切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1263阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 }-: d*YtK  
    aOWbIS[8  
    成像示意图
    W%0-SR  
    首先我们建立十字元件命名为Target }! zjj\g^  
    wpx,~`&  
    创建方法: W=I%3F_C"R  
    z7HC6{g%X  
    面1 : g>OGh o  
    面型:plane k(%RX _]C  
    材料:Air q_cqjly<  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;u}MG3Y8  
    N|1J@"H  
    L?Wl#wP\;*  
    辅助数据: )bPNL$O  
    首先在第一行输入temperature :300K, "/ @ ;6   
    emissivity:0.1; gJ vc<]W8!  
    *DDfdn  
    C[gSiL  
    面2 : 5>h2WL  
    面型:plane ' ["Y;/>  
    材料:Air 5'+g'9  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box oDKgW?x  
    mc!3FJ  
    i,;Q  
    位置坐标:绕Z轴旋转90度, Cv;z^8PZJz  
    w<\N-J|m  
    "=4=Q\0PT  
    辅助数据: ^Ud`2 OW;2  
    G!0|ocE}  
    首先在第一行输入temperature :300K,emissivity: 0.1; D=9x/ ) *G  
    ELY$ ]^T  
    P5] cEZ n  
    Target 元件距离坐标原点-161mm; \f /<#'  
    ~@itZ,d\  
     ^B1vvb  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 nqiy)ZN#R  
    &S3szhe  
    LoBKR c2t  
    探测器参数设定: tC|5;'m.2  
    IO v4Zx<)  
    在菜单栏中选择Create/Element Primitive /plane b-~`A;pr  
    tkNuM0  
    LjxTRtB_  
    P d*}0a~  
    3bE^[V8/  
    <;v{`@\j{  
    元件半径为20mm*20,mm,距离坐标原点200mm。 xu& v(C9  
    0qR;Z{k  
    光源创建: l9P~,Ec4''  
    !aLByMA  
    光源类型选择为任意平面,光源半角设定为15度。 zg8m(=k'  
    3 5|5|m a  
    xo^_;(;  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 |6_<4lmTxF  
    _|*3uGo:  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 OP:;?Fs9`  
    Kpj0IfC,10  
    x`C;  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 9%\q*  
    Z~$&h  
    创建分析面: tk1qgjE(?  
    !u4oo-  
    d&R/fIm  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 hr]NW>;  
    3=;iC6 `  
    Mc76)  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 *pI3"_  
    H+*o @0C\~  
    FRED在探测器上穿过多个像素点迭代来创建热图 9RR1$( f  
    )O2^?Q quS  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 -*?a*q/#nQ  
    将如下的代码放置在树形文件夹 Embedded Scripts, A:NsDEt  
    3f M  
    7 F+w o  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 gI\J sN  
    w="I*7c@  
    绿色字体为说明文字, fa<83<.D  
    OmKT}D~ 4  
    '#Language "WWB-COM" ~!)_3o  
    'script for calculating thermal image map RQ/X{<lQ)  
    'edited rnp 4 november 2005 if^\Gs$  
    *h-nI=  
    'declarations Y\9uR!0  
    Dim op As T_OPERATION ].:S!QO  
    Dim trm As T_TRIMVOLUME }Qg9l|  
    Dim irrad(32,32) As Double 'make consistent with sampling LZ\}Kgi(!T  
    Dim temp As Double #a}fI  
    Dim emiss As Double . 1?AU 6\  
    Dim fname As String, fullfilepath As String q/%f2U%4:  
    'lIT7MK  
    'Option Explicit ]^aece t  
    pN%L3?2  
    Sub Main 7i 6-Hq  
        'USER INPUTS chfj|Ce]x  
        nx = 31 G4<'G c  
        ny = 31 o?hya.;h4  
        numRays = 1000 D ZLSn Ax  
        minWave = 7    'microns !;iySRZr  
        maxWave = 11   'microns fE_QB=9 cz  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 8$3Tu "+;  
        fname = "teapotimage.dat" cB?HMLbG>  
    e ~*qi&,4  
        Print "" i:{a-Bd  
        Print "THERMAL IMAGE CALCULATION" jOEb1  
    4[+n;OI  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 -Ux/ Ug@  
    :ykQ[d`:|  
        Print "found detector array at node " & detnode uCUQxFp  
    \Sg&Qv`  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 :K2N7?shA  
    UY)YhXW  
        Print "found differential detector area at node " & srcnode M}M.  
