-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-26
- 在线时间1915小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 CtC`:!Q H/@M 成像示意图 ^ ]6
80h 首先我们建立十字元件命名为Target mBpsgm:g^ <Z_wDK/UR 创建方法: <zDw&s2 |B{$URu 面1 : |`(?<m 面型:plane evmEX <N 材料:Air DKVt8/vq 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ]}l+ !NV< 9+is?Pj 5#9Wd9LP 辅助数据: d-N"m I- 首先在第一行输入temperature :300K, @+CSY-g$ emissivity:0.1; Q@ ) rw0$ 1=q?#PQ 5KH'|z 面2 : 0h@%q;g 面型:plane 6kF
uMtjc 材料:Air zloaU 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 2gD{Fgf@N b%!`fn-; (Y.$wMB 位置坐标:绕Z轴旋转90度, }AsF\W+5 &!YH"{b CMG`'gT 辅助数据: 'Rh>w=wB' hTtp-e` 首先在第一行输入temperature :300K,emissivity: 0.1; @H# kvYWmn ep}/dBg BL5 Target 元件距离坐标原点-161mm; -R$FJbId !Ub?eJp &G,o guo 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ~Yz/t 2#:]%y;\ XX[Wwt 探测器参数设定: j_WF38o qp_ `Fj: 在菜单栏中选择Create/Element Primitive /plane $}UJs <-F YlcF-a ^R'!\m|FR q\HBAry ]ifHA# z`~ ,WDAcQ8\ 元件半径为20mm*20,mm,距离坐标原点200mm。 -0r"#48(% MW[ 4^ 光源创建: 4b(irDT3F So 6cm|{ 光源类型选择为任意平面,光源半角设定为15度。 KW6" +,Th Y6Qb_X: 3N%Evo 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ^%X\ }>< ~M^7qO 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 Q
fyERa\rb KP7RrgOan&
DPxu3,Y 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 x0;}b-f pVa|o&, 创建分析面: RHAr[$ x-#9i R"t$N@ZFb 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 5'-9?-S" Iy4MMU x15tQb+ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 wXZY5-h4 #:zPpMAl FRED在探测器上穿过多个像素点迭代来创建热图 DJ[#H [k=9 +0p FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 eC`f8=V 将如下的代码放置在树形文件夹 Embedded Scripts, <({eOh5N VdOd:w h> %JG'DV 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 `LU,uz ;<@O^_+ 绿色字体为说明文字, %R"/`N9R, #R PB;#{ '#Language "WWB-COM" zwrZ^ 'script for calculating thermal image map GO3YXO33 'edited rnp 4 november 2005 "#k(V=y #*M$,ig 'declarations <~X6D? Dim op As T_OPERATION cH-Zj Dim trm As T_TRIMVOLUME nJ})6/gK Dim irrad(32,32) As Double 'make consistent with sampling 1p<?S}zg@ Dim temp As Double sx^? Iw,N' Dim emiss As Double D"f(nVEr Dim fname As String, fullfilepath As String 5nq-b@?L W}_}<rlF 'Option Explicit *dTf(J wSyu^KDz Sub Main 0i`Zy! 'USER INPUTS @N{Ht)1r nx = 31 Qu\l$/ ny = 31 1O7ss_E numRays = 1000 (3r,PS@Qq@ minWave = 7 'microns 7Ej#7\TB] maxWave = 11 'microns F X2`p_ sigma = 5.67e-14 'watts/mm^2/deg k^4 3'e 4{ fname = "teapotimage.dat" =xet+;~ji &Q+V I/p Print "" %9Fg1LH42r Print "THERMAL IMAGE CALCULATION" QaBXzf
/iuNdh detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 A3pQ?d[ 1H
