-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 e[x,@P` 7vgRNzZoq 成像示意图 5L6.7}B 首先我们建立十字元件命名为Target aEdMZ+P. MDa[bQNM 创建方法: }%wP^6G*x\ P:6K 面1 : =z5=? 面型:plane #p=+RTZ< 材料:Air TCzz]?G]la 孔径:X=1.5, Y=6,Z=0.075,形状选择Box rMG[,:V WuVsW3@ hlyh8=Z6o 辅助数据: GX19GI@k 首先在第一行输入temperature :300K, 3 a(SmM: emissivity:0.1; t#M[w|5? &z3_N :D}?H@(69 面2 : 7]u_ 面型:plane ;xTMOuI* 材料:Air b7xOm"X,N 孔径:X=1.5, Y=6,Z=0.075,形状选择Box b?=r%D->w XH0{|#hwN fC^d@4ha 位置坐标:绕Z轴旋转90度, T:Q+ Z }v+ q:vN3#=^qf iU0jv7}n 辅助数据: B7A.~'= jY9tq[~/ 首先在第一行输入temperature :300K,emissivity: 0.1; i]zh8|"> b%F'Ou~ ,-d2wzhW Target 元件距离坐标原点-161mm; LCRWC`%& #\F8(lZ l+(B~v 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 fX:G;vYn Z^F>sUMR k"dE?v\cG 探测器参数设定: B$=1@ /;TD n>lq 在菜单栏中选择Create/Element Primitive /plane HU
+271A8 brE%/%!e K~&3etQF WFug-#;e RionKiN bMqS:+ 元件半径为20mm*20,mm,距离坐标原点200mm。 2Sy:wt AnsJ3C 光源创建: y}QqS/ 50S*_4R 光源类型选择为任意平面,光源半角设定为15度。 ,=ju^_^sA 6jal5<H Q Na*Y@i 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 `EP-Qlm A?ESjMy(R 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 \>/AF<2" zS\m8[+] dZJU>o'BG 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 wGz_IL.D jN+2+P%OL 创建分析面: p{V(! v| '~6l
6wi fK4O
N'[R: 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Zg])uM]\2i '#r^W2 x6yO2Yo 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 Fw#wVs)@: e+MsFXnB8 FRED在探测器上穿过多个像素点迭代来创建热图 j~ qm5} WdrMp FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 Im`R2_(] 将如下的代码放置在树形文件夹 Embedded Scripts, B<!wh P_N},Xry {2&MyxV 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Zvz}Z8jW p_sqw~)^% 绿色字体为说明文字, xO
1uHaL na/,1iI< '#Language "WWB-COM" w4&-9[@Y 'script for calculating thermal image map m`3gNox 'edited rnp 4 november 2005 ?7*J4. apm,$Vvjy 'declarations TkjZI}]2 Dim op As T_OPERATION Of$gs- Dim trm As T_TRIMVOLUME @v\jL+B+m Dim irrad(32,32) As Double 'make consistent with sampling #fe zUU Dim temp As Double h3-dJgb Dim emiss As Double (7PVfS>; Dim fname As String, fullfilepath As String Bk4|ik} O6!:Qd 'Option Explicit p["20?^ gG6BEsGa, Sub Main 3n TpL# 'USER INPUTS ^t)alNGos nx = 31 I#t#%!InH ny = 31 htqC~B{1E numRays = 1000 )RwO2H minWave = 7 'microns P?U}@U~9 maxWave = 11 'microns fL R.2vJ sigma = 5.67e-14 'watts/mm^2/deg k^4 ^F$iD (f fname = "teapotimage.dat" &
Mf nH |G>Lud Print "" 6?jSe<4x Print "THERMAL IMAGE CALCULATION" y
+c 3# cX-)]D detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 xXc3#n Q\v^3u2;m` Print "found detector array at node " & detnode GI*2*m!u c:G0=5 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 8U&93$
