切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1668阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6441
    光币
    26350
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 `Y^l.%AZZ  
    X<5&R{oZ  
    成像示意图
    -w f>N:  
    首先我们建立十字元件命名为Target oS}fr?  
    U$S{j&?  
    创建方法: m77 !i>V)  
    Z>l<.T"t'  
    面1 : ZAn9A>5_  
    面型:plane .&`apQD}  
    材料:Air "{trK?-8%  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box YQWq*o^:  
    dpX Fx"4A  
    IM,4Si2  
    辅助数据: <;uM/vS i  
    首先在第一行输入temperature :300K, mD|Q+~=|e  
    emissivity:0.1; fsWIz1K  
    awjAv8tPO!  
    >&k`NXS|V  
    面2 : 27}7 n  
    面型:plane gf>GK/^HH  
    材料:Air Qc=-M'9  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box 0F.S[!I  
    URt+MTU[  
    S]Di1E^r;_  
    位置坐标:绕Z轴旋转90度, 7#Uzz"^  
    F/[m.!Eo  
    J1Az+m  
    辅助数据: /a9CqK  
    NqveL<r`  
    首先在第一行输入temperature :300K,emissivity: 0.1; {B e9$$W,  
    M%RH4%NZ0  
    Y\+LBbB8  
    Target 元件距离坐标原点-161mm; G]{^.5  
    8EX?/33$  
    }`!-WY  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 cYXL3)p*Q  
    I?Z"YR+MQ  
    TP~1-(M)}  
    探测器参数设定: IGi9YpI&K  
    )]4=anJu@|  
    在菜单栏中选择Create/Element Primitive /plane X[f)0w%  
    mahNQ5W*)  
    MmePhHf  
    SoHaGQox  
    2@@evQ  
    .p?SPR  
    元件半径为20mm*20,mm,距离坐标原点200mm。 Xr'b{&  
    8R-;cBT  
    光源创建: @1<VvW=  
    SqdI($F\:  
    光源类型选择为任意平面,光源半角设定为15度。 :z *jl'L  
    7+IRI|d  
    -WR<tkK  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 "Nz@jv?  
    ]ms+ Va_/  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 SJlE!MK  
    F6b;qb6n  
    wZW\r!Us  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 ~*UY[!+4^=  
    Mn<s9ITS-  
    创建分析面: TtKKU4yp  
    B#35)QI  
    R@/"B?`(f  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 5h Dy62PRr  
    [1ClZ~f  
    #6l(2d  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 !IB}&m  
    q)KOI` A  
    FRED在探测器上穿过多个像素点迭代来创建热图 }$r]\v  
    4HX;9HPHE<  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ry@p  
    将如下的代码放置在树形文件夹 Embedded Scripts, hE$3l+  
    x25zk4-  
    Df:/r%  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 zK{}   
     Y(2Z<d  
    绿色字体为说明文字, t5u#[*  
    ='_3qn.  
    '#Language "WWB-COM" $bfmsCcHL  
    'script for calculating thermal image map T:9M|mD  
    'edited rnp 4 november 2005 [TFp2B~)#  
    vts"  
    'declarations ;Ru[^p.{  
    Dim op As T_OPERATION m/(/!MVy  
    Dim trm As T_TRIMVOLUME hY !>>  
    Dim irrad(32,32) As Double 'make consistent with sampling W:6#0b"_#  
    Dim temp As Double %+;l|Z{Uf  
    Dim emiss As Double  6pfkv2.}  
    Dim fname As String, fullfilepath As String 64`l?F  
    yLK %lP  
    'Option Explicit YnW9uy5  
    3Co1bY:  
    Sub Main 7Kb&BF|Q  
        'USER INPUTS w"#rwV&  
        nx = 31 -S&9"=v  
        ny = 31 _#+l?\u  
        numRays = 1000 aNQ(xiskb  
        minWave = 7    'microns 6d2e WS  
        maxWave = 11   'microns F:[[@~z  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 a? PH`5O  
        fname = "teapotimage.dat" PMW@xk^<Y  
    E|SmvIV-  
        Print "" -yg;,nCg  
        Print "THERMAL IMAGE CALCULATION" 1 XJZuv,T:  
    8>D*U0sNl  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ITi#p%  
    ~ b66 ;  
        Print "found detector array at node " & detnode RL/7>YQ  
    D`X<b4e8/  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点  w}t}Sh  
    d(R8^v/L  
        Print "found differential detector area at node " & srcnode h4MBw=Tz~  
    @~N"MsF3  
        GetTrimVolume detnode, trm )1R[X!KQ7  
        detx = trm.xSemiApe @H( 7Mt  
        dety = trm.ySemiApe aRI.&3-  
        area = 4 * detx * dety ,1lW`Krx  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety (nuTfmt>  
        Print "sampling is " & nx & " by " & ny -eS r  
    \u[5O@v#  
        'reset differential detector area dimensions to be consistent with sampling "&^KnWk=  
        pixelx = 2 * detx / nx (b&Z\?"  
