-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-11
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ]Aluk|"`U i,<-+L$z 成像示意图 r9t{/})A 首先我们建立十字元件命名为Target PA=BNKlH $I/p 6 创建方法: aLq;a y@Or2bO# 面1 : 5 O6MI4: 面型:plane LtU+w*Gj 材料:Air kL3=7t^ 1 孔径:X=1.5, Y=6,Z=0.075,形状选择Box co@8w!W Bf}_ Jw-= ^\6UTnS. 辅助数据: JQ1VCG 首先在第一行输入temperature :300K, POG5x emissivity:0.1; >mV""?r] 8`~]9ej [5 V 面2 : l^"G \ZVI 面型:plane '
#mC4\<W8 材料:Air z[rB/|2 孔径:X=1.5, Y=6,Z=0.075,形状选择Box (BGipX4 lm\u(3_$ Ii8jY_ 位置坐标:绕Z轴旋转90度, Zk[#BUA Pn#Lymxh_a x V e! 辅助数据: i*tj@5MY- KJ~pY<a? 首先在第一行输入temperature :300K,emissivity: 0.1; dWUu3 9x1Dyz 2?F 3/e !7 Target 元件距离坐标原点-161mm; d]^i1 k$>T(smh k);!H + 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 )?WoLEjq 40E[cGz$* N#:"X; 探测器参数设定: +x2xQ8#|~~ hMQaT-v 在菜单栏中选择Create/Element Primitive /plane 6uyf !jbjrzv9 fm*Hk57 9s)oC$\ V_pBM 3C2> 元件半径为20mm*20,mm,距离坐标原点200mm。 WToAT;d2h Cw}\t!*! 光源创建: #o RUH8 ?1uAY.~ZZB 光源类型选择为任意平面,光源半角设定为15度。 q|l|gY1g) 1 W u D/WS 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 i@*
^]' L7- nPH 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 DbN'b(+ #<o#kJL D|o@(V 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 NP8TF*5V PwW @I~@> 创建分析面: qAS^5|(b[ 1N+#(<x@, Xd6y7s 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 Y"qY@` CkU=0mcY YSgF'qq\ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 4_<Uk 8##jd[o&p~ FRED在探测器上穿过多个像素点迭代来创建热图 w^gh&E
.D.Rn/ FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 (zBQ^97] 将如下的代码放置在树形文件夹 Embedded Scripts, 6{'6_4;Fv( /Hmo!"W` MlFvDy 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 %j@FZ
)a[ 7&4,',0VL 绿色字体为说明文字, %jkPrI (Y([^N q '#Language "WWB-COM" +0Gep}&z. 'script for calculating thermal image map Pc'?p 'edited rnp 4 november 2005 ydQS"]\g p0K;m% 'declarations m+vEs,W. Dim op As T_OPERATION h86={@Le Dim trm As T_TRIMVOLUME b U NYTF{ Dim irrad(32,32) As Double 'make consistent with sampling =]e^8;e9 Dim temp As Double W#j,{&KVn Dim emiss As Double ozLJ#eOE9 Dim fname As String, fullfilepath As String $4
Uy3C+6 s? k[_|)! 'Option Explicit lIg2iun[n dU6LB+A Sub Main @
WaYU 'USER INPUTS %%6('wi nx = 31 moR2iyO_ ny = 31 2(Uz9!<V numRays = 1000 31& .Lnq minWave = 7 'microns VU9P\|c@< maxWave = 11 'microns #~;8#!X sigma = 5.67e-14 'watts/mm^2/deg k^4 x-&v|w ' fname = "teapotimage.dat" vLv@ Mo Yj6p19 Print "" E]U0CwFtr Print "THERMAL IMAGE CALCULATION" ?bAFYF0!I CDj Dhs detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 .To:tN# yPYJc Print "found detector array at node " & detnode D^55:\4( v&2@<I> srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 AijTT% Aq%^>YAp Print "found differential detector area at node " & srcnode bpa
O`[* xc.D!Iav GetTrimVolume detnode, trm c8tC3CrKp= detx = trm.xSemiApe ]fo^43rn{ dety = trm.ySemiApe Y>Hl0$:= area = 4 * detx * dety f\|?_k] Print "detector array semiaperture dimensions are " & detx & " by " & dety FK# E7
