切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2599阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    653
    光币
    2613
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 ;)Rvk&J5  
    function sjr=nfdre(~) 'G1~\CT  
    y Q\K;  
    %系统焦距及各镜间距输入,间距取负正负 O8BxXa@5  
    cgKK(-$ny  
    f=input('f:'); @ yJ/!9?^  
    d1=input('d1:'); ?D P]#9/4  
    d2=input('d2:'); #fg RF  
    d3=input('d3:'); B"N8NVn  
    l:NEK`>i  
    A=f^2/(d3*d2)-f/d1; O+Z[bis`  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); SI_{%~k*B  
    C=d3/d2-f/d1; fuJ6 fmT  
    S-^y;#=  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 g Z3VT{  
    a2=d3/(a1*f);%α2 P;jl!o$  
    b2=a1*(1-a2)*f/d2;%β2 b 62 o  
    b1=(1-a1)*f/(d1*b2);%β1 p"^^9'`=  
    }9T$XF~  
    SF*! Z2K  
    %曲率半径 12)~PIaF  
    ,ry2J,IT7  
    R1=2*f/(b1*b2) X$,#OR  
    R2=2*a1*f/(b2*(1+b1)) #BK\cIr  
    R3=2*a1*a2*f/(1+b2) [~$Ji&Dd  
    M ,.++W\  
    A1=b2^3*(a1-1)*(1+b1)^3; ]/;0  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; hg7`jE&2  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; f:L%th  
    42:~oKiQ$"  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); vPuPSE%M  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); FY"!%)TV  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); b;\qF&T  
    >O[# 661  
    CB=[C1 B1;C2 B2]; <Q)6N!Tp^  
    AB=[A1 B1;A2 B2]; kQlXcR  
    AC=[A1 C1;A2 C2]; Q7]:vs)%  
    RW 23lRA6  
    %非球面系数 cad1eOT'  
    k2=-(det(CB)/det(AB)); >*%ySlZbs  
    k3=-(det(AC)/det(AB)); MNip;S_j  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 4&/u1u 0  
    k2=k2 b\~rL,7(  
    k3=k3 m MO:m8W  
    rly3f  
    end 2&fIF}vk>m  
    -[OGZP`8  
    %有中间像,焦距输入为正数 N,|:=gD_  
    Y}(#kqh>  
    function sjr=yfdre(~) '/ 3..3k  
    eG26m_S=  
    f=input('f:'); Ty\&ARjb 8  
    d1=input('d1:');  !pl<  
    d2=input('d2:'); jeMh  
    d3=input('d3:'); WQ4:='(  
    04NI.Jv  
    A=f^2/(d3*d2)-f/d1; sAS\-c'6  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); s5FyP "V  
    C=d3/d2-f/d1; cF_`m  
    P7d" E  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); dUeM+(s1  
    a2=d3/(a1*f); +g ovnx  
    b2=a1*(1-a2)*f/d2; LoUi Yf  
    b1=(1-a1)*f/(d1*b2); esmQ\QQ^1  
    Y ~RPspHW  
    %曲率半径 H?ssV^k  
    MdT'xYomzQ  
    R1=2*f/(b1*b2) uc~PKU?tO  
    R2=2*a1*f/(b2*(1+b1)) N8:?Z#z  
    R3=2*a1*a2*f/(1+b2) mzTF2K  
    Ac<V!v71  
    A1=b2^3*(a1-1)*(1+b1)^3; f33'2PYl  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; (.7_`T6QG  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; q5:-?|jXJ  
    3nf+ imAF  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); G\tTwX4  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); vV.'&."g  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ftF?T.dx  
    a9Lf_/w{&  
    CB=[C1 B1;C2 B2]; ^#e:q  
    AB=[A1 B1;A2 B2]; K) $.0S9d  
    AC=[A1 C1;A2 C2]; MGX %U6  
    N5csq(  
    %二次系数 y.5mYQA4=[  
    K,%H*1YKK  
    k2=-(det(CB)/det(AB));  (:].?o  
    k3=-(det(AC)/det(AB)); vG#|CO9  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 wlBdA  
    k2=k2 j(6:   
    k3=k3 &$jg *Kr  
    ]oP2T:A  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 8qp!S1Qnv