切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2490阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2607
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 N6Z{BLZ  
    function sjr=nfdre(~) &GWkq>  
    "zZI S6j  
    %系统焦距及各镜间距输入,间距取负正负 G.U 5)4_^  
    l)+:4N?iVv  
    f=input('f:'); Cef:tdk7  
    d1=input('d1:'); eR!G[Cw-  
    d2=input('d2:'); HT`1E0G8)  
    d3=input('d3:'); o`r(`6@  
    J7i+c];!<  
    A=f^2/(d3*d2)-f/d1; #%S0PL"x U  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); '=cKU0 G#  
    C=d3/d2-f/d1; 2RppP?M!  
    Lu>H`B7Q"  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 d$;/T('  
    a2=d3/(a1*f);%α2 b7h+?!H]R  
    b2=a1*(1-a2)*f/d2;%β2 _dU P7H (  
    b1=(1-a1)*f/(d1*b2);%β1 WtX>Qu|  
    AZZRa69=  
    [N|xzMe  
    %曲率半径 #s+X+fe  
    F,v 7ifo#f  
    R1=2*f/(b1*b2) F=&;Y@t  
    R2=2*a1*f/(b2*(1+b1)) m@ oUvxcd  
    R3=2*a1*a2*f/(1+b2) uu}-"/<~7  
    Jgi Iq  
    A1=b2^3*(a1-1)*(1+b1)^3; 9 qH[o?]  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; Fh`-(,e?5  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; lfy7w|  
    v*P[W_.  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); 2a[9h #  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); Bxv8RB  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); jzrt7p*k}  
    YsAF{  
    CB=[C1 B1;C2 B2]; s)tpr   
    AB=[A1 B1;A2 B2]; Vj!WaN_  
    AC=[A1 C1;A2 C2]; ahp1!=Z-=  
    4 =Fg!Eu<  
    %非球面系数 .;slrg(5F  
    k2=-(det(CB)/det(AB)); $,P\)</ VR  
    k3=-(det(AC)/det(AB)); Mdky^;qq3;  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 m0Z7N5v)  
    k2=k2 s]bPV,"p  
    k3=k3 yiO31uQt  
    Ma_=-cD  
    end (txt8q  
    O0zi@2m?B  
    %有中间像,焦距输入为正数 xSOoIsL[  
    pe#*I/)b  
    function sjr=yfdre(~) Mz}i[|U\  
    )"-fHW+fy  
    f=input('f:'); i;avwP<0  
    d1=input('d1:'); Zx9.pFc"  
    d2=input('d2:'); QqjTLuN  
    d3=input('d3:'); &@"w-M  
    Vs|sw  
    A=f^2/(d3*d2)-f/d1; X{s/``n  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 3z$HKG  
    C=d3/d2-f/d1; s79 q 5  
    Y 0]Kl^\A  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); F*X%N_n  
    a2=d3/(a1*f); V-:`+&S{^  
    b2=a1*(1-a2)*f/d2; S8vx[<  
    b1=(1-a1)*f/(d1*b2); !rz)bd3$  
    8`DO[Z  
    %曲率半径 7_1W:-A7W  
    OAY8,C=M  
    R1=2*f/(b1*b2) C*$|#.l  
    R2=2*a1*f/(b2*(1+b1)) u8xk]:%  
    R3=2*a1*a2*f/(1+b2) 9ec0^T  
    2h5tBEOX.s  
    A1=b2^3*(a1-1)*(1+b1)^3; df!+T0  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; mQFa/7FX  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; Ko]QCLL  
    xp~YIeSg  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); !W 0P `i<  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); R9bhC9NP  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); EqVsxwa  
    CGCQa0  
    CB=[C1 B1;C2 B2]; B<(Pd  
    AB=[A1 B1;A2 B2]; G]1(X38[si  
    AC=[A1 C1;A2 C2]; id3)6}  
    ,I/2.Q})[  
    %二次系数 te4F"SEf  
    GJ.kkTMT  
    k2=-(det(CB)/det(AB)); xq#U 4E  
    k3=-(det(AC)/det(AB)); G`9cd\^  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 qPL^zM+  
    k2=k2 #Tup]czO  
    k3=k3 _{[k[]  
    I93 ~8wQ  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 l*F!~J3