切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2707阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2615
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 hD9' `SQ  
    function sjr=nfdre(~) L3h xe]mr  
    1_dMe%53  
    %系统焦距及各镜间距输入,间距取负正负 NIXcib"tG  
    y1jGf83  
    f=input('f:'); wYS KtG~/S  
    d1=input('d1:'); sLpCWIy  
    d2=input('d2:'); ^F{)&#4  
    d3=input('d3:'); VQW)qOR9  
    l7r N  
    A=f^2/(d3*d2)-f/d1; /w0v5X7  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); GXv o't@N  
    C=d3/d2-f/d1; ~sU! 1  
    eABdy e  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 5l7L@Ey  
    a2=d3/(a1*f);%α2 j/`qd(=B  
    b2=a1*(1-a2)*f/d2;%β2 ; hRpAN  
    b1=(1-a1)*f/(d1*b2);%β1 ^zluO   
    'frL/[S  
    0tm "kzy  
    %曲率半径 HBf8!\0|/  
    u g$\&rM>  
    R1=2*f/(b1*b2) # *aGzF  
    R2=2*a1*f/(b2*(1+b1)) y2ws*IZ"  
    R3=2*a1*a2*f/(1+b2) !Pjg&19  
    nJ0eZBgB]  
    A1=b2^3*(a1-1)*(1+b1)^3; `0WA!(W  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; VNEZBy"F  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; )LMuxj  
    N(/<qv  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); F p=Q$J|  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); $izpH  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); tJF~Xv2L!  
    VKJ~ZIO@A  
    CB=[C1 B1;C2 B2]; )tQ6rd'  
    AB=[A1 B1;A2 B2]; ='||BxB  
    AC=[A1 C1;A2 C2]; &)}:Y!qiu  
    ]f @LhC1x  
    %非球面系数 teNQUIe-  
    k2=-(det(CB)/det(AB)); 7tO$'q*h  
    k3=-(det(AC)/det(AB)); ?D 9#dGK  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 b2kbuk]  
    k2=k2 P\0%nyOG(%  
    k3=k3 GoA>sK  
    h_"/@6  
    end ;mKU>F<V  
    rd~W.b_b  
    %有中间像,焦距输入为正数 -#M~Nb I,  
    $ttr_4=  
    function sjr=yfdre(~) q x }fn/:  
    QjbPBk Q  
    f=input('f:'); /4BXF4ksi,  
    d1=input('d1:'); CP#MNNvgrw  
    d2=input('d2:'); 7%}}m&A7h  
    d3=input('d3:'); z`7C)p:  
    /s_$CSiB  
    A=f^2/(d3*d2)-f/d1; ~i#xjD5  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); q)i(wEdUZ  
    C=d3/d2-f/d1; ADUI@#vk  
    7ij=%if2@k  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); l@jJJ)Qyk  
    a2=d3/(a1*f); &y+*3,!n8  
    b2=a1*(1-a2)*f/d2; y_r6T XnGL  
    b1=(1-a1)*f/(d1*b2); R7b*(33  
    SkUP9  
    %曲率半径 He23<hd!  
    +:Zi(SuS]  
    R1=2*f/(b1*b2) !+l, m8Hly  
    R2=2*a1*f/(b2*(1+b1)) hY9u#3  
    R3=2*a1*a2*f/(1+b2) N^at{I6C  
    9>P(eN  
    A1=b2^3*(a1-1)*(1+b1)^3; :UciFIa  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; bm?TMhC  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; !IU*Ayg  
    g/gLG:C  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); =c 4U%d2  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 'M/&bu r  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); I78pul8!  
    Lo4t:H&  
    CB=[C1 B1;C2 B2]; x N)Ck76  
    AB=[A1 B1;A2 B2]; H0 t1& :  
    AC=[A1 C1;A2 C2]; X=~QE}x  
    6 [E"  
    %二次系数 IuD<lMeJ J  
    *ni|I@8  
    k2=-(det(CB)/det(AB)); Hy'&x?F6  
    k3=-(det(AC)/det(AB)); *uR'eXW  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 dZ Z/(oE>  
    k2=k2 ,fRb6s-  
    k3=k3 5N0H^  
    7dZ!GX?\y  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 cqDnZ`|6