K Print "sampling is " & nx & " by " & ny 2pa3}6P+ Lo5@zNt%W 'reset differential detector area dimensions to be consistent with sampling :gscW&k pixelx = 2 * detx / nx w/5^R pixely = 2 * dety / ny Qk.Q9@3W SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ]^jdO# #M Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 c[_^bs>k !]+Z%ed`% 'reset the source power e>9Z:vY SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :5<9/ Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" F(9
Y/UXH A]Tcj^# 'zero out irradiance array fGf-fh;s For i = 0 To ny - 1 'z}M[h
K] For j = 0 To nx - 1 4z%#ZIy3 irrad(i,j) = 0.0 Q &7)vs Next j V!77YFen % Next i F] ?@X aq+IC@O 'main loop yISQYvSN EnableTextPrinting( False ) E? eWv)// D`:d'ow~KQ ypos = dety + pixely / 2 3'*%R48P` For i = 0 To ny - 1 UlNfI}#X xpos = -detx - pixelx / 2 xVkTRCh ypos = ypos - pixely ^qGA!_ |4S?>e EnableTextPrinting( True ) N&^xq_ 9& Print i wK'! xH^ EnableTextPrinting( False ) n<<=sj$\! T<+ht8&M8 \!JS7!+ For j = 0 To nx - 1 qJ+52U|z -9>LvLU xpos = xpos + pixelx g(1B W#$ yvd
`nV 'shift source ur<eew@8@i LockOperationUpdates srcnode, True ^@`e GetOperation srcnode, 1, op %7 v@n+Q op.val1 = xpos 6L,lq; op.val2 = ypos 9Ue7
~"= SetOperation srcnode, 1, op Cb{A:\>Q{ LockOperationUpdates srcnode, False }\f(qw ^{*f3m/ raytrace xshArJ&A DeleteRays @>G&7r:U CreateSource srcnode 6b]1d04hT TraceExisting 'draw y=9Dxst"V inPE/Ux 'radiometry 9rTz N For k = 0 To GetEntityCount()-1 n^AP"1l8?0 If IsSurface( k ) Then Z.:<TrN temp = AuxDataGetData( k, "temperature" ) Ln=>@ emiss = AuxDataGetData( k, "emissivity" ) | 7 m5P@X If ( temp <> 0 And emiss <> 0 ) Then sB( `[5I ProjSolidAngleByPi = GetSurfIncidentPower( k ) J0Hm)* frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) R+{^@M&
irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ZD)0P=% End If }KA-t}8 W(2+z5 z End If 22GnbA7O df4sOqU Next k eu}Fd@GO lk_s!<ni Next j |^Ew< NtY*sUKRD Next i _{e&@d EnableTextPrinting( True ) CF|moc:; I z}2
^ 'write out file HDF"]l; fullfilepath = CurDir() & "\" & fname \Pl,'
1% Open fullfilepath For Output As #1 )W8L91- Print #1, "GRID " & nx & " " & ny OL=ET)Y Print #1, "1e+308" .Vo"AuC} Print #1, pixelx & " " & pixely 3@^>#U
Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 TBZ-17+ #\pP2
maxRow = nx - 1 d7"U WY^ maxCol = ny - 1 &Y,Q>bu For rowNum = 0 To maxRow ' begin loop over rows (constant X) :[Qp2Gg O\ row = "" bZ>&QM For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) D=r- row = row & irrad(colNum,rowNum) & " " ' append column data to row string F!7f_m0= Next colNum ' end loop over columns Opv1B2 CAUijMI@ Print #1, row 7qP4B9S
(2z%U Next rowNum ' end loop over rows atY*8I| Close #1 /Hv*K&}M J3;Tm~KJ_ Print "File written: " & fullfilepath g1ZV&X=2 Print "All done!!" ^|wT_k\ End Sub f}[H
`OF !0Idp% 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: gyi)T?uS) >0PUWr$8 yp=|7 找到Tools工具,点击Open plot files in 3D chart并找到该文件 aS,a_b] +0]'| t F> 2m_'z 打开后,选择二维平面图: :T_'n, 9nn>O?
|