-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 /0'fcjOaQ dW] Ej"W 成像示意图 mo97GW 首先我们建立十字元件命名为Target *;~{_Disz hU=f?jo/ 创建方法: J{v6DYhi 4.$hHFqS^5 面1 : ^$^Vd@t>a 面型:plane dvH67 x 材料:Air -F~9f> 孔径:X=1.5, Y=6,Z=0.075,形状选择Box mAtG&my) 0.3[=a43 **
"s~ 辅助数据: 60SenHKles 首先在第一行输入temperature :300K, -bG#h)yj emissivity:0.1; 0o\=0bH&s y[Fw>g1`q }sm56}_ 面2 : tF) k6*+ 面型:plane uvAy#, 材料:Air dh7)N}2 孔径:X=1.5, Y=6,Z=0.075,形状选择Box nY.Umj 3vEjf (,Zz&3
AV 位置坐标:绕Z轴旋转90度, w Lg:YM" RaJ}>e `XRb:d^ 辅助数据: 7cQHRM+1 _a:!U^4 首先在第一行输入temperature :300K,emissivity: 0.1; :D)&>{? ocuNrkZ Q{)F$]w Target 元件距离坐标原点-161mm; A+Pm "| EKI+Dq, ^Xz`hR 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Y_TL4 XzTH,7[n q=L*
99S 探测器参数设定: c&iK+qvh{ wr6xuoH 在菜单栏中选择Create/Element Primitive /plane ~dX@5+Gd clU3#8P!= kkuQ"^<J hghto
\G5Y w1/T>o 2ucsTh@ 元件半径为20mm*20,mm,距离坐标原点200mm。 (Os
OPTp I@3c QxI 光源创建: 6d?2{_} , bm]dz;ljh 光源类型选择为任意平面,光源半角设定为15度。 hSf#;=9' @=|
b$E }sN9QgE 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %BP)m(S7 eDMwY$J
我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 <38@b
]+ .TrQ +k> d?+oT0pCH 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 R5~vmT5W jnLo[Cf,H8 创建分析面: q.K$b H<}Fk9 C%7 ,#}[U/ 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 i)^ZH#Gp x~Esu}x7 ~{tZ;YZ 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 .j$bCKXGx d+| !6 FRED在探测器上穿过多个像素点迭代来创建热图 f0`rJ?us }(7QJk5 j FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 2ZIY{lBe 将如下的代码放置在树形文件夹 Embedded Scripts, W;9X*I8f8 7)8}8tY^{ jQBdS. }'v 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 kIZdND& 4oEq,o_ 绿色字体为说明文字, ~m=%a !`Yi{}1_ '#Language "WWB-COM" ^+l\YB7pD 'script for calculating thermal image map Pj5#G0i% 'edited rnp 4 november 2005 -{sv3|P> 5x'y{S< 'declarations g.sV$.T2K Dim op As T_OPERATION ,$(v#Tz Dim trm As T_TRIMVOLUME 3B|-xq;]I Dim irrad(32,32) As Double 'make consistent with sampling x!Y@31!Dy Dim temp As Double >Ezwl5b Dim emiss As Double %Yn)t3d Dim fname As String, fullfilepath As String .*ovIU8 r4>I?lD 'Option Explicit "jJ)hk5e eBRP%<=>D Sub Main p5rRhu/|k3 'USER INPUTS s5
'nWMo nx = 31 Y,"MQFr(o ny = 31 -ZON']|<}k numRays = 1000 hCoLj6Vx minWave = 7 'microns 1EPOYvf%U maxWave = 11 'microns *^5,7}9Qo sigma = 5.67e-14 'watts/mm^2/deg k^4 ,5"]K'Vce fname = "teapotimage.dat" n\p\*wb .v&h>@'m Print "" T/6=A$4
# Print "THERMAL IMAGE CALCULATION" D;n%sRq(Z ">&:(< detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 1@dx(_ ~J{{n_G{ Print "found detector array at node " & detnode TRok4uc XFe7qt;% srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 6EWB3.x19 L=FvLii. Print "found differential detector area at node " & srcnode cb,sb^- j}*+-.YF GetTrimVolume detnode, trm #Kr.!uD detx = trm.xSemiApe xAE@cwg dety = trm.ySemiApe vp9<.*h area = 4 * detx * dety W+S; Do Print "detector array semiaperture dimensions are " & detx & " by " & dety -{%''(G Print "sampling is " & nx & " by " & ny .4(f0RG )eMh,r
'reset differential detector area dimensions to be consistent with sampling W
A}@n pixelx = 2 * detx / nx k|C8sSH pixely = 2 * dety / ny ,LO-!\L SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False D.!7jA# Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 y]%,Y=%X %"^XxVJ* 'reset the source power W-QPO SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) 3:#rFb Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" .)zISa*Xy 0.0!5D[ 'zero out irradiance array Q0_W<+` For i = 0 To ny - 1 -Lb^O/ For j = 0 To nx - 1 +N@F,3yNa irrad(i,j) = 0.0 &/?jMyD@ Next j uy:=V}p Next i tY=TY{ RY 2f4c;YS 'main loop
RZ%X1$ EnableTextPrinting( False ) 0z#kV}wE =7,UqMl_ ypos = dety + pixely / 2 )&<ExJQ& For i = 0 To ny - 1 eR`<9KBH xpos = -detx - pixelx / 2 @E;pT3; ) ypos = ypos - pixely e6'O,\ !
