-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-01
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 4EuZe:'X K:P gkc 成像示意图 xYM!mcA 首先我们建立十字元件命名为Target ltHC+8aZ c*!bT$]~\ 创建方法: v}-'L#6 Cs%'Af 面1 : }(J6zo9(x 面型:plane jKQnox+= 材料:Air 9n!3yZVSe 孔径:X=1.5, Y=6,Z=0.075,形状选择Box +YhTb NK*~UePy 7P]_03 辅助数据: ?
_[gs/i} 首先在第一行输入temperature :300K, `-Gs*#(/ emissivity:0.1; I2|iqbX40Q +t/VF(! i/oaKpPN 面2 : "v jFL9 面型:plane kYxn5+~ 材料:Air VILzx+v
M 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 2#6yO`?uo 2={`g/WeE lh~!cOm\=E 位置坐标:绕Z轴旋转90度, wvJm)Mj+ GRO[&;d` Aq QArSu, 辅助数据: C#>c(-p>RC Gnj|y?' 首先在第一行输入temperature :300K,emissivity: 0.1; N$>g)Ml? k=w%oqpN :%xiH%C> Target 元件距离坐标原点-161mm; QF'N8Kla q%Obrk rMfp%DMA 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 W84JB3p #{UM4~|: #r#UO 探测器参数设定: hqD]^P>l1 9'\18_w 在菜单栏中选择Create/Element Primitive /plane @FdtM<X L@t<%fy@ j2=jD G #
x!47Y{ z6ArSLlZ x =5k74 元件半径为20mm*20,mm,距离坐标原点200mm。 37 T<LU bQrH8) 光源创建: 8uchp >ys>Q) 光源类型选择为任意平面,光源半角设定为15度。 ZXFM_>y5 '_@Y !\z:S?V 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 '0p 5|[ZD }'b3'/MJ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 9H_2Y%_ l|/h4BJ' gah3d*d7 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 _rR+u56y- E*:!G 创建分析面: [}9sq+## {Uz@`QO3 E3X:{h/ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 &BY%<h0c iKnH6}`?U =!w5%|r. 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 %[u6< 5bYU(] FRED在探测器上穿过多个像素点迭代来创建热图 WS/^WxRY n (7m FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 x%pC.0% 将如下的代码放置在树形文件夹 Embedded Scripts, !
@{rkp K_{f6c< /;-KWu+5= 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 kT&-:: ^R kTb.I;S 绿色字体为说明文字, Q&]
}`Rp= 3~z4#8= '#Language "WWB-COM" {hG r`Rh 'script for calculating thermal image map x%23oPM 'edited rnp 4 november 2005 F1JSf&8 7}OzTup 'declarations
O<Qa1Ow7f Dim op As T_OPERATION 8Y *SZTzV Dim trm As T_TRIMVOLUME ,DK |jf Dim irrad(32,32) As Double 'make consistent with sampling EAn}8#r'(8 Dim temp As Double @=,2{JF*6 Dim emiss As Double MH[Zw$ Dim fname As String, fullfilepath As String 0,)B~|+ no- Lx-x 'Option Explicit vDZhoD=VR TC[_Ip& Sub Main -CfGWO#Gbx 'USER INPUTS G;_QE<V~_ nx = 31 xx0s`5 ny = 31 OSk:njyC[ numRays = 1000 nv1'iSEeOl minWave = 7 'microns i#$9>X maxWave = 11 'microns $C0NvJf sigma = 5.67e-14 'watts/mm^2/deg k^4 "u5Hm ^H fname = "teapotimage.dat" La48M'u z"*X/T Print "" <9 lZ%j; Print "THERMAL IMAGE CALCULATION" &I:[ 'l! fN~kdm. detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 a]'sby O&l(`*P Print "found detector array at node " & detnode h^^zR)EVb *#1&IJPI srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 r`XIn#o LO]D
XW 9 Print "found differential detector area at node " & srcnode fiOc;d8 In^MZ)? GetTrimVolume detnode, trm ;l>
