-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2026-01-23
- 在线时间1915小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 2*vOo^f lJi'%bOi 成像示意图 i@6MO'y 首先我们建立十字元件命名为Target L5(rP\B j?i Ur2 创建方法: S5@/;T @b=tjQO_ 面1 : 8X!UtHml 面型:plane yHurt>8b[ 材料:Air x1Q}B 孔径:X=1.5, Y=6,Z=0.075,形状选择Box v'a]SpE5 GfUIF]X :4}?%3&; 辅助数据: @/lLLGrZ" 首先在第一行输入temperature :300K, /R^HRzTO emissivity:0.1; F
71 @CP"AYB # 7I/Sfmqy"O 面2 : Fm3-Sn|Po 面型:plane 82&JYx 材料:Air p)f OAr 孔径:X=1.5, Y=6,Z=0.075,形状选择Box V`TXn[7 X"(!\{ySI; ?;0=>3p*0 位置坐标:绕Z轴旋转90度, 4\pi<#X GIWgfE? Q
nDy mVF 辅助数据: I}puN! N:)`+} 首先在第一行输入temperature :300K,emissivity: 0.1; z tHGY K8pfk*NZ_@ -3/:Dk`3 Target 元件距离坐标原点-161mm; { Y|h;@j$ Z_iu^Q Q`7!~qV0= 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 1(gb-u0 R)I 8 ) r[eZV" 探测器参数设定: [@";\C_I #KXaz Zu" 在菜单栏中选择Create/Element Primitive /plane 1T%Y:0 PkLRQ} % rdW:
\u2K?wC Oe'Nn250
'# "Z$ 元件半径为20mm*20,mm,距离坐标原点200mm。 J@oGAa%3) M`FsKK` 光源创建: 5w gtc~ la8se=^ 光源类型选择为任意平面,光源半角设定为15度。 H #E
MKJ9PcVi t+qLQY}= 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 blid* @- DHbLS3- 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 +IuV8XT2( 8!TbJVR BgA\l+ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ba%[! 29Kuq ;6 创建分析面: =oluw|TCe7 A~ '2ki5$g 1UJ(._0hR 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Bo`fy/x#
E,xCfS) ~r]ZD) 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 !__f !.+iA=K{ FRED在探测器上穿过多个像素点迭代来创建热图 <eO 7b6_ u4IgPCTZ+ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 3a:(\:?z 将如下的代码放置在树形文件夹 Embedded Scripts, wC{=o`v ,'Y*e[ kmy?`P10(z 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 m,K\e u7^Z7;
J 绿色字体为说明文字, cK(}B_D$ |O+R%'z'< '#Language "WWB-COM" XC?H 'script for calculating thermal image map A{>]M@QC2 'edited rnp 4 november 2005 Fy`VQ\%7t c[sC 2 'declarations ^M,t`r{ Dim op As T_OPERATION k|BY 7C Dim trm As T_TRIMVOLUME }C/}8< Dim irrad(32,32) As Double 'make consistent with sampling 3 V8SKBS Dim temp As Double \z:p"eua z Dim emiss As Double x)BG%{h Dim fname As String, fullfilepath As String csRba;Z[
U^VFHIm 'Option Explicit 6:v8J1G(< 0w< iz;30 Sub Main k,X)PQc 'USER INPUTS aMm`G}9n nx = 31
1ikkm7 ny = 31 s<E_74q1 numRays = 1000 )09_CC!a minWave = 7 'microns [mw#a9 maxWave = 11 'microns '(+l77G sigma = 5.67e-14 'watts/mm^2/deg k^4 W;~^3Hz6 fname = "teapotimage.dat" U,RIr8 G mTZlrkT Print "" 8}xU]N#EV Print "THERMAL IMAGE CALCULATION" JR
2v}b DQ9 <N~l detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 @a%,0Wn %04>R'mN Print "found detector array at node " & detnode I #1_ WVy"MD srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 fN0D\Mu!)b F:hJ^:BP Print "found differential detector area at node " & srcnode +(PtOo. js;IUSj. GetTrimVolume detnode, trm YlPZa3\ detx = trm.xSemiApe d`({z]W; dety = trm.ySemiApe _[0Ugfz( area = 4 * detx * dety wKk Print "detector array semiaperture dimensions are " & detx & " by " & dety h=`rZC
