切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1389阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 eyx;8v cM  
    =h`yc$ A(2  
    成像示意图
    hQm"K~SW=  
    首先我们建立十字元件命名为Target '+!@c&d#%o  
    i2PPVT  
    创建方法: O<@S,/Q4  
    kF09t5Lr  
    面1 : oZ)\Ya=  
    面型:plane !9$xfg }  
    材料:Air F?+K~['i  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ,ZVC@P,L  
    {AJcYZV  
    LI>tN R~  
    辅助数据: o6FSSKM  
    首先在第一行输入temperature :300K, SiD [54OM  
    emissivity:0.1; mOLP77(o  
    H;QE',a9+i  
    8x`?Yc  
    面2 : RJ#xq#l  
    面型:plane 1:.0^?Gz  
    材料:Air a<Ru)Q?=  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box E1atXx  
    d+5KHfkK  
    Ab]`*h\U  
    位置坐标:绕Z轴旋转90度, a0vg%Z@!  
    $1Lm=2;U  
    PMDx5-{A/t  
    辅助数据: QzjLKjl7p4  
    m=Z1DJG  
    首先在第一行输入temperature :300K,emissivity: 0.1; N2!HkUy2  
    n4albG4  
    ``~7z;E%@  
    Target 元件距离坐标原点-161mm; E~=`Ac,G2  
    :R/szE*Ak  
    "?I]h  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 yu3T5@Ww  
    L'1p]Z"  
    ~^U(GAs  
    探测器参数设定: 1-@[th  
    %p5%Fs`sd  
    在菜单栏中选择Create/Element Primitive /plane jQAK ?7':=  
    e 1W9Z $m  
    v&[Ff|>  
    +?xW%omy  
    =WaZy>n}7  
    k<mfBNvuo  
    元件半径为20mm*20,mm,距离坐标原点200mm。 /V66P@[>  
    pi>,>-Z  
    光源创建: Kh)SgJ3B@  
    4I"p>FIkY  
    光源类型选择为任意平面,光源半角设定为15度。 ;&|MNN^  
    Ax D&_GT  
    ;\N{z6  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 "3kIQsD|j  
    D49yV`  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 Pt/dH+r`%  
    g]^@bxdg  
    Z.a`S~U  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 /D]?+<h1  
    Cr?|bDv}o  
    创建分析面: oy I8}s:  
    ?a ~59!u  
    {> T r22S  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 0dv# [  
    PU0Ha  
    {rQ SB;3  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 ]8)nIT^EP  
    XBd/,:q  
    FRED在探测器上穿过多个像素点迭代来创建热图 #0K122oY  
    !Cq2<[K#  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 [O) Q\|k  
    将如下的代码放置在树形文件夹 Embedded Scripts, 0PiD<*EA  
    1#KE4(  
    w +QXSa_D  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 *]<M%q!<6  
    SE%B&8ZD  
    绿色字体为说明文字, Igowz7  
    ~YQC!x  
    '#Language "WWB-COM" 5)g6yV'  
    'script for calculating thermal image map #t.)4$  
    'edited rnp 4 november 2005 [ML%u$-  
    "E4;M/  
    'declarations 1P (5+9"s  
    Dim op As T_OPERATION ~p9nAACU  
    Dim trm As T_TRIMVOLUME |"4+~z%/9!  
    Dim irrad(32,32) As Double 'make consistent with sampling a[ Pyxx_K  
    Dim temp As Double $a^YJY^_  
    Dim emiss As Double qmNgEz%  
    Dim fname As String, fullfilepath As String ]njObU)[zr  
    J2rw4L  
    'Option Explicit )f#raXa5+  
    5F#Q1gP-  
    Sub Main nE_g^  
        'USER INPUTS WCK;r{p%I  
        nx = 31 W{pyU \  
        ny = 31 -4  ~(*  
        numRays = 1000 >=G-^z:  
        minWave = 7    'microns V1[Cc?o  
        maxWave = 11   'microns {0a (R2nB  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 $ {Y? jJ  
        fname = "teapotimage.dat" JHF <vyt5<  
    >ZAb9=/M)F  
        Print "" : ,0F_["3  
        Print "THERMAL IMAGE CALCULATION" *fz]Q>2ga  
    z?ck*9SZX  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 AoL2Wrk]\B  
    dj>ZHdTn  
        Print "found detector array at node " & detnode /Y NV  
    F+%6?2 J  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 HF(pC7/a:  
    b FV+|0  
        Print "found differential detector area at node " & srcnode 6V[ce4a%  
    wH?r522`c  
        GetTrimVolume detnode, trm }6U`/"RfcO  
        detx = trm.xSemiApe 2)_Zz~P^f  
        dety = trm.ySemiApe >!o||Yn  
        area = 4 * detx * dety 4z {jWNM)N  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety 2P&KU%D)0s  
        Print "sampling is " & nx & " by " & ny F 7v 1rf]  
    R^[b I;  
        'reset differential detector area dimensions to be consistent with sampling Zo=w8Hr  
        pixelx = 2 * detx / nx GJpQcse%  
        pixely = 2 * dety / ny H1!u1k1nl  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False rn$LZE %  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 h-0#h/u>M  
    0a1Vj56{)  
        'reset the source power S,Y\ox-  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) Qyh_o  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" uA`EJ )d  
    {*#}"/:8K  
        'zero out irradiance array 4&)4hF  
        For i = 0 To ny - 1 UW!*=?h  
            For j = 0 To nx - 1 $w:7$:k  
                irrad(i,j) = 0.0 8-f2$  
            Next j 1[? xU:;9  
        Next i z8MKGM  
    !YM;5vte+  
        'main loop dfU z{  
        EnableTextPrinting( False ) (x+C =1,  
    {pzu1*  
        ypos =  dety + pixely / 2 e!eUgD  
        For i = 0 To ny - 1 APne!  
