切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2606阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2613
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 -`h)$&,  
    function sjr=nfdre(~) ydA8wL  
    &K#M*B ,*p  
    %系统焦距及各镜间距输入,间距取负正负 .uZ3odMlx  
    N:/D+L  
    f=input('f:'); &U#|uc!+  
    d1=input('d1:'); sY&IquK^  
    d2=input('d2:'); g*_&  
    d3=input('d3:'); |0b`fOS  
    013x8!i  
    A=f^2/(d3*d2)-f/d1; E{`fF8]K  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); 6%_nZvRv  
    C=d3/d2-f/d1; !*N@ZL&X  
    uo 8YP<q  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 KkbDW3-  
    a2=d3/(a1*f);%α2 r`d4e,(  
    b2=a1*(1-a2)*f/d2;%β2 \Gvm9M  
    b1=(1-a1)*f/(d1*b2);%β1 [RhO$c$[\  
    LU%E:i|  
    Bj;'qB>3  
    %曲率半径 ;N0XFjdR  
    qo bc<-  
    R1=2*f/(b1*b2) dUZ ,m9u  
    R2=2*a1*f/(b2*(1+b1)) ?k{?GtSs  
    R3=2*a1*a2*f/(1+b2) ;?p>e'  
    VY4yS*y  
    A1=b2^3*(a1-1)*(1+b1)^3; _Y;W0Z  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; YU'E@t5  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; 8(~ h"]`!  
    /nA{#HY  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); bROLOf4S  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); \_f(M|  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ggR.4&<  
    ^u ~Q/ 4  
    CB=[C1 B1;C2 B2]; b3, _(;A!  
    AB=[A1 B1;A2 B2]; /y}xX  
    AC=[A1 C1;A2 C2]; OQJ6e:BGt  
    Vt#.eL)Ee  
    %非球面系数 Tyx_/pJT  
    k2=-(det(CB)/det(AB)); 8&slu{M- t  
    k3=-(det(AC)/det(AB)); b8 likP"T  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 2P0*NQ   
    k2=k2 0\P1; ak%  
    k3=k3 N`e[:[  
    }o`76rDN  
    end 37o; ;  
    AoxA+.O  
    %有中间像,焦距输入为正数 `[ir}+S  
    VMWf>ZU  
    function sjr=yfdre(~) t%=tik2|7  
    $xN|5;+  
    f=input('f:'); vr =#3>  
    d1=input('d1:'); Lp9E:D->  
    d2=input('d2:'); wf<M)Rs|  
    d3=input('d3:'); .?$gpM?i  
    <)D$51 &0  
    A=f^2/(d3*d2)-f/d1; H/M@t\$Dc  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); vdwsJPFbc  
    C=d3/d2-f/d1; H4+i.*T#  
    >4CbwwMA  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); PEZ!n.'S  
    a2=d3/(a1*f); E7hY8#G  
    b2=a1*(1-a2)*f/d2; 3^yK!-Wp(  
    b1=(1-a1)*f/(d1*b2); c]!V'#U  
    N;`n@9BF  
    %曲率半径 k8zI(5.>  
    UkFC~17P  
    R1=2*f/(b1*b2) Qo|\-y-#  
    R2=2*a1*f/(b2*(1+b1)) }O p; g^W  
    R3=2*a1*a2*f/(1+b2) 4j^ @wV'  
    Xsa].  
    A1=b2^3*(a1-1)*(1+b1)^3; 5v*\Zr5ha  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; f3y=Wxk[  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; scV5PUq  
    ^U/O !GK  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); pMM8-R'W-  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 'LDQgC*%  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); _|`S3}q|d  
    ?}Y]|c^W  
    CB=[C1 B1;C2 B2]; p5*EA x  
    AB=[A1 B1;A2 B2]; x]j W<A  
    AC=[A1 C1;A2 C2]; Tw<q,O  
    GTHt'[t@;  
    %二次系数 VUuE T  
    6ik$B   
    k2=-(det(CB)/det(AB)); w,D+j74e$  
    k3=-(det(AC)/det(AB)); Zv{'MIv&v  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 1_G^w qk  
    k2=k2 P.DK0VgY  
    k3=k3 ;$Jo+#  
    RxQ*  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 _Z\G5x