切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1636阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6441
    光币
    26350
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 >fR#U"KPAB  
    ;c~DBJg'|  
    成像示意图
    BcGQpv&x  
    首先我们建立十字元件命名为Target ]*S_fme  
    /|e"0;{  
    创建方法: Qzk/oH s  
    J! eVw\6  
    面1 : WY~}sE  
    面型:plane 7L:R&W6  
    材料:Air cmh/a~vYaY  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box .+AO3~Dg  
    m4P=,=%  
    j1toV$)P  
    辅助数据: eWx6$_|  
    首先在第一行输入temperature :300K, w_J`29uc  
    emissivity:0.1; fs]Zw mA^  
    PZA;10z  
    Ip0@Q}^  
    面2 : .J\U|r  
    面型:plane ~h[lu^ZSi  
    材料:Air 5p{tt;9[  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box &<i>)Ss  
    =Jl1D*B*  
    2|w.A!  
    位置坐标:绕Z轴旋转90度, ;/{Q4X{  
    R}+/jh2O|  
    g9"_BG  
    辅助数据: ZCJ8I  
    ! xqG-rd '  
    首先在第一行输入temperature :300K,emissivity: 0.1; &akMj@4;R  
    U14dQ=~b/  
    Mw5!9@Fc7  
    Target 元件距离坐标原点-161mm; |-aj$u%~  
    .r*b+rc;]  
    ?R{?Qv  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 R;V(D3  
    c!\y\r  
    Q}.y"|^  
    探测器参数设定: K6oX nz}  
    LA@}{hU  
    在菜单栏中选择Create/Element Primitive /plane qK1V!a2  
    :3n.nKANr  
    et ~gO!1:*  
    ?H c A&  
    kWz%v  
    c`}X2u]k  
    元件半径为20mm*20,mm,距离坐标原点200mm。 o5$K^2^g  
    *wF:Q;_<z  
    光源创建: jh0$:6 `C  
    x)yf!Dv5$  
    光源类型选择为任意平面,光源半角设定为15度。 E;d 5$  
    =K>Z{% i  
    S&uL9)Glb  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 @>:07]Dxo  
    *nW9)T  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 v_@_J!s  
    h{xER IV1u  
    dS&8R1\>1  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 qtH&]Suu,  
    1=a}{)0h  
    创建分析面: *f#4S_ws`  
    {n{}Y.  
    F i/G, [q  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 +e:ZN tr9  
    XZ&v3ul  
    BD0-v`  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 `pMI[pLZe  
    ">QY'r  
    FRED在探测器上穿过多个像素点迭代来创建热图 (}}8DB  
    r"[T9  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 )IhY&?jk?  
    将如下的代码放置在树形文件夹 Embedded Scripts, 85{vz|(':  
    QMxz@HGa|  
    *vO'Z &  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 ?BZ][~n-Q  
    /a|NGh%  
    绿色字体为说明文字, c6m,oS^  
    Xh/av[Q  
    '#Language "WWB-COM" fx-*')  
    'script for calculating thermal image map ">9CN$]J  
    'edited rnp 4 november 2005 bN&da [K  
    K)@}Ok"#\4  
    'declarations iP%=Wo.  
    Dim op As T_OPERATION rw2|1_AF  
    Dim trm As T_TRIMVOLUME zNf5OItx  
    Dim irrad(32,32) As Double 'make consistent with sampling cj<@~[uw  
    Dim temp As Double 9.=#4OH/  
    Dim emiss As Double ):@%xoF5  
    Dim fname As String, fullfilepath As String =x'%zUgE  
    ,R =VzP&  
    'Option Explicit P[K=']c  
    vrv*k  
    Sub Main >[@d&28b%  
        'USER INPUTS 6I#DlAU@v  
        nx = 31 ix+x-G  
        ny = 31 kwR@oVR^  
        numRays = 1000 ] O>7x  
        minWave = 7    'microns 3p W MS&  
        maxWave = 11   'microns b]#d04]  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 8Q -F  
        fname = "teapotimage.dat" AyO|9!F@A  
    6{X>9hD  
        Print "" hob$eWgr  
        Print "THERMAL IMAGE CALCULATION" q)b?X ^  
    CM1a<bV<  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 J"%}t\Q  
    +:%FJCOT  
        Print "found detector array at node " & detnode r&sOM_BUF  
    3rg^R"&  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 zpqNmxmF  
    kG$8E  
        Print "found differential detector area at node " & srcnode F5MPy[  
    ]Hy PJ  
        GetTrimVolume detnode, trm %:?QE ;  
        detx = trm.xSemiApe \q'fB?bS^  
        dety = trm.ySemiApe 9 /(c cj  
        area = 4 * detx * dety a3O_#l-Z  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety i%4k5[f.:  
        Print "sampling is " & nx & " by " & ny i?dKmRp(@y  
    =>\-ma+  
        'reset differential detector area dimensions to be consistent with sampling B!ibE<7,  
        pixelx = 2 * detx / nx >wO$Vu `t  
        pixely = 2 * dety / ny h)^A3;2F  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False hyfnIb@~}  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 .<^Y E%  
    WcO,4:  
        'reset the source power \N , '+  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) oImgj4C2L  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" t`ceVS  
    >TnQ4^;v.  
