切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1235阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 .s>.O6(^%  
    Q\aC:68  
    成像示意图
    w5q'M  
    首先我们建立十字元件命名为Target 5)i+x-  
    (4IH%Ez){  
    创建方法: )b-KF}]d  
    tw&biLM5T  
    面1 : ( \7Yo^  
    面型:plane M8|kmF\B  
    材料:Air J"Nn.iVq  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ?'^yw C`  
    .:iO$wjp5  
     #{zF~/Qq  
    辅助数据: `}#n#C)  
    首先在第一行输入temperature :300K, VTn6@z_ x  
    emissivity:0.1; Z + )<FX  
    ]Mj N)%hT  
    O[R   
    面2 : _s+_M+@et  
    面型:plane Im@Yx^gc   
    材料:Air h`:B8+k  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box BHDd^bd  
    }XfRKGQw  
    9KMtPBZ  
    位置坐标:绕Z轴旋转90度, ._(5; PB"  
    :CG;:( |  
    V(OD^GU  
    辅助数据: _q`f5*Z[  
    #<yKG\X?  
    首先在第一行输入temperature :300K,emissivity: 0.1; $#FA/+<&$  
    *zWf8X  
    7QHrb'c  
    Target 元件距离坐标原点-161mm; 2Y%E.){  
    #w;%{C[D  
    )`}4rD^b  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 zX&wfE8T  
    w s7LDY&(  
    )<_:%oB  
    探测器参数设定: @O)1Hnm  
    :jGgX>GG  
    在菜单栏中选择Create/Element Primitive /plane $i$Z+-W4'  
    |/;X -+f8  
    DaqpveKa  
    y-o54e$4Cq  
    &Tk@2<5=  
    :tX,`G  
    元件半径为20mm*20,mm,距离坐标原点200mm。 xd^9R<  
    en29<#8TO  
    光源创建: d.p%jVO)"  
    N|asr,  
    光源类型选择为任意平面,光源半角设定为15度。 xU'% 6/G  
    Vn6]h|vm  
    =B"^#n ;  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 sF p% T4j  
    vS G vv43G  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 ihopQb+k^m  
    |\SwZTr  
    [u7i)fn5?  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 {GS$7n  
    $J]o\~Z J  
    创建分析面: Cm#[$T@C  
    "M=1Eb$6=  
    Dh .<&ri   
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 P#qQde/y  
     @+!u{  
    9oxn-)6JC  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 $@<cZ4  
    C7_#D O6"  
    FRED在探测器上穿过多个像素点迭代来创建热图 w>6 cc#>q  
    ;g_<i_ *x#  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 9v(k<('_  
    将如下的代码放置在树形文件夹 Embedded Scripts, 5VGr<i&A  
    <CGJ:% AY  
    6|]e}I@<2  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 <{1=4PA  
    \mDBOC0eK  
    绿色字体为说明文字, G*rlU  
    M]A!jWtE  
    '#Language "WWB-COM" 9NausE40  
    'script for calculating thermal image map n{xL1A=9  
    'edited rnp 4 november 2005 ?=%#lZ &?  
    |/O_AnGI  
    'declarations !s(s^  
    Dim op As T_OPERATION d2Ox:| <)  
    Dim trm As T_TRIMVOLUME obSLy Ed  
    Dim irrad(32,32) As Double 'make consistent with sampling )cYbE1=u8>  
    Dim temp As Double o/mGd~  
    Dim emiss As Double bSS=<G9  
    Dim fname As String, fullfilepath As String ,")/R/d  
    poVtg}n  
    'Option Explicit CL<m+dW%*  
    *&~wl(+O=  
    Sub Main ' +E\-X  
        'USER INPUTS Qk`LBvg1  
        nx = 31 2t`d. s=  
        ny = 31 ZMmf!cKY:'  
        numRays = 1000 ==Bxv:6  
        minWave = 7    'microns MUvgmJsN  
        maxWave = 11   'microns w4j,t  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 P2sM3C  
        fname = "teapotimage.dat" dn:/8~B"X  
    {}N=pL8MS  
        Print "" [ .c'22R6  
        Print "THERMAL IMAGE CALCULATION" T{zz3@2?  
    b0 y*}  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 < <]uniZ\  
    #wfb-`,5&9  
        Print "found detector array at node " & detnode @V qI+5TA  
    _q3|Ddm2LN  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 .|<+-Rsj  
    >0.a#-u^  
        Print "found differential detector area at node " & srcnode V25u_R`{  
    o1)8?h  
        GetTrimVolume detnode, trm ;'4 HR+E"  
        detx = trm.xSemiApe =SLCG.  
        dety = trm.ySemiApe "D?:8!\!  
        area = 4 * detx * dety K#4Toc#=V  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety d2 (3 ,  
        Print "sampling is " & nx & " by " & ny v `7`'  
    *{s 3.=P.  
