-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-02
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 L7Skn-*tnA dd4yS}yBlR 成像示意图 kP;Rts8JD 首先我们建立十字元件命名为Target VJr?`
eY4 @$(4;ar 创建方法: 'm/b+9?. =
)(; 面1 : \-sDRW 面型:plane qvk?5#B 材料:Air q(uu;l[ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box HVu_@[SYR3 t5e(9Yhj vB.LbYyF 辅助数据: {h@R\bU 首先在第一行输入temperature :300K, cIgFSwQ4 emissivity:0.1; HDy[/7" y5R6/*;N. 45-pJf8F 面2 : ,[Ytl 面型:plane ;wvVhQ 材料:Air i,bFe&7J 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Z3#3xG5pl (iS94}-) #4"\\ 位置坐标:绕Z轴旋转90度, Y+G4: 2+?M(=4 xSLN 辅助数据: \{~x<<qFd i.byHz?/ 首先在第一行输入temperature :300K,emissivity: 0.1; WnIh (
0 ].1R~7b ;CU3CLn Target 元件距离坐标原点-161mm; ke/o11LP !A<?nz
Uv EI f~>AI 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 dB1bf2'b# 'vCFT(C- b1s1;8 Q 探测器参数设定: *~-~kv4- r<bg->lX 在菜单栏中选择Create/Element Primitive /plane dch(HB}[ i-/'F L:%h]- ;>Kxl}+R pWQ?pTh 5B@&]-'~ 元件半径为20mm*20,mm,距离坐标原点200mm。 l[h??C` Li7/pUq>}! 光源创建: Q04N 5qFqH 光源类型选择为任意平面,光源半角设定为15度。 &d~6MSk 9RAN$\AKy p- Q1abl 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 `[`eg<xj EnfSVG8kB8 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 vmk
c]DC G2e m>W_n ;%Z)$+Z_)< 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 xOEj+%M %3~jg 创建分析面: s3t{freM = [:ruE \bfNki 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 /dtFB5Z"w .+ _x|?' v/CXX<^U( 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 M(5l Su H'2pmwk FRED在探测器上穿过多个像素点迭代来创建热图 *78TT\q< J/)Q{*`_ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 [,lBY-Kz+ 将如下的代码放置在树形文件夹 Embedded Scripts, zvSfW#
* gl HHr 0naegy?, 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 C~kw{g+| Pc1vf] 绿色字体为说明文字, ,Y}HP3
G;`+MgJ) '#Language "WWB-COM" DQwbr\xy\ 'script for calculating thermal image map >a]{q^0 'edited rnp 4 november 2005 <sn^>5Ds ^Z;5e@S 'declarations [_CIN Dim op As T_OPERATION 3M/kfy Dim trm As T_TRIMVOLUME 4R}2H>VV% Dim irrad(32,32) As Double 'make consistent with sampling @_0XK)pW Dim temp As Double UDGVq S!,E Dim emiss As Double 4fp}`U Dim fname As String, fullfilepath As String 0(HUy`]> Sh=z 'Option Explicit j#.Aiy:, 3-z57f,}6~ Sub Main !$Nh:(>: 'USER INPUTS Wc#4%kT nx = 31 1;S@XC> ny = 31 7oK!!Qd^w numRays = 1000 "){"{~ minWave = 7 'microns >'7Icx maxWave = 11 'microns lg~Gkd6 sigma = 5.67e-14 'watts/mm^2/deg k^4 `BF +)fs fname = "teapotimage.dat" arET2(h :[,-wZiT~6 Print "" 8FU8E2zo Print "THERMAL IMAGE CALCULATION" `Z0FQ( r_ <U$x')W detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 b-\ 1D;] 9x23## s Print "found detector array at node " & detnode |!,;IoZ ?7*.S Lt srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 /*i[MB =YOq0 Print "found differential detector area at node " & srcnode PFu{OJg& Ja"?Pb GetTrimVolume detnode, trm VMXccT9i! detx = trm.xSemiApe fl9`Mgu dety = trm.ySemiApe YZMSiDv[e area = 4 * detx * dety T1_O~< Print "detector array semiaperture dimensions are " & detx & " by " & dety 8,7^@[bzXx Print "sampling is " & nx & " by " & ny X @RS
