切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1344阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 $3c9iVK~_  
    2vh@KnNU  
    成像示意图
    ` 5lW  
    首先我们建立十字元件命名为Target o<Y[GW1pg  
    L=#nnj-  
    创建方法: c3]`W7E6L  
    x?rn< =  
    面1 : v{c,>]@  
    面型:plane _CImf1  
    材料:Air =%Z5"];  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box poU1Q#+4p*  
    jL]Y;T8  
    /(jG9RM  
    辅助数据: r~q 3nIe/,  
    首先在第一行输入temperature :300K, 2PTAIm Rq  
    emissivity:0.1; UEeq@ot/4  
    }|u>b!7_.  
    VV$4NV&`Q  
    面2 : Q@0Zh, l  
    面型:plane PL|zm5923  
    材料:Air I3,0vnE@  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ~`c(7  
     hSgH;k  
     Jk>!I\  
    位置坐标:绕Z轴旋转90度, ] =*G[  
    (\M#Ay t)  
    g)L<xN8  
    辅助数据: T]UrKj/iF  
    J|=0 :G  
    首先在第一行输入temperature :300K,emissivity: 0.1; 57( 5+Zme  
    tTE]j-uT  
    Zgw4[GpL  
    Target 元件距离坐标原点-161mm; |A,<m#C  
    d\-v+'d*+  
    5hj _YqQ7  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 8.ej65r*   
    des.TSZ  
    7xh91EU:4  
    探测器参数设定: y%!zXK`cl]  
    S8k<}5  
    在菜单栏中选择Create/Element Primitive /plane RaC8Sq7hW  
    t>}(` 0  
    m(KBg'kQ  
    DI0Wk^m  
    -Dy":/Bk  
    +%=lu14G  
    元件半径为20mm*20,mm,距离坐标原点200mm。 ~A03J:Yc7  
    8e"MP\0V  
    光源创建: p)Fi{%bc  
    nq qqP  
    光源类型选择为任意平面,光源半角设定为15度。 XIBm8IkF  
    Rrw6\iO  
    a[=;6!  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %;,4qB  
    "@YtxYTW-  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 5Zuk`%O  
    >XPR)&t  
    $[0\Th  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 V='A;gs  
    GJIZu&C  
    创建分析面: 3R<VpN){  
    FBeo@  
    W4q |55  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 e/b | sl  
    p]rV\,Yss  
    ]jSRO30H3<  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 G * =>  
    3}5Ya\x  
    FRED在探测器上穿过多个像素点迭代来创建热图 _0o65?F  
    KM9H<;A  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 I#/"6%e  
    将如下的代码放置在树形文件夹 Embedded Scripts, GG %*d]  
    x}~Z[bx  
    3,0b<vfSv  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 1EWskmp  
    zmFS]IOv$  
    绿色字体为说明文字, d >O/Zal  
    xg;vQKS6  
    '#Language "WWB-COM" C6A!JegU  
    'script for calculating thermal image map YBL.R;^v  
    'edited rnp 4 november 2005 L cTTfb+<  
    ]JQ}9"p=5  
    'declarations NAX`y2z  
    Dim op As T_OPERATION DfX~}km  
    Dim trm As T_TRIMVOLUME }b^x#HC  
    Dim irrad(32,32) As Double 'make consistent with sampling 1L%$\0B4hm  
    Dim temp As Double #xw3a<z?u  
    Dim emiss As Double gI00@p:m  
    Dim fname As String, fullfilepath As String q;.LK8M  
    Y/T-2)D  
    'Option Explicit e_}tK1XY  
    l[^0Ik-G  
    Sub Main q<[o 4qY  
        'USER INPUTS $!^C|,CS  
        nx = 31 z.;!Pj  
        ny = 31 (5 e4>p&+  
        numRays = 1000 %WPy c%I  
        minWave = 7    'microns Z+_xX  
        maxWave = 11   'microns p@U[fv8u  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 vs@u*4.Ut<  
        fname = "teapotimage.dat" <Qt9MO`a  
    HLPY%VeD  
        Print "" ul]hvK{2  
        Print "THERMAL IMAGE CALCULATION" o|w w>m  
    +zK?1llt  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 yIg^iZD  
    Sa@T#%oU  
        Print "found detector array at node " & detnode X|C=Q   
    %~[@5<p  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 X6=o vm  
    thz[h5C?C  
        Print "found differential detector area at node " & srcnode %<`sDO6Q?  
    vy-q<6T}:p  
        GetTrimVolume detnode, trm rdsZ[ii  
        detx = trm.xSemiApe a% /D~5Z  
        dety = trm.ySemiApe FSkLR h  
        area = 4 * detx * dety D^6Q`o  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety WLiFD.  
