切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 1374阅读
    • 0回复

    [技术]十字元件热成像分析 [复制链接]

    上一主题 下一主题
    离线infotek
     
    发帖
    6401
    光币
    26150
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2022-01-24
    简介:本文是以十字元件为背景光源,经过一个透镜元件成像探测器上,并显示其热成像图。 G+hF [b44'  
    f E.L  
    成像示意图
    |ilv|UV  
    首先我们建立十字元件命名为Target U BhciZ  
    _^6|^PT.  
    创建方法: +-H}s`  
    8NaL{j1`  
    面1 : 'n l RY5@2  
    面型:plane Z@uTkqG)  
    材料:Air BLL]^qN;Y  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box j!lAxlOX  
    C@y}*XV[b  
    a@fE46o6<  
    辅助数据: XDpfpJ,z"}  
    首先在第一行输入temperature :300K, ${eY9-r_%  
    emissivity:0.1; %ezb^O_6v  
    4-7kS85  
    +9CEC1-l  
    面2 : B]^>GH  
    面型:plane 4?>18%7&  
    材料:Air XOysgX0g  
    孔径:X=1.5, Y=6,Z=0.075,形状选择Box * MSBjH|  
    9^ >M>f"  
    AezvBY0'`z  
    位置坐标:绕Z轴旋转90度, MvFM ,  
    ET,Q3X\Oe  
    [F/^J|VMV  
    辅助数据: ]UX`=+{  
    w~kHQ%A  
    首先在第一行输入temperature :300K,emissivity: 0.1; :vc[/<  
    [ME}Cv`?<E  
    XJx,9trH  
    Target 元件距离坐标原点-161mm; L@{!r=%_>  
    .q0218l:dF  
    SXRdNPXFO  
    单透镜参数设定:F=100, bend=0, 位置位于坐标原点 AVXX\n\_  
    Ni2]6U  
    g d337jw  
    探测器参数设定: M"=8O>NZ2  
    _4P;+Y  
    在菜单栏中选择Create/Element Primitive /plane .UM<a Ik  
    8G0  
    ?mH@`c,fM  
    )!'n&UxPo$  
    .A3DFm3t  
    Y]C; T  
    元件半径为20mm*20,mm,距离坐标原点200mm。 n K+lE0  
    1s#yWQ   
    光源创建: mD9STuA$H  
    j~M#Ss-H8  
    光源类型选择为任意平面,光源半角设定为15度。 Gs[Vu@*  
    H4M{_2DO  
    s~S?D{!  
    我们将光源设定在探测器位置上,具体的原理解释请见本章第二部分。 z>4 D~HX  
    {5T0RL{\N  
    我们在位置选项又设定一行的目的是通过脚本自动控制光源在探测器平面不同划分区域内不同位置处追迹光线 'oleB_B  
    ]e^R@w  
    x!'7yx  
    功率数值设定为:P=sin2(theta) theta为光源半角15度。我们为什么要这么设定,在第二部分会给出详细的公式推导。 nIfN"  
    y L*LJ  
    创建分析面: 2q)T y9  
    hP?7zz$*j  
    vG Y!4@[  
    到这里元件参数设定完成,现在我们设定元件的光学属性,在前面我们分别对第一和第二面设定的温度和发射系数,散射属性我们设定为黑朗伯,4%的散射。并分别赋予到面一和面二。 LO"_NeuL  
    *"1~bPl  
    hlX>K  
    到此,所有的光学结构和属性设定完成,通过光线追迹我们可以查看光线是否可以穿过元件。 31WZJm^  
    `SCy<w3$+[  
    FRED在探测器上穿过多个像素点迭代来创建热图  cp$.,V  
    \CcmePTN#x  
    FRED具有一个内置的可编译的Basic脚本语言。从Visual Basic脚本语言里,几乎所有用户图形界面(GUI)命令是可用这里的。FRED同样具有自动的客户端和服务器能力,它可以被调用和并调用其他可启动程序,如Excel。因此可以在探测器像素点上定义多个离轴光源,及在FRED Basic脚本语言里的For Next loops语句沿着探测器像素点向上和向下扫描来反向追迹光线,这样可以使用三维图表查看器(Tools/Open plot files in 3D chart)调用和查看数据。 IuNkfBe4m  
    将如下的代码放置在树形文件夹 Embedded Scripts, @4;&hP2Z:  
    +H7y/#e+3  
    E]NY (1  
    打开后清空里面的内容,此脚本为通用脚本适用于一切可热成像的应用。 5N\+@grp  
    Ba<ngG !  
    绿色字体为说明文字, p~h4\ .*`  
    [M4xZHd#o  
    '#Language "WWB-COM" VsEGX@;tO  
    'script for calculating thermal image map UmJUt|  
    'edited rnp 4 november 2005 NdZ)[f:2  
    <nBo}0O}  
    'declarations AWO0NWTB  
    Dim op As T_OPERATION 9hy'DcSy,  
    Dim trm As T_TRIMVOLUME tyB)HF  
    Dim irrad(32,32) As Double 'make consistent with sampling 9qEOgJ  
