-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 b`,Sd.2=(' eH[i<Z 成像示意图 !(viXV5 首先我们建立十字元件命名为Target ;DVg[# e@ $|xa") 创建方法: c&{= aIe w g W9`k,U 面1 : U~t!
面型:plane (0.JoeA`y 材料:Air (/!@
-]1 孔径:X=1.5, Y=6,Z=0.075,形状选择Box qDz[=6BF E*fa&G~s ) 7^mQfQv 辅助数据: " vc4QH$ 首先在第一行输入temperature :300K, 1oQbV`P emissivity:0.1; n:b,zssP l~Ka(*[!U -m mQ]'.0 面2 : "r3h+(5 面型:plane ~l{Qz0& 材料:Air i~R+g3oi 孔径:X=1.5, Y=6,Z=0.075,形状选择Box m\bmBK"I HDKY7Yr &-JIXVd*R 位置坐标:绕Z轴旋转90度, ,dw\y/dn Q~k|lTf ^tWSu?9 辅助数据: TXS`ey ZM<UiN 首先在第一行输入temperature :300K,emissivity: 0.1; +7nvy^m >K1e=SY Z7[S698 Target 元件距离坐标原点-161mm; w'VuC82SZ 4xg1[Z%: ~ _tK.m3 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 dLwP7#r ?i\V^3S n$ Qu7ML]e?z 探测器参数设定: Qz%q#4Zb rd$T6!I 在菜单栏中选择Create/Element Primitive /plane -U?%A:,a| NLYf b9 li jUR*
| I,,SR" A )CsF 元件半径为20mm*20,mm,距离坐标原点200mm。 X*d!A
>s :?m"kh
~ 光源创建: Eb63O WX_g 光源类型选择为任意平面,光源半角设定为15度。 DB_oRr[oj m(kv:5<> T
g3MPa#g 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ^^tTA^ c'Z)uquvP 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 j]5e$e{ $vYy19z 0b8=94a{> 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 TlX:05/V8 '"rm66 创建分析面: 9Av{>W? p|a`Q5z! CWYOzqf 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Zp6VH o_kZ a\Gd;C ^` 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 "[7'i<,AI EGFPv'De FRED在探测器上穿过多个像素点迭代来创建热图 )"M;7W?R0 {Dy,|}7s FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ;:J"- p 将如下的代码放置在树形文件夹 Embedded Scripts, ,pf\g[tz Dvl\o; RF4B]Gqd
打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ;b=7m#5 HJpx,NU' 绿色字体为说明文字, w-v8P`V k*F9&-rtN '#Language "WWB-COM" |o(te 'script for calculating thermal image map $M4_"!
'edited rnp 4 november 2005 $-!7<a- 6Rq +=X 'declarations n:s _2h(u Dim op As T_OPERATION J#iuF'%Ds Dim trm As T_TRIMVOLUME w(
@QRd{ Dim irrad(32,32) As Double 'make consistent with sampling ymqn1ja1 Dim temp As Double "@5{= Dim emiss As Double /6n"$qon6 Dim fname As String, fullfilepath As String cSG(kFQ r8czDc),b 'Option Explicit oq1wU@n h2:TbQ Sub Main #,})N*7 'USER INPUTS rfSEL
57' nx = 31 Tgi7RAY ny = 31 _25PyG numRays = 1000 aE"dpYQ minWave = 7 'microns j"zW0g!S maxWave = 11 'microns f6Y-ss;' sigma = 5.67e-14 'watts/mm^2/deg k^4 dI=&gz fname = "teapotimage.dat" j-FMWEp ~HtD]|7 Print "" uOKdb6]r6 Print "THERMAL IMAGE CALCULATION" 1UB.2}/: Zx6h%l,% detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 "EWq{l_I5$ 9j5Z!Vsy Print "found detector array at node " & detnode .6bo JZ-64OT srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 U56g|V n}4q2x" Print "found differential detector area at node " & srcnode As tuM] rploQF~OFF GetTrimVolume detnode, trm nU#K=e
=W detx = trm.xSemiApe Z*NTF:6c dety = trm.ySemiApe !I91kJt7 area = 4 * detx * dety 8Vt'X2 Print "detector array semiaperture dimensions are " & detx & " by " & dety Y[>`#RhP Print "sampling is " & nx & " by " & ny ^ ~Tn[w W_ f&] !;) 'reset differential detector area dimensions to be consistent with sampling ~ySsv pixelx = 2 * detx / nx -G=.3
