切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1326阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 ;ORT#7CU  
    c%N8|!e  
    成像示意图
    Z+qTMm  
    首先我们建立十字元件命名为Target d1"%sI  
    8N8N)#A[  
    创建方法: w*E0f?s  
    0\N n.x%  
    面1 : eiNF?](3O  
    面型:plane R*v~jR/   
    材料:Air @.PVUP  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box /Lf+*u>"  
    <d$L}uQwg  
    SP,#KyWP0)  
    辅助数据: zO)>(E?  
    首先在第一行输入temperature :300K, ] X9e|  
    emissivity:0.1; uEK9  
    a<W[???m/M  
    ? x*Ve2+]  
    面2 : "o=*f/M  
    面型:plane Zi0B$3iOb  
    材料:Air y2>XLELy  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box @213KmB.  
    @bc=O1vX~;  
    LV^V`m0#  
    位置坐标:绕Z轴旋转90度, UJqDZIvC  
    qM."W=XVN  
    px!TRb f  
    辅助数据: FXHcy:)}G  
    'pJ46"D@m  
    首先在第一行输入temperature :300K,emissivity: 0.1; TTJFF\$?  
    "I)*W8wTn  
    jK[~d Y  
    Target 元件距离坐标原点-161mm; $6(,/}==0  
    /G zA89N(  
    IsaL+elq|  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 <`B4+:;w6  
    1kiS."77x  
    #hA]r.  
    探测器参数设定: V! sT2  
    | JmEI9n2  
    在菜单栏中选择Create/Element Primitive /plane R::0.*FF  
    ^[7ZBmS  
    Ddf7wszW  
    ux[h\Tp  
    ^`W8>czi  
    +w(sDH~kd  
    元件半径为20mm*20,mm,距离坐标原点200mm。 bJ[{[|yEd  
    8y<NT"  
    光源创建: @_gCGI>Q  
    ou r$Ka31  
    光源类型选择为任意平面,光源半角设定为15度。 h83;}>  
    '8au j  
    ^yO+-A2zC  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 [7K-L6X  
    l17sJ!I  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 Ft7{P.g  
    b'D|p/)m0S  
    Mw0Kg9M  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 duCso M/  
    q8j W&_  
    创建分析面: X=:|v<E   
    JGJXV3AT  
    y>:-6)pv  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 ;1S~'B&1Q  
    i2a""zac  
    E3pnu.;U:_  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 5hVp2 w-  
    %gF; A*  
    FRED在探测器上穿过多个像素点迭代来创建热图 U"1z"PcV  
    .L,xqd[zC  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 9WXJz;  
    将如下的代码放置在树形文件夹 Embedded Scripts, _QD##`<  
    i.eu$~F  
    -~nU&$ccL  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 //SH=>w2  
    Ueq*R(9>  
    绿色字体为说明文字, px@:t}  
    }U)g<Kzh  
    '#Language "WWB-COM" MwoU>+XB  
    'script for calculating thermal image map [fN?=,8  
    'edited rnp 4 november 2005 we6kV-L.  
    ]et4B+=i  
    'declarations ^8,Y1r9`$  
    Dim op As T_OPERATION nqG9$!k^t  
    Dim trm As T_TRIMVOLUME )c'5M]V  
    Dim irrad(32,32) As Double 'make consistent with sampling Pj4WWKX  
    Dim temp As Double QJBzv|  
    Dim emiss As Double CM}1:o<<N  
    Dim fname As String, fullfilepath As String bB|UQaCl  
    a ?LrSk`  
    'Option Explicit ?tWcx;h:>  
    K#j<G]I( @  
    Sub Main * u_ nu>  
        'USER INPUTS A!([k}@=j  
        nx = 31 hJqLH ?Ri  
        ny = 31 GpjyF_L  
        numRays = 1000 MXS N <  
        minWave = 7    'microns 0?)U?=>]p  
        maxWave = 11   'microns 8.-0_C*U;  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 pYtG%<  
        fname = "teapotimage.dat" ^4Nk13  
    %M=[h2SN  
        Print "" sSisO?F!Z  
        Print "THERMAL IMAGE CALCULATION" #~A(%a  
    (1~d/u?2\  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 w2-:!,X  
    ` u#'  
        Print "found detector array at node " & detnode jo75M Sj  
    ^;";fr Vw  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 .ZuRH_pI  
    9(;5!q,Gsg  
        Print "found differential detector area at node " & srcnode Vej [wY-c  
    "O{_LOJ  
        GetTrimVolume detnode, trm [>5<&[A  
        detx = trm.xSemiApe hT `kma  
        dety = trm.ySemiApe e):jQite   
        area = 4 * detx * dety <eU1E }BDQ  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety VR86ok  
        Print "sampling is " & nx & " by " & ny M2K{{pGJ[&  
     yN9k-IPI  
        'reset differential detector area dimensions to be consistent with sampling d~bZOy  
        pixelx = 2 * detx / nx hf6=`M}>i  
        pixely = 2 * dety / ny \#LkzN8  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ~U] "dbQ  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2  1 &24:&  
    >FO4]  
        'reset the source power _lWC)bv`  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) d~i WV6Va  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" ,EkzBVgo  
    ~vqVASUc,  
        'zero out irradiance array zV)(i<Q  
        For i = 0 To ny - 1 3AKT>Wy =  
            For j = 0 To nx - 1 gN2$;hb?  
