-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-19
- 在线时间1888小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 +vJ[k 2d {3`9A7bG 成像示意图 a o\+%s 首先我们建立十字元件命名为Target _
@ \ z\Qg 3BS 创建方法: ?][Mv`ST Rs5G5W@"A 面1 : -/KVZ 面型:plane TRX; m|
材料:Air piY=(y&3 孔径:X=1.5, Y=6,Z=0.075,形状选择Box ;^t<LhN: S'2B C:$ l H 辅助数据: X[BKF8, 首先在第一行输入temperature :300K, Z2hRTJJ[A emissivity:0.1; v0\2%PC iK'bV<V&7 Exk[;lI 面2 : "-(yZigQ 面型:plane QvjsI;CQ- 材料:Air ^!N _Nx/M 孔径:X=1.5, Y=6,Z=0.075,形状选择Box D.U)R7( uppA`> VA.:'yQtJ 位置坐标:绕Z轴旋转90度, ~Ui<y=d 0|P RCq 3`Y 辅助数据: d%5QEVV uRwIxT2 首先在第一行输入temperature :300K,emissivity: 0.1; 4vGkgH<, IP/
zFbc j<wWPv Target 元件距离坐标原点-161mm; H2|& fg+Q7'*Vq Y7]N.G3,] 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 Bk~WHg>@G W UDQb5k ki=-0G*] 探测器参数设定: r9z/hm}E IHMZE42 在菜单栏中选择Create/Element Primitive /plane doVBV Tk^ FC/m,D50oI 4E&URl0Bh >mi%L3Pk N>'1<i? asmMl9)(` 元件半径为20mm*20,mm,距离坐标原点200mm。 d,6 Z TZ ?va@2 光源创建: ,]42v? D8C@x` 光源类型选择为任意平面,光源半角设定为15度。 N1zB;-0t (]vHW+' Z?O aY4 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 3RZP 12x Ojr{z 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 FsTE.PT TOeJnk JrQ*.lJj 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 3[pA:Z+xx 8L9xP'[^ 创建分析面: Uw)?u$+
P B/c_pRl; bJmVq%>; 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 7Ha
+@ |9{l8`9}_ Xu3o,k 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 yf2U-s M)!8`] FRED在探测器上穿过多个像素点迭代来创建热图 m .le' & ;vc$;54K FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 ,3!l'|0jJ 将如下的代码放置在树形文件夹 Embedded Scripts, $ThkK3 90Jxn'>^ =Bu d! 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 o{(-jhR c{ +Y$ 绿色字体为说明文字, sX^m1v~N| QA+qFP '#Language "WWB-COM" *.8@hPy 'script for calculating thermal image map 66,?f<b 'edited rnp 4 november 2005 I)U|~N IwiR2K 'declarations L*6Tz'Qp Dim op As T_OPERATION r2]:'O6 Dim trm As T_TRIMVOLUME 1X.5cl?V Dim irrad(32,32) As Double 'make consistent with sampling bu1O<* Dim temp As Double vA10'Gx' Dim emiss As Double 4xjk^N9 Dim fname As String, fullfilepath As String ;Bd0 =C f5IO<(:E^ 'Option Explicit A84I*d ,/BBG\mJ Sub Main 5Y"JRWC 'USER INPUTS hug8Hhf_& nx = 31 SuMK=^>% ny = 31 Z f4Xt
Yn numRays = 1000 )wQR2$x~ minWave = 7 'microns qhRs5QXL maxWave = 11 'microns w4<RV:Vmt sigma = 5.67e-14 'watts/mm^2/deg k^4 MW=2GhD= fname = "teapotimage.dat" 4(B{-cK jFZJ #'CNS Print "" 8j. 9Sk/ Print "THERMAL IMAGE CALCULATION" #*:y2W%H qY]IX9'kV detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 `r
&IA !G.)%+Z Print "found detector array at node " & detnode *`>(K& #qi@I;;t srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 Z)Nl\e& M j)?I]j/ Print "found differential detector area at node " & srcnode B9`nV.a =P\H}?PF GetTrimVolume detnode, trm Af pB=3 detx = trm.xSemiApe +e. bO5Y dety = trm.ySemiApe IKb 7#Ut area = 4 * detx * dety ^n"ve2 Print "detector array semiaperture dimensions are " & detx & " by " & dety r3<yG"J86 Print "sampling is " & nx & " by " & ny ~Aq;g$IJZ J 6U3}SO=y 'reset differential detector area dimensions to be consistent with sampling ,~w)~fMb8 pixelx = 2 * detx / nx :(VD<"X pixely = 2 * dety / ny y,v*jE SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False ZMQSy7 Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 a]|P rjPI C s?kZ