fc) EnableTextPrinting( True ) 3Q)>gh* Print i -P&e4sV{ EnableTextPrinting( False ) IBh~(6 -rlX<(pl) Uk6!Sb For j = 0 To nx - 1 <DS6-y p]eD@3Wz xpos = xpos + pixelx ;~1JbP H/Q)zDP 'shift source J7vpCw2ni LockOperationUpdates srcnode, True QovC*1' GetOperation srcnode, 1, op 3kY4V*9@- op.val1 = xpos .YF-t`{ op.val2 = ypos $ :wM'&M SetOperation srcnode, 1, op 3)SZVME1Z LockOperationUpdates srcnode, False QGy=JHb *,
K
\A raytrace xltu
g## DeleteRays ;i>E@ CreateSource srcnode EZBzQ"" TraceExisting 'draw p04+" 09s}@C 'radiometry Bnq\Gg For k = 0 To GetEntityCount()-1 +~O{
UGB= If IsSurface( k ) Then fM.|#eLi temp = AuxDataGetData( k, "temperature" ) pSFWNWQ'B emiss = AuxDataGetData( k, "emissivity" ) F2'cL @E3 If ( temp <> 0 And emiss <> 0 ) Then 7gcG|kKT ProjSolidAngleByPi = GetSurfIncidentPower( k ) d?Cl04 frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Iq\oB irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi ;bE6Y]"Rz End If Xs@ ^D, pr(\?\a End If [{$0E=&0 n^#LB*q Next k %WR"85 IoOnS) Next j /GGu` f BwD1}1jp Next i e]h'
EnableTextPrinting( True ) 5&=n (=V[tI+Ngt 'write out file bz]O(` fullfilepath = CurDir() & "\" & fname %;$Y|RbmqE Open fullfilepath For Output As #1 _Qc\v0% Print #1, "GRID " & nx & " " & ny [zEP| Print #1, "1e+308" 8-YrmP2k Print #1, pixelx & " " & pixely v"~I( kf$ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 W=]",< 7g+ ] maxRow = nx - 1 Ct+% maxCol = ny - 1 Qe.kNdT+_ For rowNum = 0 To maxRow ' begin loop over rows (constant X) IQ~7vk() row = "" l}c2l' For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) a@ }r[0O row = row & irrad(colNum,rowNum) & " " ' append column data to row string ;NeEgqW" Next colNum ' end loop over columns 'fFdqsXr |/s2AzDD Print #1, row ZY$@_D OB} ;@~*z4U Next rowNum ' end loop over rows e/jM+%
Close #1 |9Ks13?Ck j88sE MZ Print "File written: " & fullfilepath h xJgxM Print "All done!!" iDc|9"|Tf3 End Sub 6FMW g:{ u?Mu*r? 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: de{YgN pY#EXZ# 2_b'mepV 找到Tools工具,点击Open plot files in 3D chart并找到该文件 N==_'`O1Q0 qFbUM; )uuEOF"w 打开后,选择二维平面图: 8;&S9'ci X$Vz
|