切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2943阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2650
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 2c*2\93>  
    function sjr=nfdre(~) ~l4Q~'  
    <v-92?  
    %系统焦距及各镜间距输入,间距取负正负 A'(k Yc  
    CCwK8`%   
    f=input('f:'); LQ|<3]  
    d1=input('d1:');  m"1 ?  
    d2=input('d2:'); otZ JY)  
    d3=input('d3:'); ri;r7Y9V9`  
    1 pYsjo~  
    A=f^2/(d3*d2)-f/d1; PE +qYCpP9  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); a\|X^%2g  
    C=d3/d2-f/d1;  pe|\'<>i  
    zkvH=wL  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 JG1LS$p^  
    a2=d3/(a1*f);%α2 Is~yVB02  
    b2=a1*(1-a2)*f/d2;%β2 LDSbd,GF  
    b1=(1-a1)*f/(d1*b2);%β1 s UvKA0  
     K oL%}u&  
    r]Z.`}Kkm  
    %曲率半径 ]dQZ8yVK  
    RH1U_gp4 ]  
    R1=2*f/(b1*b2) @V*au:  
    R2=2*a1*f/(b2*(1+b1)) /Ir 7 DZK  
    R3=2*a1*a2*f/(1+b2) E ,Dlaq  
    ZW`HDrP`  
    A1=b2^3*(a1-1)*(1+b1)^3; 96k(X LR  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; gS0,')w  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; 7E@$}&E  
    :K5V/-[|V1  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); rUhWZta  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); HM;4=%  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ZO]E@?Oav  
    -U&098}<K  
    CB=[C1 B1;C2 B2]; agGgJ@  
    AB=[A1 B1;A2 B2]; </~1p~=hAt  
    AC=[A1 C1;A2 C2]; %,h!: Ec^c  
    E%KC'T N^D  
    %非球面系数 G;Pt|F?c  
    k2=-(det(CB)/det(AB)); iOE9FW|e  
    k3=-(det(AC)/det(AB)); lb=2*dFJ1  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 15RI(BN   
    k2=k2 ~ly`u  
    k3=k3 * N2#{eF&]  
    HE4`9$kVLr  
    end *(>F'>F1"  
    Ji)%Y5F  
    %有中间像,焦距输入为正数 noWRYS%  
    4"`=huQ  
    function sjr=yfdre(~) @|JPE%T   
    n C\(+K1%  
    f=input('f:'); eU<]h>2  
    d1=input('d1:'); mJU>f-l  
    d2=input('d2:'); f4qS OVv  
    d3=input('d3:'); UzP@{?  
    ci#Zvhtk r  
    A=f^2/(d3*d2)-f/d1; K]lb8q}Z~  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); U<#$w{d:  
    C=d3/d2-f/d1; ~{kA) :  
    }j]<&I}  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); / i\uwa,  
    a2=d3/(a1*f); Ej9/_0lt  
    b2=a1*(1-a2)*f/d2; ([z<TS#Md  
    b1=(1-a1)*f/(d1*b2); lUy*549,  
    Zi15wE  
    %曲率半径 +Px<DX+  
    n:{-Vvt  
    R1=2*f/(b1*b2) |~1rKzZwF  
    R2=2*a1*f/(b2*(1+b1)) yAZ.L/jyr  
    R3=2*a1*a2*f/(1+b2) Z)b)v  
    T% jjs  
    A1=b2^3*(a1-1)*(1+b1)^3; Il tg0`  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; F5om-tzy  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; S:"z<O  
    4rGO8R  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); ZKiL-^dob  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); 3 tx0y  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); QZz{74]n  
    pEqr0Qwh  
    CB=[C1 B1;C2 B2]; [7ek;d;'t  
    AB=[A1 B1;A2 B2]; X8NO;w@z#  
    AC=[A1 C1;A2 C2]; D|8sjp4  
    H_xQ>~b  
    %二次系数 .j]OO/,  
    RLeSA\di  
    k2=-(det(CB)/det(AB)); )SlUQ7f>  
    k3=-(det(AC)/det(AB)); v\r7.l:hf  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 UH.}B3H   
    k2=k2 ~ L i%  
    k3=k3 6O[wVaC1u  
    Y~\`0?ST  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 `mHOgS>|