-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-03
- 在线时间1893小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 kV ,G,wo KO|pJ3 成像示意图 ,k~j6Z 首先我们建立十字元件命名为Target /u)Rppu p08kZ 创建方法: *sw-eyn( x48'1&m 面1 : NaA+/: 面型:plane h/Hl?O8[ 材料:Air ISS\uj63M 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ADGnBYE rer|k<k;]G OB6J.dF[% 辅助数据: }t|Plz 首先在第一行输入temperature :300K, &$c5~9p\B emissivity:0.1; o-~~,n\ rKzlK 'U 8lOI\- 面2 : /zG+] 面型:plane #%^\\|'z 材料:Air nlzW.OLM 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ejklpa ./ A)Qh -\kXH"% 位置坐标:绕Z轴旋转90度, |mxNUo- 0||"r&:X I1)-,/nEjg 辅助数据: PW%1xHLfk L)F1NuR 首先在第一行输入temperature :300K,emissivity: 0.1; hOPe^e" >?5xDbRj yI8m%g% Target 元件距离坐标原点-161mm; hr$Sa s>|Z7[* XDk'2ycv 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Hz?!BV0 sEce{"VC :N@U[Wx0A 探测器参数设定: f.oP wE$s'e 在菜单栏中选择Create/Element Primitive /plane zF5q=9 4$ ja[OcR-tX 1")FWN_K/T mG)8U{L Di*]ab !4R>O6k 元件半径为20mm*20,mm,距离坐标原点200mm。 ]@X{dc w[(n> 光源创建: 3;*z3;#} =}JBA>q( 光源类型选择为任意平面,光源半角设定为15度。 2sKG(^=Z +z\\VD Lt1U+o[ot 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 QDS0ejhp sVu k 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 ]cIu|bRO H]s4% 9T qZaO&"q 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 SIq1X'7 Sx8l<X 创建分析面: %3M95UZ2 3bH~';< ]pnYvXf>! 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 FV
A
UR x;u ~NKy 1otspOy 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 A 4j<\xL ga-{!$b* FRED在探测器上穿过多个像素点迭代来创建热图 .Gh%p`< 2F1ZAl FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 W;q+, Io 将如下的代码放置在树形文件夹 Embedded Scripts, }W$8M>l ASW4,% cl lEHwZ<je 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 zmI5"K"'F %M9;I 绿色字体为说明文字, -#aZF2z =}v ;1m '#Language "WWB-COM" 1Bg_FPu 'script for calculating thermal image map vU!8`x) 'edited rnp 4 november 2005 %[`a xuUx4,Z 'declarations IaLMWoh Dim op As T_OPERATION Seda } Dim trm As T_TRIMVOLUME aG!
*WHt Dim irrad(32,32) As Double 'make consistent with sampling R}r~p?(M Dim temp As Double nUc;/ Dim emiss As Double KCUU#t|8V\ Dim fname As String, fullfilepath As String BwxnDe G) 3OP.12^ 'Option Explicit \jyjQ,v) B3mS] Sub Main )TU<:V 'USER INPUTS q[ULGv nx = 31 >)Gd:636+ ny = 31 s<vs:jna numRays = 1000 :CaTP% GW minWave = 7 'microns -U-P}6^ maxWave = 11 'microns 9t K>gwb sigma = 5.67e-14 'watts/mm^2/deg k^4 rbyY8
bX fname = "teapotimage.dat" /r^[a,Q#x 5&!'^! Print "" aMTFW_w Print "THERMAL IMAGE CALCULATION" C>X|VP|C J}TfRrf detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 YEv
Lhh S~)w\(r Print "found detector array at node " & detnode +xp]:h| Ei5 wel6! srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 mS%4gx~~_n ~W03{9(Vp8 Print "found differential detector area at node " & srcnode rk|@B{CA; _1|$P|$P. GetTrimVolume detnode, trm aV6#t*\J detx = trm.xSemiApe T8XY fcc*h dety = trm.ySemiApe #@qN8J}R area = 4 * detx * dety %=Tr^{i Print "detector array semiaperture dimensions are " & detx & " by " & dety i sW\MB] Print "sampling is " & nx & " by " & ny i]o"_=C G[Tl%w 'reset differential detector area dimensions to be consistent with sampling Qi9-z' pixelx = 2 * detx / nx DlTR|(AL pixely = 2 * dety / ny 8SC%O\, SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False "A3dvr Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 j6g@tx^)' riCV&0"n 'reset the source power )oU)}asY SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) &@v<nO- Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" 3[IJhR[
bwiD$ 'zero out irradiance array N|:'XwL For i = 0 To ny - 1 >#(n"RCHf For j = 0 To nx - 1 s B
20/F irrad(i,j) = 0.0 ;inzyFbL= Next j +dW|^I{H} Next i g(hOg~S\E 'g)n1 { 'main loop
CN& EnableTextPrinting( False ) "Fnq>iR- }-DE`c ypos = dety + pixely / 2 a|_p,_ For i = 0 To ny - 1 @f1*eo5f xpos = -detx - pixelx / 2 C~4PE>YtTv ypos = ypos - pixely \7v)iG|#G& q]% T:A= EnableTextPrinting( True ) #8h;Bj Print i S*
R,FKg EnableTextPrinting( False ) NHQF^2 \\ Di5(9]o2 OJO!FH) For j = 0 To nx - 1 =L-I-e97@ T*[
VY1 xpos = xpos + pixelx O4iC]5@
CE%_A[a 'shift source e Y$qV} LockOperationUpdates srcnode, True h9s >LY GetOperation srcnode, 1, op GqKsK
r2% op.val1 = xpos ExBUpDQc op.val2 = ypos
_D,
;MB&7 SetOperation srcnode, 1, op }8K4-[\ LockOperationUpdates srcnode, False wBSQ:f]g SA"p\}"
raytrace `~BZ1)@ DeleteRays BJ}D%nm} CreateSource srcnode p0:kz l4$ TraceExisting 'draw v-b0\_ f9u^ R=Ff[ 'radiometry U7@AC}.+ For k = 0 To GetEntityCount()-1 H^%lDz If IsSurface( k ) Then :[l\@>H1tX temp = AuxDataGetData( k, "temperature" ) 6xK[34~6 emiss = AuxDataGetData( k, "emissivity" ) NAC_pM&B If ( temp <> 0 And emiss <> 0 ) Then o{:xp r=( ProjSolidAngleByPi = GetSurfIncidentPower( k ) oqd;6[%G frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Z8O n%Mx{" irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi NpP')m!`} End If CY:d`4 k?B[>aQn.0 End If feM6K!fL` Sjj>#}U Next k '9p@vi{\ V9yl4q-bL Next j -Apc$0ZsN [lzN !!B! Next i d*8 $>GA EnableTextPrinting( True ) OR1DYHHT/1 ZUm?*.g\^ 'write out file B!]2Se2G fullfilepath = CurDir() & "\" & fname n.MRz WJpZ Open fullfilepath For Output As #1 >SF Uy\3 Print #1, "GRID " & nx & " " & ny I=)hWC/ Print #1, "1e+308" z4%uN|V Print #1, pixelx & " " & pixely t_z>Cl^u Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ))kF<A_MK 3rW|kkn maxRow = nx - 1 \W5O&G-C maxCol = ny - 1 8`>h}Q$ For rowNum = 0 To maxRow ' begin loop over rows (constant X) +d}E&=p_ row = "" 96cJ8I8 For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) 7"F*u : row = row & irrad(colNum,rowNum) & " " ' append column data to row string $
i)bq6 Next colNum ' end loop over columns OVzt\V*+%W $4kH3+WJ Print #1, row +Mewo ~)LH='|h\} Next rowNum ' end loop over rows {'sY|lou Close #1 /@ !CKh` >2$5eI Print "File written: " & fullfilepath zLs|tJOVp Print "All done!!" RoA?p;]< End Sub U@ ?LP (s<Dd2&.H 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ^H{R+} {e[%;W%c& '|]e<Mt- 找到Tools工具,点击Open plot files in 3D chart并找到该文件 :P,sxDlG) b5$JfjI ^'CPM6J 打开后,选择二维平面图: jUv!9Y}F O RGD
|