-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-12
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 x+8%4]u` 2)MX<prH 成像示意图 H#/Hs# 首先我们建立十字元件命名为Target W QqOXF +'0V6\y 创建方法: 7ND4Booul dJF3]h Y 面1 : {`ByZB 面型:plane w'6sJ#ba( 材料:Air .(%]RSBY 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 4Ifz-t/ ^jE8
"G* 2 -pv
& 辅助数据: 'mTQ=1 首先在第一行输入temperature :300K, -nQ(.#-n emissivity:0.1; :!/ (N G$[Hm\V c+upoM 面2 : &>xz 面型:plane 64qqJmG3 材料:Air t"nxny9& 孔径:X=1.5, Y=6,Z=0.075,形状选择Box RpwDOG m(w 9s;< &,tj.?NCn 位置坐标:绕Z轴旋转90度, B8~bx%)3T GmH`ipi AfpC >>=@ 辅助数据: 'Ll'8 ps nyL$z-I) 首先在第一行输入temperature :300K,emissivity: 0.1; *Ksk1T+> c"diNbm[ +xS<^;
Target 元件距离坐标原点-161mm; =wMq!mBd +y^'\KN 5fy{! 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 NQcNY= #sE:xIR y9U~4 探测器参数设定: `$MO;Fv,G :W#?U yo 在菜单栏中选择Create/Element Primitive /plane SmUiH9qNd, 6a704l%#hb OkMAqS N%S|Ey@f p2
!w86 F _:>t$*
_ 元件半径为20mm*20,mm,距离坐标原点200mm。 K{9 deEc;IAo 光源创建: \A6}= !p Q*m`Xo 光源类型选择为任意平面,光源半角设定为15度。 ,0eXg !ScEA= VAp 1{ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 'Hsd7Dpi} qIxe)+. 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 %I;uqf &79F
Uac <Y"HCa{ 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 `7oYXk 4KR$s Kq$q 创建分析面: Z=
=c3~ "5v^6R9e 4n*`%V 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Z4g<Ys* <B'PB"R3y o7^0Lo5Z? 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 iI;np+uYk 8Y_lQfJa FRED在探测器上穿过多个像素点迭代来创建热图 (+}44Ldt wScr:o+K>L FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 2Z ?l,M~ 将如下的代码放置在树形文件夹 Embedded Scripts, "-\8Y>E ikO9p|J gYloY=.Z$' 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 qfRrX" [
~kS) 绿色字体为说明文字, `/9I` <y C=bQ2t=Z '#Language "WWB-COM" eIOMW9Ivt 'script for calculating thermal image map $W9dUR0 'edited rnp 4 november 2005 C}ASVywc,1 z/nW;ow 'declarations |E;+j\ Dim op As T_OPERATION 8Un0<+b Dim trm As T_TRIMVOLUME 6!8uZ>u%Vg Dim irrad(32,32) As Double 'make consistent with sampling ""m/?TZq' Dim temp As Double `~\8fN Dim emiss As Double R+2~%|{d Dim fname As String, fullfilepath As String KL*+gq0k 79I"F' 'Option Explicit s<oT,SPt P<;Puww/ Sub Main ~S$ex,~ 'USER INPUTS Htfq?\ FD nx = 31 Io tc>! ny = 31 ,(]k)ym/ numRays = 1000 [[xnp;-; minWave = 7 'microns h>p,r\X maxWave = 11 'microns )\7Cp -E-W sigma = 5.67e-14 'watts/mm^2/deg k^4 $M~`)UeV_ fname = "teapotimage.dat" 5bd4]1gj -:~z,F Print "" h)aLq Print "THERMAL IMAGE CALCULATION" J4s`U/F ",' Zr<T detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 7K+eI!m.s 1bHQB$%z Print "found detector array at node " & detnode l<'}` D_G]WW8 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 a54S,}|
@1U6sQ Print "found differential detector area at node " & srcnode G&`5o*).bb R^]a<g, GetTrimVolume detnode, trm eR/X9< detx = trm.xSemiApe Kzy9i/bL dety = trm.ySemiApe )\kNufP area = 4 * detx * dety rB|4 Print "detector array semiaperture dimensions are " & detx & " by " & dety d*=qqe