        pixely = 2 * dety / ny R\#5;W^  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False $AMcU5^b7  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 .pm%qEh  
    TL7qOA7^X  
        'reset the source power 0Q,Tcj  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) yf R0vp<&  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" yv>uzb`N  
    {TMng&  
        'zero out irradiance array >TawJ"q-6R  
        For i = 0 To ny - 1 u(? U[pe[  
            For j = 0 To nx - 1 0oBAJP  
                irrad(i,j) = 0.0 B,Tv9(sv  
            Next j eoQt87VCU  
        Next i ]gv3|W  
    [z= !OFdE  
        'main loop Ukf:m&G  
        EnableTextPrinting( False ) qf<o"B|_9  
    @KLX,1K  
        ypos =  dety + pixely / 2 j> dZ26 >N  
        For i = 0 To ny - 1 .W2w/RayC  
            xpos = -detx - pixelx / 2 M\7F1\ X  
            ypos = ypos - pixely IDh`*F  
    D@[#7:rHL  
            EnableTextPrinting( True ) Ah5o>ZtcO  
            Print i .Zs.O/  
            EnableTextPrinting( False ) .RmoO\ ,Gm  
    FB>P39u  
    -O/[c  
            For j = 0 To nx - 1 )-}<}< oO  
    M\IdQY-c  
                xpos = xpos + pixelx Xq ew~R^MP  
    U-f8 D  
                'shift source J#iuF'%Ds  
                LockOperationUpdates srcnode, True * 0JF|'  
                GetOperation srcnode, 1, op 6Iz!_  
                op.val1 = xpos Lk^bzW>f  
                op.val2 = ypos {CVZ7tU7]  
                SetOperation srcnode, 1, op 7X> @r"9<  
                LockOperationUpdates srcnode, False wGIRRM !b  
    ) R\";{`M  
    raytrace J<Ki;_=I  
                DeleteRays pjSM7PhQ  
                CreateSource srcnode &f?JtpB  
                TraceExisting 'draw P#8lO%;  
    3!#FG0Z   
                'radiometry |N 2r?b/g  
                For k = 0 To GetEntityCount()-1 L6!Hv{ijn  
                    If IsSurface( k ) Then aE"dpYQ  
                        temp = AuxDataGetData( k, "temperature" ) j"zW0g!S  
                        emiss = AuxDataGetData( k, "emissivity" ) $~ d6KFT  
                        If ( temp <> 0 And emiss <> 0 ) Then [=Nv=d<[p  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) q_BMZEM  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) $,I@c"m{  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi G'nSnw  
                        End If uz=9L<$  
    $!z.[GL  
                    End If `7V1 F.\  
    i-dosY`81  
                Next k BI!EmA  
    < mFU T  
            Next j \]\GDpu[  
    c@4$)68  
        Next i ^hT2 ed +  
        EnableTextPrinting( True ) [+}0K{(O=  
    UKB/>:R  
        'write out file G1ruF8  
        fullfilepath = CurDir() & "\" & fname vJx( lU`Y  
        Open fullfilepath For Output As #1 *Id[6Z  
        Print #1, "GRID " & nx & " " & ny [?2?7>D8  
        Print #1, "1e+308" _l,-S Qgj  
        Print #1, pixelx & " " & pixely EgzdRB\Cf  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 < 5ULu(b&$  
    ;LKYA?=/V  
        maxRow = nx - 1 F^}d>2W(  
        maxCol = ny - 1 lC d\nE8G  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ,&Zk63V  
                row = "" cN\_1  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) #}tdA( -  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string {5+69&:G.  
            Next colNum                     ' end loop over columns ;~`/rh V\  
    Wm)Id_  
                Print #1, row OsYZ a`$,  
    @x *,fk  
        Next rowNum                         ' end loop over rows &{q'$oF  
        Close #1 3 "Qg"\  
    cVmF'g  
        Print "File written: " & fullfilepath C}9|e?R[Rz  
        Print "All done!!" N\CHIsVm>  
    End Sub *r!qxiY= r  
    {q~N$"#  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 'CG% PjCO  
    X%7l! k[  
    5,Co(K  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 rQpQ qBu  
      
    <si cldz  
    YelF)Na  
    打开后,选择二维平面图: 'S=eW_ 0/  
    )M7~RN  
     
    分享到