        'reset differential detector area dimensions to be consistent with sampling IJv+si:k  
        pixelx = 2 * detx / nx <}bF49z  
        pixely = 2 * dety / ny KIYs[0*k  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False sH /08Z  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 iBaz1pDc  
    QV9 z81[  
        'reset the source power _Sn45h@"  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ^Bu55q  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Ff{dOV.i  
    z 3N'Xk  
        'zero out irradiance array QBL|n+  
        For i = 0 To ny - 1 $W0O  
            For j = 0 To nx - 1 I"bz6t\~|  
                irrad(i,j) = 0.0 ^2-t|E=  
            Next j  NH0uK  
        Next i !nt[J$.z^  
    g0>Q* x  
        'main loop g~]?6;uu  
        EnableTextPrinting( False ) > ,;<Bz|X  
    H/N4t Wk"  
        ypos =  dety + pixely / 2 ^]ig*oS\`  
        For i = 0 To ny - 1 pT'jX^BU  
            xpos = -detx - pixelx / 2 -mY,nMDb  
            ypos = ypos - pixely @tg4rl  
    ] 8dzTEjk  
            EnableTextPrinting( True ) sX,S]:X  
            Print i _FtsO<p)"  
            EnableTextPrinting( False ) Uc d~-D  
    `e^sQ>rDI  
    DZqY=Sze  
            For j = 0 To nx - 1 eH^~r{{R  
    vk.P| Y-;  
                xpos = xpos + pixelx $c}-/U 8  
    2+cpNk$  
                'shift source SmVL?wf  
                LockOperationUpdates srcnode, True = ow=3Ku  
                GetOperation srcnode, 1, op HMqR%A  
                op.val1 = xpos +~f=L- >  
                op.val2 = ypos <P.'r,"[  
                SetOperation srcnode, 1, op ]'5 G/H5?;  
                LockOperationUpdates srcnode, False jchq\q)_z  
    R(p3* t&n  
    raytrace M<'He.n  
                DeleteRays RJOW#e :  
                CreateSource srcnode 5%RiM|+  
                TraceExisting 'draw {B[ }}wX$  
    ubUVxYD?  
                'radiometry yZkS   
                For k = 0 To GetEntityCount()-1 d;.H 9Ne  
                    If IsSurface( k ) Then VMH^jCFp  
                        temp = AuxDataGetData( k, "temperature" ) ,)ZI&BL5  
                        emiss = AuxDataGetData( k, "emissivity" ) /_</m?&.U&  
                        If ( temp <> 0 And emiss <> 0 ) Then do:IkjU~  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) }No8to  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) #Fz/}lO  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi fi  [4F  
                        End If y3OF+;E  
    ^MO})C  
                    End If -{A*`.[v  
    T,h 9xl9i  
                Next k il% u)NN  
    M< /  
            Next j A\<W x/  
    pD;fFLvN  
        Next i q5{h@}|M  
        EnableTextPrinting( True ) Go(Td++HS  
    i>e?$H,/  
        'write out file bX>R9i$  
        fullfilepath = CurDir() & "\" & fname vwAtX($  
        Open fullfilepath For Output As #1 a'(B}B=h  
        Print #1, "GRID " & nx & " " & ny '^M.;Giz  
        Print #1, "1e+308" fwNj@fl_,e  
        Print #1, pixelx & " " & pixely X}H?*'-  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Q2[; H!"  
    v UhgM'  
        maxRow = nx - 1 xJ9aFpTC  
        maxCol = ny - 1 Up5|tx7  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) sO{TGk]*  
                row = "" }:57Ym)7w  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) )3k?{1:  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 1Eb2X}XC  
            Next colNum                     ' end loop over columns y/+ IPR  
    bvS6xU- J  
                Print #1, row \,pObWm  
    }$i/4?dYsQ  
        Next rowNum                         ' end loop over rows O L 9(~p  
        Close #1 _!,Ees=b  
    */2nh%>$  
        Print "File written: " & fullfilepath 9g]%}+D  
        Print "All done!!" HoK+g_9~  
    End Sub KwU;+=_.  
    &x7iEbRs  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: zd/kr  
    R3%%;`c=  
    8OiCldw:HN  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 Q-z `rW  
      
    Da8 |eN}   
    :C2 @!W z  
    打开后,选择二维平面图: iBI->xU[U  
    ~d\^ynQ  
     
    分享到