-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-12
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 i~Q nw-^B
V.w
L 成像示意图 S\76`Ot 首先我们建立十字元件命名为Target _uXb 9 d1jg3{pwA 创建方法: 8*zORz ?)NgODU 面1 : zv.#9^/y 面型:plane {Jbouj?V! 材料:Air *.us IH2 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Vh ?5 ZR]p7{8B g)dKXsy(F 辅助数据: g"{`g6(+ 首先在第一行输入temperature :300K, 8|JPQDS7 emissivity:0.1; (N"9C+S} xe"A;6H Ly46S 面2 : mUan(iJ 面型:plane /07iQcT( 材料:Air Vp$<@Y 孔径:X=1.5, Y=6,Z=0.075,形状选择Box <) cJz -M6#,Ji HXm&` 位置坐标:绕Z轴旋转90度, (N6=+dNY |zbM$37?k x)R1aq 辅助数据: Prc( ~%eZQgqA* 首先在第一行输入temperature :300K,emissivity: 0.1; q#6|/R* b{BiC&3 ?%cZO" Target 元件距离坐标原点-161mm; G#L6; 42f\]R, (I/ZI'Ydy 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 7aS%;EU <<DPer2 Ts\PZQ!q 探测器参数设定: fBb:J + (fYYcpd,k 在菜单栏中选择Create/Element Primitive /plane 4`Cgz#v
{ C%#w1k J``5;%TJp lSfPOx;* V~_6t{L H 'IxB[ 元件半径为20mm*20,mm,距离坐标原点200mm。 a|5<L +TW,!.NBG 光源创建: ~OMo$qt`lP R5i xG9 光源类型选择为任意平面,光源半角设定为15度。 \WqC^Di !'C8sNs DaBy<pGb? 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ta@fNS4 |hS^eK_ 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 e6>[Z C q>s`G 2K^xN]]rG 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 G%junS'zt
bN&DotG 创建分析面: I^)_rOgM a$EudD#+ eNK6=D| 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 E9 w"?_A) Y>{%,d#s_ `46|VQAx 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 iA|n\a~ny, 6FX]b4 FRED在探测器上穿过多个像素点迭代来创建热图 g*-}9~ sDvy(5 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 2J Wp5 将如下的代码放置在树形文件夹 Embedded Scripts, iOk`_LG# /g1;`F(MS/ f[*g8p 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 b)>l7nOc (S?qxW? 绿色字体为说明文字, sHPlNwyy )+"(7U< '#Language "WWB-COM" a# Uk:O! 'script for calculating thermal image map LWxP}? = 'edited rnp 4 november 2005 ^U^K\rq 1u XM3~] 'declarations Abpzf\F Dim op As T_OPERATION 9%dO"t$-q Dim trm As T_TRIMVOLUME bo??91B^7 Dim irrad(32,32) As Double 'make consistent with sampling Bnz}:te} Dim temp As Double S] 4RGWn Dim emiss As Double KkJE-k*D+w Dim fname As String, fullfilepath As String ; m:I AHT(Z~C 'Option Explicit ;[7#h8 +3pfBE| Sub Main PKev)M;C+ 'USER INPUTS SbobXTbG nx = 31 ;p"#ZS7 ny = 31 5r0Sl89J numRays = 1000 Of
nN minWave = 7 'microns Q@TeU#2Y maxWave = 11 'microns /AIFgsaY sigma = 5.67e-14 'watts/mm^2/deg k^4 e63io0g> fname = "teapotimage.dat" R_IT${O G&yF9s)Lvs Print "" C?rb}(m Print "THERMAL IMAGE CALCULATION" (#Xgfb"S3 RRtOBrIedI detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 #b1/2=PA "-Uqv@ Print "found detector array at node " & detnode 'l1cuAP!+ <2\QY srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 `)H|
&!wT ?YM0VB,y Print "found differential detector area at node " & srcnode Iy2AJ|d. 8WwLKZ} GetTrimVolume detnode, trm ,f
.#- detx = trm.xSemiApe LfsOGC dety = trm.ySemiApe CasFj9, area = 4 * detx * dety 8yGo\\=T Print "detector array semiaperture dimensions are " & detx & " by " & dety "; ?^gA Print "sampling is " & nx & " by " & ny Bn
Nu/02.= L
