-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-02
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 74KR.ABd : Z3]Dk;y 成像示意图 {=P}c:iW 首先我们建立十字元件命名为Target ,WS{O6O7 U
H6
Jvt 创建方法: qK&h$;~*y vVbS
4_ 面1 : ,.uI> 面型:plane *47%|bf` 材料:Air c+UZ UgP 孔径:X=1.5, Y=6,Z=0.075,形状选择Box %lGg}9k' W)u9VbPk[ f5#VU7=1F2 辅助数据: 4?aNJyV%& 首先在第一行输入temperature :300K, snny!
0E\m emissivity:0.1; XJ?zP=UK 28 ;x5m)N q&: t$tSS 面2 : L^jhr>-"; 面型:plane 0C0ld!>r 材料:Air l>@){zxL 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;VgB! bm(.(0MI ZJ|&t 位置坐标:绕Z轴旋转90度, b!z=: h.aXW]]}(P hKN/&P^ 辅助数据: uBo~PiJ2" oMF[<Xf 首先在第一行输入temperature :300K,emissivity: 0.1; j$khGR! ljk,R
G ]"U/3dL5 Target 元件距离坐标原点-161mm; ++d[YhO lFc^y /m+.5Qz9)@ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 S| l%JM^ I<$m% w;V+)r?w 探测器参数设定: UAtdRVi]M }j|YX&`p 在菜单栏中选择Create/Element Primitive /plane SHe547X1 :74G5U8% >2LlBLQ ~|=G3(I[ 8,?*eYNjb gqACIXR 元件半径为20mm*20,mm,距离坐标原点200mm。 vA0f4W 8+ ag"Nf-o/Y 光源创建: sm;\;MP*yH -|/*S]6kK 光源类型选择为任意平面,光源半角设定为15度。 m~vEandm !+ ??3-q MK, $# 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 jg=}l1M" >SHW 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 5@{~830 (Z at|R.F Ip;;@o&D 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 O}q(2[*i >twog}% 创建分析面: "o$)z'q B3V+/o6 H@ .1cO 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ~DUOL~E {$)pkhJ Oftjm
X_ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ]YwvwmZ )r:gDd#/X FRED在探测器上穿过多个像素点迭代来创建热图 'Rw*WK =1% < FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 1Et{lrgh
f 将如下的代码放置在树形文件夹 Embedded Scripts, Xm[Cgt_? q%8Ck)xz #l-/!j 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 {A8w~3F km9@*@) 绿色字体为说明文字, <'z.3@D >Mk#19j[/ '#Language "WWB-COM" -bQi4 'script for calculating thermal image map uZ(,7>0 'edited rnp 4 november 2005 (t2vt[A6ph TvwkeOS#}7 'declarations A7sva@}W Dim op As T_OPERATION 84M*)cKR~ Dim trm As T_TRIMVOLUME U&SgB[QHO Dim irrad(32,32) As Double 'make consistent with sampling WEk3
4crk Dim temp As Double \xexl1_; Dim emiss As Double gl!F)RdH Dim fname As String, fullfilepath As String
:A]CD( PW GNUNc 'Option Explicit 0;x<0P xY1@Ja Sub Main ?4MZT5 . 'USER INPUTS #]FJx nx = 31 %3 VToj@`> ny = 31 /7p1y v numRays = 1000 oq9gG)F minWave = 7 'microns R'x^Y" maxWave = 11 'microns $o>6Io|D sigma = 5.67e-14 'watts/mm^2/deg k^4 uy
oEMT#u fname = "teapotimage.dat" &=hkB9
; vy1N,8a Print "" Q(ec>+oi Print "THERMAL IMAGE CALCULATION" :,Ad1( -{s9PZ3~_ detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 [rtMx8T .V?>Jhok Print "found detector array at node " & detnode %n:ymc
$} uE:`Fo=y srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 yc3i> w` H5?H{ Print "found differential detector area at node " & srcnode ]ppws3*Pa V.Qy4u7m GetTrimVolume detnode, trm z)XIA)i6 detx = trm.xSemiApe fGMuml?[ e dety = trm.ySemiApe /^9yncG;> area = 4 * detx * dety DYaOlT(rE Print "detector array semiaperture dimensions are " & detx & " by " & dety /H<tv5mXJ Print "sampling is " & nx & " by " & ny [eO6H2@=z RL~]mI!U 'reset differential detector area dimensions to be consistent with sampling anxwK47 pixelx = 2 * detx / nx V( SRw pixely = 2 * dety / ny gaxxB]8 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False TM^.y