        'zero out irradiance array E0^%|Mh]b  
        For i = 0 To ny - 1 YQdX>k  
            For j = 0 To nx - 1 cievC,3*  
                irrad(i,j) = 0.0 cN lY=L  
            Next j \Fg6b6  
        Next i D8AIV K]  
    <Iyot]E  
        'main loop IKzRM|/  
        EnableTextPrinting( False ) ]j2v"n  
    KI@    
        ypos =  dety + pixely / 2 ~!:Sp_y  
        For i = 0 To ny - 1 )]c3bMVE-  
            xpos = -detx - pixelx / 2 ]_: TrH  
            ypos = ypos - pixely N^( lUba  
    i(yAmo9h  
            EnableTextPrinting( True ) 6eYf2sZ;J  
            Print i vF6*c  
            EnableTextPrinting( False ) :@%-f:iDj  
    K}E7|gdG  
    ;i9<y8Dha  
            For j = 0 To nx - 1 X0Z-1bs  
    A9l})_~i  
                xpos = xpos + pixelx wYO"znd  
    m_!vIUOz  
                'shift source 4[,B;7  
                LockOperationUpdates srcnode, True koEX4q  
                GetOperation srcnode, 1, op lAn+gDP  
                op.val1 = xpos `o8{qU,*]N  
                op.val2 = ypos G</I%qM  
                SetOperation srcnode, 1, op LX\*4[0%K  
                LockOperationUpdates srcnode, False s'aV qB  
    ]8m_*I!  
    raytrace k/_8!^:'  
                DeleteRays 0YpiHoM  
                CreateSource srcnode nz(q)"A  
                TraceExisting 'draw ^/C $L8#  
    CI!Eq&D,  
                'radiometry v=.z|QD^1  
                For k = 0 To GetEntityCount()-1 $TA6S+  
                    If IsSurface( k ) Then |v$%V#Bo  
                        temp = AuxDataGetData( k, "temperature" ) Xm8Z+}i  
                        emiss = AuxDataGetData( k, "emissivity" ) )0U3w#,JQ  
                        If ( temp <> 0 And emiss <> 0 ) Then 5Hwo)S]r  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) S@}B:}2  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) {;iH Yr-zs  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi :qAc= IC%  
                        End If 833 %H`jQc  
    OS"{"P  
                    End If 8{G?92 {rN  
    \U!@OX.R'M  
                Next k F8[B^alAe  
    "s>fV9YyZ  
            Next j )ew[ Ak|  
    NDRW  
        Next i y^ X\^Kq  
        EnableTextPrinting( True ) r}oURy,5  
    T,WKo B  
        'write out file ntj`+7mw  
        fullfilepath = CurDir() & "\" & fname 1C0Y0{6,  
        Open fullfilepath For Output As #1 coF T2Pq  
        Print #1, "GRID " & nx & " " & ny oI_oz0nHk  
        Print #1, "1e+308" *b Ci2mbm@  
        Print #1, pixelx & " " & pixely ,G[r+4|h  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 kUn2RZ6$#  
    *|LbbRu  
        maxRow = nx - 1 egI{!bZg'\  
        maxCol = ny - 1 6wb^*dD92  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) Mhe |eD#)  
                row = "" I%}L@fZ  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) Vl{~@G,@  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string @PPR$4  
            Next colNum                     ' end loop over columns 7_Ba3+9jpa  
    6_R\l@a  
                Print #1, row `E} p77  
    (px*R~}  
        Next rowNum                         ' end loop over rows X~v4"|a  
        Close #1 :cc[Jco@w  
    G&x'=dJ  
        Print "File written: " & fullfilepath .vv5 t  
        Print "All done!!" ZjU=~)O}H  
    End Sub kqVg2#<@M  
    `*e4m  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: y#S1c)vU  
    |H ^w>mk  
    F+ffl^BQ  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 L]k*QIn:h  
      
    9?uqQ  
    |Du,UY/  
    打开后,选择二维平面图: %{R _^Y8t  
    H<`^w)?  
     
    分享到