Print "sampling is " & nx & " by " & ny A.35WGu&: b.YQN' 'reset differential detector area dimensions to be consistent with sampling o|^0DYb pixelx = 2 * detx / nx 86R}G/>>e pixely = 2 * dety / ny @VxBURZ? SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False u:g(x+u4: Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 O~'1)k> _AVCh)Zb 'reset the source power C$ZY=UXz!T SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) BOt\"N Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" `q$DNOrS AuO%F
YKY 'zero out irradiance array 8P5xRUkV For i = 0 To ny - 1 }pTw$B For j = 0 To nx - 1 27u$VHwb irrad(i,j) = 0.0 lD/+LyTa Next j 2"BlV*\lS Next i <9@VY .rxc"fR4_ 'main loop Sn0?_vH4 EnableTextPrinting( False ) yMo@ka=v fF-V=Zf5 ypos = dety + pixely / 2 )h+JX8K)l For i = 0 To ny - 1 @M,KA {e xpos = -detx - pixelx / 2 )}?dYk ypos = ypos - pixely S G43} U$Ew,v< EnableTextPrinting( True ) ^e&,<+qY Print i 8d Ftp3( EnableTextPrinting( False ) NA0hQGN} ceZt%3=5 rWbL_1Eq For j = 0 To nx - 1 5O*+5n
JmY"Ja,& xpos = xpos + pixelx N>]u;HjH _10#rucr 'shift source YI\^hP# LockOperationUpdates srcnode, True EEkO[J[= GetOperation srcnode, 1, op -P.)
0d( op.val1 = xpos YVs{\1|' op.val2 = ypos 4pc=MR SetOperation srcnode, 1, op 8,B9y D LockOperationUpdates srcnode, False 2<.}]yi 4<LRa=XT$ raytrace rNgE/=X DeleteRays BA-n+WCWJ
CreateSource srcnode &VQwuO TraceExisting 'draw -nHc52, qa%g'sB-b 'radiometry 2t(E+^~ For k = 0 To GetEntityCount()-1 cDAO5^ If IsSurface( k ) Then W?6RUyMC$T temp = AuxDataGetData( k, "temperature" ) VF[]E0=u6 emiss = AuxDataGetData( k, "emissivity" ) nk-?$'i9q If ( temp <> 0 And emiss <> 0 ) Then bgEUG ProjSolidAngleByPi = GetSurfIncidentPower( k ) pD &\Z~5T frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) =(hEr=f>7 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi IP/
zFbc End If ~vBmW_j YD7i6A End If i
wQ'=M U!^\DocAY Next k 2o?!m2W ,W7\AY07] Next j 3($%A GKJ W}.;]x%1B Next i bgL`FW i3 EnableTextPrinting( True ) z(K[i?& h+}`mi 'write out file 7AHEzJh" fullfilepath = CurDir() & "\" & fname nlw(U3@7 Open fullfilepath For Output As #1 fQ'P2$ Print #1, "GRID " & nx & " " & ny D=o9+5Slw Print #1, "1e+308" 4Z1-RS Print #1, pixelx & " " & pixely a]BnHLx Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 gO1`zP!9Z j*rra maxRow = nx - 1 Tg)Fr) maxCol = ny - 1 )9{?C4NQ For rowNum = 0 To maxRow ' begin loop over rows (constant X) `lqMifD row = "" <0k(d:H- For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) %AXa(C\1 row = row & irrad(colNum,rowNum) & " " ' append column data to row string i~ PN(h Next colNum ' end loop over columns ?&pjP,a #rF|X6P Print #1, row 4:y;<8+j\ W9t%:wF Next rowNum ' end loop over rows o_vK4%y( Close #1 O>lF{yO0` }<9*eAn` Print "File written: " & fullfilepath z2A7:[ Print "All done!!" w J/k\ End Sub n$F&gx'^ Jou~>0,/j 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: HhH[p E FzXVNUMP ;.'2ZNt2 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ]SFB_5Gb %j^[%&pT #3f\,4K5 打开后,选择二维平面图: # G0jMQ dNB56E)5`J
|