切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1356阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 Em]2K:  
    -PiakX  
    成像示意图
    ,k |QuOrCh  
    首先我们建立十字元件命名为Target p6AF16*f0  
    E5QQI9ea  
    创建方法: i1JVvNMQ,  
    H aA2y  
    面1 : (,I9|  
    面型:plane X0 ^~`g  
    材料:Air o XFo  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box SSn{,H8/j  
    ncdj/C  
    ZE:!>VXa87  
    辅助数据: nw,XA0M3  
    首先在第一行输入temperature :300K, 60--6n  
    emissivity:0.1; sIzy/W0iV  
    ^R h`XE  
    vX}#wDNP  
    面2 : 36MNaQt'e  
    面型:plane ,(;]8G-Yj  
    材料:Air g@|2z  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box &j?+%Y1n@  
    a98J_^n  
    FSD~Q&9&  
    位置坐标:绕Z轴旋转90度, ,lDOo+eE%:  
    jT*?Z:U  
    _V,bvHWlM  
    辅助数据: _^@>I8ix  
    3W3)%[ 5  
    首先在第一行输入temperature :300K,emissivity: 0.1; @ MKf$O4K  
    CLgfNrW~  
    U(:Di]>{  
    Target 元件距离坐标原点-161mm; :$Xvq-#$|  
    c>%%'c  
    dZ|x `bIgs  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 iI Dun Ih  
    ")Qhg-l  
    O39f  
    探测器参数设定: D}~uxw;[^  
    KnC:hus  
    在菜单栏中选择Create/Element Primitive /plane _)ZxD--Qg  
    pEq }b+-  
    *nSKIDw  
    nLY(%):(P  
    Gz:ell$  
    |f3 :9(p  
    元件半径为20mm*20,mm,距离坐标原点200mm。 6,~]2H'zq  
    9`td_qh  
    光源创建: bD`h/jYv  
    (*Z:ByA  
    光源类型选择为任意平面,光源半角设定为15度。 'x<o{Hi"\B  
    "t%Jj89a\  
    zs.@=Z"  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 @a (-U.CZ  
    r"!xI  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 2H/{OQ$  
    <72q^w  
    .l$U:d  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 &l0 ,q=T  
    H'}6Mw%ra  
    创建分析面: INY?@in  
    Sq]QRI/  
    -I[KIeF  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 oQ}K_}{>  
    "KgNMNep  
    v8K`cijSS  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 1s.>_  
    JHa\"h  
    FRED在探测器上穿过多个像素点迭代来创建热图 PR7B Cxm  
    x(A8FtG  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 }$b!/<7FD  
    将如下的代码放置在树形文件夹 Embedded Scripts, 5 zz">-Q !  
    1Gy [^  
    U|Uc|6  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 w+$~ ds  
    9.BgsV .  
    绿色字体为说明文字, xdh%mG:?  
    Py#TXzEcC  
    '#Language "WWB-COM" zKT4j1 h  
    'script for calculating thermal image map pKU(4&BxX  
    'edited rnp 4 november 2005 W;?e@}  
    v.hQ 9#:  
    'declarations >[l2KD  
    Dim op As T_OPERATION (4|R}jv  
    Dim trm As T_TRIMVOLUME Ygc|9}  
    Dim irrad(32,32) As Double 'make consistent with sampling [I}z\3Z %  
    Dim temp As Double QD-`jV3  
    Dim emiss As Double _9'hmej  
    Dim fname As String, fullfilepath As String ^!z(IE'  
    v#?;PyeF  
    'Option Explicit @w;$M]o1  
    FKUo^F?z  
    Sub Main +J#8w h  
        'USER INPUTS ^6J*:(eM  
        nx = 31 Ns]$+|  
        ny = 31 *c 9 S.  
        numRays = 1000 WF:4p]0~)  
        minWave = 7    'microns \/b[V3<"  
        maxWave = 11   'microns +ViL"  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 33&l.[A"!}  
        fname = "teapotimage.dat" #8~ygEa}  
    }I1j#d0.  
        Print "" 6s'n r7'0  
        Print "THERMAL IMAGE CALCULATION" w[$oH^7  
    'Va<GHr>+  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 #lc6-K#  
    _%Yi ^^  
        Print "found detector array at node " & detnode /pV N1Yt  
     3Yo)K  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 ;G[0%z+*  
    \XwC|[%P  
        Print "found differential detector area at node " & srcnode (UCCEQq5  
    I9m9`4BK  
        GetTrimVolume detnode, trm [$td:N *  
        detx = trm.xSemiApe .FV^hrJxI;  
        dety = trm.ySemiApe [!MS1v c;  
        area = 4 * detx * dety pjl>ZoOM  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety )FPn_p#3]  
        Print "sampling is " & nx & " by " & ny [4aw*M1z}.  