        Print "sampling is " & nx & " by " & ny z:=E- +  
    $xis4/2  
        'reset differential detector area dimensions to be consistent with sampling S0ltj8t  
        pixelx = 2 * detx / nx 6{I6'+K~  
        pixely = 2 * dety / ny ! F<::fN  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Ii<k<Bt,  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 Awr(}){  
    s1tkiX{>  
        'reset the source power ^$]iUb{\  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 'F3@Xh  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" WWC&-Ni  
    ihekON":  
        'zero out irradiance array L`(\ud  
        For i = 0 To ny - 1 6 X'#F,M  
            For j = 0 To nx - 1 O$N;a9g  
                irrad(i,j) = 0.0 P9 y+rF.  
            Next j J:OP*/@='  
        Next i *=tA},`\7  
    % bKy  
        'main loop B>c2 *+Bk  
        EnableTextPrinting( False ) "&o"6ra }  
    eZD"!AT  
        ypos =  dety + pixely / 2 .m.Ga|;  
        For i = 0 To ny - 1 >v f-,B  
            xpos = -detx - pixelx / 2 p+0gE5  
            ypos = ypos - pixely 14A(ZWwq9  
    ev4_}!  
            EnableTextPrinting( True ) E)wf'x  
            Print i Qg0%r bE  
            EnableTextPrinting( False ) ZXXJ!9-&+J  
    rjj_]1?K  
    bjI3xAs~  
            For j = 0 To nx - 1 nM *}VI  
    <~aKwSF[wW  
                xpos = xpos + pixelx KT+{-"4-  
    XN{WxcZ  
                'shift source Uy*d@vU9c  
                LockOperationUpdates srcnode, True ` TH\0/eE  
                GetOperation srcnode, 1, op X&i;WI  
                op.val1 = xpos Zrj#4 E1  
                op.val2 = ypos O*Y?: t  
                SetOperation srcnode, 1, op #l@P}sHXq  
                LockOperationUpdates srcnode, False *.KVrS<B1  
    f=.!/e70  
    raytrace !b&+2y2i[W  
                DeleteRays 947;6a%$  
                CreateSource srcnode BoOuN94  
                TraceExisting 'draw o+)y!  
    Z9|A"[b  
                'radiometry Lf%=vd  
                For k = 0 To GetEntityCount()-1 Ep:hObWG)  
                    If IsSurface( k ) Then 1hSV/%v_  
                        temp = AuxDataGetData( k, "temperature" ) TY5R=jh=  
                        emiss = AuxDataGetData( k, "emissivity" ) Z1:<i*6>D  
                        If ( temp <> 0 And emiss <> 0 ) Then n-{d7haOa  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) jatlv/,  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Vw.)T/B_D  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 8@LUL)"  
                        End If `)4v Q+A>  
    +H *6:  
                    End If fE_%,DJE(  
    5#s],h  
                Next k sI h5cT  
    wwQ2\2w>Hm  
            Next j /y|ZAN  
    FP}I+Ys  
        Next i Ryh 0r  
        EnableTextPrinting( True ) :U=3*f.{  
    qL`yaU  
        'write out file w w[|| =  
        fullfilepath = CurDir() & "\" & fname fM|s,'Q1x  
        Open fullfilepath For Output As #1 l9OpaOVfJ  
        Print #1, "GRID " & nx & " " & ny Hc[@c)DH  
        Print #1, "1e+308" 9Kg yt  
        Print #1, pixelx & " " & pixely /8nUecr  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 4_sJ0=z-  
    pLCS\AUTsv  
        maxRow = nx - 1 <m\<yZ2aa  
        maxCol = ny - 1 0rz1b6F5,  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) H1L)9oa  
                row = "" AzSu_  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Yl lZ5<}  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string kPiY|EH  
            Next colNum                     ' end loop over columns GAZRQ  
     o0>|  
                Print #1, row NZa 7[}H  
    Di27=_J  
        Next rowNum                         ' end loop over rows Q672iR\#)  
        Close #1 43-Bx`6\  
    g5"I{ol5T~  
        Print "File written: " & fullfilepath I8% -ii  
        Print "All done!!" 9_F&G('V{a  
    End Sub BDzAmrO<  
    J/E''*  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 3$q#^UvD  
    Ge=^q.  
    J~4mp\4b  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 WT")tjVKA  
      
    2+DK:T[  
    >)='.aR<  
    打开后,选择二维平面图: tm1&OY  
    8_G6X\q};  
     
    分享到