Dim temp As Double 3,vH:L4 Dim emiss As Double `90v~OF Dim fname As String, fullfilepath As String ,K9UT#h f0D Ch] 'Option Explicit 40#KcbMa| -8tA~;p Sub Main xapkhIW2\ 'USER INPUTS @zJI0_Bp nx = 31 =O;SXzgE ny = 31 I
}/Oi]jA6 numRays = 1000 <y.D0^68 minWave = 7 'microns w@: ]]R maxWave = 11 'microns ^X&9"x)4 sigma = 5.67e-14 'watts/mm^2/deg k^4 X#3<hN*v fname = "teapotimage.dat" z$Nk\9wm ,#E5 /'c` Print "" R{[Q+y'E Print "THERMAL IMAGE CALCULATION" \9}5}X_x. WD\{Sdx:r detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 b}4/4Z. 20moX7L Print "found detector array at node " & detnode ob00(?;H *n*y!z srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 mN eW|3a =+"'=o Print "found differential detector area at node " & srcnode Hxl,U>za# /J+)P<_ A GetTrimVolume detnode, trm r{Q< a detx = trm.xSemiApe +zD'r5 dety = trm.ySemiApe %8*d)AB: area = 4 * detx * dety )j6>b-H Print "detector array semiaperture dimensions are " & detx & " by " & dety \Zv =?\ Print "sampling is " & nx & " by " & ny q8h{-^" >ek%P;2w> 'reset differential detector area dimensions to be consistent with sampling j?,*fp8 pixelx = 2 * detx / nx O0{ pixely = 2 * dety / ny !p&'so^-W SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False {^f0RGJg9 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 =|!~0O O<h#|g1 'reset the source power ziycyf.d SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) K D-_~uIF Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 7:L~n(QpP 4sj%: 'zero out irradiance array X}-H=1T? For i = 0 To ny - 1 ~yi&wbTjM For j = 0 To nx - 1 |+:ZO5FaO irrad(i,j) = 0.0 Gx!RaZ1 Next j I7PWOd Next i ]R{"=H' Rdg0WT*;j 'main loop lDU:EJ&DHE EnableTextPrinting( False ) b(q&}60 tKeO+6 l ypos = dety + pixely / 2 t60/f&A#7H For i = 0 To ny - 1 DP_Pqn8p&M xpos = -detx - pixelx / 2 W{+0iAYnp ypos = ypos - pixely L||yQH7n
|<|,RI? EnableTextPrinting( True ) is?&%VY Print i R$fIb}PDr EnableTextPrinting( False ) Gr@{p"./z >ij4z
N ,:(leWeA9 For j = 0 To nx - 1 Kg`x9._2 IVzA>Vd xpos = xpos + pixelx jN}7BbX 87(^P3;@ 'shift source HCIF9{o1j> LockOperationUpdates srcnode, True /Z "
4[ GetOperation srcnode, 1, op (MoTG^MrBY op.val1 = xpos :J`!'{r op.val2 = ypos I!7.fuO SetOperation srcnode, 1, op '(pdk LockOperationUpdates srcnode, False FFeRE{,
z83:a)U raytrace M y"!j,Up DeleteRays !J=;Z9 CreateSource srcnode f5b`gvCY,# TraceExisting 'draw O4PdN? DVoV:pk 'radiometry `/JR}g{O For k = 0 To GetEntityCount()-1 ;9 &1JX If IsSurface( k ) Then 06@0r temp = AuxDataGetData( k, "temperature" ) UeQ9G emiss = AuxDataGetData( k, "emissivity" ) ~`>26BWQz If ( temp <> 0 And emiss <> 0 ) Then c^Gwri4 ProjSolidAngleByPi = GetSurfIncidentPower( k ) .(dmuV9 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) C$RAJ irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi y[WYH5&DJ End If TnBG MI,g' vx5o
k1UY End If cevV<Wy+ ]AC!R{H Next k ua|Z`qUyq _ K+V?-= Next j {.D2ON &]yJCzo] Next i ~R?dDL EnableTextPrinting( True ) <,X+`m& v*'iWHCl, 'write out file Ul713Bjz fullfilepath = CurDir() & "\" & fname ~2A$R'x b Open fullfilepath For Output As #1 8@W/43K8- Print #1, "GRID " & nx & " " & ny FP'u)eU&3 Print #1, "1e+308" :
9?Cm` Print #1, pixelx & " " & pixely Y\g90 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Xq^y<[ !Zyx$2K maxRow = nx - 1 vzyI::f? maxCol = ny - 1 i3 l #~ For rowNum = 0 To maxRow ' begin loop over rows (constant X) K!D_PxV row = "" -90ZI1O` For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) k|$"TFXx; row = row & irrad(colNum,rowNum) & " " ' append column data to row string H8<7# Next colNum ' end loop over columns gLxT6v5wk. J'\eS./w|
Print #1, row ;x3 ]4^ #1jtprc Next rowNum ' end loop over rows d1uG[ Close #1 Y0L5W;iM 3dX=xuQ%/ Print "File written: " & fullfilepath Ef_F#X0# Print "All done!!" bco[L@6G$ End Sub 8MeO U Xc9p;B>^Ts 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 17n+4J] / 8WpX j""y2c1 找到Tools工具,点击Open plot files in 3D chart并找到该文件 }[KDE{,V tJh3$K\ ;vI*ThzdD 打开后,选择二维平面图: 1O]5/Eu ezg^5o;
|