Y Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 (`FY{]Wz! eCXw8 'reset the source power (G`O[JF SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) vFgX]&bE Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ?D S|vCae |FxTP&8~ 'zero out irradiance array cux<7#6af For i = 0 To ny - 1 dEG1[QG For j = 0 To nx - 1 $qy ST irrad(i,j) = 0.0 V"R ,omh Next j YKG}4{T Next i kCZxv"Ts *-.,QpgTX 'main loop w>uo-88 EnableTextPrinting( False ) vK,.P:n O>kM2xw ypos = dety + pixely / 2 AG(Gtvw For i = 0 To ny - 1 Q<d|OX xpos = -detx - pixelx / 2 %P`w"H,v3# ypos = ypos - pixely $7'KcG !0!r}#P EnableTextPrinting( True ) "%]vSr Print i Vf] ;hm EnableTextPrinting( False ) XD$;K$_7 +EE(d/f 9,G94.da For j = 0 To nx - 1 .YxcXe3# Spt;m0W90 xpos = xpos + pixelx X8212[7 +N:=|u.g 'shift source "=vH,_"Ql LockOperationUpdates srcnode, True Z}s56{!. GetOperation srcnode, 1, op |tqYRWn0 op.val1 = xpos bbxo!K
m" op.val2 = ypos ~e#QAaXD#5 SetOperation srcnode, 1, op .rs\%M|X LockOperationUpdates srcnode, False iK3gw<g k~HS_b*]d raytrace QTT2P(Pz DeleteRays y(h"0A1lW CreateSource srcnode pA?2UZ TraceExisting 'draw %Tm8sQ)1 xI(Y}> 'radiometry @'fWS^ ;& For k = 0 To GetEntityCount()-1 rugR>&mea If IsSurface( k ) Then N@G~+GCxL temp = AuxDataGetData( k, "temperature" ) wwVg'V; emiss = AuxDataGetData( k, "emissivity" ) n>aH7 If ( temp <> 0 And emiss <> 0 ) Then Os"T,`F2s ProjSolidAngleByPi = GetSurfIncidentPower( k ) E
(bx/f frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ?fmW'vs irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 8xQjJ End If J'#R9NO< UTph(U# End If XYdr~/[HPy 3~6,fTMz{ Next k 6BIr{SY *Ph@XkhU Next j YqNI:znm- v!77dj 6I Next i M&~cU{9c EnableTextPrinting( True ) 0o&B 7N [&h%T;!Qii 'write out file A&/VO$Y9wp fullfilepath = CurDir() & "\" & fname bc(b1u? Open fullfilepath For Output As #1 NQ qq\h Print #1, "GRID " & nx & " " & ny tX7TP( Print #1, "1e+308" i$W
E1- Print #1, pixelx & " " & pixely MR-cO Pn Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 WuUT>omH 1G62Qu$O maxRow = nx - 1 }j6<S-s~ maxCol = ny - 1 6 Z7J<0 For rowNum = 0 To maxRow ' begin loop over rows (constant X) %;qDhAu0 row = "" 9Ls=T=96 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) m0_B[dw row = row & irrad(colNum,rowNum) & " " ' append column data to row string &p6^
Next colNum ' end loop over columns fw+ VR.#2H 9G"-~C"e3 Print #1, row (043G[H'. B#Z-kFn@ Next rowNum ' end loop over rows ruTj#tWSo Close #1 ' &j]~m ![CF
>:e Print "File written: " & fullfilepath \(a!U,]LM Print "All done!!" ~u+|NtF End Sub bf&k:.v'8 h(Ccm44 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: |{JJ2c\W qk=0ovUzg Kt/Wd 找到Tools工具,点击Open plot files in 3D chart并找到该文件 8bP4
Jk3V]u M+Jcgb] 打开后,选择二维平面图: bJ6@
B< PML+$
|