-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-12
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 o&z [d 1MnC5[Q 成像示意图 Lz-|M?( 首先我们建立十字元件命名为Target $ywROa] ;C:|m7| 创建方法: 5=<KA 41+WIa
L 面1 : }oSgx 面型:plane g&EK^q 材料:Air @)[8m8paV 孔径:X=1.5, Y=6,Z=0.075,形状选择Box P{_%p<:V ~%M*@fm (aSuxl.Dq 辅助数据: &N6[*7 首先在第一行输入temperature :300K, Dr=$ }Y emissivity:0.1; wpi$-i` _FcTY5."S (3!6nQj-t 面2 : |_7k*:#q: 面型:plane ,RY;dX-# 材料:Air "%a<+D 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 5/h-Hr G{>PYLxOb xVX:kDX 位置坐标:绕Z轴旋转90度, B)L0hi J-uQF| $_TS]~y4} 辅助数据: `#8k Jt IhZn 首先在第一行输入temperature :300K,emissivity: 0.1; nHq4f&(H <%m1+%mA. %la1-r~ Target 元件距离坐标原点-161mm; r@vt.t0# j&Xx{ 4v %0/qb0N& 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 T{m) = (q %eIaH!x: $@]
xi 探测器参数设定: "$o>_+U
w4}Q6_0v 在菜单栏中选择Create/Element Primitive /plane N!wuBRWR B9$f y).Gp xfI0P0+ rWDD$4y zn&ZXFgN q165S 元件半径为20mm*20,mm,距离坐标原点200mm。 \)o.Y
zAo@ 42 lw>gzr! 光源创建: ^ +@OiL>&i .`*]nN{ 光源类型选择为任意平面,光源半角设定为15度。 ~I;x_0iY4 !vpXXI4 @H4]Gp ] 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 *)
T"-}F 8HJ,6L r; 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 |o9`h 9i [+R_3'aK qhcx\eD:? 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 W}3%BWn iDl#foXa` 创建分析面: b)e;Q5Z(. t^zE^:06 W SxoGly 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 L*,h=#x( =7H\llL4BC kV T |(Y 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 dhnX\/ 39
zfbxX FRED在探测器上穿过多个像素点迭代来创建热图 6B7*|R> I%Yq86 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 [r3sk24 将如下的代码放置在树形文件夹 Embedded Scripts, 9*K-d'm ^--R#$X '\op$t/ 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 +75"Q:I /!?Tv8TPp 绿色字体为说明文字, js Z"T &oHr]=xA '#Language "WWB-COM" 32SkxcfrCK 'script for calculating thermal image map ^p9V5o 'edited rnp 4 november 2005 W#NZnxOX" |nnFjGC`~ 'declarations myN2G?>; Dim op As T_OPERATION sZr \mQ~ Dim trm As T_TRIMVOLUME X`WS&!C< Dim irrad(32,32) As Double 'make consistent with sampling |? fAe{*
Dim temp As Double V59!}kel1% Dim emiss As Double $t}W,? Dim fname As String, fullfilepath As String L?j<KW R13k2jLSQ 'Option Explicit glU9A39qx? O#18a,o@ Sub Main }s@IQay+ 'USER INPUTS (GL'm[V nx = 31 KGo^>us ny = 31 +6jGU'}[ numRays = 1000 s[h;9
I1w minWave = 7 'microns
uM\\(g} maxWave = 11 'microns Kg>B$fBx) sigma = 5.67e-14 'watts/mm^2/deg k^4 XXA'B{@Y) fname = "teapotimage.dat" !> +Lre@ 5EI"5&`* Print "" +2 oZML Print "THERMAL IMAGE CALCULATION" $V?sD{=W sH2xkUp detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 j#P4& W% Lrp{ Print "found detector array at node " & detnode VWK/(>TP F}meKc?a srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 u1u;aG {fl[BX]kZ Print "found differential detector area at node " & srcnode &1^~G0Rh\ `RE>gX GetTrimVolume detnode, trm
n7Eh!< detx = trm.xSemiApe _ eBNbO_J dety = trm.ySemiApe ps,Kj3^T< area = 4 * detx * dety N: 38N Print "detector array semiaperture dimensions are " & detx & " by " & dety 0Qvr
