-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-10-15
- 在线时间1875小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 _!03;zrO ~Ru\Z-q1 成像示意图 : ,l7e 首先我们建立十字元件命名为Target
>2s4BV[( "6f`hy 创建方法: 0|P=S|%~ ,X?/FAcb 面1 : *-T.xo 面型:plane V?u#WJy/ 材料:Air kTb$lLG\xk 孔径:X=1.5, Y=6,Z=0.075,形状选择Box Je6[q b#6S8C+@ ]Y\$U<YjO 辅助数据: z#tIa 首先在第一行输入temperature :300K, o<Zlm)"%1 emissivity:0.1; W0gS>L_ 6@N,'a8r hd)Jq'MCS 面2 : @{y'_fw 面型:plane / Q1*Vh4 材料:Air TA[%eMvA 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ?xj8a3F uH[WlZ4 7Jn%XxHq 位置坐标:绕Z轴旋转90度, PtfG~$h? C >*z^6Gz Vq'7gJj' 辅助数据: *S;}&VAZ /q9I^ ztV 首先在第一行输入temperature :300K,emissivity: 0.1; |qNe_) 'UhoKb_p \*$^}8 Target 元件距离坐标原点-161mm; hfwJZ\_60 46C%at
M0} %SmOP sz 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 .(@=L1C<}J 4S_f2P2J o*KAS@& 探测器参数设定: G+
/Q!ic Z<vz%7w 在菜单栏中选择Create/Element Primitive /plane [DaAvN^0A YkKu4f |;gx;qp4cN z9o]);dZ uN%Cc12 x"2p5T7*> 元件半径为20mm*20,mm,距离坐标原点200mm。 K"!rj.Da F-;J N 光源创建: =Vg~ VD [c?0Q3F 光源类型选择为任意平面,光源半角设定为15度。 l#0zHBc eb_.@.a ('z=/"(l 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 xg p)G!
~^F]t$rz 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 FWW4n_74 :,8y8z$+ } 9@rhW 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 x?Sx cQP {\$S585 创建分析面: #/qcp|m )q$[uS_1[ <exCK*G 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 +R~]5Rxd sUF$eVAT BbB3#/g 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 DwBe_h . O@$>'Z FRED在探测器上穿过多个像素点迭代来创建热图 =]@Bc
7@ ?O25k!7 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 A+/Lt>+AS 将如下的代码放置在树形文件夹 Embedded Scripts, D4$b-?y 48p3m)5
>\JPX 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 Rxy|Ag/I;V o#FctM'Z 绿色字体为说明文字, ,88B@a S1r{2s& '#Language "WWB-COM" ir^d7CV, 'script for calculating thermal image map P}6#s'07~ 'edited rnp 4 november 2005 zfU Do`V~ M.g2y &8 'declarations B}
qRz Dim op As T_OPERATION {A}T^q!m] Dim trm As T_TRIMVOLUME 8i6iynR Dim irrad(32,32) As Double 'make consistent with sampling T)tr"<F5NP Dim temp As Double mLq0;uGL| Dim emiss As Double GVT 6cR Dim fname As String, fullfilepath As String X}[1Y3~y k2Q[v 'Option Explicit Pr>$m{
Z !d##q)D
f? Sub Main Qe~C}j% 'USER INPUTS 51}C`j|V3{ nx = 31 (F'~K,0 ny = 31 wW TuEM numRays = 1000 ^(Gl$GC$Mu minWave = 7 'microns !jP[= maxWave = 11 'microns 8h
ol4'B sigma = 5.67e-14 'watts/mm^2/deg k^4 3@F U-k,i fname = "teapotimage.dat" }ll&EB }5E H67 Print "" 2-S}#S}2C Print "THERMAL IMAGE CALCULATION" ;$eY#ypx T#E{d detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 e,XT(KY ~U<j_j)z4. Print "found detector array at node " & detnode Fmn_fW6 UHJro9 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 2Jo|P A`9 Ez
