切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1565阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6425
    光币
    26270
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 *>[3I}mM  
    $8~e}8dt|  
    成像示意图
    1iBP,:>*  
    首先我们建立十字元件命名为Target s!B/WsK  
    nH-V{=**  
    创建方法: >3.X?  
    +&=?BC}L9^  
    面1 : }6u2*(TmD  
    面型:plane (eWPis[  
    材料:Air [g|Y7.j8  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box gABr@>Vv  
    )Kd%\PP  
     C})'\1O%  
    辅助数据: wq!iV |  
    首先在第一行输入temperature :300K, <%?#AVU[  
    emissivity:0.1; ~FU@wV^   
    j]rz] k  
    DGESba\2+  
    面2 : V^s0fWa  
    面型:plane Xd `vDgD  
    材料:Air <If35Z)~  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box <.K4JlbT  
    ]e?x# <S  
    V~IIY B7  
    位置坐标:绕Z轴旋转90度, +j14Q$  
    pKG<Nvgz&  
    !U%T&?E l  
    辅助数据: B=f,QU  
    xGk6n4Gg  
    首先在第一行输入temperature :300K,emissivity: 0.1; O*6n$dUj3  
    DL^o_61  
    0pb '\lA  
    Target 元件距离坐标原点-161mm; QF2q^[>w6  
    .wA+S8}S  
    {y=W6uP  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 w'4AJ Q|;  
    g]~h(mI  
    Fzlozx1y[  
    探测器参数设定: h"mi"H^o  
    {PU!=IkTS  
    在菜单栏中选择Create/Element Primitive /plane Oc].@Jy  
    EI~"L$?  
    O)|P,?  
    BAj-akc f  
    POI.]1i  
    ] Wy)   
    元件半径为20mm*20,mm,距离坐标原点200mm。 g1E~+@  
    1F8 W9b^D  
    光源创建: WO5O?jo'  
    OI1ud/>h  
    光源类型选择为任意平面,光源半角设定为15度。 TcTM]ixr  
    #m{{a]zm^  
    W1Lr_z6  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 8(g:HR*;  
    [H\:pP8t  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 WL,&-*JAW  
    >KLtY|o)  
    b !@Sn/  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 1 2++RkL#  
    0_P}z3(M  
    创建分析面: c3*t_!@oC  
    Ab%;Z5$fr  
    4(neKr5\#  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 unJid8Lo  
    EpS(o>'  
    +x? #DH-  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 m=AqV:%|  
    h eaRX4  
    FRED在探测器上穿过多个像素点迭代来创建热图 UX3BeUi.)  
    e~ aqaY~}  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 n%R;-?*v  
    将如下的代码放置在树形文件夹 Embedded Scripts, \~d";~Y`  
    !UOCJj.cA  
    kg][qn|>J]  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 n?\ nn3  
    I1X /Lj=  
    绿色字体为说明文字, f\+f o  
    WwF~d+>|C  
    '#Language "WWB-COM" ONNpiK-  
    'script for calculating thermal image map 6) oLus  
    'edited rnp 4 november 2005 A7! g  
    8Y0"Cejq  
    'declarations Wk:hFHs3  
    Dim op As T_OPERATION Q%/<ZC.Mz6  
    Dim trm As T_TRIMVOLUME 4!asT;`'  
    Dim irrad(32,32) As Double 'make consistent with sampling R1F5-#?'E  
    Dim temp As Double `r5 $LaD  
    Dim emiss As Double a9n^WOJ6  
    Dim fname As String, fullfilepath As String (>mI'!4d  
    :Ih|en^w  
    'Option Explicit 0JgL2ayIVI  
    %}86D[PF  
    Sub Main B!gGK|8  
        'USER INPUTS SVjl~U-^  
        nx = 31 pE{yv1Yg  
        ny = 31 "#v=IJy&r  
        numRays = 1000 7iHK_\tn  
        minWave = 7    'microns Q0Nyqhvi  
        maxWave = 11   'microns TF2>4 p  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 mzQ`N}]T:  
        fname = "teapotimage.dat" 8 #ndFpu  
    Tirux ;  
        Print "" k3+e;[My+  
        Print "THERMAL IMAGE CALCULATION" )s1Ib4C  
    ZEYgK)^  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 7?B.0>$3>V  
    >5R <;#8  
        Print "found detector array at node " & detnode X1 ZgSs+i  
    [D5t{[i  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 jBaB@LO9G  
    dd?x(,"A`  
        Print "found differential detector area at node " & srcnode {lth+{&L#  
    /7!""{1\\  
        GetTrimVolume detnode, trm 6t/`:OZC:  
        detx = trm.xSemiApe 9Pw0m=4  
        dety = trm.ySemiApe yr#5k`&\_  
        area = 4 * detx * dety 4tSv{B/}  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety lTU$0CG  
        Print "sampling is " & nx & " by " & ny 2,aPr:]  
    1FtM>&%4  
        'reset differential detector area dimensions to be consistent with sampling RzhWD^bB  