H Print "sampling is " & nx & " by " & ny k(v &+v GaV OMT 'reset differential detector area dimensions to be consistent with sampling 6j!a*u:}" pixelx = 2 * detx / nx j^eMi pixely = 2 * dety / ny wM#l`I SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False _Y$v=!fY& Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 vE)d0l" Mc,p]{<<AV 'reset the source power /Xv@g$ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ;yCtk ~T% Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" >5zD0!bA =vDpm, 'zero out irradiance array t}MT<Jj For i = 0 To ny - 1 B B^81{A For j = 0 To nx - 1 W)Y:2P<. irrad(i,j) = 0.0 XhN?E-WywQ Next j J7~Kjl Next i KXUJ*l-5 sDu&9+ 'main loop |uX&T`7?- EnableTextPrinting( False ) pW>.3pj ;!OME*?m< ypos = dety + pixely / 2 I*mBU^<9V For i = 0 To ny - 1 ,4}s 1J# xpos = -detx - pixelx / 2 +eop4 |Z ypos = ypos - pixely \lyHQ-gWhc g91xUG EnableTextPrinting( True ) AboRuHQ Print i V;P*/ke EnableTextPrinting( False ) KqNsCT+j gEq6[G nE:Wl For j = 0 To nx - 1 .
ywVGBvJ B74]hgK xpos = xpos + pixelx ?3i<^@? 1 -R4A7+3 'shift source $cLZ,N24 LockOperationUpdates srcnode, True ZJ[p7XP GetOperation srcnode, 1, op k\ZU%"^J op.val1 = xpos (: mF+%( op.val2 = ypos ^Nysx ~6 SetOperation srcnode, 1, op H{_6e6`e. LockOperationUpdates srcnode, False ~c\2' [kPl7[OL raytrace w2K>k/v{- DeleteRays '%a:L^a? CreateSource srcnode 1z@ ncqe TraceExisting 'draw 59?$9}ob Yof]
'radiometry lO}I>yo}\ For k = 0 To GetEntityCount()-1 RVpo,;: If IsSurface( k ) Then ffaMF~+ temp = AuxDataGetData( k, "temperature" ) }q?q)cG emiss = AuxDataGetData( k, "emissivity" ) ?Uhjyi If ( temp <> 0 And emiss <> 0 ) Then t /lU* ProjSolidAngleByPi = GetSurfIncidentPower( k ) yW i?2
frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) AQc9@3T~Bi irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi 2}5@:cwR+ End If )=0@4 qf%p#+:B3 End If 5L\Im^ U{HBmSR Next k 1\5po^Oioy Nm3CeU Next j w}x&wWM "h&[6-0' Next i ^YEMR C EnableTextPrinting( True ) qi8~bQ{rH ;]2d%Qt 'write out file ZrWA,~; fullfilepath = CurDir() & "\" & fname MnptC 1N Open fullfilepath For Output As #1 dAjm4F- Print #1, "GRID " & nx & " " & ny lK#uyag Print #1, "1e+308" }/7rA)_ Print #1, pixelx & " " & pixely Q?dzro4C Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 -V||1@
| hTQ]xN) maxRow = nx - 1 tCu9
D maxCol = ny - 1 M|7{ZE`Y For rowNum = 0 To maxRow ' begin loop over rows (constant X) DF"*[]^[ row = "" .y#>mXm>
For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) IZxr;\dq6
row = row & irrad(colNum,rowNum) & " " ' append column data to row string H7Pw>Ta ; Next colNum ' end loop over columns No]#RvEd3 *(nu0 Print #1, row CbT ;#0 h9 +76 Next rowNum ' end loop over rows 1xsB@D Close #1 !:1BuiL IZZ
$p{ Print "File written: " & fullfilepath gE6{R+sp Print "All done!!" #LG<o3An End Sub szy2"~hm OC`Mzf%. 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: KocNJ
TB w#;y ,h.hgyt 找到Tools工具,点击Open plot files in 3D chart并找到该文件 L>,xG.oG 4HyD=6V# zB+zw\ncN 打开后,选择二维平面图: 0y/P iD:TKB_r
|