% 'reset the source power @5K/z<p% SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) js/N qf2> Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" W2J"W=:z BY.'0,H=k 'zero out irradiance array yeqZPzn For i = 0 To ny - 1 MYFRrcu; For j = 0 To nx - 1 7 [N1Vr(1 irrad(i,j) = 0.0 \74+ cN Next j /\"=egB9 Next i _"6{Rb53v= yxh8sAZ 'main loop );$_|]# EnableTextPrinting( False ) f8'D{OP"G 6;i]v|M- ypos = dety + pixely / 2 ; 6Js
For i = 0 To ny - 1 eL[BH8l xpos = -detx - pixelx / 2 ^\Gaf5{ ypos = ypos - pixely ]f=108|8 N1`/~Gi EnableTextPrinting( True ) a^t#kdT Print i w0(A7L:L EnableTextPrinting( False ) *6=2UJcJ L6c=uN ig3HPlC For j = 0 To nx - 1 !%>p;H%0 O$ui:<]dS xpos = xpos + pixelx A
q;]al gF,9Kv~ 'shift source #9uNJla LockOperationUpdates srcnode, True BR*,E~% GetOperation srcnode, 1, op . S4Xw2MS op.val1 = xpos e$}x;&c Q op.val2 = ypos &[ejxK" SetOperation srcnode, 1, op NPF"_[RoeV LockOperationUpdates srcnode, False
$x# 0m s ki'I raytrace -\xNuU DeleteRays E-\Wo3 CreateSource srcnode D&KRJQ/ TraceExisting 'draw kBg,U 8|S [Zc8tE2oN 'radiometry qT}<D`\ For k = 0 To GetEntityCount()-1 77?/e^K\S If IsSurface( k ) Then S) ZcH temp = AuxDataGetData( k, "temperature" ) P Llad\ emiss = AuxDataGetData( k, "emissivity" ) },zP,y:cH If ( temp <> 0 And emiss <> 0 ) Then da<B6! ProjSolidAngleByPi = GetSurfIncidentPower( k ) 2>3#/I9Y frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) y5gTd_- irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi mDZ/Kp{ End If 5'>DvCp%M FY1
>{Bn End If b8Gu<Q1k %"kF i Next k %X)w$}WH P]w5`aBM Next j hq[;QF:B +ve S~ Next i %<c2jvn+k EnableTextPrinting( True ) [H ^ktF tP/0_^m 'write out file WrJgU&H{ fullfilepath = CurDir() & "\" & fname ;w0|ev6| Open fullfilepath For Output As #1 ypyqf55gK Print #1, "GRID " & nx & " " & ny /,#HGu]q' Print #1, "1e+308" .=@xTJh Print #1, pixelx & " " & pixely tbMf_-g Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 2ZUI~:U Z IkW8$> maxRow = nx - 1 V?pqKQL0 maxCol = ny - 1 zY_?$9l0 For rowNum = 0 To maxRow ' begin loop over rows (constant X) 5,Rxc= row = "" |qe[`x;
% For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) ePF)wl;m row = row & irrad(colNum,rowNum) & " " ' append column data to row string i" 0]L5=P Next colNum ' end loop over columns &!Sq6<!v2 !j8.JP}!) Print #1, row (@wgNA-P DAYR=s Next rowNum ' end loop over rows .tRp Close #1 -;T!d ITpo:"X g Print "File written: " & fullfilepath LdAWCBLS Print "All done!!" I$yFCd Xr End Sub e'"2yA8dh" ">zK1t5= 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: 8rZJvE#c
::goqajV ')G,+d^ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 5t('H`,2 4th*=ku K14FY2" 打开后,选择二维平面图: G#uD CF,O 5B:%##Ug5
|