切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2897阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2644
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 gpw,bV  
    function sjr=nfdre(~) \s?8}k  
    3N[Rrxe2  
    %系统焦距及各镜间距输入,间距取负正负 XCyU)[wY  
    3 \}>nE  
    f=input('f:'); 8IkmFXj  
    d1=input('d1:'); -e4TqzRr  
    d2=input('d2:'); q6PG=9d0B  
    d3=input('d3:'); +)hxYLk&I  
    6H1;Hl f  
    A=f^2/(d3*d2)-f/d1; uv=a}U;  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); NkV81?  
    C=d3/d2-f/d1; D7r&z?  
    S]&:R)#@  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 @<.ei)cqb  
    a2=d3/(a1*f);%α2 lc8g$Xw3  
    b2=a1*(1-a2)*f/d2;%β2 Ht:\ z;cu  
    b1=(1-a1)*f/(d1*b2);%β1 ;}Ei #T,D  
    [vY#9W"!  
    7YxVtN  
    %曲率半径 C*}PL  
    [Tl66Eyl  
    R1=2*f/(b1*b2) n2 can  
    R2=2*a1*f/(b2*(1+b1)) Pr:\zI  
    R3=2*a1*a2*f/(1+b2) DcNp-X40I  
    9Fy 'L#%  
    A1=b2^3*(a1-1)*(1+b1)^3; XzPOqZ`Nv  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 2F+"v?n=\  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; \HIBnkj)3n  
    k'_f?_PBu  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); *u-$$@|y  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); \FUMfo^  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); v6|j.;  
    s= ]NKJaQH  
    CB=[C1 B1;C2 B2]; Qd~z<U l  
    AB=[A1 B1;A2 B2]; <S=( `D  
    AC=[A1 C1;A2 C2]; a{ L&RRJ  
    c9G%;U)  
    %非球面系数 w\MWr+4  
    k2=-(det(CB)/det(AB)); /@|iI<|  
    k3=-(det(AC)/det(AB)); %Z4*;VwQ  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 ilde<!?  
    k2=k2 Q=8YAiCu  
    k3=k3 dOKp:|9G  
    2 F>Y{3&  
    end "0uM%*2  
    ]E-3/r$_cO  
    %有中间像,焦距输入为正数 q01 L{~>bz  
    >O<a9wz  
    function sjr=yfdre(~) >I0;MNX  
    Ovc9x\N  
    f=input('f:'); =3c?W&:  
    d1=input('d1:'); |,@D <  
    d2=input('d2:'); &BLCP d  
    d3=input('d3:'); YTFU# F  
    jan}}7Dly  
    A=f^2/(d3*d2)-f/d1; {j9TzR  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); Mib .,J~  
    C=d3/d2-f/d1; CDM6o!ur3  
    {=3A@/vM  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); +HBizJ9K  
    a2=d3/(a1*f); &n;*'M  
    b2=a1*(1-a2)*f/d2; w") G:K  
    b1=(1-a1)*f/(d1*b2); ru@#s2  
    a51e~mg Z`  
    %曲率半径 CyR`&u  
    pe vXixl  
    R1=2*f/(b1*b2) #Z1-+X8P  
    R2=2*a1*f/(b2*(1+b1)) 4WvW11q8U  
    R3=2*a1*a2*f/(1+b2) .*x:  
    @KK6JyOTQ  
    A1=b2^3*(a1-1)*(1+b1)^3; >lV,K1Z  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; P !i_?M  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; #zTy7ZS,0  
    4`Ud\Jm[s  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); -n.m "O3  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); gLX<> |)*  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); iT :3e%  
    y017 B<Ou  
    CB=[C1 B1;C2 B2]; 4j=3'Z|  
    AB=[A1 B1;A2 B2]; xT"V9t[f  
    AC=[A1 C1;A2 C2]; zuLW'a6F-  
    OP1` !P y  
    %二次系数 4C=W~6~  
    M!J7Vj?Ps  
    k2=-(det(CB)/det(AB)); \Ip)Lm0  
    k3=-(det(AC)/det(AB)); 3P6O]x<-?  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1  Lto*L X  
    k2=k2 H7X-\K 1w  
    k3=k3 t,7%| {  
    *)Qv;'U=rn  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 (t-hi8"