-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-12
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 B9Y*'hmI s!Y`1h{ 成像示意图 NwB;9ZhZ 首先我们建立十字元件命名为Target VGtKW kVH EXD Qr'" 创建方法: /UAcN1K!B U{%N.4: 面1 : )Fw{|7@N 面型:plane 'hn=X7 材料:Air UxS@]YC 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Se>"=[= oGa8#> ->29Tns 辅助数据: g Xi&
S 首先在第一行输入temperature :300K, rW<sQ0 emissivity:0.1; ,OilGTQ# :SD^?.W\iT e+ckn 面2 : U6M3,"? 面型:plane y%4G[Dz 材料:Air NL76 jF 孔径:X=1.5, Y=6,Z=0.075,形状选择Box nm.~~h+8M 3duWk sERC c2iPm9"eh 位置坐标:绕Z轴旋转90度, ;DXcEzV >nA6w$
+o7Np|Ou 辅助数据: c5f8pa
* .o?"=Epo 首先在第一行输入temperature :300K,emissivity: 0.1; = ^OXP+o 6;8Jy AtU!8Z Target 元件距离坐标原点-161mm; R]y[n;aGC RHOEyXhOA ~=xS\@UY = 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 se:lKZZ] 3xU in }&I^1BHZs 探测器参数设定: 8H})Dq%d 7 Ous_269cM 在菜单栏中选择Create/Element Primitive /plane h;(#^+LH D3BNA]P\2@ Ka$YKY, ~c*$w O\ Rl2*oOVz q\f Z Q 元件半径为20mm*20,mm,距离坐标原点200mm。 ;E{k+vkqy
hb_J.Q 光源创建: @! gJOy '@epiF& 光源类型选择为任意平面,光源半角设定为15度。 %Gk?f=e ^3B&E^R <E`Ygac 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 (4WAoye | `l0&,] 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 >hcze<^S TrBBV]4 nn0`A3 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 et$VR: b?~%u+'3 创建分析面: ?k*%r;e> 'p{N5eM +oT/ v3, 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 JQtBt2 j
m]d:=4_ scsN2#D7U/ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 N5SePA\ ,? ^=lh|C\# FRED在探测器上穿过多个像素点迭代来创建热图 A=z+@b6 `~hB-Z5dI FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 g2&%bNQ-5 将如下的代码放置在树形文件夹 Embedded Scripts, yi*2^??`
1 dV( "g], C " W, 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 aB N^J_ 1@}`dc 绿色字体为说明文字, d\_$Nb* \.`;p '#Language "WWB-COM" :U}. 'script for calculating thermal image map %)|pUa& 'edited rnp 4 november 2005 8-2e4^
g( w'/Mn+ 'declarations [f?fA[,[ Dim op As T_OPERATION _Prh&Q1zs Dim trm As T_TRIMVOLUME }KBz8M5 Dim irrad(32,32) As Double 'make consistent with sampling zree}VqD;5 Dim temp As Double ID#p5`3n Dim emiss As Double @]r l2Qqe Dim fname As String, fullfilepath As String *K<|E15 , 3Dd"qON! 'Option Explicit {c;][>l *XlbD Sub Main j`'9;7h M6 'USER INPUTS /.{q2] nx = 31 +4N7 _Y ny = 31 =41g9UQ numRays = 1000 iE~][_%U minWave = 7 'microns /3VSO"kcZ maxWave = 11 'microns w[5uX> sigma = 5.67e-14 'watts/mm^2/deg k^4 I:ag}L8` fname = "teapotimage.dat" v `a:Lj w=ib@_:f Print "" ?nLlZpZ2v Print "THERMAL IMAGE CALCULATION" _:B/XZ Vw^2TRU detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 V+A9.KoI vpS&w Print "found detector array at node " & detnode 3?d o|> &$1ifG srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 . paA0j rF3QmR?l Print "found differential detector area at node " & srcnode rkF>c YT*_
vmJV GetTrimVolume detnode, trm 5Hli@:B2s detx = trm.xSemiApe ]f3[I3;K dety = trm.ySemiApe R 2{ kS area = 4 * detx * dety va>u1S<lO Print "detector array semiaperture dimensions are " & detx & " by " & dety BrHw02G Print "sampling is " & nx & " by " & ny H'Oy._,]t e={X{5z0 'reset differential detector area dimensions to be consistent with sampling iOFp 9i=j pixelx = 2 * detx / nx ,[}
