中国分子束外延技术发展历程分子束外延(以下简称MBE)是一种化合物半导体多层薄膜的物理淀积技术。其基本原理是在超高真空条件下,将组成薄膜的各元素在各自的分子束炉中加热成定向分子束入射到加热的衬底上进行薄膜生长(图1)。由于每一台分子束炉的炉口装有一个能快速开闭的快门,因而生长时能快速改变所生长材料的成分及掺杂种类。MBE技术是在20世纪60年代末由美国贝尔实验室首先发展起来的。MBE技术具有生长速度较慢且可控、表面及界面平整、材料组成及掺杂种类变化迅速、生长衬底温度低等特点,因而被广泛用来生长组分及掺杂分布陡峻的突变异质结和复杂的多层结构。 图1 分子束外延装置生长室的工作原理图,当样品架中衬底背后的离子规管转到面对各束源炉时,可以用来测量Ⅲ族元素例如Ga,Al,In分子束的束流强度 曾经因发明隧道二极管而获得诺贝尔物理学奖的江崎(L. Esaki)在1970年与朱兆祥(R. Tsu)一起提出了一个半导体超晶格的概念[1]。他们设想如果在一个半导体基底上交替生长两种晶格匹配的半导体材料的周期结构,则电子沿生长方向的连续能带将分裂成若干微带(图2)。如果沿生长方向施加外电场,只要电子的散射时间足够长,电子将会未经散射到达微布里渊区(图2中-π/d至π/d间的区域)边缘,即图2中E1的π/d处,电子的有效质量将是负的,于是出现负阻,即发生了所谓的布洛赫振荡。若超晶格周期为d的话,则在外电场F作用下的振荡频率为edF/h (e为电子电荷,h为普朗克常数),这将是一个超强能力的微波器件。 要生长这样的超晶格结构,用当时比较成熟的气相及液相外延生长技术是无法实现的,1971年贝尔实验室的卓以和(A. Y. Cho)用分子束外延技术生长出GaAs/AlGaAs超晶格结构[2]。由此掀起了分子束外延技术的发展及量子阱、超晶格物理研究的高潮。之后研究出了多个与量子阱有关的重要器件,如量子阱激光器、量子阱红外探测器、高电子迁移率场效应微波器件等。 分子束外延技术问世之后,西方就对我国实施分子束外延设备及相关材料的禁运,本文回顾了被禁运的十几年里,中国的科技工作者自强不息地发展分子束外延设备及分子束外延材料的历程。 2 第一代分子束外延设备的研制 70年代初,中国科学院物理研究所(以下简称物理所)一些年轻的科学工作者,敏锐地觉察到超晶格这一新概念的重要性,开始进行国内外的调研。1974年在物理所的支持下,向中国科学院提交了计划开展半导体超晶格研究及研制分子束外延设备的申请报告。在完成论证后,获得了100万元的专项经费支持,研制工作在1975年正式启动。在物理所启动分子束外延设备的设计工作不久,中科院半导体研究所也开始了分子束外延设备的研制,所研制的设备后来被称为MBE-I型及MBE-II型,属于国产的第一代分子束外延设备。 中国第一代分子束外延设备是一个双室系统,即由生长室、进样室及样品传递系统组成。生长室与进样室之间由一个超高真空的角阀隔离,进样室有一个样品存放台。在进样室抽成高真空后,可以打开角阀,由磁力耦合传动杆将样品台上的样品传递到生长室中进行生长。由于生长室自始至终保持在超高真空状态,直至源材料耗尽为止,所以双室系统是分子束外延技术能够高效进行材料生长的重要设计,因为一旦生长室暴露于大气,系统抽气、烘烤及材料加热去气就要耗费多天时间。 生长室的无油超高真空获得系统由分子筛吸附泵、离子泵及钛升华泵组成。生长室内的主要部件有多维动作的样品架、分子束炉组件(包括由液氮冷阱包围的多个分子束炉及控制束源开闭的快门)、反射式高能电子衍射仪、四极质谱计及俄歇能谱仪。超高真空样品架从设计到加工是技术重点之一,样品头不仅有X、Y、Z三维移动,而且还有绕着垂直方向的转动及绕着水平方向的翘动功能,以配合与样品传递杆上的样品块交接,并且还要与反射式高能电子衍射仪配合,以使样品表面与电子束入射保持合适的角度和方位,此外还要有加热样品最高至800℃的功能。