        pixelx = 2 * detx / nx $+}+zZX5  
        pixely = 2 * dety / ny [ofqGwpDG  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 6<0n *&  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 UD~p'^.m_  
    PA6=wfc  
        'reset the source power .qk]$LJF7  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) A]L%dFK  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" S osj$9E  
    4@.|_zY  
        'zero out irradiance array R:p62c;Tv0  
        For i = 0 To ny - 1 T]Nu)  
            For j = 0 To nx - 1 b| SE<\  
                irrad(i,j) = 0.0 VL[)[~^  
            Next j ND<!4!R^  
        Next i :Q+5,v-c  
    kP xa7  
        'main loop P,ua<B}L  
        EnableTextPrinting( False ) Y2o6kS{x  
    g<*BLF  
        ypos =  dety + pixely / 2 EkT."K  
        For i = 0 To ny - 1 mj?16\|]  
            xpos = -detx - pixelx / 2 8+m H:O  
            ypos = ypos - pixely 6.t',LTB  
    fAZiC+  
            EnableTextPrinting( True ) s<x1>Q7X~  
            Print i U $Qv>7  
            EnableTextPrinting( False ) IPuA#C  
    w@2Vts  
    ~}Z\:#U  
            For j = 0 To nx - 1 (BX83)  
    `ovtHl3Q  
                xpos = xpos + pixelx 4Ij-Ilg)%  
    hO{cvHy`  
                'shift source 93[DAs  
                LockOperationUpdates srcnode, True k\Q ,h75  
                GetOperation srcnode, 1, op >]'yK!a?  
                op.val1 = xpos \qsw"B*tv`  
                op.val2 = ypos TEUY3z[g  
                SetOperation srcnode, 1, op \3Oij^l 0  
                LockOperationUpdates srcnode, False -{h   
    l0*Gb  
    raytrace ? _\$  
                DeleteRays zr76_~B1u  
                CreateSource srcnode wx=0'T-[  
                TraceExisting 'draw 5)1+~B  
    w^K^I_2ge  
                'radiometry 6VD1cb\lF  
                For k = 0 To GetEntityCount()-1 Ql?^ B SqG  
                    If IsSurface( k ) Then Oc9#e+_&  
                        temp = AuxDataGetData( k, "temperature" ) wHz?#MW 3L  
                        emiss = AuxDataGetData( k, "emissivity" )  Z:2I/  
                        If ( temp <> 0 And emiss <> 0 ) Then Kr  L>FI  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) m}VM+=  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) G@S&1=nj3  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi E jEFg#q  
                        End If mN0=i(H<  
    vUQFQ  
                    End If eX&Gw{U-f  
    ]T O/kl/  
                Next k NTs;FX~g[  
    v4?iOD  
            Next j ]kktoP|D  
    jm>3bd  
        Next i B7Ntk MK  
        EnableTextPrinting( True ) qZ2&Xw.{1  
    ~>ME'D~  
        'write out file {I%y;Aab8  
        fullfilepath = CurDir() & "\" & fname .R 44$F  
        Open fullfilepath For Output As #1 k D~uGA  
        Print #1, "GRID " & nx & " " & ny [2$4|;7  
        Print #1, "1e+308" L3y5a?G  
        Print #1, pixelx & " " & pixely ^Uw[x\%#gD  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 ~JZ3a0$^  
    <MD;@_Nz\  
        maxRow = nx - 1 p(3sgY1  
        maxCol = ny - 1 s(@h 2:j  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) @ "d2.h  
                row = "" -$Y8!54  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) ,^T]UHRO  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string |:iEfi]j  
            Next colNum                     ' end loop over columns Unl?fXI  
    m$UvFP1>u1  
                Print #1, row 2JO-0j.  
    vx0UoKX  
        Next rowNum                         ' end loop over rows %&] 1FhL  
        Close #1 7s>a2  
    ?A=b6Um  
        Print "File written: " & fullfilepath  .Oo/y0E^  
        Print "All done!!" XDmbm*~i  
    End Sub _,; %mK  
    _'iDF  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: #qL9{P<}  
    (9.yOc4  
    l:e9y$_)  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 4 eh=f!(+  
      
    sWxK~Yg  
    ofCVbn  
    打开后,选择二维平面图: Zw=G@4xoU  
    iz x[  
     
    分享到