|/p2DU2 Print "found differential detector area at node " & srcnode _S#3!Wx V\><6v GetTrimVolume detnode, trm IDv|i.q3 detx = trm.xSemiApe !F*CE cB dety = trm.ySemiApe syLpnNx= area = 4 * detx * dety Dmv@ljwO Print "detector array semiaperture dimensions are " & detx & " by " & dety ?f[U8S} Print "sampling is " & nx & " by " & ny 0Fm,F&12 5oIgxy 'reset differential detector area dimensions to be consistent with sampling (&Z`P pixelx = 2 * detx / nx 2(sq*!tX pixely = 2 * dety / ny Ni 5Su SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False J#& C&S 2 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 N,NEg4 q[ S~LTLv:> 'reset the source power 0xg6 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 5%Q[X
Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" /WKp\r(Hp !NFP=m1 'zero out irradiance array u9%)_Q!14 For i = 0 To ny - 1 VjVL/SO/ For j = 0 To nx - 1 Kzd)Z
fnD0 irrad(i,j) = 0.0 q+-Bl Next j x?B 8b-* Next i Z}'"c9oB
=:-x; 'main loop V|8`]QW@ EnableTextPrinting( False ) HNtl>H S7
Tem:/ ypos = dety + pixely / 2 *6e 5T For i = 0 To ny - 1 \;smH;m xpos = -detx - pixelx / 2 PXYo@^ 3 ypos = ypos - pixely *aF<#m v (GdL(H#IL EnableTextPrinting( True ) 6-@n$5W0 Print i C7[CfcPA EnableTextPrinting( False ) )FrXD3p %v(\;&@ &<sN(;%0R For j = 0 To nx - 1 \;G 97o
#E(
n xpos = xpos + pixelx wN
![SM/+ :2fz4n0{/ 'shift source Qm\VZ<6/5 LockOperationUpdates srcnode, True G_]
(7 GetOperation srcnode, 1, op E|Lv_4lb= op.val1 = xpos 3%W
R op.val2 = ypos c*g(R.! SetOperation srcnode, 1, op U\ A*${ LockOperationUpdates srcnode, False Lc<C1I 5= &v^LxLt+s raytrace ei8OLcw:x DeleteRays 'J`%[,@V CreateSource srcnode HEjrat;5 TraceExisting 'draw An e.sS R3$K[Lv, 'radiometry Rz!E=1Y$ For k = 0 To GetEntityCount()-1 Y`u.P(7# If IsSurface( k ) Then `" E | temp = AuxDataGetData( k, "temperature" ) {]}}rx'|P emiss = AuxDataGetData( k, "emissivity" ) !.'@3-w] If ( temp <> 0 And emiss <> 0 ) Then r$*p ProjSolidAngleByPi = GetSurfIncidentPower( k ) WBA0!
g98 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) V}>0r+NL< irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi R9->.eE End If .TURS @])qw_ End If oh5fNx {qm(Z+wcmb Next k ^L;`F uSs~P%@6| Next j TWC^M{e TCSm#?[B Next i pt;kN&A^ EnableTextPrinting( True ) A}b<Lg V$wf;v0d( 'write out file ~mtL\!vaM fullfilepath = CurDir() & "\" & fname ipEsR/O Open fullfilepath For Output As #1 D'>yu" Print #1, "GRID " & nx & " " & ny MdWT[ Print #1, "1e+308" h!f7/)|[o Print #1, pixelx & " " & pixely :_tsS)Q2m Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 5vL]Y)l {O6f1LuH maxRow = nx - 1 :Q\b$=,: maxCol = ny - 1 w $7*za2 For rowNum = 0 To maxRow ' begin loop over rows (constant X) 4b8!LzKS row = "" n2R{$^JxO For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 6P'
m0 row = row & irrad(colNum,rowNum) & " " ' append column data to row string GCx]VN3& Next colNum ' end loop over columns oSt-w{! i+&*W{Re Print #1, row YSt' ] DY6wp@A Next rowNum ' end loop over rows Od'!v & Close #1 ;""V s6 5isejR{r Print "File written: " & fullfilepath
,|b<as@X Print "All done!!" +E QRNbA End Sub ,k/*f+t EpeTfD 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: j]6j!.1 pd,5.d R\+p`n$ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 Hq^sU% U]fE(mpI9 rZZueYuXO 打开后,选择二维平面图: a[)in ,3 j3 ~: \H
|