    __zHe-.m  
        'reset differential detector area dimensions to be consistent with sampling |KVVPXtq%C  
        pixelx = 2 * detx / nx b- bvkPN  
        pixely = 2 * dety / ny 8_ o~0lb  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Q*M(d\Vs  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 /Kq'3[d8  
    c&,q`_t  
        'reset the source power J Vxja<43  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Gs,e8ri!  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" f/s"2r  
    k"C'8<T)'  
        'zero out irradiance array [^7P ]olW  
        For i = 0 To ny - 1 BoST?"&}'  
            For j = 0 To nx - 1 DycXJ3eQ  
                irrad(i,j) = 0.0 ~I9o *cq  
            Next j M<*WC{  
        Next i FD&^nJ_{  
    q VI0?B x  
        'main loop JZ~wacDd  
        EnableTextPrinting( False ) Yi)s=Q:  
    8e^uKYR<  
        ypos =  dety + pixely / 2 Z[ &d2'  
        For i = 0 To ny - 1 ek U%^R<  
            xpos = -detx - pixelx / 2 3Pgokj   
            ypos = ypos - pixely FvYciU!  
    (xoYYO  
            EnableTextPrinting( True ) bar=^V)  
            Print i )B)f`(SA"<  
            EnableTextPrinting( False ) c8Ud<M .  
    ^sFO[cYo  
    K#AexA  
            For j = 0 To nx - 1 u`.)O2)xU  
    k3nvML,bv  
                xpos = xpos + pixelx eO(U):C2  
    psc Fb$b  
                'shift source LkP :l  
                LockOperationUpdates srcnode, True Ir5|H|b<  
                GetOperation srcnode, 1, op `C C=?E  
                op.val1 = xpos mw}Bl; - O  
                op.val2 = ypos \v5;t9uBZ  
                SetOperation srcnode, 1, op 6>)nkD32g  
                LockOperationUpdates srcnode, False Dg"szJ-   
    esQ$.L  
    raytrace t*-c X  
                DeleteRays 5V\",PA W  
                CreateSource srcnode  y1T(R#  
                TraceExisting 'draw CaO-aL  
    B>m*!n: l  
                'radiometry )wCNLi>4  
                For k = 0 To GetEntityCount()-1 EwU)(UK  
                    If IsSurface( k ) Then MpGG}J[y  
                        temp = AuxDataGetData( k, "temperature" ) xE]y*\  
                        emiss = AuxDataGetData( k, "emissivity" ) '6WS<@%}  
                        If ( temp <> 0 And emiss <> 0 ) Then "y&`,s5}  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) :$,MAQ'9  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) {>9ED.t  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi FKz5,PeL  
                        End If 2 \}J*0  
    Cl9nmyf   
                    End If n*A1x8tn  
    R3l{.{3p2  
                Next k Iz#4!E|<  
    `OWHf?t:  
            Next j ZV+tHgzlv5  
    3NDddrL9  
        Next i jBOl:l,+  
        EnableTextPrinting( True ) (.V),NKG  
    jVQ89vf ~  
        'write out file Iia.`"S  
        fullfilepath = CurDir() & "\" & fname rzn,N FI  
        Open fullfilepath For Output As #1 i!e8-gVMP&  
        Print #1, "GRID " & nx & " " & ny UO@K:n  
        Print #1, "1e+308" O>1Cx4s5  
        Print #1, pixelx & " " & pixely (IVhj^dQm  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ow{.iv\,u  
    ~'KqiUY  
        maxRow = nx - 1 I 4?oBq  
        maxCol = ny - 1 0V(}Zj>  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) ?z&%VU"  
                row = "" S7Ty}?E@  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ~"#HHaBO#  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string ;%^=V#  
            Next colNum                     ' end loop over columns LlO8]b!P-^  
    PC<_1!M]  
                Print #1, row ] 2qKc  
    \rzMgR$/rj  
        Next rowNum                         ' end loop over rows ceJi|`F  
        Close #1 usD@4!PoA  
    6{HCF-cQd  
        Print "File written: " & fullfilepath _3yG<'f[Y  
        Print "All done!!" W Eif&<Y  
    End Sub & rab,I"  
    VDbbA\  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: tMX$8W0 c  
    /}m*|cG/  
    jd-]q2fQ|  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 M\5|  
      
    8Ejb/W_  
    D4[t^G;J  
    打开后,选择二维平面图: iP"sw0V8  
    dM^Z,; u  
     
    分享到