切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1199阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6374
    光币
    26015
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 . QBF`Rz  
    =,6z4" )  
    成像示意图
    'F9jq  
    首先我们建立十字元件命名为Target :gWu9Y|{  
    w|K'M?N14  
    创建方法: E? ; 0)'h  
    2QyV%wz  
    面1 : !WQ-=0cm  
    面型:plane 1=d6NX)B  
    材料:Air +l<5#pazx  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box ^f4s"T  
    +[\FD; >  
    :% ,:"  
    辅助数据: ;'#8tGv=  
    首先在第一行输入temperature :300K, w=T\3(%j  
    emissivity:0.1; 4\8+9b\9"  
    x"~8*V'0  
    /}b03  
    面2 : GLeK'0Q@  
    面型:plane Bf~vA4  
    材料:Air r{L> F]Tw  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box %N>%!m  
    Lh!J >  
    CYY=R'1:G{  
    位置坐标:绕Z轴旋转90度, 3u*4o=4e  
    w"-Lc4t+  
    b*c*r dTx  
    辅助数据: 128EPK  
    KBx6NU?;PO  
    首先在第一行输入temperature :300K,emissivity: 0.1; <7/R,\Wg~  
    3TeY%5iVt  
    5B3G @KR  
    Target 元件距离坐标原点-161mm; e> e}vZlX  
    4%>$-($  
    jCOIuw  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 3Q.#c,`jV  
    YNKHN2E8  
    cPyE 6\lN  
    探测器参数设定: &=] ~0$  
    XDOY`N^L  
    在菜单栏中选择Create/Element Primitive /plane cUKE   
    )r xX+k+b/  
    ?PeJlpYzV  
    5q3JI  
    4xjPiHd<  
    ` Mjj@[  
    元件半径为20mm*20,mm,距离坐标原点200mm。 ZxGJzakB5$  
    \XCe22x]  
    光源创建: 5F)C  jQ  
    +" .X )avF  
    光源类型选择为任意平面,光源半角设定为15度。 %*A0# F  
    A5c%SCq;  
    )~)J?l3 {  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 &Cr:6W@A  
    iVhJ t#_b  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 xHv ZV<#  
    :}'=`wa  
    J=9FRC  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 e$<0 7Oc  
    ^a0um/+M}  
    创建分析面: N.,X<G.H  
    h \fjBDU^  
    4VJ-,Z  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 0L2F[TN  
    vyNxT*,[K  
    x9UX!Z5*>  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 X`kk]8 =  
    'N (:@]4N  
    FRED在探测器上穿过多个像素点迭代来创建热图 eenH0Ovv  
    |mxDjgq  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 SoW9p^HJ  
    将如下的代码放置在树形文件夹 Embedded Scripts, V\ZGd+?  
    Q 3hKk$Y  
    X9v.1s,  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 %KC yb  
    ^me-[ 5  
    绿色字体为说明文字, j/323Za+  
    ^S4d:-.3  
    '#Language "WWB-COM" M8kPj8}{  
    'script for calculating thermal image map @K  &GJ  
    'edited rnp 4 november 2005 g0xuxK;9c  
    ~ (|5/ p7t  
    'declarations 7OcW C-<  
    Dim op As T_OPERATION GFj{K  
    Dim trm As T_TRIMVOLUME |7'df&CA  
    Dim irrad(32,32) As Double 'make consistent with sampling YqhAZp<  
    Dim temp As Double mitHT :%r2  
    Dim emiss As Double 9&-dTayIz  
    Dim fname As String, fullfilepath As String ^cOUQ33  
    t6bV?nc  
    'Option Explicit dU&a{ $ku[  
     ~^NtO  
    Sub Main Ec!"O3%!M^  
        'USER INPUTS f',Op1o  
        nx = 31 =_.l8IYX$%  
        ny = 31 >{q]&}^U  
        numRays = 1000 !j9t*2m[  
        minWave = 7    'microns 0.`/X66;V  
        maxWave = 11   'microns {% rA1g  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 9'fQHwsJ  
        fname = "teapotimage.dat" wL+s8#{  
    Q:2>}QgX}  
        Print ""  :|>h7v  
        Print "THERMAL IMAGE CALCULATION" )tC5Hijq,  
    zU5v /'h>d  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 ep!Rf:  
    h9t$Uz^N  
        Print "found detector array at node " & detnode =6j&4p `  
    ]AINK UI0  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 iOd&B B6  
    ak7bJ~)X=  
        Print "found differential detector area at node " & srcnode aB_F9;IR  
    _F6OM5F"N  
        GetTrimVolume detnode, trm vLv@&lMW  
        detx = trm.xSemiApe Xpr?Kgz  
        dety = trm.ySemiApe 4`4kfiS$  
        area = 4 * detx * dety B{QBzx1L9c  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety 0z`a1 %U  
        Print "sampling is " & nx & " by " & ny 6hno)kd{=  
    -RE^tW*Yy  
        'reset differential detector area dimensions to be consistent with sampling a!zz6/q[  
