切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 770阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    5279
    光币
    20639
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 ^ ,d!K2`  
    vzd1:'^t  
    成像示意图
    "VRcR  
    首先我们建立十字元件命名为Target :B6hYx  
    8lg $]  
    创建方法: tQ&.;{5[f  
    {+F/lN@  
    面1 : K}L-$B*i  
    面型:plane ~q5"'  
    材料:Air n&jfJgD&g  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box yn)K1f^  
    T;IaVMFG|d  
    ]<V[H  
    辅助数据: !-_0I:m  
    首先在第一行输入temperature :300K, 5IE2&V  
    emissivity:0.1; PV<=wc^  
    Ep>3%{V  
    B\G?dmo  
    面2 : 3&^4%S{/  
    面型:plane R'`q0MoN1  
    材料:Air 0GK<l  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box dgh )Rfp3  
    6sJN@dFA  
     yl0&|Ub  
    位置坐标:绕Z轴旋转90度, w]J9Kv1)-  
    wC+_S*M-K  
    L}T:Y).  
    辅助数据: 1JM EniB+9  
     \09eH[  
    首先在第一行输入temperature :300K,emissivity: 0.1; ^I*</w8  
    F[BJhN*]a  
    3(0k!o0 "  
    Target 元件距离坐标原点-161mm; [p^N].K$  
    iZ}  w>1  
    =ZR9zL=h  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 #  -e  
    ;[V_w/-u  
    EnnT)qos  
    探测器参数设定: <5X?6*Qvr  
    A[`c2v-hF  
    在菜单栏中选择Create/Element Primitive /plane e33j&:O  
    FR&4i" +  
    0*^ J;QGE  
    ZG:#r\a  
    %xF j;U?  
    M0zJGIT~b  
    元件半径为20mm*20,mm,距离坐标原点200mm。 v]SHude{  
    >{?~cNO&  
    光源创建: 4=!SG4~o  
    {|nm0vg`A  
    光源类型选择为任意平面,光源半角设定为15度。 (hWr!(>C4]  
    D!< [\ G  
    $fES06%  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 &/R`\(hEA  
    RZ 4xR  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 cVya~ *  
    ,WSK '  
    wTb7 xBI  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 H'7AIY }  
    k`FCyO  
    创建分析面: t>.1,'zb  
    +EK(r@eV  
    IA_>x9 (~  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Ja<pvb  
    A`_(L|~  
    |TM&:4D]^  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 `2`Nu:r^  
    3jR,lEJyj  
    FRED在探测器上穿过多个像素点迭代来创建热图 >fHg1d2-  
    l}odW  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 v0hr~1  
    将如下的代码放置在树形文件夹 Embedded Scripts, g-lF{Z  
    7xz~%xC.  
    1&N|k;#QS  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 $Lg% CY  
    y Nb&;E7 H  
    绿色字体为说明文字, !9|)v7}  
    ;ELQIHnD"  
    '#Language "WWB-COM" bL*;6TzRK  
    'script for calculating thermal image map yem*g1  
    'edited rnp 4 november 2005 vQf'lEFk  
    y\0<f `v6  
    'declarations Vfew )]I  
    Dim op As T_OPERATION $jMU| {  
    Dim trm As T_TRIMVOLUME BkfWZ O{7  
    Dim irrad(32,32) As Double 'make consistent with sampling 5c6CH k`:  
    Dim temp As Double 5"(AqXoq  
    Dim emiss As Double ;4. D%  
    Dim fname As String, fullfilepath As String " a;z  
    S~^0 _?  