反射式高能电子衍射仪是分子束外延过程的重要观察手段,可以监控外延生长表面状态及材料的生长质量,还能通过衬底表面氧化膜的脱附点来决定生长温度,之后又发现可以通过衍射图像的振荡强度来测量生长速率,是MBE的重要部件。四极质谱计用于监测生长室中的残余气体组分及真空检漏。俄歇谱仪用来监测衬底表面清洁度及材料组分,在MBE之后的发展过程中证明俄歇谱仪并不必需而被拆除。 MBE-I型及MBE-II型设备的总体设计分别由物理所和半导体所负责,机械设计由航天部兰州物理所担任,设备的加工由中科院沈阳科仪厂承担,反射式高能电子衍射仪由中科院北京科仪厂负责研制,四极质谱计由北京分析仪器厂提供,俄歇谱仪由兰州物理所研制。 开始设计时只看到IBM实验室发表的一张设备照片,能参考的资料及与国外进行的学术交流都极少,设计方案多次反复修改,加上当时国内与MBE相关的超高真空部件的制造水平较低,因此许多MBE必需的部件,如超高真空的观察窗、焊接波纹管、热解氮化硼坩锅材料、陶瓷封接电极等都需从头研制,导致设计和制造的周期较长。 1979年12月18日,由中国科学院组织在沈阳召开了“分子束外延设备科研成果鉴定会”。鉴定书认定:“我国第一台分子束外延设备的研制成功填补了国内空白。”这台后来被称为MBE-I型的设备照片如图3所示。 在物理所的分子束外延设备鉴定会的第二年,半导体所也召开了II型MBE设备的鉴定会。之后,II型设备又加工了2台,分别提供给中科院长春物理所及上海冶金所使用。从此开始了中国科学院下属的物理研究所、半导体研究所,及之后加入的上海冶金研究所的科研人员自立更生发展我国分子束外延技术的历程。 MBE-I型设备运至物理所后,开始了边运转边改进的过程,在使用中首先将手动的快门操作改为单板机控制的步进马达驱动。在80年代初期,贝尔实验室卓以和博士访问物理所,在国际上,当时MBE技术经历了十余年的发展,已有长足的进步,他带来了很多国际上MBE技术发展的重要信息,给了物理所科技工作者很大的帮助。在这台国产设备上进行的一个最重大的改进是,物理所自行设计、加工了一个液氮冷屏置于生长室,冷屏极大地改善了生长环境,大幅度提高了外延生长材料的质量。1985年生长出高质量的GaAs/AlGaAs调制掺杂结构,其二维电子气的液氦温度(4.2 K)迁移率达到4.18×105 cm2/(v.s) [3],这个低温迁移率是表征材料质量的关键参数。卓以和博士来信称赞说当时国际上达到这个水平的实验室不超过10个。所谓调制掺杂异质结构是指只在宽禁带的AlGaAs层中掺杂,电子会转移到窄禁带的GaAs层界面上,形成一层二维电子气(图4),这层电子的迁移率基本上由GaAs外延层的材料纯度及质量所决定,因而二维电子气的低温迁移率很大程度上反映了外延技术水平。 MBE-II型分子束外延设备在半导体所科研人员的努力下,1980年研制了GaAs单晶薄膜,1983年研制成功高纯GaAs,1984年进入了GaAs/AlGaAs量子阱微结构的生长,包括调制掺杂异质结、量子阱、超晶格及掺杂超晶格(nipi-GaAs)等一系列微结构材料,并对它们的结构特性、光性及输运性质进行了广泛的研究。在1984年研制出高电子迁移率场效应晶体管(HEMT)。之后得到的结果:不掺杂的P-GaAs的空穴浓度为2×1014—8×1014 cm-3,室温迁移率为360—400 cm2/(v.s),N型轻掺的GaAs的电子浓度n = 1.2×1014 cm-3,液氮77 K温度下的迁移率9200 cm2/(v.s)。调制掺杂结构中的二维电子迁移率在77 K温度下为1.8×105 cm2/(v.s),电子面密度为4×1011 cm-2 [4]。 |