其实这个事情和做薄膜的应力问题类似,所以是考虑胶层厚度远小于基底厚度的情况,详细的边界条件应该是: biD$qg
1. 基底根据薄板理论的基尔霍夫假设变形,在任何地方的法向应力分量σzz=0,变形前直 #b}Z`u?@
的并垂直于基底中平面的材料线在变形后仍然保持. VOsRAn/N
2. 相比于基底的一致性,位移梯度的所有分量是非常小的,以至于可以使用线弹性理论 Wx%H%FeK
3. 薄层-基底系统的性质是薄层材料对整体弹性刚度的贡献可以忽略不计 ,Q$q=E;X
4. 薄层中力f是由错配应变单独决定的系统参数 ;vR4XHl|
5. 相比于f的大小,基底变形引起的薄层力大小的变化可忽略不计 .&iawz
6. 变形是轴对称的 i$"F{|Z0
7. 基底中平面表面曲率1/k空间分布均匀 (62"8iD6
8. 中平面面内应变是均匀的,各向同性延伸 |)DGkOtd
9. 忽略薄层周围的局部边缘效应 Mmj;-u
\[i1JG
以上基础上,与镀膜应力分析的温度变量不同,这里引入的变量是胶水固化引起的收缩应力,将该应力作用于基底,就可以得到对应面形变化. .[KrlfI
5X$ jl;6
PcMD])Z{G