切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2302阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2603
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 ]:\dPw`A  
    function sjr=nfdre(~) bu"!jHPB  
    %PJQ%~ A  
    %系统焦距及各镜间距输入,间距取负正负 m4yL@d,Yw  
    =I~mKn  
    f=input('f:'); bYPKh  
    d1=input('d1:'); (4EI-e*6  
    d2=input('d2:'); ei{eTp4HpV  
    d3=input('d3:'); nNU2([  
    4'Zp-k?5`  
    A=f^2/(d3*d2)-f/d1; dq[xwRU1  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); Hq 188<  
    C=d3/d2-f/d1; e~':(/%|5;  
    )F2OT<]m,  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 !Rt>xD  
    a2=d3/(a1*f);%α2 :/Qq@]O>  
    b2=a1*(1-a2)*f/d2;%β2 I!?}jo3  
    b1=(1-a1)*f/(d1*b2);%β1 ]g&TKm  
    ! v0LBe4  
    Wxe0IXq3Nn  
    %曲率半径 O7IJ%_A&  
    NN`uI6=  
    R1=2*f/(b1*b2) \'bzt"f$j  
    R2=2*a1*f/(b2*(1+b1)) !0cD$^7  
    R3=2*a1*a2*f/(1+b2) O8.5}>gDn.  
    *D3/@S$B  
    A1=b2^3*(a1-1)*(1+b1)^3; xZv#Es%#  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; puM3g|n@  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; t<viX's  
    VM,]X.  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); I 2|Bg,e  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); # N cK X  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); E\,-XH  
    _f:W?$\ho  
    CB=[C1 B1;C2 B2]; |H+Wed|  
    AB=[A1 B1;A2 B2]; LE>]8[ f6S  
    AC=[A1 C1;A2 C2]; ^ovR7+V  
    ]P?vdgEM&  
    %非球面系数 xK\d4 "  
    k2=-(det(CB)/det(AB)); xUistwq  
    k3=-(det(AC)/det(AB)); (*)hD(C5  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 ^]-6u:J!  
    k2=k2 ,nB5/Lx  
    k3=k3 NTI+  
    igR";OQk  
    end FG*r'tC~r  
    A$:U'ZG_  
    %有中间像,焦距输入为正数 Np0u,t%vs  
    46&/gehr  
    function sjr=yfdre(~) 0s2v'A[\  
    <yFu*(Q  
    f=input('f:'); W1=H8 O  
    d1=input('d1:'); 'ub@]ru|  
    d2=input('d2:'); Fun^B;GA:  
    d3=input('d3:'); ~O &:C{9=  
    =rCIumqD-}  
    A=f^2/(d3*d2)-f/d1; b`O'1r\Y;  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 1^(ad;BC y  
    C=d3/d2-f/d1; 8eHyL  
    [ ~&/s:Vvo  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); V /V9B2.$  
    a2=d3/(a1*f); $@"g^,n  
    b2=a1*(1-a2)*f/d2; _t #k,;  
    b1=(1-a1)*f/(d1*b2); c|@bwat4  
    d,n 'n  
    %曲率半径 wT8DSq  
    g~A`N=r;h  
    R1=2*f/(b1*b2) K}MK<2vU  
    R2=2*a1*f/(b2*(1+b1)) ByNn  
    R3=2*a1*a2*f/(1+b2) DG:Z=LuJr  
    &AbNWtCV+G  
    A1=b2^3*(a1-1)*(1+b1)^3; dvJ M6W>^=  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; orMwAV  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; X=fYWj[H,  
    <s<n  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); iVq'r4S  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); !\.pq  2  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); EVC]sUT  
    GH:jH]u!V  
    CB=[C1 B1;C2 B2]; %.-4!vj  
    AB=[A1 B1;A2 B2]; iN8zo:&Z  
    AC=[A1 C1;A2 C2]; *VhL\IjN]  
    V7fq4O^:  
    %二次系数 DKJmTH]rUg  
    A1>OY^p3%  
    k2=-(det(CB)/det(AB)); %%gc2s  
    k3=-(det(AC)/det(AB)); >rKIG~P_  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 ]tRu2Ygf  
    k2=k2 G[I"8iS,  
    k3=k3 =Qj{T  
    %oa-WmWm  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 ZWU)\}}_R