    Dim temp As Double v{o? #Sk1  
    Dim emiss As Double D-6  
    Dim fname As String, fullfilepath As String oew|23Ytb  
    A^-iHm  
    'Option Explicit =nzFd-P  
    T)8p:}P!  
    Sub Main B~?c3:6  
        'USER INPUTS u*hH }  
        nx = 31 ,(P %z.P@  
        ny = 31 N r<9u$d9=  
        numRays = 1000 o5P&JBX<  
        minWave = 7    'microns q-YL]PgV  
        maxWave = 11   'microns I:F <vE  
        sigma = 5.67e-14 'watts/mm^2/deg k^4 .:8[wI_f  
        fname = "teapotimage.dat" HcA[QBh  
    ha5e(Hj?  
        Print "" V{0%xz #  
        Print "THERMAL IMAGE CALCULATION" G.Tpl-m  
    ;Z*'D}  
        detnode = FindFullName( "Geometry.Detector.Surface" ) '找到探测器平面节点 [m\,+lG?)j  
    `_GO=QQ  
        Print "found detector array at node " & detnode DcN"=Y  
    e8{^f]5  
        srcnode = FindFullName( "Optical Sources.Source 1" ) '找到光源节点 '*4iqP R;  
    p5-<P?B  
        Print "found differential detector area at node " & srcnode y:.?5KsPI  
    gKWzFnW  
        GetTrimVolume detnode, trm Atd1qJ  
        detx = trm.xSemiApe UT4f (Xo  
        dety = trm.ySemiApe =5ug\S  
        area = 4 * detx * dety 2SciB*5  
        Print "detector array semiaperture dimensions are " & detx & " by " & dety J?IC~5*2  
        Print "sampling is " & nx & " by " & ny VD/&%O8n  
    r{S=Z~J  
        'reset differential detector area dimensions to be consistent with sampling -D#5o,]3  
        pixelx = 2 * detx / nx NI8~QeGah  
        pixely = 2 * dety / ny yX'IZk#_L  
        SetSourcePosGridRandom srcnode, pixelx / 2, pixely / 2, numRays, False Rboof`pVt  
        Print "resetting source dimensions to " & pixelx / 2 & " by " & pixely / 2 &:No}6  
    9 ZGV%Tw  
        'reset the source power 1i3V!!r  
        SetSourcePower( srcnode, Sin(DegToRad(15))^2 ) \45(#H<$  
        Print "resetting the source power to " & GetSourcePower( srcnode ) & " units" "U{,U`@?  
    UfKkgq#  
        'zero out irradiance array A#35]V06  
        For i = 0 To ny - 1 0wFh%/:  
            For j = 0 To nx - 1 &2{]hRM  
                irrad(i,j) = 0.0 $6!i BX@  
            Next j 4)^vMG&  
        Next i Fc'[+L--Q  
    P>wZ~Hjk  
        'main loop "15=ET  
        EnableTextPrinting( False ) GJ`UO  
    )[jy[[K(  
        ypos =  dety + pixely / 2 IY)5.E _  
        For i = 0 To ny - 1 JT)k  
            xpos = -detx - pixelx / 2 ~C| ,b"  
            ypos = ypos - pixely vLDi ;  
    !BUi)mo  
            EnableTextPrinting( True ) t8vc@of$c,  
            Print i TEWAZVE*  
            EnableTextPrinting( False ) m gVML&^  
    bMmra.x4L  
    uN bIX:L,  
            For j = 0 To nx - 1 &SmXI5>Bo0  
    EwQae(PpA  
                xpos = xpos + pixelx .&iN(Bd  
    ltSh'w0  
                'shift source y]'CXCml)  
                LockOperationUpdates srcnode, True p=B?/Sqa  
