切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1376阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 eW8{ ],B  
    rixVIfVF  
    成像示意图
    =e0MEV#s.  
    首先我们建立十字元件命名为Target B-$zioZ  
    b5I 8jPj4c  
    创建方法: s@GE(Pu7  
    ~%eE%5!k  
    面1 : R3.w")6  
    面型:plane "5'eiYm s  
    材料:Air %d40us8E  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box l*huKSX}  
    {u9n?Z%  
    G)c+GoK  
    辅助数据: XKDX*x G  
    首先在第一行输入temperature :300K, :(.:bf  
    emissivity:0.1; .726^2sx  
    Nl/ fvJ`4  
    D>ou,  
    面2 : )?$@cvf  
    面型:plane N}<!k#d E  
    材料:Air Iza;~8dH5  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box s&Al4>}.f  
    p$= 3$I  
    eibkG  
    位置坐标:绕Z轴旋转90度, Gpcordt/  
    DiY74D  
    9j5|o([J  
    辅助数据: %_CL/H   
    ZNpC& "`G  
    首先在第一行输入temperature :300K,emissivity: 0.1; nh80"Ny5  
    x]?V*Jz  
    -3wid1SOm  
    Target 元件距离坐标原点-161mm; qs= i+  
    49O_A[(d  
    @g]+$Yj  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 x\yr~$}(J  
    <P&X0S`O  
    +2}Ar<elP  
    探测器参数设定: L<XX?I\p  
    ^,?>6O  
    在菜单栏中选择Create/Element Primitive /plane Pgq(yPC  
    l@u  "iGw  
    O8N1gf;t  
    m=/HUt3(&0  
    Z=;=9<vA  
    qW|h"9sr  
    元件半径为20mm*20,mm,距离坐标原点200mm。 5dG+>7Iy}  
    w(X}  
    光源创建: m^0 I3;  
    X56q ,jCJ{  
    光源类型选择为任意平面,光源半角设定为15度。 KL9JA; "  
    oL }d=x/  
    _ouZd.  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 yd'cLZd<}  
    5p:2gsk  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 YcR: _ac  
    LWSy"Cs*  
    xaV3N[Zd  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 M9Yov4k,4]  
    )te_ <W  
    创建分析面: S;2UcSsQl  
    xG Y!r"[  
    -;RAW1]}Y$  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Qy=tkCN  
    m7XN6zX  
    YnDaB px  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 #BS!J&a  
    )cZ KB0*+  
    FRED在探测器上穿过多个像素点迭代来创建热图 f`\J%9U_O  
    +|K,\ {'U  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 )=aq j@v  
    将如下的代码放置在树形文件夹 Embedded Scripts, Vhb~kI!x  
    9o6qN1A0g  
    XRyeEwA;pp  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 KBI 1t$  
    #^ .G^d(=  
    绿色字体为说明文字, *tkf)[(  
    QV*la=j/  
    '#Language "WWB-COM" CUjRz5L  
    'script for calculating thermal image map ,'l.u?SKyd  
    'edited rnp 4 november 2005 U~c9PqjZ  
    L]BTX]  
    'declarations !y!s/i&P%  
    Dim op As T_OPERATION -~lrv#5Q  
    Dim trm As T_TRIMVOLUME _n4`mL8>kH  
    Dim irrad(32,32) As Double 'make consistent with sampling ,5K&f\  
    Dim temp As Double =FFs8&PKys  
    Dim emiss As Double V2tA!II-s  
    Dim fname As String, fullfilepath As String 4xFAFK~lx  
    c]z^(:_>  
    'Option Explicit  wJvk  
    @ e7_&EGR?  
    Sub Main R\$6_  
        'USER INPUTS HJ!)&xT  
        nx = 31 I9U 8@e!X  
        ny = 31 dPgA~~  
        numRays = 1000 gK dNgU  
        minWave = 7    'microns HDu|KW$o1  
        maxWave = 11   'microns lb"T'} q  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 .Dr7YquW  
        fname = "teapotimage.dat" )_kEy>YscZ  
    *t={9h  
        Print "" H-X5A\\5  
        Print "THERMAL IMAGE CALCULATION" xu;^F  
    R~N%sn  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 do%.KIk  
    f9n4/(C y  
        Print "found detector array at node " & detnode SBw'z(U  
    C{ Z*5)  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 p4b6TI9;  
    x}reeqn  
        Print "found differential detector area at node " & srcnode ^4saB+qm  
    I&x69  
        GetTrimVolume detnode, trm kYd=DY  
        detx = trm.xSemiApe x_H"<-By  
        dety = trm.ySemiApe BTE&7/i 21  
        area = 4 * detx * dety 6b!1j,\Vx  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety 0XL[4[LdA  
        Print "sampling is " & nx & " by " & ny \}Pr!tk!  