                irrad(i,j) = 0.0 QucDIZ  
            Next j N?xZ]?T  
        Next i *&WkorByW  
     ]/l"  
        'main loop PUt\^ke  
        EnableTextPrinting( False ) c$Vu/dgx  
    OT1  
        ypos =  dety + pixely / 2 #6t 4 vJ1  
        For i = 0 To ny - 1 vNMndo!  
            xpos = -detx - pixelx / 2 L-&N*   
            ypos = ypos - pixely p`/"e<TP  
    = NHE_ 4/p  
            EnableTextPrinting( True ) ^!Y]l  
            Print i [I*)H7pt}  
            EnableTextPrinting( False ) ChvSUaCS  
    @vsgmz  
    *QKxrg  
            For j = 0 To nx - 1 SM57bN  
    oRf.34  
                xpos = xpos + pixelx L]wWJL  
    t>hoXn^-  
                'shift source AcZ{B<  
                LockOperationUpdates srcnode, True A -C.Bi;/  
                GetOperation srcnode, 1, op se|>P=/  
                op.val1 = xpos 1NHiW v  
                op.val2 = ypos noSkKqP  
                SetOperation srcnode, 1, op e"Y ( 7<  
                LockOperationUpdates srcnode, False o#"U8N%r  
    #7 )&`  
    raytrace myq@X(K  
                DeleteRays #'DrgZ)W  
                CreateSource srcnode {Ad4H[]|]  
                TraceExisting 'draw sj9j 47y  
    l*r8.qp  
                'radiometry _Y{8FN(4  
                For k = 0 To GetEntityCount()-1 /"(`oe<  
                    If IsSurface( k ) Then 7aF'E1e'3  
                        temp = AuxDataGetData( k, "temperature" ) s3(mkdXv  
                        emiss = AuxDataGetData( k, "emissivity" ) a&^HvXO(>(  
                        If ( temp <> 0 And emiss <> 0 ) Then [b2KBww\  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) .<m${yU{3  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) /M,C%.-  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 7 XNZEi9o  
                        End If L3/SIoqd  
    Zz,j,w0 Z  
                    End If u%t/W0xi  
    AvmI<U  
                Next k O{vVW9Q  
    ojc m%yd  
            Next j f|v5i tO2  
    W u C2 LM  
        Next i 1>c^-"#e^  
        EnableTextPrinting( True ) Vn=K5nm  
    o+],L_Ab  
        'write out file jv ;8Mm  
        fullfilepath = CurDir() & "\" & fname {"dvU "y)\  
        Open fullfilepath For Output As #1 !:]/MpQ ?  
        Print #1, "GRID " & nx & " " & ny ?&`PN<~2z  
        Print #1, "1e+308" [QwBSq8)  
        Print #1, pixelx & " " & pixely Exb?eHO  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 `{oFdvL~)  
    ngt?9i;N  
        maxRow = nx - 1 V}Ok>6(~  
        maxCol = ny - 1 [ML|, kq!  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ts:YJAu+F  
                row = "" qWdob>u  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) gmqL,H#  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string !g.?+~@  
            Next colNum                     ' end loop over columns $etw'c0  
    `o4%UkBpM  
                Print #1, row Hhzi(<e^  
    /;X+<Wj  
        Next rowNum                         ' end loop over rows c]/X >8;  
        Close #1 ?wi^R:2|j  
    5y~ Srb?2  
        Print "File written: " & fullfilepath &cpqn2Z  
        Print "All done!!" CcJ%; .V,T  
    End Sub , 3&D A  
    p 2>\  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: TWeup6k  
    CJYpgSr  
    9 df GV!Z  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 y$K[ArqX  
      
    #rI4\K  
    oazY?E]}3  
    打开后,选择二维平面图: J1u&Ga  
    {9XN\v=$"*  
     
    分享到