/ whxTCI V 'reset differential detector area dimensions to be consistent with sampling ]{s0/(EA pixelx = 2 * detx / nx "m4._4U pixely = 2 * dety / ny 0*]n#+= SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False &N:Iirg Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 8BE] A_X qHaH=g% 'reset the source power ($'W(DH4 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) c#(Hh{0 Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" X6*4IE X|y(B%: 'zero out irradiance array G5vp(%j
For i = 0 To ny - 1 dhv?36uE For j = 0 To nx - 1 R-LMV irrad(i,j) = 0.0 n+MWny Next j 4Oo{\&( Next i !mHMFwvS cD6S;PSg 'main loop G%iTL"6 EnableTextPrinting( False ) & 6'Rc#\P x<5ARK6\= ypos = dety + pixely / 2 }@x!r=O)I For i = 0 To ny - 1 s|IY
t^ xpos = -detx - pixelx / 2 *IX<&u# ypos = ypos - pixely _Ne fzZWUJ !6!Gx: EnableTextPrinting( True ) )G#mC0?PV Print i =' uePM") EnableTextPrinting( False ) *:bexD H bd]9kRq1K 0vX4v)-^u For j = 0 To nx - 1 >3ax `8 NNt
n xpos = xpos + pixelx qG@YNc mww<Xm' 'shift source vjjVZ LockOperationUpdates srcnode, True \~RDvsSD GetOperation srcnode, 1, op ZDg(D" op.val1 = xpos :*f 2Bn op.val2 = ypos .7]P-]uOZ SetOperation srcnode, 1, op 3xT9/8* LockOperationUpdates srcnode, False b9-IrR4h <d @9[]
raytrace /~MH]Gh DeleteRays
N=AHS CreateSource srcnode 2n)?)w]!M TraceExisting 'draw KL3Z( h PL]B_< 'radiometry
C];P yQS For k = 0 To GetEntityCount()-1 {`QA.he. If IsSurface( k ) Then )/?H]o$NU temp = AuxDataGetData( k, "temperature" ) c/Xg ARCO emiss = AuxDataGetData( k, "emissivity" ) ;$WHTO( If ( temp <> 0 And emiss <> 0 ) Then D/?Ec\t ProjSolidAngleByPi = GetSurfIncidentPower( k ) =:aJZ[UU<2 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 0z'GN#mT5 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ]}dQ~lOE End If XeX"IhgS>E DmpT<SI+! End If #=t/wAE y: Q_U.J0 Next k y{S8?$dU$: "$XX4w
M Next j RWc<CQcL" -QroT`gy Next i .4p3~r?=S EnableTextPrinting( True ) kk%3 2(By ;xZjt4M1 'write out file '`3#FCg fullfilepath = CurDir() & "\" & fname )rq |t9kix Open fullfilepath For Output As #1 C,An\lsT Print #1, "GRID " & nx & " " & ny PD)"od Print #1, "1e+308" 7~SwNt, Print #1, pixelx & " " & pixely x2rAB5r6 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 *!%lBt{2 +{1.kb
Zq maxRow = nx - 1 &^r>Q`u
maxCol = ny - 1 `&M,B=E For rowNum = 0 To maxRow ' begin loop over rows (constant X) L-T,[;bl row = "" f#=c=e-A For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ovdJ[bO row = row & irrad(colNum,rowNum) & " " ' append column data to row string j-":>}oW2. Next colNum ' end loop over columns ]1|P|Jp nN\H'{Wzd Print #1, row uMJ\ 6RnzT d Next rowNum ' end loop over rows qOwql(vX Close #1 L5-|-PP|; aYWWln Print "File written: " & fullfilepath ^U}k Print "All done!!" H"#ITL End Sub flsejj$ +n)n6}S 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: }d<R
5 qI+2,6
sGI Dwp,d~z 找到Tools工具,点击Open plot files in 3D chart并找到该文件 7l D-|yx w G %W{T$ Mfj82rHg 打开后,选择二维平面图: H$KO[mW} y0%1YY
|