xXSB7$ detx = trm.xSemiApe (RG\U[ dety = trm.ySemiApe Uo v%12 area = 4 * detx * dety R~8gw^w![ Print "detector array semiaperture dimensions are " & detx & " by " & dety F{)YdqQ Print "sampling is " & nx & " by " & ny 21D4O,yCe ~E-YXl9 'reset differential detector area dimensions to be consistent with sampling pxjN\q pixelx = 2 * detx / nx WsRG>w3" pixely = 2 * dety / ny D}'g4Ag SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ]\5@N7h Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 fgg^B[(Y <_@ K4zV 'reset the source power *6 -;iT8 SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) D
7 l&L Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" '`?\CXX J XKps#,(# 'zero out irradiance array iY"I:1l. For i = 0 To ny - 1 KJWYG^zI For j = 0 To nx - 1 7vUfA" irrad(i,j) = 0.0 +#8?y
5~q Next j i@e.Uzn Next i Oh6_Bci `q* 0^} 'main loop &&$/>[0=. EnableTextPrinting( False ) Ag}V>i' 3GqJs ypos = dety + pixely / 2 a
OR} For i = 0 To ny - 1 VaC#9Tp2X xpos = -detx - pixelx / 2 ~J?O ~p`& ypos = ypos - pixely uA=6 HpDB nV 38Mj2U EnableTextPrinting( True ) '&Ox,i]t Print i {%D!~,4Ht EnableTextPrinting( False ) g`)3m,\ k$:QpTg[ !VpZo*+ For j = 0 To nx - 1 @z"Zj 3ti IcZ_AIjlk xpos = xpos + pixelx 2!>phE C0/s/p' 'shift source vW]Frb LockOperationUpdates srcnode, True G&:[G>iSm^ GetOperation srcnode, 1, op SdC505m0* op.val1 = xpos N%;Q[*d@/ op.val2 = ypos * 2[&26D SetOperation srcnode, 1, op xou7j
LockOperationUpdates srcnode, False W093rNF~ ]*j>yj.Y'~ raytrace 6CO>Tg:% DeleteRays =YF\mhMQ: CreateSource srcnode +5Ir=]=T9 TraceExisting 'draw M['25[ T'i9_V{ 'radiometry F3jrJ+nJ For k = 0 To GetEntityCount()-1 ?"+'OOqik If IsSurface( k ) Then nkHr(tF
7 temp = AuxDataGetData( k, "temperature" ) 0uzis09 emiss = AuxDataGetData( k, "emissivity" ) X0b :Oiw If ( temp <> 0 And emiss <> 0 ) Then S1uW`zQ!+_ ProjSolidAngleByPi = GetSurfIncidentPower( k ) E#Ynn6 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) &=|W95 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ar+mj=m End If #W
1`vke3 R*.XbkW~ End If I /3=~;u ~B>I?j Next k -qfd)A6] lnbw-IE! Next j O8SX#,3^} ']$ttfJB Next i H(Mlf EnableTextPrinting( True ) Gcg`Knr 7qon:]b4 'write out file \s&w0V`Y fullfilepath = CurDir() & "\" & fname ;G!X?(%+ Open fullfilepath For Output As #1 gv `jeN Print #1, "GRID " & nx & " " & ny <<(~'$~,L Print #1, "1e+308" 2t1 WbP1 Print #1, pixelx & " " & pixely *Dh.'bB! Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ^]'p927 +<:p`% maxRow = nx - 1 |F<U;xV$p maxCol = ny - 1 $f>WR_F For rowNum = 0 To maxRow ' begin loop over rows (constant X) JC{}iG6r+ row = "" $>/J8iB For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) )[9L|o5D row = row & irrad(colNum,rowNum) & " " ' append column data to row string {0QD-b o Next colNum ' end loop over columns <WaiJy? mwbkXy;8 Print #1, row 0J$wX yh oLruYSaD Next rowNum ' end loop over rows i2)SSQ Close #1 SZG8@ !_}7 TuIeaH% x Print "File written: " & fullfilepath Yc:b:\0}F6 Print "All done!!" 6e |
End Sub ,-] JCcH -#<,i' 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: z &<Rx[ W7(OrA! g?j"d{.9t 找到Tools工具,点击Open plot files in 3D chart并找到该文件 2_r}4)z )yJe h 2: pq|eiF 打开后,选择二维平面图: >z^T~@m7l b4%IyJr
|