切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2301阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2603
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 k#:@fH4{PA  
    function sjr=nfdre(~) ]7R&m)16  
    yZ~eLWz  
    %系统焦距及各镜间距输入,间距取负正负 I%Po/+|+  
    v6DxxE2n  
    f=input('f:'); {{[jC"4AY  
    d1=input('d1:'); k1Mxsd  
    d2=input('d2:'); GKsL~;8"  
    d3=input('d3:'); B/9<b{6  
    0jJ28.kOp  
    A=f^2/(d3*d2)-f/d1; 0@e}hv;  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); XG\a-dq[  
    C=d3/d2-f/d1; b^l -*4  
    yc%E$g  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 ;aK !eD$  
    a2=d3/(a1*f);%α2 V.QzMF"o  
    b2=a1*(1-a2)*f/d2;%β2 QOh w  
    b1=(1-a1)*f/(d1*b2);%β1 zEPx  
    rb}wv16?  
    N4` 9TN7  
    %曲率半径 sg6w7fp>  
    At[n<8_|  
    R1=2*f/(b1*b2) Va/@#=,q]  
    R2=2*a1*f/(b2*(1+b1)) qvfAG 0p  
    R3=2*a1*a2*f/(1+b2) #SihedWi  
    Q!2iOvK  
    A1=b2^3*(a1-1)*(1+b1)^3; qJFgbq4-  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; 2 ) /k`Na  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; 5nxS+`Pn.)  
    F3Ak'h{Ay  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2);  IB.'4B7  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); XC/]u%n8](  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); )*TW\v`B  
    #-gGsj;F  
    CB=[C1 B1;C2 B2]; %M;_(jda  
    AB=[A1 B1;A2 B2]; i^s`6:rNu  
    AC=[A1 C1;A2 C2]; l`M5'r]l  
    =FD`A#\C~  
    %非球面系数 v-7Rb )EP  
    k2=-(det(CB)/det(AB)); UU;-q_H6  
    k3=-(det(AC)/det(AB)); iQm.]A  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 5fj  
    k2=k2 JJ N(M*;  
    k3=k3 EYJi6#  
    WDoKbTv  
    end |?fW!y  
    V$Xl^#tN  
    %有中间像,焦距输入为正数 &` 00/p  
    {sna)v$;  
    function sjr=yfdre(~) /50g3?X,  
    B::4Qme  
    f=input('f:'); =mi:<q  
    d1=input('d1:'); G1?0Q_RN  
    d2=input('d2:'); z3vsz  
    d3=input('d3:'); /mMAwx  
    [ n0##/  
    A=f^2/(d3*d2)-f/d1; Q2[prrk%j  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 1o;g1Z/  
    C=d3/d2-f/d1; A'~%_}  
    Hn#GS9d_?  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); :Er^"9'A2  
    a2=d3/(a1*f); 'd2qa`H'}B  
    b2=a1*(1-a2)*f/d2; (/"K+$8'  
    b1=(1-a1)*f/(d1*b2); *793H\  
    #LN5&i;s  
    %曲率半径 v ]/OAH6D  
    HvqF@/xh  
    R1=2*f/(b1*b2) jsNH`"  
    R2=2*a1*f/(b2*(1+b1)) V>FT~k_"  
    R3=2*a1*a2*f/(1+b2) '#,e @v  
    v.l7Q  
    A1=b2^3*(a1-1)*(1+b1)^3; Uw2,o|=O  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3;  /i-xX*  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; J0ZxhxX35  
    Z{,GZT  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); gnQo1q{ 4  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); eq@am(#&kY  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ;t;Y.*&=S  
    H[ BD)  
    CB=[C1 B1;C2 B2]; yyY~ *Le  
    AB=[A1 B1;A2 B2]; jb|mip@` <  
    AC=[A1 C1;A2 C2]; V-KL%  
    AfbB~LlBq  
    %二次系数 7SgweZ}"  
    74@lo-/LY  
    k2=-(det(CB)/det(AB)); ]^J+-c  
    k3=-(det(AC)/det(AB)); GI2eJK  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 ^CZCZ,v  
    k2=k2 w(76H^e  
    k3=k3 Q0zW ]a  
    Jv_.itc  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 6g5PM4\