-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-25
- 在线时间1891小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 %fexuy4 ,"v)vTt 成像示意图 9-X{x95] 首先我们建立十字元件命名为Target M ,.0[+ '#pMEVP 创建方法: C[Y%=\6'0 vTe$77n 面1 : Mp DdJ, 面型:plane
f4A4 材料:Air `\WcF7 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ba1$kU ;r0|_mnf A*-]J=:E { 辅助数据: rU2YMghE 首先在第一行输入temperature :300K, (}/.4xE emissivity:0.1; O?4vC5x 5<:VJC< <IHFD^3|j 面2 : _k"&EW{ Ii 面型:plane >yPFL' 材料:Air 3_R 孔径:X=1.5, Y=6,Z=0.075,形状选择Box #buV;!_!E? h1G*y xqi*N13 位置坐标:绕Z轴旋转90度, /w}B07. 5pKvNLy.t d
=B@EyN 辅助数据: y. ivz Jfixm=.6 首先在第一行输入temperature :300K,emissivity: 0.1; 8f6;y1!; @FnI?Rx CLFxq@%nu~ Target 元件距离坐标原点-161mm; !txELA~24 w50Bq&/jX &ttv4BC^r 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 nDoiG#N0 95gsv\2 &Curvc1fm 探测器参数设定: '%]@a7w fEv<W
在菜单栏中选择Create/Element Primitive /plane U_
?elz\
3A}nNHpN ou,=MpXx* 4HJZ^bq9| #.<F5
!=h|&Vta 元件半径为20mm*20,mm,距离坐标原点200mm。 9Qs"X7iH Uf2v$Jl+Yh 光源创建: lu@>?,< 5w [= 光源类型选择为任意平面,光源半角设定为15度。 BJ.8OU*9]S >fZ/09&3 k1$2a8ja 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ==jw3_W ~b6<uRnM. 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 sY;gh`4h ~=AKX(Q dD.d?rnZq7 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 U)I `:J+A ?:''VM. 创建分析面: (HrkUkw ";S*[d.2tA ch,Zk )y:_ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 N>nvt.`P ?lwQne8/ EDidg"0p 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 kFIB lPV vb"dX0)< FRED在探测器上穿过多个像素点迭代来创建热图 .dKRIFo FG5c:Ep FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 )Y,?r[4{ 将如下的代码放置在树形文件夹 Embedded Scripts, `2mbF^-4 3Llj_lf %}ApO{ 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 gM5p1?E ">vYEkZ3 绿色字体为说明文字, Y7t{4P };|PFWs '#Language "WWB-COM" _hyxKrm'
6 'script for calculating thermal image map , w'$T) 'edited rnp 4 november 2005 C8W`Oly:] |Q)w3\S$ 'declarations PSQ:' Dim op As T_OPERATION >wS:3$Q Dim trm As T_TRIMVOLUME cJWfLD>2_! Dim irrad(32,32) As Double 'make consistent with sampling v.2Vg Dim temp As Double LI|HET_ Dim emiss As Double eeJt4DV8v Dim fname As String, fullfilepath As String }B
'*8^S V-ouIqnI 'Option Explicit kdMS"iN8x BfE-s< Sub Main WKIiJ{@L 'USER INPUTS 7fTg97eF nx = 31 "QFADk1 ny = 31 6p=x gk-q numRays = 1000 ^RyTK|SQ minWave = 7 'microns E e\-q maxWave = 11 'microns +j: Ld( sigma = 5.67e-14 'watts/mm^2/deg k^4 KJ^GUqVl fname = "teapotimage.dat" Ufe rUpAiZfz > Print "" %V1T!< Print "THERMAL IMAGE CALCULATION" vgW1hWmHJ (`y|AOs detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 I.0P7eA- W]}V<S$ Print "found detector array at node " & detnode = 4WZr kmr
4cU5 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 "gikX/Co= -zLI!F 0 Print "found differential detector area at node " & srcnode F4<2.V)#- wYMX1= GetTrimVolume detnode, trm 6`";)T[ G9 detx = trm.xSemiApe /^eemx dety = trm.ySemiApe G{Enh<V area = 4 * detx * dety O#5( U.E Print "detector array semiaperture dimensions are " & detx & " by " & dety [5eT|uy Print "sampling is " & nx & " by " & ny <$6'Mzf HWfX>Vf>}k 'reset differential detector area dimensions to be consistent with sampling Y4qyy\} pixelx = 2 * detx / nx JIKxY$GS pixely = 2 * dety / ny })SdaZ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False k Q(y^t W Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 5_C#_=E sfPN\^k2 'reset the source power / lM~K: SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :Fd9N).% Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" :Sn3|`HDm 4"(zi5`e 'zero out irradiance array 9Zsb1 M!n> For i = 0 To ny - 1 6SO7iFS For j = 0 To nx - 1 Jv.R?1;8i irrad(i,j) = 0.0 d@f2Vxe7 Next j
F-,{+B66 Next i dTQvz9 C T`ZJ=gv 'main loop "[S
6w EnableTextPrinting( False ) AR6vc g2<S4 ypos = dety + pixely / 2 l{o{=]x1 For i = 0 To ny - 1 }F`2$Q+CW xpos = -detx - pixelx / 2 -?1J+}? ypos = ypos - pixely ld?.o/ ~WXxVm*@ EnableTextPrinting( True ) OT3;qT*fw Print i ZKPkx~,U[ EnableTextPrinting( False ) Hbc&.W;g7[ Fh$&puF2 NT/B4'_@ For j = 0 To nx - 1 0%NI-
Zyo X2?_lZ[\ xpos = xpos + pixelx .LR>&N _U &)jZ|Q~ 'shift source AV3,4u LockOperationUpdates srcnode, True Z`c{LYP,y" GetOperation srcnode, 1, op 6|cl`}g_j op.val1 = xpos x.Ml~W[ op.val2 = ypos }3y\cv0ct SetOperation srcnode, 1, op :]QxT8B LockOperationUpdates srcnode, False NWK_(=n :?k=Yr raytrace Q 9<_:3 DeleteRays NYvj?>[y CreateSource srcnode q:sR zX TraceExisting 'draw ScoHtX3 }_;!E@ 'radiometry fEv36xb2S For k = 0 To GetEntityCount()-1 ]X|G+[Ujv If IsSurface( k ) Then &~f_1< temp = AuxDataGetData( k, "temperature" ) S,RJ#.:F[t emiss = AuxDataGetData( k, "emissivity" ) D07u? If ( temp <> 0 And emiss <> 0 ) Then YH9]T, ProjSolidAngleByPi = GetSurfIncidentPower( k ) z1s"C[W2T frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) v ed
Qwzh irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi {U-EBXV End If BmXGk L(8dK End If F
&}V65 {hR2NUm Next k !#qB%E]a 6J+ZeBk?? Next j TLgVuY 4HE4e Next i :%MWbnVSC, EnableTextPrinting( True ) #?6RoFgMe 'Sh5W%NM 'write out file .9Fm>e+!C fullfilepath = CurDir() & "\" & fname g>zL{[e! Open fullfilepath For Output As #1 -#x\ E%v.F Print #1, "GRID " & nx & " " & ny nB& |