-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-12
- 在线时间1894小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 ?@BaBU:o`F <+JFal 成像示意图 XlcDF|?{. 首先我们建立十字元件命名为Target Jt^JE{m9% <u%e* 创建方法: iP\&fZY_ jl%eO. 面1 : lSv;wwEg 面型:plane @9P9U`ZP 材料:Air (dnc7KrM 孔径:X=1.5, Y=6,Z=0.075,形状选择Box 'Bn_'w~j{ ED_5V@ JWjp<{Q;1 辅助数据: BQmafpp` 首先在第一行输入temperature :300K, DMpd(ws emissivity:0.1; BJ2W}R l]=$< `D4'`Or-U 面2 : p%tg->#L 面型:plane `5jB|r/ 材料:Air kF~e3A7C 孔径:X=1.5, Y=6,Z=0.075,形状选择Box
:@'0)7 P[K
T m&c(N 位置坐标:绕Z轴旋转90度, $ =a$z" \(t>(4s_~ i_^NbC 辅助数据: 9uoj3Rh< TmH13N] 首先在第一行输入temperature :300K,emissivity: 0.1; Gf.o{ @a3v[}c* P&,cCR> Target 元件距离坐标原点-161mm; |VF"Cjw? ,B>b9,~3a <R%6L& 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 pC
Is+1O/ 8uW:_t]q ()JDjzQT 探测器参数设定: Y}z?I%zL H5t`E^E 在菜单栏中选择Create/Element Primitive /plane 5ml}TSMu' l[{}ZKZ u6d~d\ 4u7>NQUDu 1<e%)? G K0a
50@B] 元件半径为20mm*20,mm,距离坐标原点200mm。 SXF_)1QO\W sUMn
(@r 光源创建: '~a$f;: Dv M&-/&>n! 光源类型选择为任意平面,光源半角设定为15度。 j"8N)la >:|q J$J. be@uHikp;v 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 ~[6|VpGc: cNvcpv 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。
p$ v +L H.K`#W& 6%1o<{(%f 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 bd}SB -D IbwRb 创建分析面: KK|Jach 54%}JA][ 4tTJE<y 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 essW,2,rjC NWj@iyi< W{aN S@1 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 !%9I%Ak^ *?Y6qalSy FRED在探测器上穿过多个像素点迭代来创建热图 2wvDC@ [hbIv FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 WQ`T'k#ESW 将如下的代码放置在树形文件夹 Embedded Scripts, \ }f* ^123.Ru|t L\DaZ(Y 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 [N)M]u d5hE!= 绿色字体为说明文字, b"9,DQB=i s6uAF(4, '#Language "WWB-COM" z& jDO ex 'script for calculating thermal image map (7,Awf5D~ 'edited rnp 4 november 2005 bux-t3g7+ L~~Yh{< 'declarations >j3N-;o@? Dim op As T_OPERATION Z]d]RL&r Dim trm As T_TRIMVOLUME o5R40[" Dim irrad(32,32) As Double 'make consistent with sampling @Iu-F4YT Dim temp As Double :_ox8xS4 Dim emiss As Double w4a7c Dim fname As String, fullfilepath As String ~O-8 h0d3 t`B']Ac;T 'Option Explicit UtN>6$u
Ags`%( Sub Main 5{Wl(jwb 'USER INPUTS FO$Tn+\ 6 nx = 31 Y2n*T
KXI, ny = 31 63=m11Z4 numRays = 1000 ) /'s&
D minWave = 7 'microns (P-<9y@ maxWave = 11 'microns P_U-R%f sigma = 5.67e-14 'watts/mm^2/deg k^4 y
rk#)@/m fname = "teapotimage.dat" +&@0;zSga 4aC#Cv:0 Print "" (i8t^ Print "THERMAL IMAGE CALCULATION" }__+[- q0wVV detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点
2X_ef T!bu}KO Print "found detector array at node " & detnode jL SZ#H _rd{cvdR srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 "RLb wm~ L%FL{G
Print "found differential detector area at node " & srcnode s? Kn,6Y P>|2~YxjU GetTrimVolume detnode, trm 9&cZIP detx = trm.xSemiApe \BL9}5y dety = trm.ySemiApe <=Qk^Y2k area = 4 * detx * dety <X?F :?Mk Print "detector array semiaperture dimensions are " & detx & " by " & dety )Yml'?V" Print "sampling is " & nx & " by " & ny eAMT7 2_ ,"o\_{<z 'reset differential detector area dimensions to be consistent with sampling il~,y8WTU{ pixelx = 2 * detx / nx lS^0*(Y pixely = 2 * dety / ny o9i\[Ul SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False OjZ@_V: Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 JFZ p^{ i weP3u## 'reset the source power 0*)79Sz SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) fvDwg Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" D6w0Y:A{. `;;!>rm 'zero out irradiance array 9=|5-?^ For i = 0 To ny - 1 0NxaQ`\ For j = 0 To nx - 1 L6^h3*JyD irrad(i,j) = 0.0 q`P:PRgM Next j Zu,f&smb Next i [C$ 0HW 5WUrRQ?E 'main loop *q
RQN+% EnableTextPrinting( False ) Fr~xN!
