切换到宽版
  • 广告投放
  • 稿件投递
  • 繁體中文
    • 2902阅读
    • 1回复

    [原创]在框架结构确定的情况下,基于matlab的消四种像差的三反系统初始结构的求解 [复制链接]

    上一主题 下一主题
    离线songshaoman
     
    发帖
    661
    光币
    2644
    光券
    0
    只看楼主 倒序阅读 楼主  发表于: 2020-05-25
    %无中间像,焦距输入为负数 $b8>SSz  
    function sjr=nfdre(~) MKH7d/x  
     dxU[>m;  
    %系统焦距及各镜间距输入,间距取负正负 _I -0[w  
    Z>{8FzP.F  
    f=input('f:'); J LeV@NO  
    d1=input('d1:'); )GR^V=o7,Y  
    d2=input('d2:'); sF|lhLi  
    d3=input('d3:'); ;j(xrPNb  
    S=my;M-  
    A=f^2/(d3*d2)-f/d1; zxj!ihs<  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); YnNei 7R  
    C=d3/d2-f/d1; g$:2c7uL  
    c8yD-U/-  
    a1=(-B+sqrt(B^2-4*A*C))/(2*A);%α1  (0k0gq;  
    a2=d3/(a1*f);%α2 bEy%S "\<  
    b2=a1*(1-a2)*f/d2;%β2 kg-%:;y.  
    b1=(1-a1)*f/(d1*b2);%β1 O ,DX%wk,  
    @!F9}n AP  
    6qw_|A&g  
    %曲率半径 Gis'IX(  
    @Xh 4ZMyEx  
    R1=2*f/(b1*b2) k"n#4o:  
    R2=2*a1*f/(b2*(1+b1)) e;gf??8}  
    R3=2*a1*a2*f/(1+b2) 5Ut0I]h|z  
    2/bck)p=  
    A1=b2^3*(a1-1)*(1+b1)^3; bLUn0)c  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; ;DGWUK.U[H  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; Y>z(F\  
    cJty4m-  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); u!X 2ju<  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); [s2%t"H-y  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); gNO$WY^  
    hqE#BnQxP,  
    CB=[C1 B1;C2 B2]; k%LE"Q  
    AB=[A1 B1;A2 B2]; &hF>}O  
    AC=[A1 C1;A2 C2]; } K Ou  
    LyQO_mT2  
    %非球面系数 - Zw"o>  
    k2=-(det(CB)/det(AB)); q6,xsO,+  
    k3=-(det(AC)/det(AB)); 6Z'zB&hM}  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 @hv9 =v+  
    k2=k2 |, :(3Ml  
    k3=k3 z,NHH):~  
    UjfB+=7I{L  
    end qH(2 0Z!  
    q&wMp{  
    %有中间像,焦距输入为正数 k'\RS6M`L  
    WAQv4&xGM  
    function sjr=yfdre(~) "5e]-u'  
    ]>:>":<:  
    f=input('f:'); .Kv@p jOr  
    d1=input('d1:'); 4@VX%5uy  
    d2=input('d2:'); `q/y|/v<  
    d3=input('d3:'); NR3IeTd  
    L Y M`  
    A=f^2/(d3*d2)-f/d1; 6jnRC*!?  
    B=f/d1-f/d2+f/d1+f/d3-d3*f/(d3*d2); >0m-S :lk  
    C=d3/d2-f/d1; R52!pB0[  
    c.XLEjV|  
    a1=(-B-sqrt(B^2-4*A*C))/(2*A); <^&'r5H  
    a2=d3/(a1*f); 1"e=Zqn$)  
    b2=a1*(1-a2)*f/d2; g>Z1ZK0;M  
    b1=(1-a1)*f/(d1*b2); y}3V3uqK  
    EXzY4D ^  
    %曲率半径 EYQ!ELuF  
    ?^7~|?v  
    R1=2*f/(b1*b2) QoW3*1o  
    R2=2*a1*f/(b2*(1+b1)) :DZiDJ@  
    R3=2*a1*a2*f/(1+b2) w8on3f;6n#  
    l%)XPb2$J  
    A1=b2^3*(a1-1)*(1+b1)^3; {wm  `  
    B1=-(a2*(a1-1)+b1*(1-a2))*(1+b2)^3; m760K*:i\  
    C1=(a1-1)*b2^3*(1+b1)*(1-b1)^2-(a2*(a1-1)+b1*(1-a2))*(1+b2)*(1-b2)^2-2*b1*b2; $X{& KLM[  
    FqiK}K.~/  
    A2=b2*(a1-1)^2*(1+b1)^3/(4*a1*b1^2); 1H ZexV  
    B2=-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)^3/(4*a1*a2*b1^2*b2^2); Z86[sQBg  
    C2=b2*(a1-1)^2*(1+b1)*(1-b1)^2/(4*a1*b1^2)-(a2*(a1-1)+b1*(1-a2))^2*(1+b2)*(1-b2)^2/(4*a1*a2*b1^2*b2^2)-b2*(a1-1)*(1-b1)*(1+b1)/(a1*b1)-(a2*(a1-1)+b1*(1-a2))*(1-b2)*(1+b2)/(a1*a2*b1*b2)-b1*b2+b2*(1+b1)/a1-(1+b2)/(a1*a2); ?oF@q :W  
    %1lLUgf3G/  
    CB=[C1 B1;C2 B2]; o 1b#q/  
    AB=[A1 B1;A2 B2]; `?>OY&(  
    AC=[A1 C1;A2 C2]; 1n,JynJ  
    F%Xq}LMd  
    %二次系数 )Qo6bei!  
    Zw3|HV(so  
    k2=-(det(CB)/det(AB)); :4A^~+J  
    k3=-(det(AC)/det(AB)); X ak~He  
    k1=(k2*a1*b2^3*(1+b1)^3-k3*a1*a2*(1+b2)^3+a1*b2^3*(1+b1)*(1-b1)^2-a1*a2*(1+b2)*(1-b2)^2)/(b1^3*b2^3)-1 yWs/~5[F  
    k2=k2 x^ Wgo`v)  
    k3=k3 J|>P,x#G  
    +yTL  
    end
     
    分享到
    离线doushan
    发帖
    14
    光币
    0
    光券
    0
    只看该作者 1楼 发表于: 2023-03-01
    谢谢分享,学习一下 d9^h YS{