切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1299阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6389
    光币
    26090
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 =_pwA:z"A  
    WZFH@I28  
    成像示意图
    y' xF0  
    首先我们建立十字元件命名为Target :q+N&j'3  
    ?Zcj}e.r  
    创建方法: w+AuMc  
    #a9_~\s  
    面1 : $v27]"]  
    面型:plane +,flE= 5]s  
    材料:Air ;+Y i.Q/\  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box =-jD~rN4;P  
    8cVzFFQP  
    kv?|'DN  
    辅助数据: "="O >  
    首先在第一行输入temperature :300K, v}uJtBG(  
    emissivity:0.1; n2ndjE$  
    ", B'k  
    BzbDZV  
    面2 : JW+*d`8Z[  
    面型:plane _ PWj(});  
    材料:Air faJM^u  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box {aj/HFLNY  
    z&+ zl6  
    .y4&rF$n  
    位置坐标:绕Z轴旋转90度, pSAR/':eg  
    B~gV'(9g  
    Hi,t@!!  
    辅助数据: d'HOpJE  
    (M t5P  
    首先在第一行输入temperature :300K,emissivity: 0.1; d@kc[WLD^  
    \0*l,i1&  
    N:BL=} V  
    Target 元件距离坐标原点-161mm; ,=%nw]:  
    6Wf^0ok  
    e%6{ME 3  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Z=$  T1|  
    2qj{n+  
    LtKB v 4  
    探测器参数设定: x8N|($1  
    %w"nDu2Gcv  
    在菜单栏中选择Create/Element Primitive /plane >|udWd^$3  
    \cySWP[  
    \2!!L=&4G  
    |:q/Dt@  
    s: |M].  
    3C^1f rF  
    元件半径为20mm*20,mm,距离坐标原点200mm。 j$@tK0P  
    _a'A~JY  
    光源创建: #}yTDBt  
    H7&xLYQ2  
    光源类型选择为任意平面,光源半角设定为15度。 (H#M<N  
    T{Zwm!s  
    =!.m GW-Q}  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 g1[&c+=U`P  
    BGWAh2w6  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ;u-4KK  
    Zk`#VH  
    rU\[SrIhz  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 trYTs,KV  
    _" N\b%CkO  
    创建分析面: }DIF%}UK\  
    $:vkX   
    S%6U~@hig  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Fr:5$,At7-  
    =nRuY '  
    u<Xog$esu  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 's%q  
    %'ZN`XftG  
    FRED在探测器上穿过多个像素点迭代来创建热图 hC<14  
    b:MG@Hxc  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ]7/gJ>g,  
    将如下的代码放置在树形文件夹 Embedded Scripts, NGTe4Crx  
    AtHS@p  
    3LK%1+)4  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 96ZdM=  
    h4`9Cfrq,  
    绿色字体为说明文字, Zhi})d3l  
    "4 k-dj  
    '#Language "WWB-COM"  ?J&)W,~  
    'script for calculating thermal image map {NQo S"  
    'edited rnp 4 november 2005 .9M.|  
    IgX4.]W5  
    'declarations - q@69q  
    Dim op As T_OPERATION q-&P=Yk  
    Dim trm As T_TRIMVOLUME v'ay.oVzw  
    Dim irrad(32,32) As Double 'make consistent with sampling |nxdB&1n  
    Dim temp As Double ok0X<MR!I  
    Dim emiss As Double TQ'E5^  
    Dim fname As String, fullfilepath As String optBA3@e!  