o#i{/#oF ypos = dety + pixely / 2 5j]%@]M$Z For i = 0 To ny - 1 8/:\iPk0 xpos = -detx - pixelx / 2 fOVRtSls ypos = ypos - pixely iQKfx#kt nB.p}k EnableTextPrinting( True ) U&6f}=vC Print i cQ`,:t#[ EnableTextPrinting( False ) AF@C9s am}zOr\ v,jU9D\ For j = 0 To nx - 1 .NKN2 [Mi~4b xpos = xpos + pixelx
:9<5GF( {'1,JwSmb 'shift source Nx99dr LockOperationUpdates srcnode, True 1 !sYd@iD@ GetOperation srcnode, 1, op M0|z^2 op.val1 = xpos "jSn` op.val2 = ypos T4[eBO SetOperation srcnode, 1, op \21!NPXH2 LockOperationUpdates srcnode, False _xJ&p$& B4kIcHA raytrace E~B
LY{3: DeleteRays 8L:0Wp CreateSource srcnode [K5afnq` TraceExisting 'draw w^~,M3(+)1 c0@v`-9 'radiometry R$q:Ct For k = 0 To GetEntityCount()-1 %vW@_A~ If IsSurface( k ) Then hYLu temp = AuxDataGetData( k, "temperature" ) fA8 ,wy|> emiss = AuxDataGetData( k, "emissivity" ) s
SDBl~g If ( temp <> 0 And emiss <> 0 ) Then ?IK[]=! ProjSolidAngleByPi = GetSurfIncidentPower( k ) %n^]1R# frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) *`kh} irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi v"j7},P@ End If EB\\
F Af;$}P End If 7j^,4; ^Kn}{m/3Y Next k o.,hCg)X JH 8^ZP:d' Next j },l3N K BwR)--75 Next i oZQu&O' EnableTextPrinting( True ) Lr`yl$6 \n}cx~j 'write out file Qk((H~I} fullfilepath = CurDir() & "\" & fname N)QW$iw9 Open fullfilepath For Output As #1 >6c{CYuT Print #1, "GRID " & nx & " " & ny MZ0 J/@( Print #1, "1e+308" \Q]7Hw< Print #1, pixelx & " " & pixely lyP<&<Y5 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 p?5zwdX+` u
BvN*LQ maxRow = nx - 1 oYW:ptJ maxCol = ny - 1 tlj^0 For rowNum = 0 To maxRow ' begin loop over rows (constant X) q:fkF^> row = "" zFlW\wc For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) WawOap row = row & irrad(colNum,rowNum) & " " ' append column data to row string cf96z|^C Next colNum ' end loop over columns vForj*Xo aPRF Print #1, row Ay[6rUO [5H#ay Next rowNum ' end loop over rows bO9X;}\6 Close #1 5~v({R. k/>k&^? Print "File written: " & fullfilepath L:7%W dyh Print "All done!!" L+&$/1h] End Sub f mf(5 />H9T[3= 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ol-U%J _qr?v=,-A 'bTtdFvJ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 [&51m^ MGK%F#PM R,8;GS42 打开后,选择二维平面图: 29:] cL(5 Pa+%H]vB
|