bux pixely = 2 * dety / ny TvRm 7 SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 6D{70onY+ Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ~=otdJ cN\_1 'reset the source power 2:yXeSeA SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) [w+1<ou;j Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" O\%0D.HEz Wm)Id_ 'zero out irradiance array 7 VYhRC- For i = 0 To ny - 1 @x*,fk For j = 0 To nx - 1 &{q'$oF irrad(i,j) = 0.0 yaHkWkl
= Next j \y7Gi}nI Next i Sm|TDH sdgI , 'main loop 4"^W/Zo EnableTextPrinting( False ) 7.kH="@ ?1eu9; q\* ypos = dety + pixely / 2 Dx9k%G)! For i = 0 To ny - 1 L,,*8 xpos = -detx - pixelx / 2 7WmY:g#s ypos = ypos - pixely rQTG-& , lf R}cx EnableTextPrinting( True ) Pt6d5EIG Print i eqWs(` EnableTextPrinting( False ) 2xBh }C~9?Y |H5$VSw For j = 0 To nx - 1 =xb/zu( ?dCJv_w xpos = xpos + pixelx #wh[F"zX t0^)Q$ 'shift source QlH[_Pi LockOperationUpdates srcnode, True ,wyEo>>4) GetOperation srcnode, 1, op
\vW'\} op.val1 = xpos c/(Dg$DbX op.val2 = ypos -Gm}i8; SetOperation srcnode, 1, op 'loko#6 LockOperationUpdates srcnode, False VZ9`Kbu =~21.p raytrace X7MA>j3m DeleteRays x
Y}.mP CreateSource srcnode Ffd;aZ4n TraceExisting 'draw "|PX5 +NOq>kH@ 'radiometry yv$hIU2X For k = 0 To GetEntityCount()-1 91k-os(4] If IsSurface( k ) Then v,iq,p)& temp = AuxDataGetData( k, "temperature" ) EKmn@S-&P emiss = AuxDataGetData( k, "emissivity" ) #VZ
js`d6 If ( temp <> 0 And emiss <> 0 ) Then &m TYMpA ProjSolidAngleByPi = GetSurfIncidentPower( k ) b~TTz`HZ frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ?U2 'L2y irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi }|znQ3A2\l End If SUsdX[byb @ xTVX'$ End If 1h{7dLA '\"5qB Next k _) UnHp_^ Nlu]f-i': Next j [o
6 \+C0Rv^^ Next i %e+*&Z', EnableTextPrinting( True ) iN5[x{^t * C*aH6* 'write out file -L
wz
T fullfilepath = CurDir() & "\" & fname +zl[C Open fullfilepath For Output As #1 xhMAWFg| Print #1, "GRID " & nx & " " & ny bPuO~#iN~ Print #1, "1e+308"
M{YN^
Kk Print #1, pixelx & " " & pixely ;i?R+T Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 Z[1|('
k#8E9/t@ maxRow = nx - 1 |jcIn[)= maxCol = ny - 1 &(|x-OT For rowNum = 0 To maxRow ' begin loop over rows (constant X) Lo=n)cV 1, row = "" yFTN/MFt For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) iaRCV6cl row = row & irrad(colNum,rowNum) & " " ' append column data to row string *mW 2vJ/B Next colNum ' end loop over columns TW1#'G_# l}D /1~d Print #1, row gYmO4/c,
<2OXXQ1 Next rowNum ' end loop over rows gq}c Close #1 Yt=2HJY ,!P}Y[| Print "File written: " & fullfilepath |vxmgX) Print "All done!!" Lw<.QMN%f End Sub va0}?fy.O% ?Q"1zcX 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: gE8>o:6)6: | S'mF6Y f#gV>.P;h\ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 n`T4P$pt D4~]:@v~n 4Ujy_E?^ 打开后,选择二维平面图: h]j>S +R;s<pZ^
|