<YD Print "found differential detector area at node " & srcnode ''2:ZX X i% 0qN GetTrimVolume detnode, trm #~Kno@ detx = trm.xSemiApe `DSDu Jw% dety = trm.ySemiApe YloE4PAY7 area = 4 * detx * dety FkMM>X Print "detector array semiaperture dimensions are " & detx & " by " & dety ; 180ct4 Print "sampling is " & nx & " by " & ny yJx,4be uvDOTRf 'reset differential detector area dimensions to be consistent with sampling 7\dt<VV pixelx = 2 * detx / nx N#J8 4i;ry pixely = 2 * dety / ny *`s*l+0b SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False :CM2kh"Iu Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 ^g'uR@uU }2=~7&) 'reset the source power tm;\m!^X{ SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) k H06Cb Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" Kj"n
Id) %PVu>^ 'zero out irradiance array $hM9{ For i = 0 To ny - 1 HELTL$j,b For j = 0 To nx - 1 @$b7
eu irrad(i,j) = 0.0 {s@&3i?ZiC Next j $jC+oYXj Next i 45+kwo0 hzV%QDUpe 'main loop sI)jqHZG EnableTextPrinting( False ) } BP.t$_ @
/e{-Q ypos = dety + pixely / 2 P@etT8| V For i = 0 To ny - 1 &sq q+&ao xpos = -detx - pixelx / 2 DUf. F ypos = ypos - pixely CJ;D&qo V g7+G( , EnableTextPrinting( True ) CIR2sr0a Print i qE^u{S4Z@ EnableTextPrinting( False ) rp-.\Hl/a wh]v{Fi' 5Shc$Awc! For j = 0 To nx - 1 ]{-ib:f~ T.!.3B$@] xpos = xpos + pixelx &I(3/u l)Cg?9 'shift source "jq F LockOperationUpdates srcnode, True CfLPs)\ACm GetOperation srcnode, 1, op n%dh|j2u op.val1 = xpos btf]~YN op.val2 = ypos LZPLz@=&] SetOperation srcnode, 1, op \p iz Vt LockOperationUpdates srcnode, False xqVIw!J?/}
4m9]d) raytrace r-}C !aF] DeleteRays Yv;iduc(' CreateSource srcnode xqKj&RuLu TraceExisting 'draw ^@maF<Jb 9(9\kQj{C 'radiometry 0bIhP,4&
For k = 0 To GetEntityCount()-1 c+TCC%AJQI If IsSurface( k ) Then ~
Q;qRx temp = AuxDataGetData( k, "temperature" ) j|WN!!7 emiss = AuxDataGetData( k, "emissivity" ) NSh~O!pX If ( temp <> 0 And emiss <> 0 ) Then "qY_O/Eg]] ProjSolidAngleByPi = GetSurfIncidentPower( k ) 5
.bU2C frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) E7Pz~6 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi d>Np; " End If [M.!7+$o "Kn%|\YL@4 End If 9r,7>#IF 9&KiG* . Next k z!\)sL/" GA)t!Xg^ Next j 7gbu7"Qc 8<g9 ~L Next i k'{Bhi4 EnableTextPrinting( True ) &Sp2['a!
Hn,;G`{ 'write out file n#5%{e> fullfilepath = CurDir() & "\" & fname m:{IVvN_ Open fullfilepath For Output As #1 [,ns/*f3R Print #1, "GRID " & nx & " " & ny $>PV6 Print #1, "1e+308" 1A\N$9Dls Print #1, pixelx & " " & pixely fnO>v/&B Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 |`6*~ciUV Ut^ {4_EC maxRow = nx - 1 9rhl2E maxCol = ny - 1 KdtQJ:_`k For rowNum = 0 To maxRow ' begin loop over rows (constant X) t=(CCq_N, row = "" >a2i%j/T For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) L,wEUI row = row & irrad(colNum,rowNum) & " " ' append column data to row string !@kwHJkv Next colNum ' end loop over columns rjW\tuZI 3It9|Y"6[ Print #1, row N(^
q%eHp jAb R[QR1% Next rowNum ' end loop over rows 4brKAqg. Close #1 :HQQ8uQfb J9*$@&@S Print "File written: " & fullfilepath >hmBV7nR Print "All done!!" .:=G=v=1 End Sub $Q< >MB7 iqPMCOPZ 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: "_
i: ]728x["(19 Rz9IjL.Z 找到Tools工具,点击Open plot files in 3D chart并找到该文件 }&O}t{gS* #Z]l4d3{T g/6>>p`J 打开后,选择二维平面图: xF8^#J6> kls
6Dk#
|