切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2879阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2642
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 <g9"Cr`  
    function sjr=nfdre(~) 6TH!vuQ1(  
    {$M;H+Foh  
    %系统焦距及各镜间距输入,间距取负正负 Uw<&Wm`'  
    1 11D3  
    f=input('f:'); !D o,>gO  
    d1=input('d1:'); *wV[TKaN  
    d2=input('d2:'); lr2 rQo >  
    d3=input('d3:'); LihjGkj\g  
    y>\S@I  
    A=f^2/(d3*d2)-f/d1; oH2!5;A|  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); {5%/T,  
    C=d3/d2-f/d1; c0 WFlj9b  
    A.Bk/N1G  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1 :Au /2  
    a2=d3/(a1*f);%α2 RH~3M0'0  
    b2=a1*(1-a2)*f/d2;%β2 Z v0C@r  
    b1=(1-a1)*f/(d1*b2);%β1 x "(9II*  
    !~lW3  
    J`#` fX  
    %曲率半径 !6w{(Rc(C  
    N*DhjEU)[  
    R1=2*f/(b1*b2) c#b:3dXx9  
    R2=2*a1*f/(b2*(1+b1)) Ak~4|w-  
    R3=2*a1*a2*f/(1+b2) 2:$ k  
    &14W vAU  
    A1=b2^3*(a1-1)*(1+b1)^3; Poa?Ej  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ,M3z!=oIGn  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; J< JBdk  
    J  fcMca  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); Wn!G.(Jq  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); GLKO]y  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); r dj@u47  
    bO49GEUT _  
    CB=[C1 B1;C2 B2]; #/j={*-  
    AB=[A1 B1;A2 B2]; . 9 LL+d  
    AC=[A1 C1;A2 C2]; +zWrLf_Rc  
    ]2+g&ox4'  
    %非球面系数 >kdM:MK  
    k2=-(det(CB)/det(AB)); R V!o4"\]  
    k3=-(det(AC)/det(AB)); !W1eUY  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 Uq X1E  
    k2=k2 )u@t.)ChAV  
    k3=k3 <?$kI>Ot  
    F ,G,b  
    end rbk<z\pc  
    ^{[`=P'/  
    %有中间像,焦距输入为正数 lVeH+"M?  
     SNvb1&  
    function sjr=yfdre(~) QJ];L7Hbo  
    J(d2:V{h  
    f=input('f:'); ,VD6s !(  
    d1=input('d1:'); A|<;  
    d2=input('d2:'); W._G0b4}  
    d3=input('d3:'); da*9(!OV  
    '7nJb6V,0l  
    A=f^2/(d3*d2)-f/d1; FU@uH U5fd  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); (Cj,\r  
    C=d3/d2-f/d1; a'[)9:  
    J0Four#MD  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); K[ ?R[  
    a2=d3/(a1*f); tE!'dpG5)  
    b2=a1*(1-a2)*f/d2; \7E`QY4  
    b1=(1-a1)*f/(d1*b2); ~eo^`4O{{  
     3t  
    %曲率半径 IYNMU\s  
    0|2%#  E  
    R1=2*f/(b1*b2) jA2ofC  
    R2=2*a1*f/(b2*(1+b1)) ci7~KewJ*  
    R3=2*a1*a2*f/(1+b2) ?@a$!_  
    F7 uhuqA]N  
    A1=b2^3*(a1-1)*(1+b1)^3; 'P/taEi=R  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; (G5T%[/U  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; /8p&Qf>lJ1  
    yv${M u  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); e<'U8|}hc{  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); `2x34  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ;a{rWz1Wm  
    Ck(.N  
    CB=[C1 B1;C2 B2]; # J.u  
    AB=[A1 B1;A2 B2]; #D:RhqjK  
    AC=[A1 C1;A2 C2]; K%<GU1]-]  
    X'2Gi  
    %二次系数 #5d8?n  
    $Z7:#cZ Y  
    k2=-(det(CB)/det(AB)); P7 8uq  
    k3=-(det(AC)/det(AB)); m9g^ -X  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 /$OIlu  
    k2=k2 3^H/LWx`{]  
    k3=k3 kt<@H11  
    ")\ *2d  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 -~]^5aa5n