-
UID:317649
-
- 注册时间2020-06-19
- 最后登录2025-11-26
- 在线时间1892小时
-
-
访问TA的空间加好友用道具
|
简介:本文是以十字元件为背景光源,经过一个透镜元件成像在探测器上,并显示其热成像图。 p:~#(/GWf E=I'$*C\D 成像示意图 ~O}r<PQ 首先我们建立十字元件命名为Target xrf|c k=s^-Eiu 创建方法: n9Fq^^? B
~v6_x 面1 : o@)Fy51DD 面型:plane So ziFI 材料:Air Ti? "Hr<W 孔径:X=1.5, Y=6,Z=0.075,形状选择Box `y>m
>j .#&)%}GC Nw"df=,{ 辅助数据: sl$6Zv-l%0 首先在第一行输入temperature :300K, OeQ[-e emissivity:0.1; ntIR #fB
Bl+\|[yd jkk%zu 面2 : nvR%Ub x 面型:plane }ILBX4c 材料:Air ?8O5%IrJ 孔径:X=1.5, Y=6,Z=0.075,形状选择Box !KI^Z1dP( 6 wN*d 5 Ce+:9} [ 位置坐标:绕Z轴旋转90度, \|>%/P .rBU"Rbo [[[C`H@ 辅助数据: JZ}zXv G8}owszT 首先在第一行输入temperature :300K,emissivity: 0.1; ,1I-%6L z?DCQ lf-.c$.> Target 元件距离坐标原点-161mm; :}N heRi y(DT^>0 f>Rux1Je4 单透镜参数设定:F=100, bend=0, 位置位于坐标原点 \`y:#N<c ?b7ttlX{ ;L$-_Z 探测器参数设定: FRxR/3& !>F70 在菜单栏中选择Create/Element Primitive /plane +&\.
]Pp b}(c'W*z% ICz:>4M-dn "EpH02{i ZY<RNwu ]EK(k7nH 元件半径为20mm*20,mm,距离坐标原点200mm。 Lx_Jw\YO k9eyl) 光源创建: f%PLR9Nh5@ (g@X.*c8 光源类型选择为任意平面,光源半角设定为15度。 s/ABT.ZO GJWGT`" e;v"d!H/ 我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 %e[E@H 7 v{$?Ow T/u 我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线。 `Hw][qy# -~c-mt Z'A 3\f 功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 yf*'=q &w9*pJR % 创建分析面: aEzf*a|fSV ]Sj;\Iz (1cB Tf 到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 E-1u_7 RL&0?OT 1BmKwux: 到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 6*B%3\z) >NPK;Vu FRED在探测器上穿过多个像素点迭代来创建热图 V0D&bN* @_t=0Rc FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 o6^ETQ 将如下的代码放置在树形文件夹 Embedded Scripts, q0q-Coh> wdt2T8`I/ k>i`G5Dh 打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 r<kgYU` j|8!gW 绿色字体为说明文字, _N:$|O# v6G1y[Wl '#Language "WWB-COM" |11vm# 'script for calculating thermal image map Pm#/j; 'edited rnp 4 november 2005 ]O}e{Q> i+5Qs-dHA 'declarations [f\Jcjc Dim op As T_OPERATION 9:g A0Z Dim trm As T_TRIMVOLUME YFu>`w^Y Dim irrad(32,32) As Double 'make consistent with sampling ]["%e9#aX Dim temp As Double s#<fj#S Dim emiss As Double @H$8;CRM Dim fname As String, fullfilepath As String f6J]=9jU rRe^7xGe7 'Option Explicit ?f9M59(l Q_p&~ PNy5 Sub Main q.R(>ZcV 'USER INPUTS #|8%h nx = 31 vn*K\, ny = 31 DZmVm['l numRays = 1000 I*j~5fsS' minWave = 7 'microns a~@f,bw maxWave = 11 'microns ] 7[#K^ sigma = 5.67e-14 'watts/mm^2/deg k^4 VOC$Kqg; fname = "teapotimage.dat" >`3F`@1L0 A",}Ikh='` Print "" Pc&dU1 Print "THERMAL IMAGE CALCULATION" iVnMn1h lO|LvJyx detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 [(g2u@ Z&?4<-@6\p Print "found detector array at node " & detnode y|+5R5}K m+8:_0x " srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 [;aM8N
)H]L/n Print "found differential detector area at node " & srcnode s>G]U)d<' } D!tB GetTrimVolume detnode, trm b3_P??yp detx = trm.xSemiApe Bx\ o8k dety = trm.ySemiApe LUxDP#~7 area = 4 * detx * dety ,[p pETz Print "detector array semiaperture dimensions are " & detx & " by " & dety 0\"#Xa+}8 Print "sampling is " & nx & " by " & ny &c"!Y)%G ?7)v:$(G} 'reset differential detector area dimensions to be consistent with sampling |J`v
