切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1353阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 <sGioMr  
    Qej<(:J5  
    成像示意图
    0b,{4DOD  
    首先我们建立十字元件命名为Target Z>@\!$Mc  
    Rg~[X5  
    创建方法: .N#grk)C  
    bV@5B#] 2R  
    面1 : i2Gh!5]f  
    面型:plane +w@/$datI  
    材料:Air O} lqY?0*  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box DB] ]6  
    VN@ZYSs  
    n6INI~,  
    辅助数据: :Sk<0VVd7  
    首先在第一行输入temperature :300K, %o0.8qVJi  
    emissivity:0.1; 3e^'mT  
    mO\=# Q>  
    jRjQDK_"ka  
    面2 : dFpP_U  
    面型:plane {y:+rh&  
    材料:Air (]<G)+*  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ?[O Sy.6  
    kca  Y  
    pQ+4++7ID  
    位置坐标:绕Z轴旋转90度,  YwB\kN  
    2 BwpxV8  
    vnz}Pr! c  
    辅助数据: v[?eL0Z  
    B;L^!sLP  
    首先在第一行输入temperature :300K,emissivity: 0.1; 3+%L[fW`/  
    =G<S!qW  
    \V<deMb=  
    Target 元件距离坐标原点-161mm; s0'Xihsw6  
    \6Hu&WHy  
    }*0*8~Q'5  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 en gh3TZC  
    zd [cp@  
    ~E7=c3:"  
    探测器参数设定: `\S~;O  
    F (:] lM|  
    在菜单栏中选择Create/Element Primitive /plane UBy:W^\g  
    o"A%dC_  
    ,b8B)VZ?  
    '^M3g-C[Jg  
    $;+`sVG  
    -zL xT  
    元件半径为20mm*20,mm,距离坐标原点200mm。 o#&;,9  
    utwqP~  
    光源创建: uH!;4@ uI  
    qdVExO&  
    光源类型选择为任意平面,光源半角设定为15度。 c7N`W}BZ  
    V?Zvu9b&  
    >@d=\Kyu  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 E%+1^ L  
    jCbxI^3A  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 g8w5X!Z  
    )Ikx0vDFQ  
    <El6?ml@  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 +#y[sKa  
    M0%):P?x  
    创建分析面: x:Kca3pv_  
    EGyQ hZ mO  
    Y 1vSwS%{T  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 PDssEb7  
    A5gdZZ'x  
    'rdg  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 `ja**re  
    kST  
    FRED在探测器上穿过多个像素点迭代来创建热图 wBXgzd%L  
    `795 K8  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 5ff66CRw  
    将如下的代码放置在树形文件夹 Embedded Scripts, PV%7 m7=x  
    S\jN:o#b  
    &sQtS  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 +x0-hRD  
    Y&5h_3K;<  
    绿色字体为说明文字, .HG0%Vp  
    CxtH?9# |  
    '#Language "WWB-COM" '%R Yo#  
    'script for calculating thermal image map _, ;c2  
    'edited rnp 4 november 2005 vf(\?Js ,  
    L +s,,k  
    'declarations {E`f(9r:  
    Dim op As T_OPERATION . \fzK  
    Dim trm As T_TRIMVOLUME DY{JA *N  
    Dim irrad(32,32) As Double 'make consistent with sampling S-:l 60.  