        pixelx = 2 * detx / nx Kr?TxhUHd  
        pixely = 2 * dety / ny !{ y@od@T  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False 2Z+Wu3#  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 C'>|J9~Gz  
    ;;!yC  
        'reset the source power GA$V0YQX  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) OSRp0G20k\  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" X:A^<L ~  
    M,j U}yD3  
        'zero out irradiance array +Zb;Vn4  
        For i = 0 To ny - 1 w;%.2VJ  
            For j = 0 To nx - 1 6|gCuT4  
                irrad(i,j) = 0.0 )MtF23k)g  
            Next j 8EZ$g<}  
        Next i x) ,eI'mf  
    5VfyU8)7X  
        'main loop ayn)5q/z  
        EnableTextPrinting( False ) .eS<Dbku<  
    6Pz4\uE=  
        ypos =  dety + pixely / 2 R}-(cc%5  
        For i = 0 To ny - 1 NN%*b yK  
            xpos = -detx - pixelx / 2 |J1$= s  
            ypos = ypos - pixely +>8'mf  
    X1DF*wI  
            EnableTextPrinting( True ) wy<\Tg^J  
            Print i C(eTR1  
            EnableTextPrinting( False ) Q$a{\*[:+  
    ;!>rnxB?4  
    @bi}W`  
            For j = 0 To nx - 1 TtJH7  
    a[>/h3  
                xpos = xpos + pixelx EGGWrl}1  
    9"N~yKa`"K  
                'shift source Z&G+bdA>,  
                LockOperationUpdates srcnode, True l3{-z4mw  
                GetOperation srcnode, 1, op `}D,5^9]  
                op.val1 = xpos c/:b.>W  
                op.val2 = ypos ])[[ V!1  
                SetOperation srcnode, 1, op Z]A{ d[  
                LockOperationUpdates srcnode, False F3y9@dA]  
    zUt' QH7E.  
    raytrace y;4OY  
                DeleteRays 6, ^>mNm  
                CreateSource srcnode Wjo[ENHM  
                TraceExisting 'draw ntu5{L'8  
    )1Y{Q Y}l  
                'radiometry ,L|%"K]yM  
                For k = 0 To GetEntityCount()-1 Ja|5 @  
                    If IsSurface( k ) Then y|jl[pyg)  
                        temp = AuxDataGetData( k, "temperature" )  03L]  
                        emiss = AuxDataGetData( k, "emissivity" ) A9[ F  
                        If ( temp <> 0 And emiss <> 0 ) Then tl[Uw[  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) ZFA`s qT  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) <]6SN  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi /?wtF4  
                        End If Yc`o5Q\>  
    59 h]UX=  
                    End If i"1Mfz~e  
    -m\u  
                Next k raW>xOivR  
    J9..P&c\  
            Next j ^8]NxV@l  
    5A,K6f@:g  
        Next i el&0}`K  
        EnableTextPrinting( True ) \J4L:.`qS  
    hE &xE;  
        'write out file Ve8=b0&Y#j  
        fullfilepath = CurDir() & "\" & fname aJSO4W)P  
        Open fullfilepath For Output As #1 zU,9T  
        Print #1, "GRID " & nx & " " & ny n#cC+>*>+  
        Print #1, "1e+308" $6qh| >z.  
        Print #1, pixelx & " " & pixely Lt2u,9  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 d|jNf</`  
    !({}(!P .  
        maxRow = nx - 1 m1j*mtu  
        maxCol = ny - 1 C/_ZUF(V  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) W1WYej"  
                row = "" 9,c(y sv"  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) O 5!7'RZ  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string _aq 8@E~  
            Next colNum                     ' end loop over columns \0A3]l  
    u/UrAqw  
                Print #1, row /hpY f]t  
    w3N[9w?1  
        Next rowNum                         ' end loop over rows LY+@o<>  
        Close #1  52Yq  
    u :}%xD6  
        Print "File written: " & fullfilepath Zj_b>O-V  
        Print "All done!!" Eu0akqZ  
    End Sub ?K1/ <PE+  
    )i6mzzj5  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: ]yV!  
    e*sfPHt  
    f<GhkDPm>?  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 <g-9T-Ky  
      
    C:GK,?!Jn'  
    V[mT<Lc  
    打开后,选择二维平面图: %J#YM'g  
    2L!u1  
     
    分享到