    'Option Explicit K8E:8`_cx  
    +LddW0h+=8  
    Sub Main h $)t hW  
        'USER INPUTS +<&\*VR  
        nx = 31 2y; |6`  
        ny = 31 63:0Vt>hZ^  
        numRays = 1000 `L0aQ$'>z  
        minWave = 7    'microns _Y F~DU  
        maxWave = 11   'microns .gUceXWH3  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 dLOUL9hf  
        fname = "teapotimage.dat" 48,Aq*JFw  
    ~/?JRL=  
        Print "" Ht^MY  
        Print "THERMAL IMAGE CALCULATION" B@!a@0,,_  
    ),`MAevp  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 G#V5E)Dx  
    5wXe^G  
        Print "found detector array at node " & detnode ,Ie~zZE&  
    1lRqjnzve&  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 N{n}]Js1D-  
    a(CZGIB  
        Print "found differential detector area at node " & srcnode E\!:MCL  
    KLBV(`MS  
        GetTrimVolume detnode, trm  /bA\O   
        detx = trm.xSemiApe Sd'Meebu  
        dety = trm.ySemiApe lh`inAt)"  
        area = 4 * detx * dety kfb+OE:7  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety #$V`%2>  
        Print "sampling is " & nx & " by " & ny m'1NZV%#  
    @(.?e<  
        'reset differential detector area dimensions to be consistent with sampling &H\$O.?f  
        pixelx = 2 * detx / nx Z5~dU{XsT  
        pixely = 2 * dety / ny <x@\3{{U  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False u#=Yv |9  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ~h-G  
    K8*QS_*  
        'reset the source power uF5d ]{Qt  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 2YK4 SL  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" M%4o0k]E,s  
    Q(m} Sr4  
        'zero out irradiance array tF)K$!GR[  
        For i = 0 To ny - 1 bTC2Ya  
            For j = 0 To nx - 1 "hz(A.THi  
                irrad(i,j) = 0.0 l/OG 79qq  
            Next j }4xxge?r  
        Next i ~Av]LW  
    +Cx~4zEq  
        'main loop S4<@ji  
        EnableTextPrinting( False ) yZI4%fen  
    OB3AZH$  
        ypos =  dety + pixely / 2 !$h%$se  
        For i = 0 To ny - 1 y5?T`ts,#  
            xpos = -detx - pixelx / 2 $V?zJ:a>L  
            ypos = ypos - pixely [$?S9)Xd  
    'xZxX3  
            EnableTextPrinting( True ) Bt,qG1>$-  
            Print i 0<{/T*AU:  
            EnableTextPrinting( False ) O89<IXk  
    (d993~|h  
    3@$h/xMJ  
            For j = 0 To nx - 1 ` 2|~Z H  
    jLvI!q   
                xpos = xpos + pixelx KtY~Y  
    En6fmEn&;o  
                'shift source aVuan&]*=  
                LockOperationUpdates srcnode, True ,Z_nV+l_  
                GetOperation srcnode, 1, op v)N6ZOj*C  
                op.val1 = xpos pvy;L[c  
                op.val2 = ypos M; zRf3S  
                SetOperation srcnode, 1, op R2Tvo?xI7  
                LockOperationUpdates srcnode, False 3D\.S j%  
    DWJ%r"aN  
    raytrace T'XAcH  
                DeleteRays $';'MoS  
                CreateSource srcnode HAo8]?J  
                TraceExisting 'draw 2)RW*Qu;+  
    l=9 &  
                'radiometry ~\<ZWU<BE  
                For k = 0 To GetEntityCount()-1 Ms1\J2  
                    If IsSurface( k ) Then B>X+eK  
                        temp = AuxDataGetData( k, "temperature" ) mm#U a/~1u  
                        emiss = AuxDataGetData( k, "emissivity" ) R$,`}@VqZ3  
                        If ( temp <> 0 And emiss <> 0 ) Then uNXh"?  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) M#S8x@U  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ZM; EjS1  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi }J`{g/  
                        End If ~R)w 9uq  
    .[cT3l/t  
                    End If 2SG|]=  
    BqZLqGO Ku  
                Next k .E;6Xx_+r  
    qx0o,oZN!  
            Next j N0 ?O*a  
    I]SR.Yp%  
        Next i m$LZ3=v%8  
        EnableTextPrinting( True ) =Bo0Oei  
    )CR8-z1`  
        'write out file qWE"vI22M  
        fullfilepath = CurDir() & "\" & fname E=s`$ A  
        Open fullfilepath For Output As #1 HqYaQ~Dth  
        Print #1, "GRID " & nx & " " & ny vy|}\%*r~  
        Print #1, "1e+308" {z F  
        Print #1, pixelx & " " & pixely P\zi:]h[Gh  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 dje3&a  
    4zf#zJw  
        maxRow = nx - 1 &u=FLp5  
        maxCol = ny - 1 KMbBow3o*~  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) _%1.D0<~-E  
                row = "" 5,Q('t#J  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) +Z;0"'K'e  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ,+'f unH  
            Next colNum                     ' end loop over columns N,[M8n,  
    :He:Bdk  
                Print #1, row yp*kMC,3  
    ;( 2uQ#Y  
        Next rowNum                         ' end loop over rows R2J3R5 S=[  
        Close #1 ~Q%QA._R?  
    q0c)pxD%`  
        Print "File written: " & fullfilepath ~{NDtB)  
        Print "All done!!" xq~=T:>/A  
    End Sub / TJTu_#  
    &P+cTN9)  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: `7 B [<  
    v#/,,)m  
    ?1412Tq5  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 ihYf WG|  
      
    0?`#ko7~d  
    a9qZI  
    打开后,选择二维平面图: Bf* F ^  
    5j}@Of1pd  
     
    分享到