w
pixelx = 2 * detx / nx VJw7defc pixely = 2 * dety / ny )c*xKij SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Gjq7@F' Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 vO$cF* Z'9 | 'reset the source power 4 a&8G SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) :sK4mR F Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" I6;6x raOuD3 'zero out irradiance array {hOS0).(w7 For i = 0 To ny - 1 )N~ p4kp For j = 0 To nx - 1
e(0cz6 irrad(i,j) = 0.0 $Bncdf Next j :qqG%RB Next i k7@QFw4 j ha;fxM] 'main loop @",#'eC" EnableTextPrinting( False ) !%}n9vr!}\ @,= pG ypos = dety + pixely / 2 ]!!?gnPd5 For i = 0 To ny - 1 [O ^/"Qk xpos = -detx - pixelx / 2 Q5dqn"? ypos = ypos - pixely {R63n mzM95yQ^Z EnableTextPrinting( True ) 2G-"HOG Print i yU/?4/G! EnableTextPrinting( False ) "|J6*s aY,Bt |uz<) For j = 0 To nx - 1 e(^I.`9z i)(G0/: xpos = xpos + pixelx Y)lr+~84f EUI*:JU- 'shift source aB (pdW4 LockOperationUpdates srcnode, True SXl~lYUL GetOperation srcnode, 1, op Q3=5q w^ op.val1 = xpos QPLWRZu@ op.val2 = ypos H[s+.&^ SetOperation srcnode, 1, op E=,b;S- LockOperationUpdates srcnode, False R0#scr R!/JZ@au< raytrace Ebj0 {ZL DeleteRays x.t&NP^V) CreateSource srcnode NL
` TraceExisting 'draw NTZ3Np` E<! L^A
M` 'radiometry ^J-Xy\X For k = 0 To GetEntityCount()-1 'l\PL1 If IsSurface( k ) Then ,0AS&xs$ temp = AuxDataGetData( k, "temperature" ) ami>Pp emiss = AuxDataGetData( k, "emissivity" ) ??B!UXi4R If ( temp <> 0 And emiss <> 0 ) Then UE5,Ml~X ProjSolidAngleByPi = GetSurfIncidentPower( k ) IFr"IOr'l frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) z}-R^"40 irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi (t&`m[>K End If ?-Of\fNu W\Sc ak> End If , vvfk=- $ eL-fg Next k RJ0,7E<B }yrs6pQ Next j Nlm}'Xt h"8[1
; Next i ND?"1/s EnableTextPrinting( True ) D2D+S 9'~qA(=.? 'write out file la)+"uW fullfilepath = CurDir() & "\" & fname S/pU|zV[ Open fullfilepath For Output As #1 Mi(6HMA.SF Print #1, "GRID " & nx & " " & ny X#0yOSR Print #1, "1e+308" T>1#SWQ/9 Print #1, pixelx & " " & pixely !.V_?aYi8 Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 cy
mC?8< ,3}+t6O" maxRow = nx - 1 &Q"vXs6Gt maxCol = ny - 1 3I}AA.h'00 For rowNum = 0 To maxRow ' begin loop over rows (constant X) !~F oy F row = "" "#0P*3-c For colNum = maxCol To 0 Step -1 ' begin loop over columns (constant Y) {df;R|8l row = row & irrad(colNum,rowNum) & " " ' append column data to row string
.i_ gE5 Next colNum ' end loop over columns 3HP
{
a af6<w.i Print #1, row 6 mLC{X[ mP15PZ Next rowNum ' end loop over rows # Dgkl Close #1 B[8RBTsA G='`*_$ Print "File written: " & fullfilepath U{lf$ Print "All done!!" #2Q%sE? End Sub jM6$R1HX Ym]g0a 在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: pcscNUp s/~[/2[bnf <T.R%Jys 找到Tools工具,点击Open plot files in 3D chart并找到该文件 Q2)5A&U\ s2N'Ip \& |