文章来源:Geis J, Lang J, Peterson L, et al. Concurrent engineering of an infrared telescope system[C]//Optical Modeling and Performance Predictions V. 2011, 8127. sVH
w\_F$
\D-X
_.v
摘要: q#F+^)DD [
~ %Ij5PD
我们提出了一种用于设计和分析天基电光(EO)传感器的并行工程方法。红外望远镜有效载荷的详尽设计由机械、结构、热和光学工程师的跨学科团队使用模拟驱动工程(SDE)软件环境开发。望远镜有效载荷设计还包括有效载荷任务的太空段的概念设计。我们还描述了并发设计过程的流程,并提供设计输出。 y~z&8XrH
O[$XgPM
简介: ltv~Kh
)=!|^M
我们的整个目标是提供一个可靠的产品,以满足其性能要求,并在预算和计划人力范围内实现这一目标。这种类型的项目通常具有三个特点。这项工作通常需要共同拥有解决产品设计和交付所有领域所需的经验和技术知识的不同项目的专家(SMEs)共同努力。第二个特点是每个学科领域的工作通常是在CAD或CAE计算机工具的协助下进行。最后,复杂产品的设计和生产经过一系列设计周期或产品设计的迭代更改来演变,这对于产品开发、解决问题和矛盾等是所必需的。 xP7mP+D
YlXqj\a
并行工程通过更有效地整合SME参与者的努力,来处理复杂产品设计和交付的总体目标。通过减少不同学科领域之间的信息交换的延迟和增加信息交换的频率,设计周期可以得到显着改善。减少收敛到满意结果所需的设计周期数需要通过在整个设计过程中及早和经常地深入了解设计问题和矛盾。这能够使我们尽早发现问题,并减少进行返修的工作量。 \' &,9lP
I0N~>SpZ5
航空航天公司的概念设计中心(CDC)提供了这样一个环境,其空间系统可以由跨学科工程师团队在各种级别的保真度要求下设计。本文提供了一个示例,说明这种集成设计环境如何用于天基红外望远镜系统的端到端设计和分析。首先从望远镜光学设计的开发开始。然后我们展示如何为有效载荷开发初始CAD设计和结构模型,以及如何集成这两个,允许CAD工程师改进CAD设计,以获得满足发射负载环境要求的最小质量解决方案。接下来,我们展示了如何使用有效载荷设计作为太空段设计研究的输入,其中开发了包含IR望远镜有效载荷任务的空基部分所有方面的顶层设计。研究表明,有效载荷可以由运载火箭容纳,并提供研发有效载荷热设计所需的基本参数(轨道、太阳能阵列大小和位置)。然后开发有效载荷的初始热设计,以及对在轨热环境对望远镜图像质量影响的预测。 sT,*<^
<Wd_m?z
这里提供的说明材料代表了通过整个IR望远镜系统的设计的初始,其为每个技术学科区域提供了坚实的设计起点,以及对系统的不同部件之间的相互作用的物理洞察。现在可以迭代相同的集成模型以纠正每个技术学科领域中的设计问题,同时评估这些设计变化对系统性能的所有方面的影响。 RSx{Gbd4X
/2cn`dR,
航空公司的协同EO传感器设计环境 {]iM5?
mln%Rd6u/
本文的工作报告由CDC的两个并行设计团队-电光有效负载团队(EOPT)和太空段团队(SST)完成。EOPT是一个小型、跨学科(机械、结构、热、光学和控制)的工程师团队,旨在EO传感器有效载荷的详细设计。通过使用由Comet Solutions, Inc (http: //www.cometsolutions.com)开发的比较新的模拟驱动工程(SDE)软件实现并行工作方式,跨学科边界集成工作。该SDE软件具有以下特性: B}@CtVWFz
R ^"*ut
1. 在公共软件环境中存储和查看所有工程数据(材料属性、边界条件、网格划分参数等)和CAD/CAE仿真结果,而无需知道如何运行每个工程学科的基本CAD / CAE工具。 1I%niQv5t
2. 项目数据以树形结构组成,获取设计历史记录并确保版本控制。 ~ymSsoD^
3. 从详细设计中提取顶级摘要数据(质量、图像质量度量、关键参数值),并显示在“控制面板”区域,供工程、系统工程和管理人员查看。 zhh6;>P
4. 复杂的跨学科分析的专业能力可以由学科工程师开发,经过捕捉,在仿真过程重复使用,大大减少了设计和重复这些分析所需的设计周期。 u63Q<P<