    Dim temp As Double ^YKEc0"w(  
    Dim emiss As Double YXa^jFp  
    Dim fname As String, fullfilepath As String @$;"nVZ4v  
    ^r$P&}Z\b  
    'Option Explicit [ua{qJ9  
    OY6l t.t  
    Sub Main %c(':vI#  
        'USER INPUTS b07 MTDFH7  
        nx = 31 qgU$0enSs  
        ny = 31 -`B|$ W  
        numRays = 1000 e?G] fz  
        minWave = 7    'microns hM(|d@)  
        maxWave = 11   'microns dd>stp   
        sigma = 5.67e-14 'watts/mm^2/deg k^4 z/N~HSh!d  
        fname = "teapotimage.dat" [>4Ou^=1  
    t*^Q`V wQ  
        Print "" Ohnd:8E  
        Print "THERMAL IMAGE CALCULATION" 5"6Y=AuQ6  
    ; eq^m,oz  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 \=4[v-3 H  
    y#^d8 }+  
        Print "found detector array at node " & detnode (J~n|hA2/D  
    R y0n_J:7  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Yt7R[|  
    Je+z\eT!5<  
        Print "found differential detector area at node " & srcnode 2bfKD'!aH  
    Fmk, "qs  
        GetTrimVolume detnode, trm 2|Hq[c=~  
        detx = trm.xSemiApe 3ePG=^K^  
        dety = trm.ySemiApe izow=}  
        area = 4 * detx * dety Dw?nf  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety X) xQKkL0  
        Print "sampling is " & nx & " by " & ny +PY LKyS>  
    uG2Hzav  
        'reset differential detector area dimensions to be consistent with sampling gz-}nCSi  
        pixelx = 2 * detx / nx z'MOuz~Y  
        pixely = 2 * dety / ny vVmoV0kGt  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False y'pAhdF  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 [L"(flY(E  
    sV'(y>PP%  
        'reset the source power j}'spKxu  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 )  ">*PH}b  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" $+)SW {7  
    gEMxK2MNXj  
        'zero out irradiance array 1pVagLlb:7  
        For i = 0 To ny - 1 m49GCo k+  
            For j = 0 To nx - 1 egxh  
                irrad(i,j) = 0.0 ksT2_Ic  
            Next j B_anO{3$4  
        Next i $uF} GP_)  
    Z~ VOO7|m  
        'main loop k/?5Fs!#  
        EnableTextPrinting( False ) gN Xg  
    J84Q|E  
        ypos =  dety + pixely / 2 g>A*kY  
        For i = 0 To ny - 1 p@y?xZS  
            xpos = -detx - pixelx / 2 f+j\,LJ  
            ypos = ypos - pixely t{| KL<d]  
    >fPa>[_1  
            EnableTextPrinting( True ) \m~ ?mg"#  
            Print i MJd!J ]E6  
            EnableTextPrinting( False ) Lf{9=;  
    $rv&!/}]e  
    [nB[]j<R*  
            For j = 0 To nx - 1 +Fp8cT=1  
    a_P8!pk+5  
                xpos = xpos + pixelx ,&rlt+wE  
    (;;%B=  
                'shift source V)72]p  
                LockOperationUpdates srcnode, True Cb5;l~}L  
                GetOperation srcnode, 1, op 9aFu51  
                op.val1 = xpos qR/~a  
                op.val2 = ypos K>hQls+  
                SetOperation srcnode, 1, op F~2bCy[Z  
                LockOperationUpdates srcnode, False I{U7BZy  
    A}v! vVg  
    raytrace z'Atw"kA  
                DeleteRays  eme7y  
                CreateSource srcnode 9AO`Zk{/Ez  
                TraceExisting 'draw zgXg-cr  
    DJvmwFx  
                'radiometry VPoA,;Y"-  
                For k = 0 To GetEntityCount()-1 |*ss`W7F,2  
                    If IsSurface( k ) Then ^<49NUB>  
                        temp = AuxDataGetData( k, "temperature" ) PTrKnuM\J_  
                        emiss = AuxDataGetData( k, "emissivity" ) AI0YK"c?  
                        If ( temp <> 0 And emiss <> 0 ) Then ]-h;gN  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) #m=TK7*v  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) {Z0(V"Q  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi r==d^  
                        End If q#B=PZ'NA  
    Cp4 U`]  
                    End If f 1s3pr??  
    U:"X *  
                Next k @6\Id7`Ea  
    [qbZp1s|(  
            Next j M#%l}  
    3m%oXT  
        Next i n@|5PI"bx  
        EnableTextPrinting( True ) 0z&]imU  
    3,`I\>No  
        'write out file O*0%AjT6  
        fullfilepath = CurDir() & "\" & fname 6 G.(o  
        Open fullfilepath For Output As #1 'EzKu~*  
        Print #1, "GRID " & nx & " " & ny s^f7w  
        Print #1, "1e+308" }C-K0ba7  
        Print #1, pixelx & " " & pixely E2dl}S zp  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 JBqL0H  
    #uTNf78X  
        maxRow = nx - 1 4z<nJOEh[  
        maxCol = ny - 1 >TI/W~M  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) e1cqzhI=nA  
                row = "" eXKpum~  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) 6z`l}<q  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string %Q,6sH#  
            Next colNum                     ' end loop over columns BoJpf8e'-e  
    NM FgCL  
                Print #1, row dfy]w4ETB  
    Qa`+-W u8  
        Next rowNum                         ' end loop over rows 'q>2WP|UY9  
        Close #1 X1DE   
    X~UrAG}_  
        Print "File written: " & fullfilepath XLHi  
        Print "All done!!" }2xgm9j<  
    End Sub df\^uyD;  
    W%ml/ 4  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: UHyGW$B  
    \ -n&z;`  
    \_io:{M  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 Q|KD$2rB  
      
    \/XU v(  
    ":v^Y 9  
    打开后,选择二维平面图: B*Z}=$1j  
    ._%8H  
     
    分享到