切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2634阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2615
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 Sa?5iFg  
    function sjr=nfdre(~) Ie&b <k  
    {[t"O u  
    %系统焦距及各镜间距输入,间距取负正负 Jt>[]g$  
    jo;uRl  
    f=input('f:'); k4F"UG-`  
    d1=input('d1:'); U|Z>SE<k  
    d2=input('d2:'); =Kt9,d08x  
    d3=input('d3:'); 5hH6G  
    <K#'3&*$s  
    A=f^2/(d3*d2)-f/d1; ZkB6bji  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); hLytKPgt  
    C=d3/d2-f/d1; $v'Y:  
    :m++ iR  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 <{NYD .  
    a2=d3/(a1*f);%α2 @"{'j  
    b2=a1*(1-a2)*f/d2;%β2 "h;;.Y8e  
    b1=(1-a1)*f/(d1*b2);%β1 !V]MLA`  
    Z ]aK'  
    U!\2K~  
    %曲率半径 i2FD1*=/?  
    R7B,Q(q2-  
    R1=2*f/(b1*b2) y  KYP  
    R2=2*a1*f/(b2*(1+b1)) txml*/zL  
    R3=2*a1*a2*f/(1+b2) ^YG7dd_  
    Hw?2XDv j  
    A1=b2^3*(a1-1)*(1+b1)^3; Cl t5  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Jny)uo8  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; zY1s7/$ i  
    iF [?uF  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); i[2bmd!H  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); k'@7ZH  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); A{aw< P|+  
    < g3du~  
    CB=[C1 B1;C2 B2]; -3G 4vRIo  
    AB=[A1 B1;A2 B2]; 5 PGlR!^  
    AC=[A1 C1;A2 C2]; \o:ELa HY  
    tM^;?HL]  
    %非球面系数 Hbjb7Y?[  
    k2=-(det(CB)/det(AB)); wc7mJxJxA  
    k3=-(det(AC)/det(AB)); _(oP{w gB  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 L$29L:  
    k2=k2 >~5lYD  
    k3=k3 kqKj7L  
    `dv}a-Q)c  
    end 't|Un G  
    cBLR#Yu;O5  
    %有中间像,焦距输入为正数 ceFsGdS  
    [lNqT1%]  
    function sjr=yfdre(~) K\IYx|Hm a  
    &Y54QE".  
    f=input('f:'); ]6t]m2~\  
    d1=input('d1:'); Uvjdx(fY[a  
    d2=input('d2:'); %RQC9!  
    d3=input('d3:'); rU=b?D)n!w  
    Mw"xm9(Q  
    A=f^2/(d3*d2)-f/d1; .M9d*qp`S  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); bJQ5- *F  
    C=d3/d2-f/d1; $J QWfGwR  
    RzA2*]%a  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); bZNIxkc[Dh  
    a2=d3/(a1*f); A1T<  
    b2=a1*(1-a2)*f/d2; q2x|%H RF  
    b1=(1-a1)*f/(d1*b2); $ Wit17j  
    ?HrK\f3wWO  
    %曲率半径 {&2$[g=[ ^  
    tcBC!_vF  
    R1=2*f/(b1*b2) Ps U9R#HL1  
    R2=2*a1*f/(b2*(1+b1)) u0m5JD0/  
    R3=2*a1*a2*f/(1+b2) 7 I_1 #O  
    KX?o nsZ  
    A1=b2^3*(a1-1)*(1+b1)^3; 3iE-6udCS  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; $ A-+E\vQ@  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; _W)`cr  
    +kjzn]} f  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); (k%GY< bP  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); hi!L\yi  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); :GU,EDps  
    9$Ig~W)  
    CB=[C1 B1;C2 B2]; wL4Z W8_  
    AB=[A1 B1;A2 B2]; ipG5l  
    AC=[A1 C1;A2 C2]; )!tCC-Cr  
    )O,wRd>5  
    %二次系数 3`8dii  
    >qR7'QwP  
    k2=-(det(CB)/det(AB)); 8g\wVKkTQp  
    k3=-(det(AC)/det(AB)); OnZF6yfN=3  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 nD7|8,'  
    k2=k2 v`y6y8:>  
    k3=k3  )|v^9  
    &!ED# gs  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 W+_RhJ