                GetOperation srcnode, 1, op -k{ Jp/-D  
                op.val1 = xpos @9vvR7{P  
                op.val2 = ypos oLS7`+b$  
                SetOperation srcnode, 1, op !M(:U,?B  
                LockOperationUpdates srcnode, False r6t&E%b  
    ~ziexZ=N  
    raytrace e+@xs n3  
                DeleteRays )6{P8k4Zr  
                CreateSource srcnode v`B4(P1Z  
                TraceExisting 'draw lFf XWNb  
    jNc<~{/  
                'radiometry Qh-4vy =r  
                For k = 0 To GetEntityCount()-1 /^2CGcT(  
                    If IsSurface( k ) Then y5u\j{?Te  
                        temp = AuxDataGetData( k, "temperature" ) |<(t}}X  
                        emiss = AuxDataGetData( k, "emissivity" ) yM ,VrUh  
                        If ( temp <> 0 And emiss <> 0 ) Then 6Z8l8:r-6  
                            ProjSolidAngleByPi = GetSurfIncidentPower( k ) FT.@1/)  
                            frac = BlackBodyFractionalEnergy ( minWave, maxWave, temp ) Pp*}R2  
                            irrad(i,j) = irrad(i,j) + frac * emiss * sigma * temp^4 * ProjSolidAngleByPi M#a&\cqC  
                        End If !ZrB^?sO  
    /DO'IHC.o  
                    End If 4ht\&2&:  
    C9jbv/c  
                Next k *jF#^=  
    +< KNY  
            Next j }V]eg,.BJ  
    R 1'`F{56  
        Next i 1;Xgc@  
        EnableTextPrinting( True ) .pvxh|V  
    uV~e|X "9s  
        'write out file uTGcQs}  
        fullfilepath = CurDir() & "\" & fname H/J<Pd$p  
        Open fullfilepath For Output As #1 ~NNv>5 t5  
        Print #1, "GRID " & nx & " " & ny J^ ={}  
        Print #1, "1e+308" frqJN  
        Print #1, pixelx & " " & pixely ;'3]{BGcU  
        Print #1, -detx+pixelx/2 & " " & -dety+pixely/2 7Fl-(Nv`  
    W-D[z#)/Y  
        maxRow = nx - 1 ^,V[nfQR  
        maxCol = ny - 1  I=[cZ;t  
        For rowNum = 0 To maxRow                    ' begin loop over rows (constant X) oT3Y!Y3=<  
                row = "" };sMU6e  
            For colNum = maxCol To 0 Step -1            ' begin loop over columns (constant Y) &+r 4  
                row = row & irrad(colNum,rowNum) & " "     ' append column data to row string K"l0w**Og#  
            Next colNum                     ' end loop over columns !kXeO6X@m  
    Y&~M7TYb  
                Print #1, row 9+Nw/eszO  
    L'9N9CR{i  
        Next rowNum                         ' end loop over rows c3k|G<C2  
        Close #1 sX:lE^)-z  
    Zq*eX\#C  
        Print "File written: " & fullfilepath J&6:d  
        Print "All done!!" HC7JMj  
    End Sub Z;b+>2oL  
    <LA^%2jT  
    在输出报告中,我们会看到脚本对光源的孔径和功率做了修改,并最终经过31次迭代,将所有的热成像数据以dat的格式放置于: \+Y!ILOI  
    ow.6!tl0=h  
    l2&hBacT  
    找到Tools工具,点击Open plot files in 3D chart并找到该文件 \FifzKA  
      
    Jps .;yjk  
    }.{}A(^YR  
    打开后,选择二维平面图: :'*DMW~  
    ?63&g{vA  
     
    分享到