            xpos = -detx - pixelx / 2 1Tb'f^M$  
            ypos = ypos - pixely ap 5D6y+  
    A2C|YmHk  
            EnableTextPrinting( True ) 3#d?  
            Print i _^Ds[VAgA  
            EnableTextPrinting( False ) Or({|S9d2  
    ;*~y4'{z  
    =1:dKo8  
            For j = 0 To nx - 1 ">-mZ'$#L  
    LTof$4s  
                xpos = xpos + pixelx D&)w =qIu  
    7 3 Oo;  
                'shift source @i" ^b  
                LockOperationUpdates srcnode, True E0SP  
                GetOperation srcnode, 1, op ~|FKl%  
                op.val1 = xpos bwr}Ge  
                op.val2 = ypos *8WcRx  
                SetOperation srcnode, 1, op t;^NgkP{$  
                LockOperationUpdates srcnode, False ~F{u4p7{N  
    KS9 e V  
    raytrace #3+-vyZm  
                DeleteRays K6 {0`'x  
                CreateSource srcnode %-A#7\  
                TraceExisting 'draw b*AL,n?  
    2 c%*u {=:  
                'radiometry BGe&c,feIc  
                For k = 0 To GetEntityCount()-1 S4'\=w #  
                    If IsSurface( k ) Then <"&I'9  
                        temp = AuxDataGetData( k, "temperature" ) @P$_2IU"  
                        emiss = AuxDataGetData( k, "emissivity" ) w^rINPAS  
                        If ( temp <> 0 And emiss <> 0 ) Then );m7;}gE  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) kS\A_"bc  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) ljS~>&  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi dxz.%a@PW  
                        End If {I]X-+D|_  
    tB,1+I=   
                    End If )|d]0/<  
    H&yK{0H  
                Next k & rsNB:!  
    ]jkaOj  
            Next j EYLqg`2A  
    =Nc}XFq  
        Next i K~U5jp c  
        EnableTextPrinting( True ) xe=/T# %  
    b }^ylm  
        'write out file qMHI-h_A  
        fullfilepath = CurDir() & "\" & fname IM^K]$q$47  
        Open fullfilepath For Output As #1 xDJs0P4  
        Print #1, "GRID " & nx & " " & ny cyQ&w>'  
        Print #1, "1e+308" <8'-azpJ6<  
        Print #1, pixelx & " " & pixely u4W2 {  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ;q3"XLV(T[  
    2G(RQ\Ro*  
        maxRow = nx - 1 KA"D2j9wn  
        maxCol = ny - 1 03{pxI  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) S<-e/`p=H  
                row = "" gbl`_t/  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) \["'%8[:gR  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string "IvFkS=*Q  
            Next colNum                     ' end loop over columns 7e`ylnP!  
    8 <~E;:  
                Print #1, row $;1TP|  
    E|Q|Nx!6[  
        Next rowNum                         ' end loop over rows IwR/4LYI  
        Close #1 Zeeixg-1<  
    3=)!9;uY  
        Print "File written: " & fullfilepath ;(Xig$k  
        Print "All done!!" )PU_'n=>  
    End Sub Q;'{~!=  
    o\ M  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: N N1(f  
    :M |<c9I  
    l-} );zH74  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 :'F7^N3;H  
      
    R)<PCe`vf  
    5V{> 82  
    打开后,选择二维平面图: (PM!{u=  
    ^e 1Ux  
     
    分享到