g+ Print "sampling is " & nx & " by " & ny <b_K*]Z Nv;'Ys P 'reset differential detector area dimensions to be consistent with sampling 1EQ:@1 pixelx = 2 * detx / nx y $uq`FW pixely = 2 * dety / ny _4SZ9yu SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False PX&}g-M9 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 L?0IUGY 2h*aWBLk 'reset the source power 9IG<9uj SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) h;r^9g Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" VZ`YbY 4Y1^ U{A+ 'zero out irradiance array
fB]2"( For i = 0 To ny - 1 !- QB>`7$ For j = 0 To nx - 1 *9=}f;~ irrad(i,j) = 0.0 <im}R9eJ1 Next j '" &*7)+g* Next i PlA#xnq# ZTfW_0
'main loop V62lN<M EnableTextPrinting( False ) fQ!W)>mi u R5h0Fi ypos = dety + pixely / 2 ,f,+) C$ For i = 0 To ny - 1 bVN?7D( xpos = -detx - pixelx / 2 Hi~)C \ ypos = ypos - pixely zIS ,N ' nC??exc EnableTextPrinting( True ) 55<!H-zt Print i z%+rI EnableTextPrinting( False ) 4%_c9nat BU>R<A5h "o u{bKe For j = 0 To nx - 1 ]=xX_ DQV9= xpos = xpos + pixelx `#`C.:/n ax;<idC} 'shift source y<R5}F LockOperationUpdates srcnode, True k6z]"[yu GetOperation srcnode, 1, op DyZ6&*s$ op.val1 = xpos \21Gg%W5AE op.val2 = ypos \' A-
Lp SetOperation srcnode, 1, op *x p_# LockOperationUpdates srcnode, False y>u|3:z E1Q#@*rX> raytrace *tR'K#:&g! DeleteRays 3bo
[34 CreateSource srcnode awQGu,<N TraceExisting 'draw })(robBkA 7)RvBcM 'radiometry b~)2`l For k = 0 To GetEntityCount()-1 Ks(l :oUB If IsSurface( k ) Then r#w 7qEtD temp = AuxDataGetData( k, "temperature" ) [GI2%uA0 emiss = AuxDataGetData( k, "emissivity" ) 0xCe6{86 If ( temp <> 0 And emiss <> 0 ) Then TEj"G7]1$A ProjSolidAngleByPi = GetSurfIncidentPower( k ) pTTM(Hrx frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) w6mYLK% irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi NzM ,0q End If >MRuoJ ? }`mQ <~ End If r6aIW8 L
9cXgd Next k .Xe_Gp"x toOdL0hCe Next j TMsCl6dB itiSZL, Next i 8+Gwv
SDU EnableTextPrinting( True ) SsfC
m C e6{E(=R[M 'write out file N$:-q'hX fullfilepath = CurDir() & "\" & fname Vl<7> Open fullfilepath For Output As #1 {KEmGHC4R Print #1, "GRID " & nx & " " & ny o:4#AkS Print #1, "1e+308" }rs>B,=*k Print #1, pixelx & " " & pixely n8T'}d+mm Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 10m|? >$r o\/ maxRow = nx - 1 T;PLUjp} maxCol = ny - 1 Pl`Nniy For rowNum = 0 To maxRow ' begin loop over rows (constant X) .XkVdaX row = "" #67 7,dn For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 9GTp};Kg row = row & irrad(colNum,rowNum) & " " ' append column data to row string "d}ey=$h4 Next colNum ' end loop over columns jPx}-_jM ,i;#e Print #1, row yO7#n0q 4)'U!jSb Next rowNum ' end loop over rows R)isWw4 Close #1 'W("s YZtd IG Print "File written: " & fullfilepath |*-<G3@ Print "All done!!" WoNY8
8hT End Sub D$NpyF.87 *{Z=)k% 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ,LmP >Q. O;}K7rSc HGd.meQ 找到Tools工具,点击Open plot files in 3D chart并找到该文件
cJTwgm? b8vZ^8tBV fl2XI=[v4 打开后,选择二维平面图: E2>+V{TF /Ah&d@b
|