~$&+g 'reset differential detector area dimensions to be consistent with sampling A:?w1"7gT pixelx = 2 * detx / nx U}W7[f lc pixely = 2 * dety / ny 8=3$U+ SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False n(\VP!u5r Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 B 3eNvUFZg jAD{?/RB} 'reset the source power M-5zsN SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) p|=0EWo4U Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" j2:A@a6 \fC}l
Ll 'zero out irradiance array 84-7!< 6i For i = 0 To ny - 1 g@S?5S.Av For j = 0 To nx - 1 ?tYc2R9x6" irrad(i,j) = 0.0 -\~x^5K Next j T( bFn? Next i SVT'fPm1M D?cE$P 'main loop r)Iq47Uiw EnableTextPrinting( False ) 4Bq4d.0 nIqmora ypos = dety + pixely / 2 :;Wh!8+j For i = 0 To ny - 1 ;gW?Fnry; xpos = -detx - pixelx / 2 y7#vH< ypos = ypos - pixely ^ `Y1 (2%z9W EnableTextPrinting( True ) 12yX`9h> Print i -cWxS{vO EnableTextPrinting( False ) M{~KT3c nL*
SNQ_ +DP{ _x)t For j = 0 To nx - 1 q0QB[)AP "ZFK-jn/ xpos = xpos + pixelx Y&`nB,' n&}ILLc 'shift source 9@z"~H LockOperationUpdates srcnode, True jiAN8t*P GetOperation srcnode, 1, op <7sGA{ op.val1 = xpos )WazbT@ op.val2 = ypos mkt%|Kb. SetOperation srcnode, 1, op =ZN~*HLl} LockOperationUpdates srcnode, False xn4-^2 V$<5` raytrace SgPvQ'\ DeleteRays 626!6E;T CreateSource srcnode !`#xFRHe TraceExisting 'draw 2M+'9+k~ Sf*b{6lcC 'radiometry p/inATH For k = 0 To GetEntityCount()-1 n6 a=(T If IsSurface( k ) Then WT>2eMK[ temp = AuxDataGetData( k, "temperature" ) Wi(Ac8uh emiss = AuxDataGetData( k, "emissivity" ) u@-x3%W If ( temp <> 0 And emiss <> 0 ) Then )F)
(Hg ProjSolidAngleByPi = GetSurfIncidentPower( k ) !5K9L(gqb frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) 2Fsv_t&*> irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi |Ptv)D End If <;Bv6.Z *R6Ed End If DZ Q=Sinry _}-Ed,.= Next k $Y5m"wySZ &udlt//^% Next j b$:<T7vei `aW>h8$I) Next i G\1\L*+0 EnableTextPrinting( True ) 3Rsbi na1*^S`[ 'write out file G>);8T%l fullfilepath = CurDir() & "\" & fname oMV<Yn_< Open fullfilepath For Output As #1 xMu[#\Vc Print #1, "GRID " & nx & " " & ny %nfaU~IqK Print #1, "1e+308" ]V K%6PQ0 Print #1, pixelx & " " & pixely i#Y[I"' Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 8=U0\<wT (}u2) 9 maxRow = nx - 1 ]FNqNZ maxCol = ny - 1 TxD,A0 For rowNum = 0 To maxRow ' begin loop over rows (constant X) KK%R3{ row = "" r2]KP(T8| For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) E9IU,P6a row = row & irrad(colNum,rowNum) & " " ' append column data to row string S3iXG
@ Next colNum ' end loop over columns %cl=n!T M_wj>NXZ Print #1, row |99/?T-QW N1 }#6YNw Next rowNum ' end loop over rows MM*B.y~TxZ Close #1 8(Ab
NQ dyz)22{\!` Print "File written: " & fullfilepath zMf. Print "All done!!" ,MxTT!9Su End Sub 5HZ t5="+ /uM;g9 m 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: |ZAR!u&0 ? %9-5"U[ WDC+Jmlgp 找到Tools工具,点击Open plot files in 3D chart并找到该文件 ebSG|F ([r4N#lx ]c.1&OB7o 打开后,选择二维平面图: 1'[RrJ$Q =skw@c^
|