    j\2[H^   
    'Option Explicit 32>x^>G=>  
    |E^|X!+9  
    Sub Main IN!02`H  
        'USER INPUTS vDE |sT  
        nx = 31 Ps>&"k$T  
        ny = 31 Z^_>A)<s<  
        numRays = 1000 (B#(Z=  
        minWave = 7    'microns u-><}OVf~  
        maxWave = 11   'microns Ci\? ^  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 k0ItG?Cv  
        fname = "teapotimage.dat" 2Rptxb_@  
    VifmZ;S@Y  
        Print "" w|Qd`  
        Print "THERMAL IMAGE CALCULATION" U^$E'Q-VK  
    n0fRu`SNV  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 =/Juh7[C  
    |63Y >U"  
        Print "found detector array at node " & detnode Lb~\Y n'z  
    V SAafux  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ukihx?5  
    >t #\&|9I  
        Print "found differential detector area at node " & srcnode "$)yB  
    Y!n'" *J>  
        GetTrimVolume detnode, trm dR[o|r  
        detx = trm.xSemiApe kL;t8{n  
        dety = trm.ySemiApe AQh["1{yJ  
        area = 4 * detx * dety yT:!%\F9  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety ^H=o3#P~L  
        Print "sampling is " & nx & " by " & ny !0jq6[&  
    /hci\-8N~  
        'reset differential detector area dimensions to be consistent with sampling s]x2DH+_  
        pixelx = 2 * detx / nx FfYsSq2l  
        pixely = 2 * dety / ny %b<%w    
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False [.3sE  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 fM:80bn L+  
    WZ* &@|w  
        'reset the source power 4ftj>O  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 2"M_sL  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" pqfT\Kb>  
    fsI`DjKi)  
        'zero out irradiance array A-0m8<  
        For i = 0 To ny - 1 _85E=  
            For j = 0 To nx - 1 3"tg+DncC  
                irrad(i,j) = 0.0 0w}{(P;  
            Next j &kx\W)  
        Next i uI9lK  
    (`mOB6j  
        'main loop Sf/W9Jw  
        EnableTextPrinting( False ) cVg$dt  
    4vGbG:x  
        ypos =  dety + pixely / 2 :SeLkQC  
        For i = 0 To ny - 1 2Q 3/-R  
            xpos = -detx - pixelx / 2 FB!z#Eim  
            ypos = ypos - pixely 0 r3N^_}  
    }wL3mVz  
            EnableTextPrinting( True ) G>j "cj  
            Print i W_D%|Ub2X  
            EnableTextPrinting( False ) ,O9`X6rh'  
    STRyW Ml  
    c#x7N9;"!  
            For j = 0 To nx - 1 #tP )-ww  
    P.1Qc)m4  
                xpos = xpos + pixelx -;S3|  
    u2om5e:  
                'shift source w6v1 q:20  
                LockOperationUpdates srcnode, True 3H <`Z4;  
                GetOperation srcnode, 1, op g4T3?"xMB_  
                op.val1 = xpos 4sQ~&@[Q+  
                op.val2 = ypos Oo$%Yh51~  
                SetOperation srcnode, 1, op +}Auk|>Dc  
                LockOperationUpdates srcnode, False G`WzJS*}v  
    `7$Oh{67  
    raytrace dr>]+H=3E  
                DeleteRays  l58l  
                CreateSource srcnode EKJH_!%  
                TraceExisting 'draw C7T;;1P?  
    r 3?5'S`  
                'radiometry {cX7<7N  
                For k = 0 To GetEntityCount()-1 "pl[(rc+u  
                    If IsSurface( k ) Then @OrXbG7&>#  
                        temp = AuxDataGetData( k, "temperature" ) BiI{8`M!$x  
                        emiss = AuxDataGetData( k, "emissivity" ) &U8 54  
                        If ( temp <> 0 And emiss <> 0 ) Then -ca]Q|m8  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) B=^2g}mgK  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ,Zr  YJ<  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi R+x%r&L5F  
                        End If { <~s&EPd  
    Je@p5(f  
                    End If Mj,2\ijNM  
     !zF4 G,W  
                Next k Dt (:u,%  
    }]Qmt5'NI  
            Next j WMRYT"J?N]  
    kKNk2!z`M  
        Next i >n#g9vK  
        EnableTextPrinting( True ) ByC1I.B`  
    hE9'F(87a  
        'write out file 8o%E&Jg:  
        fullfilepath = CurDir() & "\" & fname upZYv~Sa  
        Open fullfilepath For Output As #1 Py}!C@e  
        Print #1, "GRID " & nx & " " & ny |ORmS& 7  
        Print #1, "1e+308" 5J?bE?X  
        Print #1, pixelx & " " & pixely ~7KynE  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 {8ld:ZP  
    8UjCX[v  
        maxRow = nx - 1 mJ7 `.  
        maxCol = ny - 1 dawVE O  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ^?81.b|qb  
                row = "" VuP#b'g=|]  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 3T Yo  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ZY~zpC_  
            Next colNum                     ' end loop over columns LS*{]@8q  
    =]2 b8  
                Print #1, row eimA *0Cq  
    ?Aj\1y4L1  
        Next rowNum                         ' end loop over rows O1l4gduN|i  
        Close #1 ,dGFX]P  
    l;"ub^AH  
        Print "File written: " & fullfilepath W ??;4  
        Print "All done!!" }A)^XZ/  
    End Sub }7f 1(#{7  
    v3iDh8.__  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ,APGPE}I[  
    z{7,.S u  
    7"h=MB_  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 UEx(~>  
      
    tF{{cd  
    bdNY7|j`  
    打开后,选择二维平面图: \= )[  
    x`/m>~_  
     
    分享到