6Wrik Print "found detector array at node " & detnode qM !q,Q \^LR5S& srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Ud*[2Oi|R 8|Y^Jn\p5u Print "found differential detector area at node " & srcnode *bSG48W(" N|vJrye GetTrimVolume detnode, trm S$On$]~\" detx = trm.xSemiApe IfCqezd dety = trm.ySemiApe o9\m?~g!E area = 4 * detx * dety {[~,q\M[ Print "detector array semiaperture dimensions are " & detx & " by " & dety %~2m$#) Print "sampling is " & nx & " by " & ny bQjHQ"G BniVZCct 'reset differential detector area dimensions to be consistent with sampling |YFlJ2w pixelx = 2 * detx / nx 0^Cx`xdX: pixely = 2 * dety / ny #7ZBbq3= SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Tou~U[V+ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 6D(m8 kl"Cm`b) 'reset the source power Qf]!K6eR SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) /U]5#'i Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" U .(_n %BLKB%5 'zero out irradiance array QjU"|$ For i = 0 To ny - 1 >C3 9`1 For j = 0 To nx - 1 0pOha(,~ irrad(i,j) = 0.0 n#/m7 Next j u;g}N'" Next i 1<|I[EI 0O4mA&&!oK 'main loop ~A4WuA EnableTextPrinting( False ) X5[sw;rk rRel\8 ypos = dety + pixely / 2 &,7(Wab For i = 0 To ny - 1 N*>; ' xpos = -detx - pixelx / 2 _Y {g5t ypos = ypos - pixely ,u2<()`8D V=~dgy~@ EnableTextPrinting( True ) RUu'9#fq Print i ^yTN(\9 EnableTextPrinting( False ) Yg.u8{H ?K 0V#aq |-D. For j = 0 To nx - 1 s.
[${S6O MsQS{ok+ xpos = xpos + pixelx e?WR={ -wRzMT19MG 'shift source 8
K!a:{ LockOperationUpdates srcnode, True wf1DvsJQl GetOperation srcnode, 1, op iwJgU
b op.val1 = xpos xE_[=7= op.val2 = ypos
.Oh$sma1 SetOperation srcnode, 1, op ;7>--_?= LockOperationUpdates srcnode, False XZGyh X7 U+
=q_ < raytrace 6I0MJpLW DeleteRays 17d$gZ1O: CreateSource srcnode I|H mbTXa TraceExisting 'draw k$!&3Rh qa0Zgn5 q 'radiometry dM$S|,H For k = 0 To GetEntityCount()-1 ZT#G:a If IsSurface( k ) Then Y~!@ temp = AuxDataGetData( k, "temperature" ) r_m&Jl@4 emiss = AuxDataGetData( k, "emissivity" ) 3RUB2c4 If ( temp <> 0 And emiss <> 0 ) Then PV2904 ProjSolidAngleByPi = GetSurfIncidentPower( k ) ntejFy9_ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) i^l;PvIF irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi FC#Qtu~J End If l ,.;dw ."O(Ig[ End If ~fe0Ba4 f9$q.a* Next k J:a^'' }s[/b"%y Next j [>86i m/AN*`V Next i x!+a,+G EnableTextPrinting( True ) xj<SnrrC]u G'Y|MCKz> 'write out file VbYapPu4b! fullfilepath = CurDir() & "\" & fname 2RCnk&u Open fullfilepath For Output As #1 l?;S>s*\? Print #1, "GRID " & nx & " " & ny tJP(eaqZ Print #1, "1e+308" 14R))Dz" Print #1, pixelx & " " & pixely .^23qCs Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 A5b}G Ih0GzyU*4 maxRow = nx - 1 mN`a]L' maxCol = ny - 1 hGeRM4zVZZ For rowNum = 0 To maxRow ' begin loop over rows (constant X) 5cU8GgN` row = "" P$bo8* For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) `*a,8M% row = row & irrad(colNum,rowNum) & " " ' append column data to row string 7vFqO; Next colNum ' end loop over columns T"jl;,gr]J OZ6%AUot Print #1, row oS4ag u(R`}C?P' Next rowNum ' end loop over rows ;b^@o,= Close #1 +j,;g#d Sa0\93oa Print "File written: " & fullfilepath -_3.]o/J Print "All done!!" 3A5" % End Sub jv ";?*I6. oaHBz_pg 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: `W9_LROD /[OMpP =ZQIpc 找到Tools工具,点击Open plot files in 3D chart并找到该文件 n!p&.Mt .o>QBYpTw/ '&Ku Ba 打开后,选择二维平面图: Z&%61jGK LM}si|
|