-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-12-02
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 m8n!<_NFt( h?j;*|o- 成像示意图 g9}u6q 首先我们建立十字元件命名为Target Vo+d3 ~"\sL;B 创建方法: il<D e]G kFgN^v^t 面1 : [q cT?h 面型:plane Ev0GAc1 材料:Air Wv_5sPqLW 孔径:X=1.5, Y=6,Z=0.075,形状选择Box M$ep.<Z1| 7Ro7/PT( g-E!*K 辅助数据: KSIH1E 首先在第一行输入temperature :300K, VH4P|w[YF emissivity:0.1; |xZDc6HDW J_}&Btb)e 'G>Ejh@t 面2 : LTp5T|O 面型:plane ?=jmyDXH! 材料:Air VD/Wl2DK 孔径:X=1.5, Y=6,Z=0.075,形状选择Box B/q/sC GsqR8n= @I\Z2-J 位置坐标:绕Z轴旋转90度, L$zT`1Hy g-pDk*|I,Q ]w]Swt2n 辅助数据: O}NR{B0B3& aw/Y# 首先在第一行输入temperature :300K,emissivity: 0.1; "M
v%M2'c g,Kb9[' TSdjX]Kf Target 元件距离坐标原点-161mm; BS;rit: ~53E)ilB Yk(OVl T 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 ' :g8a=L (6u<w#u [
w 探测器参数设定: 7
tF1g=\ _S8]W
!c 在菜单栏中选择Create/Element Primitive /plane reM%GU Y((z9-`
DG8$zl5 6ecr]=Cv _8\Uukm n]ar\f 元件半径为20mm*20,mm,距离坐标原点200mm。 ?XsL4HIx \@pl:Os 光源创建: 4@5rR~DQq wz.Il-sm 光源类型选择为任意平面,光源半角设定为15度。 PdMx6 Ab vMzR3@4e MgHyKn'rL 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 1(w0*` ;s"m*
4N 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 X^_,`H@ g0rdF ?Y
)Qy, 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 X_HR$il =zVbZ7 创建分析面: j2qDRI ?P<&8eY 8 PXleAn 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 oVoTnGNM6 }O2hhh_ U( W#H| 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 @WhcY*R2 7Yk6C5C FRED在探测器上穿过多个像素点迭代来创建热图 3tnYK& W} Nd3 FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 &wNN| fH 将如下的代码放置在树形文件夹 Embedded Scripts, Zx}=c4I(y 1Na CGD" YH':cze 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 4mshB feNr!/ 绿色字体为说明文字, QV{Nq=%] b44H2A. '#Language "WWB-COM" o"Ef>5N 'script for calculating thermal image map Lrq+0dI 65 'edited rnp 4 november 2005 8k_,Hni 4DuZF
-y 'declarations "kP.Kx! Dim op As T_OPERATION e6sL N Dim trm As T_TRIMVOLUME YvBUx#\ Dim irrad(32,32) As Double 'make consistent with sampling Ma-^o<{ Dim temp As Double ]P(Eo|)m Dim emiss As Double deHBY4@ Dim fname As String, fullfilepath As String k B2+ Tr 1)u=&t,
'Option Explicit {:6VJ0s\ .4_~ku Sub Main VrF]X#\) 'USER INPUTS jq.@<<j|$ nx = 31 YI%7#L7C ny = 31 JFYeOmR+l numRays = 1000 \hi{r@k>} minWave = 7 'microns T]CvfvO5 maxWave = 11 'microns Ao{wd1 sigma = 5.67e-14 'watts/mm^2/deg k^4 C,tlp fname = "teapotimage.dat" D3XQ>T [*q XHN?pVZ7 Print "" ,wX/cUyZ
Print "THERMAL IMAGE CALCULATION" m?[F)<~a y;<jE.7>
detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 1-w1k^e !m_'<=)B4~ Print "found detector array at node " & detnode
3D<P
[.bS YnJ=&21 srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 !vImmhI!I W!IK>IW" Print "found differential detector area at node " & srcnode 'J!P:.=a> v`wPdb GetTrimVolume detnode, trm IDLA-Vxo detx = trm.xSemiApe /x$ jd)C dety = trm.ySemiApe HO' ELiZ_q area = 4 * detx * dety CuuHRvU8 Print "detector array semiaperture dimensions are " & detx & " by " & dety %eD&2$q* Print "sampling is " & nx & " by " & ny ge[\% kx'6FkZPIr 'reset differential detector area dimensions to be consistent with sampling &p=~=&g= pixelx = 2 * detx / nx c:=Z<0S; pixely = 2 * dety / ny pMX7Rl
SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False uX.Aq@j Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 VaX>tUW NiWooFPKJ 'reset the source power _ZR2?y-M SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) [fO]oTh Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" o^7NZ]m YciZU 'zero out irradiance array =faV,o&{` For i = 0 To ny - 1 (q
+Q.Q For j = 0 To nx - 1 ]t#,{%h irrad(i,j) = 0.0 j5$Sm Next j {{2ZWK 6| Next i OsC1('4@ V]vk9M2q[l 'main loop 3!Be kn] EnableTextPrinting( False ) hKX-]+6" /jS ypos = dety + pixely / 2 c&'T By For i = 0 To ny - 1 .5ingB3% xpos = -detx - pixelx / 2 :UScbPG ypos = ypos - pixely 9KAXc(- bZtjg EnableTextPrinting( True ) 0Q>Yoa
11 Print i 0|4XV{\qT$ EnableTextPrinting( False ) I}?fy\1A& B&.XGo) cT.1oaAM0 For j = 0 To nx - 1 -.z~u/uL yq;gBIiZ xpos = xpos + pixelx 0eUsvzz15 ;PLby]=O 'shift source IClnh1= LockOperationUpdates srcnode, True ~~yo& ] GetOperation srcnode, 1, op >L=l{F6
p op.val1 = xpos !FO||z(vb op.val2 = ypos F;MFw2G SetOperation srcnode, 1, op JsiJ=zo< LockOperationUpdates srcnode, False FQ O6w' tWc!!Hf2j raytrace w/Q'T&>b/ DeleteRays 5?2PUE,a CreateSource srcnode O<o_MZN TraceExisting 'draw e#16,a-}o >i`'e~% 'radiometry }hl#
e[$ For k = 0 To GetEntityCount()-1 %} \@Wk~ If IsSurface( k ) Then vH7"tz&RIp temp = AuxDataGetData( k, "temperature" ) se(_`a/4Q emiss = AuxDataGetData( k, "emissivity" ) f#mY44:,C If ( temp <> 0 And emiss <> 0 ) Then 2;6p2GNSh ProjSolidAngleByPi = GetSurfIncidentPower( k ) v?Y9z!M frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp )
neOR/] irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi mtJI#P End If tR2IjvmsX oYqlN6n,=6 End If j7uiZU;3Rx v( (fRX.` Next k rY($+O@a< `Jz"rh-M Next j @^%zh ?M\3n5; Next i P_i2yhpK EnableTextPrinting( True ) vp-)$f& -bKli<C 'write out file +hKQha!* fullfilepath = CurDir() & "\" & fname $7PFos%@ Open fullfilepath For Output As #1 i mJ{wF Print #1, "GRID " & nx & " " & ny w9z((\5 Print #1, "1e+308" PVV \@ Print #1, pixelx & " " & pixely ZmYp!B_~ Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 [l'~> cV)C:!W2
maxRow = nx - 1 XlB`Z81j maxCol = ny - 1 +h[$\_y For rowNum = 0 To maxRow ' begin loop over rows (constant X) JNk
]$ xz row = "" TQbhK^] For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) >dZ x+7 row = row & irrad(colNum,rowNum) & " " ' append column data to row string hv7!x=?8 Next colNum ' end loop over columns 3LX<&."z SOeL@!_ Print #1, row wCc:HfmjJ o),i2 Next rowNum ' end loop over rows ~@L$}Eu Close #1 j1<@*W&b m", $M> Print "File written: " & fullfilepath e
0!a
&w Print "All done!!" 7uxy<#Ar End Sub GQ)h Zt0 q6/ o.j 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: lusINILc H}JH339 /koNcpJ 找到Tools工具,点击Open plot files in 3D chart并找到该文件 #p*OLQ3~ '{U56^b] j3z&0sc2(0 打开后,选择二维平面图: bg[q8IBCd m5f/vb4l
|