    ,l\D@<F  
        'reset differential detector area dimensions to be consistent with sampling VC!g,LU|-  
        pixelx = 2 * detx / nx RZj06|r8  
        pixely = 2 * dety / ny b|`  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Ax!fvcsN  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 .+^o{b  
    VAa;XVmB  
        'reset the source power ]08~bL1Q  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) ,z0E2  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" #mO.[IuD  
    x1:1Jj:  
        'zero out irradiance array -ktYS(8&  
        For i = 0 To ny - 1 Zo,]Dx  
            For j = 0 To nx - 1 z &[[4[  
                irrad(i,j) = 0.0 )#Y:Bj7H@2  
            Next j W8!8/ IZbN  
        Next i 8@I.\u)0  
    6r,zOs-I]  
        'main loop Szlww  
        EnableTextPrinting( False ) )v.\4Q4  
    /B  
        ypos =  dety + pixely / 2 It^_?oiK  
        For i = 0 To ny - 1 rX&?Xi1JeV  
            xpos = -detx - pixelx / 2 =iPQ\_ON@  
            ypos = ypos - pixely h6(L22Hn  
    6IM:Xj  
            EnableTextPrinting( True ) 2wgdrO|B  
            Print i N{zou?+  
            EnableTextPrinting( False ) Aj=c,]2  
    2?owXcbx  
    k :zGv  
            For j = 0 To nx - 1 mHC36ba  
    \Ng[lN  
                xpos = xpos + pixelx \V.U8asfI  
    H*>5ne=x  
                'shift source lnntb3q  
                LockOperationUpdates srcnode, True OB ~74}3;  
                GetOperation srcnode, 1, op ^KFwO=I@PV  
                op.val1 = xpos 7kidPAhY  
                op.val2 = ypos pJwy ~ L  
                SetOperation srcnode, 1, op >(a/K2$*1  
                LockOperationUpdates srcnode, False 2E3x=  
    q]t^6m&-  
    raytrace .w]S!=h  
                DeleteRays C/pu]%n@4  
                CreateSource srcnode .DHRPel  
                TraceExisting 'draw NW;wy;;  
    Aaix? |XN  
                'radiometry %|3UWN  
                For k = 0 To GetEntityCount()-1 mdHC{sp  
                    If IsSurface( k ) Then n?A;'\cK  
                        temp = AuxDataGetData( k, "temperature" ) KHXnB  
                        emiss = AuxDataGetData( k, "emissivity" ) rk(0w|zR+  
                        If ( temp <> 0 And emiss <> 0 ) Then o>Z+=&BZ@a  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) .](s\6'  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) nyB~C7zR  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi `{I-E5 x  
                        End If l,3[hx  
    uw@|Y{(K r  
                    End If \<A@Nf"  
    m,]M_y\u  
                Next k ub] w"N  
    I^6zUVH  
            Next j Bhrp"l +|  
    KcjP39@I  
        Next i uJ$!lyJ6L  
        EnableTextPrinting( True ) u5FlT3hY.  
    1%6}m`3  
        'write out file pc%_:>  
        fullfilepath = CurDir() & "\" & fname ,!4 (B1@  
        Open fullfilepath For Output As #1 Y,@{1X`0@3  
        Print #1, "GRID " & nx & " " & ny +<H)DPG<  
        Print #1, "1e+308" QRv2%^L  
        Print #1, pixelx & " " & pixely Z`b{r;`m8  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 R#Bdfmld q  
    g< {jgF  
        maxRow = nx - 1 f/qG:yTV`  
        maxCol = ny - 1 X;0DQnAI8j  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) !(Y23w*  
                row = "" DP9hvu/85  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) jM90 gPX>,  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string uIvE~<  
            Next colNum                     ' end loop over columns R@r"a&{/  
    .gWYKZM  
                Print #1, row Xu:S h<:R  
    ;[@< ,  
        Next rowNum                         ' end loop over rows ?J~(qaa;  
        Close #1 j{9sn,<:  
    @vaK-&|#$  
        Print "File written: " & fullfilepath "tbKKh66  
        Print "All done!!" PQ|kE`'  
    End Sub F XOA1VEg  
    {@oYMO~  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: PDo%ob\Ym  
    g%Ap<iT  
    pVt8z|p_;{  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 x,z+l-y  
      
    Ed)t87E  
    }CA oB::&  
    打开后,选择二维平面图: *#,wV  
    ^60BQ{ne  
     
    分享到