-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 K?l|1jez(# P
y'BMk 成像示意图 JU8}TX 首先我们建立十字元件命名为Target db )2> o]?
yyP 创建方法: Q7+WV`& 7?fgcb3 面1 : wkt4vE87 面型:plane nDrRK 材料:Air -h8mJ D%Oi 孔径:X=1.5, Y=6,Z=0.075,形状选择Box maap X/J &GH[$( e@hPb$7 辅助数据: k5RzW4zq; 首先在第一行输入temperature :300K, Hca(2 ]T- emissivity:0.1; <$nPGz)} Q
8]X :V9Q<B^ 面2 : ]@U?hD 面型:plane \9+,ynJH8z 材料:Air xM_#FxJb 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 5 H._Q NZGO8u &OU.BR> 位置坐标:绕Z轴旋转90度, |]kiH^Ap /qQx~doK I]ej ]46K 辅助数据: X"Eqhl<t h),;j`PrC 首先在第一行输入temperature :300K,emissivity: 0.1; Md6u4c u8"s#%>Ny H;=yR]E Target 元件距离坐标原点-161mm; hTBJ\1
- ;8H&FsR u/tJ])~@ 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 RrLiH> :$Cm]RZ " lD -*e4 探测器参数设定: 88u[s@ %Vo'\| 在菜单栏中选择Create/Element Primitive /plane 5T/+pC$e= $;g*s?F* D u<P^CE 55v=Ij?M WDNj7 !UzE&CirV 元件半径为20mm*20,mm,距离坐标原点200mm。 ccv |TJ gH<I 光源创建: +^:uPW^U bP:u`!p
-i 光源类型选择为任意平面,光源半角设定为15度。 ?~ybFrc Q*1Avy6] n_sV>$f-u 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ",YNphjAn Vb 36R_u 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 S*r }oX0 hj=n;,a9 4gZ R!J 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 G>dXK,f<B0 ?(s9dS,7wZ 创建分析面: qPu?rU{2 %m|BXyf]_B )~)T[S 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 89[/UxM) yJx,4be QKk7"2t| 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 T&dc)t`o }T%E;m- FRED在探测器上穿过多个像素点迭代来创建热图 p+I`xyk <MxA;A FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 a;i}<n7 将如下的代码放置在树形文件夹 Embedded Scripts, :hHKm|1FE &~"N/o 7WV"Wrl] 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 "97sH_
, mv<cyWp 绿色字体为说明文字, c3fd6Je5 ~HctXe' x '#Language "WWB-COM" eT F s9$ 'script for calculating thermal image map JpQV7}$ 'edited rnp 4 november 2005 Lxa<zy~b V(G{_>> 'declarations *{fZA;<R Dim op As T_OPERATION <Rt0
V%}- Dim trm As T_TRIMVOLUME jJ>I*'w Dim irrad(32,32) As Double 'make consistent with sampling 7vqE@;:dt Dim temp As Double 5"#xbvRS0H Dim emiss As Double a/d8_(0 Dim fname As String, fullfilepath As String 9dg+@FS}= f]+.