    =_Qt&B)  
        GetTrimVolume detnode, trm j.ANBE96>  
        detx = trm.xSemiApe |!rD2T\Ef  
        dety = trm.ySemiApe ]6$NU [  
        area = 4 * detx * dety ?c=l"\^x  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety +2C:]  
        Print "sampling is " & nx & " by " & ny "t4~xs`~X  
    =_L"x~0I-  
        'reset differential detector area dimensions to be consistent with sampling &\c$s  
        pixelx = 2 * detx / nx JUwP<C[  
        pixely = 2 * dety / ny hDVD@b  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Y@#~8\_  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 !;fkc0&!  
    d \0K 3=h  
        'reset the source power 3(vI{[yhT  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) _|H]X+|  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" sV3/8W13  
    "o[\Aec:  
        'zero out irradiance array i3#]_ p{  
        For i = 0 To ny - 1 4S03W  
            For j = 0 To nx - 1 \ m 2[  
                irrad(i,j) = 0.0 #T !YFMh;  
            Next j 7jEAhi!Cq(  
        Next i I uhyBo  
    Hhfqb"2on  
        'main loop 3tOnALv  
        EnableTextPrinting( False ) c#U x{^ZE  
    .}a@OLJd  
        ypos =  dety + pixely / 2 J+Y&a&j.  
        For i = 0 To ny - 1 C5;"mo-  
            xpos = -detx - pixelx / 2 }Y<(1w  
            ypos = ypos - pixely PT>,:zY  
    _0Wd m*  
            EnableTextPrinting( True ) xa!@$w=U&  
            Print i 6,cyi|s  
            EnableTextPrinting( False ) S }fIZ1  
    %;ny  
    E/5w H/  
            For j = 0 To nx - 1  (lt/ t  
    #(XP=PUj  
                xpos = xpos + pixelx |urohua  
    ){8^l0b  
                'shift source g($y4~#  
                LockOperationUpdates srcnode, True *:GoS?Ma  
                GetOperation srcnode, 1, op {e>}.R  
                op.val1 = xpos UW)k]@L  
                op.val2 = ypos gzl_  "j  
                SetOperation srcnode, 1, op `q4\w[0+p  
                LockOperationUpdates srcnode, False AL,|%yup  
    =BNmuAY7  
    raytrace 3#5sj >  
                DeleteRays ~~wz05oRG  
                CreateSource srcnode 2b3x|9o8  
                TraceExisting 'draw b"{7f   
    YzEa?F*$  
                'radiometry DAc jx:~  
                For k = 0 To GetEntityCount()-1 L88oh&M  
                    If IsSurface( k ) Then b:W]L3Z8  
                        temp = AuxDataGetData( k, "temperature" ) <qv:7@  
                        emiss = AuxDataGetData( k, "emissivity" ) 5b|_?Em7  
                        If ( temp <> 0 And emiss <> 0 ) Then njvmf*A?S  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) ) ~ C)4  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ` YIpZ rB  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi d]w*fn  
                        End If ]Nsb V  
    H |75,!<  
                    End If W99Fb+$I  
    kw?RUt0-V  
                Next k }2JSa8  
    h:j-Xd$H+  
            Next j q$U;\Mg)  
     rd. "mG.  
        Next i VZw("a*TB  
        EnableTextPrinting( True ) @HaWd 3  
    p2w/jJMD  
        'write out file !4-NbtT  
        fullfilepath = CurDir() & "\" & fname PvKe|In(  
        Open fullfilepath For Output As #1 =d( 6 )  
        Print #1, "GRID " & nx & " " & ny Q/0;r{@Tq}  
        Print #1, "1e+308" Y@;bA=Du}  
        Print #1, pixelx & " " & pixely :'.-*Ew  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 hLJO\=0rJz  
    6n;ewl}  
        maxRow = nx - 1 ou96 P<B  
        maxCol = ny - 1 4}#*M2wb  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Lf7iOW9U3  
                row = "" :i?Z1x1`  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) lzl4pnj  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string 4!iS"QH?;^  
            Next colNum                     ' end loop over columns :n>:*e@w%  
    b%T-nY2  
                Print #1, row hq\KSFP  
    e`8z1r  
        Next rowNum                         ' end loop over rows GTJ\APrH  
        Close #1 ${e(#bvGZ  
    5C{X$7u  
        Print "File written: " & fullfilepath LF{qI?LG  
        Print "All done!!" Dt.OZ4w5  
    End Sub bNIT 1'v  
    H+_oK ]/  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: [NaU\;w\  
    }{E//o:Ta  
    zXZy:SD  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 QDxLy aL  
      
    vad" N  
    t1IC0'o-  
    打开后,选择二维平面图: l m-ubzJN  
    0-FwHDxw  
     
    分享到