切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2489阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2607
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 5mSXf"R^  
    function sjr=nfdre(~) jv2l_  
    yWzvE:!)  
    %系统焦距及各镜间距输入,间距取负正负 qgZ(o@\  
    QQ2xNNF[  
    f=input('f:'); @Jm$<E  
    d1=input('d1:'); DP; B*s4{U  
    d2=input('d2:'); Slv}6at5  
    d3=input('d3:'); :\80*[=;Z  
    1MB  
    A=f^2/(d3*d2)-f/d1; "Wi`S;  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); S<p "k]  
    C=d3/d2-f/d1; D VSYH{U4  
    ?'T>/<(  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 00;=6q]TA  
    a2=d3/(a1*f);%α2 $6y1';A  
    b2=a1*(1-a2)*f/d2;%β2 D<xPx  
    b1=(1-a1)*f/(d1*b2);%β1 .\U+`>4av  
    I">z#@CT  
    9!9 Gpi  
    %曲率半径 {+C>^b  
    6Ir ?@O1'!  
    R1=2*f/(b1*b2) Q8:u1$}  
    R2=2*a1*f/(b2*(1+b1)) VKN^gz  
    R3=2*a1*a2*f/(1+b2) h)y"?Jj  
    ORtl~V'  
    A1=b2^3*(a1-1)*(1+b1)^3; TP^.]I O-  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; W;KHLHp-  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; y~- ?   
    Mm6 (Q  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); W{-N,?z  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ; $y.+5 q  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); sgCIY:8  
    8:t-I]dzk  
    CB=[C1 B1;C2 B2]; -CL7^  
    AB=[A1 B1;A2 B2]; d9Q%GG0]  
    AC=[A1 C1;A2 C2]; E#HO0 ]S  
    E0)v;yRcw  
    %非球面系数 p^L6uM  
    k2=-(det(CB)/det(AB)); t#P)KcWOt  
    k3=-(det(AC)/det(AB)); x7NxHTL  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 mDM]RAub)  
    k2=k2 @Rx/]wyH  
    k3=k3 ?<nz2 piP,  
    }>Os@]*'^(  
    end KO5Q;H  
    Kjf#uU.7  
    %有中间像,焦距输入为正数 RisrU  
    J|'T2g  
    function sjr=yfdre(~) ;bAy 7  
    Y^6=_^  
    f=input('f:'); 5X`.2q=d  
    d1=input('d1:'); D6ck1pxkx  
    d2=input('d2:'); zM@iG]?kc  
    d3=input('d3:'); =} vG|  
    4uu*&B  
    A=f^2/(d3*d2)-f/d1; B' :ZX-Q)  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); mR0@R;,p  
    C=d3/d2-f/d1; T.(SBP  
    Jhj]rsGk  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); Jp= (Q]ab  
    a2=d3/(a1*f); o&CvjE  
    b2=a1*(1-a2)*f/d2; 94a _ W9  
    b1=(1-a1)*f/(d1*b2); ZDVaKDqZ_  
    hqBwA1](a  
    %曲率半径 1i>)@{P&BN  
    S((8DSt*  
    R1=2*f/(b1*b2) }Ns_RS$  
    R2=2*a1*f/(b2*(1+b1)) ~(&xBtg:}  
    R3=2*a1*a2*f/(1+b2) f a\cLC  
    /NkZ;<uxJ  
    A1=b2^3*(a1-1)*(1+b1)^3; ]3I_H+hU  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; T4f:0r;^f*  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; RV($G8U  
    }>OE"#si  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); >)5vsqGZaK  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); ~z'0~3  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); Tl1?5  
    =k8A7P  
    CB=[C1 B1;C2 B2]; P,%|(qB  
    AB=[A1 B1;A2 B2]; PAc~p8S  
    AC=[A1 C1;A2 C2]; d@l;dos),  
    8ziYav  
    %二次系数 % idnm  
    !l\pwfXP&%  
    k2=-(det(CB)/det(AB)); _ Po9pZ  
    k3=-(det(AC)/det(AB)); :heJ5* !,  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 (%r:PcGMEV  
    k2=k2 9z-"JnM  
    k3=k3 3n/L; T,X  
    w%ip"GT,  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 lu{}j4