i-c= 'Option Explicit UuJ gB) ZB}zT9JaE Sub Main en MHKN g 'USER INPUTS 17rg!'+ nx = 31 kDKfJp&a ny = 31 NS4W!o;" numRays = 1000 xG%O^ minWave = 7 'microns %e:
hVU maxWave = 11 'microns P\X$fD sigma = 5.67e-14 'watts/mm^2/deg k^4 G!GGT?J fname = "teapotimage.dat" ~\R+p~> f<DqA/$ Print "" #1>c)_H Print "THERMAL IMAGE CALCULATION" c"'JMq (
Qk*B detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 uoY]@. =sXk,I; Print "found detector array at node " & detnode i/DUB<>p6 &-.2P!t srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 uY)|
_'r&'s;<z Print "found differential detector area at node " & srcnode Daf;;
w J16(d+ GetTrimVolume detnode, trm "CQ:<$|$ detx = trm.xSemiApe p\|*ff0 dety = trm.ySemiApe b;e*`f8T3c area = 4 * detx * dety ]\%u9,b%! Print "detector array semiaperture dimensions are " & detx & " by " & dety A3e83g~L Print "sampling is " & nx & " by " & ny a/
Z\h{* Xpf:I 'reset differential detector area dimensions to be consistent with sampling 9&KiG* . pixelx = 2 * detx / nx z!\)sL/" pixely = 2 * dety / ny GA)t!Xg^ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 7gbu7"Qc Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 8<g9 ~L X[iQ%Y$/n 'reset the source power bu r0?q SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 4}HY= 0Um Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" RS[QZOoW} czp}-{4X 'zero out irradiance array sZPA(N? For i = 0 To ny - 1 h-:te9p6>4 For j = 0 To nx - 1 w>gB&59r irrad(i,j) = 0.0 LZ*ZXFIg Next j Zut"P3d=J Next i |"EQyV >*goDtTjp 'main loop QPpC_pZh EnableTextPrinting( False ) S_56! L(qQ,1VY ypos = dety + pixely / 2 f+W %X For i = 0 To ny - 1 <@2g.+9 xpos = -detx - pixelx / 2 ?r-W
, n ypos = ypos - pixely iyf vcKO <MBpV^Y} EnableTextPrinting( True ) A^"( VaK Print i G$$y\e$ EnableTextPrinting( False ) 3rw<#t;v vTU*6) loFApBD=$^ For j = 0 To nx - 1 1|Z!8:&pj ,O/ t6' xpos = xpos + pixelx "_T8Km008 i"o
%Gc 'shift source w0L+Sj db LockOperationUpdates srcnode, True h#rziZ( GetOperation srcnode, 1, op i_6 Y6 op.val1 = xpos f&
>[$zh op.val2 = ypos hV]]%zwR+ SetOperation srcnode, 1, op g/6>>p`J LockOperationUpdates srcnode, False xF8^#J6> gG6j>%y raytrace &!5S'J% DeleteRays i@p0Jnh| CreateSource srcnode iSg^np TraceExisting 'draw (^).$g5Hg <*55d2 'radiometry 7$u}uv`j For k = 0 To GetEntityCount()-1 Zw<\^1 If IsSurface( k ) Then #?EmC]N7 temp = AuxDataGetData( k, "temperature" ) %^CoWbU emiss = AuxDataGetData( k, "emissivity" ) XIJW$CY If ( temp <> 0 And emiss <> 0 ) Then 9(
"<NB0y ProjSolidAngleByPi = GetSurfIncidentPower( k ) qz<>9n@o frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) f,}9~r# irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ^TF71uo End If /f0*NNSat- I=G-(L/& End If hYS}PE r0fxEYze& Next k {WoS&eL \T]'d@Wyd Next j \DC0` Ri mz~}+ Next i dF<GuS;l5 EnableTextPrinting( True ) jZ\a:K? M6o"|\ 'write out file U+FI^Xrt# fullfilepath = CurDir() & "\" & fname EAPjQA-B? Open fullfilepath For Output As #1 $"[5]{'J Print #1, "GRID " & nx & " " & ny r?j2%M\ Print #1, "1e+308" g ONybz6] Print #1, pixelx & " " & pixely $]t3pAI[H0 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 -L&%,% s7>a maxRow = nx - 1 A5[iFT> maxCol = ny - 1 /_l$h_{DH For rowNum = 0 To maxRow ' begin loop over rows (constant X) 'V#$PZx row = "" F2:nL`]b[ For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) Cl>{vSN row = row & irrad(colNum,rowNum) & " " ' append column data to row string ]w;!x7bU( Next colNum ' end loop over columns P ")1_! +l) [A{ Print #1, row "vL,c]D _(%;O:i Next rowNum ' end loop over rows yJn<S@)VT: Close #1 ,z0~VS:g 8 r(6$.zx Print "File written: " & fullfilepath ,\Uc/wR Print "All done!!" /c:78@ End Sub 1@S(v L3a e=u?-8 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: VkJBqRzBOa u]uZc~T ews{0 找到Tools工具,点击Open plot files in 3D chart并找到该文件 cy
@",z J[ 7Sf^r ,?/AIL]_ 打开后,选择二维平面图: .TpM3b#r PyQ
P K,
|