XK9 pixely = 2 * dety / ny @%oHt*u SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False o#D;H[' A Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 _|'e Az 8(6(,WwP} 'reset the source power D<16m<b SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) )g()b"Z
#> Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Yq$KYB j 2ncD,@ij 'zero out irradiance array ^Uj\s / For i = 0 To ny - 1 _5t~g_(1OK For j = 0 To nx - 1 uPmK:9]3R irrad(i,j) = 0.0 yobcAV` Next j bPlqS+ai_ Next i RjcU0$Hi u/I|<NAC, 'main loop ccdP}|9e EnableTextPrinting( False ) Z7="on4 ^n @dC? ypos = dety + pixely / 2 ]FQO@y For i = 0 To ny - 1 Xxz_h* xpos = -detx - pixelx / 2 +E7Os|m ypos = ypos - pixely 1?oX" 7gk}f%,3P EnableTextPrinting( True ) KE~l#=S Print i P[G.LO EnableTextPrinting( False ) #[uDVCM E.'v,GYe 1 iiQW For j = 0 To nx - 1 BidTrO @MoBR. xpos = xpos + pixelx 'o!{YLJ fM MR?5p8S#g 'shift source -J06H&/k LockOperationUpdates srcnode, True Bh#?:h&f GetOperation srcnode, 1, op xpO'.xEs op.val1 = xpos {\-9^RL op.val2 = ypos 6w"_sK?
SetOperation srcnode, 1, op !jySID?q LockOperationUpdates srcnode, False =^9I)JW J[k,S(Y raytrace Hdn%r<+c DeleteRays wDv G5 CreateSource srcnode vOIzfwYG9 TraceExisting 'draw |*T`3@R;3 _oILZ, 'radiometry @mJ#~@*( For k = 0 To GetEntityCount()-1 YcmLc)a7 If IsSurface( k ) Then ,\Q^[e!m~ temp = AuxDataGetData( k, "temperature" ) 1^HmM"DD emiss = AuxDataGetData( k, "emissivity" ) UA8*8%v If ( temp <> 0 And emiss <> 0 ) Then R ^ln-H; ProjSolidAngleByPi = GetSurfIncidentPower( k ) t/k MV6 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) %3:[0o={d irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 2}BQ=%E!' End If >x3$Ld !1b4q/ End If Bn<1zg5 9'5`0$,|^ Next k blk4@pg j1141md5 Next j {tDH !sX r3BQo[ 't Next i <y4WG EnableTextPrinting( True ) dc+U#]tS 0DB8[#i%: 'write out file \,ko'48@ fullfilepath = CurDir() & "\" & fname Bs!F |x( Open fullfilepath For Output As #1 9sI&&Jg Print #1, "GRID " & nx & " " & ny ,8`CsY^1 Print #1, "1e+308" &<>NP?j} Print #1, pixelx & " " & pixely nkxv,_)ZT Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 g.wDg ~ubcD6f maxRow = nx - 1 #1z/rUh`Cr maxCol = ny - 1 (rE.ft5$9 For rowNum = 0 To maxRow ' begin loop over rows (constant X) J/(^Z?/~P! row = "" S%p.|! For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) DfsPg':z row = row & irrad(colNum,rowNum) & " " ' append column data to row string ?nCo?A Next colNum ' end loop over columns v(`9+* )L0NX^jW; Print #1, row nc[Kh8N9 "|^-Yk\U Next rowNum ' end loop over rows Q|7$SS6$ Close #1 >oGs0mej _Oc(K
"v Print "File written: " & fullfilepath 8-u #<D . Print "All done!!" wV\.NQtS End Sub Q^{XM >At* jg48 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: !zZ3F|+HB B~h3naSe /=K(5Xd 找到Tools工具,点击Open plot files in 3D chart并找到该文件 C)?tf[!_6 bP)(4+t~ t8ZzBD!dP 打开后,选择二维平面图: xa[)fk$6 d2U+%%Tdw
|